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and Newtonian Fluid Flow though Porous Media 
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Abstract 

A comprehensive theoretical study has been carried out on the flow behavior of 

both single and multiple phase non-Newtonian fluids in porous media. This work is 

divided into three parts: (1) development of numerical and analytical solutions; (2) 

theoretical studies of transient flow of non-Newtonian fluids in porous media; and (3) 

applications of well test analysis and displacement efficiency evaluation to field prob- 

lems. 

A fully implicit, integral finite difference model has been developed for simulation 

of non-Newtonian and Newtonian fluid flow through porous media. Several 

commonly-used rheological models of power-law and Bingham plastic non-Newtonian 

fluids have been incorporated in the simulator. 

A Buckley-Leverett type analytical solution for one-dimensional, immiscible dis- 

placement involving non-Newtonian fluids in porous media has been developed. Based 

on this solution, a graphic approach for evaluating non-Newtonian displacement 

efficiency has been developed. The Buckley-Leverett-Welge theory is extended to flow 

problems with non-Newtonian fluids. An integral method is also presented for the study 

of transient flow of Bingham fluids in porous media. In addition, two well test analysis 



methods have been developed for analyzing pressure transient tests of power-law and 

Bingham fluids, respectively. Applications are included to demonstrate this new tech- 

nology. 

The physical mechanisms involved in immiscible hsplacement with non- 

Newtonian fluids in porous media have been studied using the Buckley-Leverett type 

analytical solution. The results show that this kind of displacement is a complicated pro- 

cess and is determined by the rheological properties of the non-Newtonian fluids and the 

flow conditions, in addition to relative permeability data. In another study, an idealized 

fracture model has been used to obtain some insights into the flow of a power-law fluid 

in a double-porosity medium. For flow at a constant rate, non-Newtonian flow behavior 

in a fractured medium is characterized by two-parallel straight lines on a log-log plot of 

injection pressure versus time. Transient flow of a general pseudoplastic fluid has been 

studied numerically and it has been found that the long time pressure responses tend to 

be equivalent to that of a Newtonian system. 

P. A. Witherspoon 

Thesis Committee Chairman 
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Chapter 1 

Introduction 

Even though most studies conducted on flow and transport in porous media deal 

with Newtonian fluids, flow of non-Newtonian fluids through porous media is encoun- 

tered in many subsurface systems, involving underground natural resource recovery or 

storage projects. A thorough understanding of non-Newtonian flow behavior in porous 

media is of fundamental importance to these engineering applications. In the past three 

decades, a tremendous effort has been devoted to developing quantitative analysis of 

flow of non-Newtonian fluids through porous media. Considerable progress has been 

reported and much information is available in the chemical engineering, rheology and 

petroleum engineering literature. The theoretical investigations carried out in this field 

have concentrated mainly on single-phase non-Newtonian fluid flow, while the experi- 

mental attempts have been designed to provide flow analysis with rheological models 

for non-Newtonian fluids and porous materials of interest. 

In order to apply Darcy's law to the flow of single and multiple phase non- 

Newtonian fluids in porous media, effective viscosities are needed for use in the Darcy 

equation. A significant amount of laboratory studies has been performed by many inves- 

tigators in an effort to develop correlations for effective viscosities of non-Newtonian 

fluids with the rock parameters and flow conditions for a given fluid (Christopher and 

Middleman, 1965; Gogarty, 1967, and many others). In all of these studies, a power-law 

viscosity model has been used exclusively to approximate the flow behavior of non- 

Newtonian fluids, such as polymer solutions. However, there is considerable evidence 

from laboratory experiments and field tests that certain fluids in porous media exhibit a 

Bingham-type non-Newtonian behavior. In these cases, flow takes place only after the 

applied pressure gradients exceeds a certain minimum value. 



Among the theoretical studies of transient flow of non-Newtonian fluids in porous 

media, van Poollen and Jargon (1969) presented a numerical study of a power-law non- 

Newtonian fluid flow using a finite difference method. Analytical studies of the transient 

flow of a power-law fluid through porous media were performed by Odeh and Yang 

(1979), and Ikoku and Ramey (1979). They solved the non-linear partial differential 

equations that govern the flow of a slightly compressible power-law fluid in porous 

media by using approximate linearization assumptions, and they obtained approximate 

closed-form analytical solutions for the wellbore pressure. Then a new well testing 

method was developed for power-law non-Newtonian fluid injection, based on these 

solutions. Their approach has been extended and improved by many authors to include: 

i) wellbore storage and skin effects by interfacing with a well storage numerical simula- 

tor; ii) pressure transient behavior of non-Newtonian / Newtonian fluids in composite 

reservoirs by a numerical method; and iii) pressure falloff behavior in a vertically frac- 

tured well. However, all of these works dealt only with power-law non-Newtonian 

fluids, and no studies on Bingham-type fluid flow in porous media have been reported. 

The analytical solutions by Odeh and Yang (1979), or Ikoku and Ramey (1979), and 

their followers have been found to be valid for approximations of wellbore pressures 

only under the condition where the power-law index, n, takes a value of between 1 and 

0.6 (Vongvuthipornchai and Raghavan, 1987a). In addition, the flow of power-law 

fluids through fractured media may be important to some engineering applications, 

because many subsurface systems, such as naturally fractured petroleum and geothermal 

reservoirs, are fractured formations. Very little research can be found in the literature on 

the flow of non-Newtonian fluids in fractured media. 

The power-law model has been known to be a good approximation only over a lim- 

ited range of shear rates. At both very low and very high shear rates, all the fluids appear 

to exhibit Newtonian behavior, i.e., viscosities become constant. Even though a rheolog- 

ical model for general pseudoplastic non-Newtonian fluids was proposed by Meter 



(Meter and Bud, 1964), no flow behavior studies have been reported using this more 

general viscosity function. 

The behavior of multiple-phase flow, compared to single-phase flow, is much more 

complicated and not well understood in many respects due to the complex interactions 

of the different fluid phases. A fundamental understanding of immiscible displacement 

of Newtonian fluids in porous media has been developed by Buckley and Leverett 

(1942). Since then, the Buckley-Leverett fractional flow theory has been applied and 

generalized by various authors to study a number of more complicated problems, involv- 

ing the injection of different chemicals into reservoirs. However, non-Newtonian 

behavior has not been considered in any of this work. There are no analytical solutions 

available to describe the mechanism of displacement with non-Newtonian and 

Newtonian fluids in porous media. 

This work presents a comprehensive theoretical study of both single and multiple 

phase flow of non-Newtonian fluids through porous media. The emphasis in this study 

is to obtain some physical insights into the flow of power-law and Bingham fluids. The 

purpose of this study is: i) to develop analytical solutions and a general numerical simu- 

lator for both single and multiple phase non-Newtonian fluid flow in porous media; ii) to 

conduct systematic studies of single phase fluid transient flow and multiple phase immis- 

cible displacement of power-law and Bingharn fluids; and iii) to provide practical 

approaches for well testing analysis and displacement efficiency evaluation of power- 

law and Bingham fluids for engineering applications. Therefore, this work consists of 

three tasks: i) development of theoretical methods; ii) investigation of transient flow of 

single phase non-Newtonian fluids, and iii) investigation of immiscible displacement of 

separate non-Newtonian and Newtonian fluids. 

Chapter 2 presents a comprehensive review of the literature on the experimental 

and theoretical studies of non-Newtonian fluid flow through porous media. Chapter 3 

discusses the rheological models and modified Darcy's law for non-Newtonian fluids in 



porous media. Based on previous laboratory results, the apparent viscosity of non- 

Newtonian fluids for the modified Darcy's equation in this study is assumed to be a 

function of flow potential gradient only for single phase flow for a given fluid and 

porous media. For multiple phase flow, the viscosity depends not only on flow potential 

gradient, but on saturation as well. 

Chapter 4 describes the mathematical model and numerical approach which have 

been used in this study. The numerical code is a modified version of the general numeri- 

cal simulator "MULKOM" (Pruess, 1983; 1988) for non-Newtonian and Newtonian fluid 

flow. Also, special treatment for non-Newtonian behavior of power-law, Bingham, and 

pseudoplastic fluids is given in this chapter. 

Chapter 5 is devoted to the development of an analytical solution for immiscible 

displacement of non-Newtonian and Newtonian fluids in porous media. A practical 

graphic procedure for evaluating the analytical solution is also provided. The resulting 

method can be regarded as an extension of the Buckley-Leverett-Welge theory for the 

flow of non-Newtonian fluids through porous media. An example of the application of 

the analytical solution is used to verify the numerical code described in Chapter 4. 

In Chapter 6,  a theoretical study of the displacement of a Newtonian fluid a non- 

Newtonian power-law fluid is conducted using the Buckley-Leverett type analytical 

solution developed in Chapter 5. The physical mechanisms of immiscible displacement 

involving a power-law fluid are revealed in this study. The displacement process is 

determined by the rheological properties of power-law fluids and the flow condition, in 

addition to the relative permeability data. 

Chapter 7 presents the investigation results of displacement involving a non- 

Newtonian Bingharn fluid in porous media. An example of Bingharn fluid displacement 

by a Newtonian fluid is heavy oil production in water flooding. Heavy oil often behaves 

like a Bingham non-Newtonian fluid under reservoir conditions. A very low rate of 

recovery is a common feature of high viscosity oil production in water flooding. This 



work shows that the low displacement efficiency of a Bingham fluid by a Newtonian one 

is primarily due to the presence of the ultimate displacement saturation, which is a 

characteristic of immiscible displacement with a Bingham fluid. Once the saturation of 

the displacing phase in the two-phase flow system reaches its ultimate value, no further 

improvement of displacement efficiency can be obtained regardless of how long the 

operation continues under the same flow condition. 

A systematic numerical study performed in this work is reported in Chapter 8 for 

transient flow of single phase power-law fluids in porous media. The numerical investi- 

gation includes i) injectivity test analysis of a power-law fluid; ii) transient flow of a 

power-law fluid through a fractured medium; and iii) transient flow of a pseudoplastic 

fluid, described by the Meter model. A better transient pressure analysis method for 

power-law fluid injectivity tests is discussed and recommended, which is a combination 

of the existing analytical approach and a numerical simulation. The two published 

results of well testing are analyzed by this new technique to demonstrate its general 

applicability to field problems. Transient flow of a power-law fluid through a fractured 

medium is also studied numerically using an idealized horizontal fracture model in 

Chapter 8. For constant flow rates, non-Newtonian flow behavior in a double-porosity 

medium is characterized by two-parallel straight lines on a log-log plot of wellbore pres- 

sure increase versus injection time, which are controlled by the same two dimensionless 

parameters as used for Newtonian flow. In the third simulation, the numerical results 

show that the flow behavior of pseudoplastic fluids in porous media tends towards an 

equivalent Newtonian system at long times. Serni-log straight lines develop on the 

pressure-time plots, in contrast to the log-log straight lines for power-law fluid flow, as 

has been discussed in the literature. 

Chapter 9 presents a complete quantitative analysis for the flow of single phase 

Bingham non-Newtonian fluids in porous media. An integral analytical solution has 

been obtained for transient flow of a Bingham fluid through porous media, and its 



accuracy is confirmed by comparison with the exact and numerical solutions. The flow 

behavior of a slightly-compressible Bingham fluid is discussed using the integral solu- 

tion. In order to apply the theory to field problems, a new method of well test analysis 

has been developed, and its application is demonstrated by analyzing two simulated 

pressure drawdown and buildup tests in Chapter 9. 

A summary of this work is given in Chapter 10. This study has made several con- 

tributions to the understanding of flow behavior of single and multiple phase non- 

Newtonian fluids in porous media. New theoretical approaches are developed for deter- 

mining fluid and formation properties during power-law and Bingham non-Newtonian 

fluid flow in reservoirs, and also for evaluating sweep efficiency of immiscible 

Newtonian and non-Newtonian fluid displacement in porous media. It is believed that 

the analytical solutions and the general numerical simulator developed in this work will 

find applications in the further research on non-Newtonian fluid flow in porous media. 



Chapter 2 

Literature Review 

2.1 Introduction 

Flow of non-Newtonian fluids through porous media occurs in many subsurface 

systems and has found applications in certain technological areas. Previous studies on 

the flow of fluids through porous media were limited for the most part to Newtonian 

fluids (Muskat, 1946; Collins, 1961; and Scheidegger, 1974). Since the 1950's, the flow 

of non-Newtonian fluids through porous media has received a significant amount of 

attention because of its important industrial applications. In the applications related to 

the petroleum industry, non-Newtonian fluids, especially polymer solutions, rnicroemul- 

sions, and foam, are often injected into reservoirs in various enhanced oil recovery 

(EOR) processes. The use of polymers in water flooding can yield significant increases 

in the oil recovery when compared with conventional water flood methods in certain 

reservoirs. Therefore, polymer flooding is the most commonly used EOR technique of 

chemical flooding in the petroleum industry (Dauben and Menzie, 1967; Mungan, 1966; 

Gogarty, 1967; Harvey and Menzie, 1970; and van Poollen, 1980). The flow of polymer 

solutions through porous media generally behaves like a power-law non-Newtonian fluid 

(Savins, 1969; Gogarty; 1967; and Christopher and Middleman; 1965). There exists a 

considerable amount of literature and reports of a number of patents relating to the use 

of polymeric and chemical additives in oil recovery processes. 

There is considerable evidence that the flow behavior of heavy oil is non- 

Newtonian and may be approximated by that of a Bingham plastic fluid. A large amount 

of heavy oil reservoirs have been found and developed worldwide. The non-Newtonian 

behavior of heavy oil flow in these oil reservoirs have been reported in the petroleum 



literature (Barenblatt et al., 1984; Kasraie et al., 1989). Laboratory rheological and 

filtration experiments and field tests in a number of oil fields have shown that flow of 

heavy oil often takes place only after the applied pressure gradient exceeds a certain 

minimum value (Mirzadjanzade et al., 1971). The flow of heavy oil in porous media 

does not follow Darcy's law; and some authors explain this phenomenon as a lower limit 

of Darcy's law. The presence of a minimum pressure gradient usually results in a large 

decrease in oil recovery. Similar phenomena have been also found in gas fields of argil- 

laceous reservoirs with interstitial water present by Mirzadjanzade et al.. There exists a 

threshold gas pressure gradient before gas moves, and the magnitude of the threshold 

pressure gradient depends on water content in pore space, decreasing as the water con- 

tent decreases. 

The existence of a threshold hydraulic gradient has also been observed for certain 

groundwater flow in saturated clay soils, or strongly argillized rocks. When the applied 

hydraulic gradient is below the minimum value, there is very little flow. This 

phenomenon has been attributed to the rheological non-Newtonian behavior caused by 

clay-water interactions (Bear, 1972). Mitchell (1976) discussed a number of mechanisms 

that are responsible for the deviations of water flow through clays from that predicted by 

Darcy's law. 

The flow of foam in porous media is a focus of current research in many fields. 

Foam has been shown to be one of the most promising fluids for mobility control in 

underground energy recovery and underground storage projects. When flowing through 

porous media, foam is a discontinuous fluid, comprised of gas bubbles separated by thin 

liquid larnellae. The flow and behavior of foam in permeable media involve complex 

gas-liquid-solid interactions on the pore level, which are not completely understood at 

the present time. However, considerable progress has been made in recent years, and 

many experimental and theoretical studies of foam flow in porous media have contri- 

buted significantly to our understanding of the physics of foam transport in porous 



media (Witherspoon et al. 1989; Hirasaki and Lawson, 1985; Falls et al., 1986; Ransoh- 

off and Radke 1986). On a continuum macroscopic scale, non-Newtonian flow behavior 

of foam through porous materials has been referred to by all the researchers in this field. 

The power-law is generally used to correlate apparent viscosities of foam with other 

flow properties for a given porous medium and a given surfactant @hasaki and Lawson, 

1985; Patton et al. 1983). It has also been observed experimentally that foam will start 

to flow in a porous medium only after the applied pressure gradient exceeds a certain 

threshold value (Albrecht and Marsden, 1970; and Witherspoon et al., 1989). 

Drilling and hydraulic fracturing fluids used in the industry are usually non- 

Newtonian liquids. Therefore during well drilling or hydraulic fracturing operations, the 

non-Newtonian drilling muds or hydraulic fluids will infiltrate into permeable forma- 

tions surrounding the wellbore, which may seriously damage the formation. The rheo- 

logical behavior of drilling muds, cement slurries and hydraulic fracturing fluids often is 

described by a Bingham plastic or a power-law model (Cloud and Clark, 1985; Shah, 

1982; Robertson et al., 1976; and Iyoho and Azar, 1981). The importance of flow into 

the surrounding formations of non-Newtonian fluids from the wellbore has been recog- 

nized in the industry. In fact, very little research or quantitative analysis has been 

reported on the formation contamination near the wellbore by such fluids in the 

petroleum industry, some techniques have been developed and used to remove drilling 

muds or fracturing agents from the borehole and the adjacent formation (Coulter et al., 

1987). 

2.2 Non-Newtonian Fluids 

In contrast with classical fluid mechanics developed for Newtonian fluids, the 

theory of non-Newtonian fluid dynamics is a very new branch of applied sciences. The 



increasing importance of non-Newtonian fluids has been recognized in those fields deal- 

ing with materials, whose flow behavior of stress and shear rate can not be characterized 

by Newton's law of viscosity (Skelland, 1967; Bohme, 1987; Astarita and Marmcci, 

1974; and Crochet et al., 1984). Therefore, non-Newtonian fluid mechanics is being 

developed. In a broad sense, fluids are divided into two main categories: (1) Newtonian, 

and (2) non-Newtonian. Newtonian fluids follow Newton's law of viscous resistance and 

possess a constant viscosity. Non-Newtonian fluids deviate from Newton's law of 

viscosity, and exhibit variable viscosity. The behavior of non-Newtonian fluids is gen- 

erally represented by a rheological model, or correlation of shear stress and shear rate. 

Examples of substances which exhibit non-Newtonian behavior include solutions and 

melts of high molecular weight polymers, suspensions of solids in liquids, emulsions, 

and materials possessing both viscous and elastic properties. There are many rheological 

models available for different non-Newtonian fluids in the literature (Skelland, 1967; 

Savins, 1969; Bud et al., 1960). Scheidegger (1974) gave a very comprehensive sum- 

mary of rheological equations of various non-Newtonian fluids in porous media. The 

present review focuses only on those non-Newtonian fluids which are commonly 

encountered in porous media. The major attention here is directed to the rheological 

properties of flow systems of interest in studies of non-Newtonian flow through porous 

media. 

For a Newtonian fluid, the shear stress z is linearly related to the shear rate y by 

Newton's law of viscosity (Bird et al., 1960) as, 

where the coefficient p is defined as dynamic viscosity of the fluid. 

According to the relationships between shear stress and shear rate, non-Newtonian 

fluids are commonly grouped in three general classes (Skelland, 1967) : (1) time- 

independent non-Newtonian fluids; (2) time-dependent non-Newtonian fluids; and (3) 



viscoelastic non-Newtonian fluids. 

1. Time-independentfluids are those for which the rate of shear y , or the velocity 

gradient, is a unique but non-linear function of the instantaneous shear stress z at that 

point. For the time-independent fluid, the relationship is 

The time-independent non-Newtonian fluids can be characterized by the flow curves of z 

versus y, as shown in Figure 2.1. These are: (a) Bingham plastics, curve A; (b) pseudo- 

plastic fluids (shear thinning), curve B; and (c) dilatant fluids ( shear thickening), curve 

C. 

2. Time-dependent fluids have more complex shear stress and shear rate relation- 

ships. In these fluids, the shear rate depends not only on the shear stress, but also on 

shearing time, or on the previous shear stress rate history of the fluid. These materials 

are usually classified into two groups, thixotropic fluids and rheopectic fluids, depending 

upon whether the shear stress decreases or increases in time at a given shear rate and 

under constant temperature. Typical curves of the time-dependent behavior of non- 

Newtonian fluids are shown in Figure 2.2. 

3. A viscoelastic material exhibits both elastic and viscous properties, and shows 

partial recovery upon the removal of the deformable shear stress. The rheological pro- 

perties of such a substance at any instant will be a function of the recent history of the 

material and can not be described by relationships between shear stress and shear rate 

alone, but will require inclusion of the time derivative of both quantities. 

One of the mechanical models, first proposed by Maxwell (Skelland, 1967) 

for viscoelastic fluids, is 
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Figure 2.1 Typical Shear Stress and Shear Rate Relationships for 

Non-Newtonian Fluids (after Hughes and Brighton). 
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Figure 2.2 Flow Curves for Time-Dependent Thixotropic and Rheopectic 

Non-Newtonian Fluids ( after Bear, and Skelland). 



where p is viscosity, and h is a rigidity modulus. Liquids which obey this law are 

known as Maxwell liquids. Another mechanical model is referred to as the Voigt model, 

which characterizes the rheological performance by the relationship, 

The rheological behavior of real viscoelastic fluids has been represented with some suc- 

cess by more or less complex combinations of generalized Maxwell and Voigt models, 

consisting of Maxwell or Voigt model units connected in series or in parallel. 

For flow through porous media, the time-independent non-Newtonian fluids have 

been used almost exclusively in both experimental and theoretical studies (Savins, 

1969). However, there do exist some examples for the flow of the viscoelastic non- 

Newtonian fluids through porous media (Sadowski, 1965; and Wissler, 1971). The effect 

of time-dependent non-Newtonian fluids on flow behavior in porous media have been 

virtually neglected in all previous investigations. 

Among the most common time-independent non-Newtonian fluids (Scheidegger, 

1974; Bear, 1972), Bingham pIastics exhibit a finite yield stress at zero shear rate. The 

physical behavior of fluids with a yield stress is usually explained in terms of an internal 

structure in three dimensions which is capable of preventing movement when the values 

of shear stress are less than the yield value, T,,, as shown in Figure 2.1. For shear stress, 

z, larger than 3, the internal structure collapses completely, allowing shear movement to 

occur. The characteristics of these fluids are defined by two constants: the yield stress 

zy , which is the stress that must be exceeded for flow to begin, and the Bingham plastic 

viscosity pb , which is the slope of the straight line portion of curve A in Figure 2.1. The 

rheological equation for a Bingham plastic is then, 



The Bingham plastic concept has been found to closely approximate many real fluids 

existing in porous media, such as heavy tany and paraffin oils (Barenblatt et al., 1984; 

Mirzadjanzade et al. 1971), and drilling muds and fracturing fluids (Hughes and Brigh- 

ton, 1967), which are suspensions of finely divided solids in liquids. 

To date the power-law, or the Ostwald-de Waele model (Bird et al., 1960), is the 

most widely used rheological model for flow problems in porous media. The power law 

model has been successfully applied to describe the flow behavior of polymer and foam 

solutions by a number of authors (Christopher and Middleman, 1965; McKinley et al., 

1966; Gogarty, 1967; Harvey and Menzie, 1970, Mungan, 1972; Hirasaki and Pope, 

1974; and many others). Originally formulated from an empirical curve-fitting function, 

the power law is represented by, 

where n is the power-law index; and H is called the consistence coefficient. For n = 1, 

the fluid becomes Newtonian. A fluid which obeys Equation 2.5 is called a power-law 

fluid. Because of its inherent simplicity, the power-law is of considerable interest in 

applications and is used to approximate the rheological behavior of both shear-thinning 

or pseudoplastic (n < 1) and shear-thickening or dilatant (n > 1) fluids over a large range 

of flow conditions. 

Comparing Equation 2.5 with Newton's law of viscosity, Equation 2.1, we see that 

such a fluid exhibits an apparent viscosity pa of the form: 

For most power-law fluids, the power-law index n is less than 1.0, and so the apparent 

viscosity pa decreases with increasing shear rate y . The shear-thinning behavior, which 

amounts to a monotonic decrease in apparent viscosity with increasing shear rate, is 

readily observed in the flow of polymer and foam solutions, moderately concentrated 

suspensions, and biological fluids. 



Physically, when the fluid is at rest, fluid dispersions of asymmetric molecules or 

particles are probably characterized by an extensive entanglement of the particles. Pro- 

gressive disentanglement should occur under the influence of shearing forces, and the 

particles will tend to orient themselves in the direction of shearing. This orienting effect 

is proportional to the shear rate and is opposed by the randomly disorienting Brownian 

movement. Pseudoplastic behavior should also be consistent with the existence of highly 

solvated molecules or particles in dispersion. Progressive shearing away of solvated 

layers with increasing shear rate would result in decreasing interactions between the 

molecules or particles and a consequent reduction in apparent viscosity. 

Although the power-law equation accurately portrays the behavior of a large 

number of non-Newtonian fluids over a wide range of shear rate or velocity gradients, 

some fluids exhibit more complex behavior. In addition, at both very low and very high 

velocity gradients, all fluids appear to exhibit Newtonian behavior with constant viscosi- 

ties h and p.-, respectively, as shown in Figure 2.3. Complete orientation at high shear 

rate and complete disorientation at very low shear rate should account for the observed 

Newtonian behavior in these regions. The power law predicts an infinite viscosity at 

vanishingly small velocity gradients. 

In order to describe the entire viscosity curve, a more complex expression than the 

power-law model, Equation 2.5 is needed. One of the numerous proposed expressions is 

the extended Williamson model (Fahien, 1983), 

where al and are constants. For low and high values of shear rate y ,  Equation 2.7 

yields pa + h and pa + p., , respectively. 

A similar correlation of the apparent viscosity for polymer solutions was proposed 

by Meter ( Meter and Bird, 1964), 
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Figure 2.3 Viscosity Behavior of Pseudoplastic shear-Thinning Fluids, 

with Maximum and Minimum Limiting Viscosities. 



where a and z, are constants. Equation 2.8 has been used to investigate flow problems 

of polymer solutions in porous media (Lake, 1987; and Carnilleri et al., 1987). 

One simple relationship for describing the viscosity of a power-law fluid is called 

the truncated power-law model (Bird, 1965), 

and 

Figure 2.4 presents the apparent viscosity as a function of shear rate for the truncated 

power-law model. This model was used by Vongvuthipornchai and Raghavan (1987a) in 

their numerical studies of the pressure falloff behavior of power-law fluid flow in a verti- 

cally fractured well. 

The power law is also called a two parameter model (Bird et al., 1960), since it is 

characterized by the two parameters, H and n. In order that the power-law relationship 

be of engineering value, it is necessary for H and n to remain constant over considerable 

ranges of shear rate. In the general case, H and n may vary continuously with shear rate. 

Then, a logarithmic form of the power law should be used (Skelland, 1967), instead of 

Equation 2.5. However, many published laboratory studies of polymer solution flow in 

porous media reveal that it is a reasonable assumption to take H and n as constants. 

Shear thickening behavior has been observed with dilatant materials, although 

these materials are far less common than pseudoplastic fluids. Volumetric dilatancy 

denotes an increase in total volume under shearing, whereas rheological dilatancy refers 

to an increase in apparent viscosity with increasing shear rate. A number of mechanisms 

proposed to explain the shear thickening phenomena were summarized by Savins 
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Figure 2.4 Viscosity Behavior of the Truncated Power-Law Model 

(after Vongvuthipornchai and Raghavan). 



(1969). The shear thickening behavior is of particular interest in connection with non- 

Newtonian flow through porous media because certain dilute polymeric solutions exhibit 

a shear thickening response under appropriate conditions of flow, even though they show 

shear thinning behavior in viscomemc flow. This general type of behavior has been 

reported in porous media flow experiments involving a variety of dilute to moderately 

concentrated solutions of high-molecular-weight polymers. In the case when the power- 

law model applies, the power-law index n > 1 generates a monotonically increasing 

shear thickening response. However, the shear thickening or dilatant phenomena may be 

the most controversial and least understood rheological behavior of non-Newtonian 

fluids. 

The approaches available for rheological data analysis and characterization of 

non-Newtonian systems are: (1) the integration method; (2) the differentiation method 

(Savins, Wallick and Foster, 1962a; 1962b; 1962c) and (3) the dual differentiation- 

integration method (Savins, 1962). However, only the integration technique is of 

interest in porous media flow problems. The integral method consists of interpreting 

flow properties in terms of a particular model. The rheological parameters appear, on 

integrating, in an expression relating the pairs of observable quantities, such as volume 

flux and pressure. Many theoretical correlations of non-Newtonian fluid flow through 

porous media are based on capillary models. Consider steady laminar upward flow of a 

time-independent fluid through a vertical cylindrical tube with a radius R, as shown in 

Figure 2.5. The volumetric flow rate , Q, is (Skelland, 1967): 

where 2, is shear stress at the tube wall; and f ( k )  is the rheological function, depending 

on the rheological model of the fluid; and z,, is the shear stress, given by, 
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Figure 2.5 Stresses acting on a Cylindrical Element of Fluid of Radius R 

in Steady Flow through a Vertical Tube (after Skelland). 



With an appropriate rheological function f(&), as summarized by Savins (1962), Equa- 

tion 2.1 l relates the volumetric flow rate through a capillary and the shear stress on the 

wall of many useful fluids, such as Bingham plastic and power-law fluids. 

2.3 Previous Work on Laboratory Studies and Rheological Models 

Many studies on the flow of non-Newtonian fluids in porous media exist in chemi- 

cal engineering, rheology, and petroleum engineering from the early 1960's. Because of 

the complexity of pore geometries in a porous medium, Darcy's law has to be used to 

obtain any meaningful insights into the physics of flow in porous media. Some 

equivalent or apparent viscosities for non-Newtonian fluid flow are needed in the Darcy 

equation. Therefore, a lot of experimental and theoretical investigations have been con- 

ducted to find rheological models, or correlations of apparent viscosities with flow pro- 

perties for a given non-Newtonian fluid as well as a given porous material. The viscosity 

of a non-Newtonian fluid depends upon the shear rate, or the velocity gradient. How- 

ever, it is impossible to determine the distribution of the shear rate in a microscopic 

sense in a porous medium, and the rheological models developed in fluid mechanics for 

non-Newtonian fluids cannot be applied directly to porous media. Hence, many labora- 

tory studies were undertaken in an attempt to relate the rheological properties of a non- 

Newtonian fluid to the pore flow velocity of the fluid or the imposed pressure drop in a 

real core or in a packed porous medium. 

The viscosity used in Darcy's equation for non-Newtonian fluids depends, on 1) 

rheological properties of the fluids, 2) characteristics of the porous medium, and 3) shear 

rate. Empirical attempts to establish correlations between the various dynamic proper- 

ties of porous media need to introduce certain additional parameters. Theoretical con- 

siderations may be able to identify the physical significance of these parameters. The 



simplest theoretical models that can be constructed for a porous medium are those con- 

sisting of capillaries. The capillary model, in which the porous medium is represented 

by a bundle of straight, parallel capillaries of uniform diameters, was used to derive a 

flow equation, the modified Darcy's law for non-Newtonian fluid flow through porous 

media. Under steady-state and laminar flow conditions, the momentum flux distribution 

in the radial direction within the capillary is first solved from the conservation of 

momentum. Then, by introducing a special rheological model for the non-Newtonian 

fluid in the momentum distribution and integrating in the radial direction, one obtains 

the total flow rate through the capillary. By comparing the expression for the total flow 

rate with Darcy's law, one can deduce a modified Darcy's law with an apparent viscos- 

ity for the special non-Newtonian fluid. The resulting equations usually involve some 

coefficients that need to be determined by experiments for a given fluid in a given 

porous medium. 

In a pioneering work, Christopher and Middleman (1965) developed a modified 

Blake-Kozeny equation for a power-law, non-Newtonian fluid with laminar flow through 

packed porous media. Their theory was based on a capillary model and the Blake- 

Kozeny equation of permeability, and it was tested by experiment with the flow of dilute 

polymer solutions through packed porous material. They claimed that the accuracy of 

their correlation was probably acceptable for most engineering design purposes. The 

modified Blake-Kozeny equation is, 

where u is the Darcy's velocity; K is permeability; AP/L is the pressure gradient; and 

peff is given as 



Note that peff does not have the units of viscosity. Christopher and Middleman also 

derived an expression for average shear rate for a power law fluid in porous meha as 

In order to use Equations 2.13 and 2.15, one must measure the absolute permeabil- 

ity K with a Newtonian fluid, measure the porosity $, and determine the rheological 

parameters, n and H. Bird, Stewart and Lightfoot (1960) presented a similar model to 

Equation 2.13, except that it includes a factor of (25112)"-'. 

Polymer solutions seem to exhibit the same general behavior with regard to the 

non-Newtonian apparent viscosity i.~, as a function of shear stress 2. In the limit of very 

small shear stress, the viscosity approaches a lower shear rate maximum value po. With 

increasing shear stress the viscosity pa decreases, and if the shear stress can be increased 

sufficiently the viscosity reaches its upper shear rate minimum constant value, p,. 

Hence, and p, are measurable quantities characteristic of the fluid. A four-parameter 

model, Equation 2.8, was proposed by Meter (Meter and Bird, 1964) to describe the 

more realistic shear-thinning behavior of polymer solutions. Meter and Bird (1964) 

presented a practical procedure to determine the four parameters in Equation 2.8 by 

fitting experimental non-Newtonian viscosity data. The curve-fitting results appeared 

quite satisfactory. 

Sadowski and Bird (1965) conducted a systematic study on non-Newtonian flow 

through porous media. They used a non-Newtonian viscosity pa in an empirical curve- 

fitting Ellis function, given by 

where is zero-shear viscosity, 2% is the shear stress at which pa has dropped to ?h po, 

and a characterizes the slope of log pa VS. log 7% in the "power-law" region. The three 



parameters h, 2 ~ ,  and a can be obtained by a graphical approach to the viscosity curve. 

By using the Blake-Kozeny-Carman equation of permeability and the capillary model, 

they were able to derive a modified Darcy's law as 

KAF' u = -- 
P a  L 

where the apparent or effective viscosity is defined by 

with Z R ~  = (DL) pp$/6(1+)], and Dp is the particle diameter. 

In an experimental study of the flow through porous media of fourteen different 

polymer solutions, Sadowski (1965) found that the shear-sensitive viscosities of these 

fluids were characterized by the three-parameter Ellis model (2.16). The modified 

Darcy's law (2.17) was used successfully to correlate the constant volumemc flow rate 

to the rheological properties for polymer solutions with low and medium molecular 

weight. Sadowski also pointed out that the results depended on the experimental pro- 

cedure. If the flow rate of the fluid passing through the packed bed was held constant, 

the observed results were both steady and reversible. If the pressure drop across the 

packed bed was held constant, for very small or very large polymer solution concentra- 

tions, the observed results were unsteady and irreversible. The explanation for the 

unsteady and irreversible flow behavior observed for constant pressure drop was that 

polymer adsorption and gel formation occurred throughout the bed. 

Another modified form of Darcy's law for calculating non-Newtonian fluid flow in 

porous media was obtained by McKinley et al. (1966) as 



where is the apparent viscosity at some convenient reference stress z0 . The dimen- 

sionless viscosity ratio, F(z), is defined as 

Here the shear stress z is given by 

The constant q and the dimensionless viscosity ratio F(z) are determined experimen- 

tally from capillary measurements for a given type of rock and a given fluid. This model 

was developed by direct analogy with the flow through a uniform capillary and was 

confirmed experimentally by the authors. 

A universal equation for the prediction of the average velocity in the flow of non- 

Newtonian fluids through packed beds and porous media was proposed by Kozicki et al. 

(1967). This general average velocity-pressure gradient relationship was also based on 

the Blake-Kozeny equation and the capillary model, and was confirmed experimentally 

for various non-Newtonian fluids. The modification of Darcy's law is expressed in terms 

of the flow potential gradient VQ, and the apparent viscosity pa , as 

for zero "slip" velocity on the pore wall. The apparent viscosity is defined as 

where z, is the shear stress at the wall, 5 is a dimensionless aspect factor, zy is the yield 

stress, T is the tortuosity of the porous medium, and p is the viscosity of the non- 

Newtonian fluid as a function of shear stress. In reducing the general expressions (2.22) 



and (2.23) to specific situations, the authors set the aspect factor 5 = 3 to arrive at results 

in agreement with the available experimental data. 

An in-depth laboratory study of the rheological adsorption and oil displacement 

characteristics of polymer solutions was reported by Mungan et al. (1966). One of the 

most important contributions to the understanding of the rheological behavior of non- 

Newtonian fluid flow through porous media was made by Gogarty (1967a, 1967b). By 

using a number of real cores and consolidated porous media in experiments, he corre- 

lated the rheological and flow data to obtain a useful relationship for shear rate and pore 

velocity in porous material. The average shear rate ya is defined as a ratio of the pore 

velocity and a characteristic length for the porous medium, and it is then modified by an 

exponent y, 

where B is a constant determined from experiments. The exponent y accounts for the 

possible deviation between the slope of the apparent viscosity-shear rate curve from a 

capillary viscometer experiment, and the slope of the corresponding curve for the same 

fluid, but determined from an experiment with the porous medium. The function f(K) is 

a linear function of the logarithm of the permeability, 

f(K) = m log - + p [:I 
Here the constants m and p depend on the fluid type in a given kind of rock; and K, is 

some reference permeability. 

Gogarty proved experimentally that the apparent viscosity for use in the Darcy's 

equation was a function only of the shear rate, as defined by Equation 2.24, 



This rheological model was found to fit data for fluids whose character changed rapidly 

with shear rate from Newtonian to non-Newtonian. Flow experiments were performed 

with permeabilities in the range from 0.069 darcy through 0.425 darcy, and porosities in 

the range from 17% through 21.7%. 

In contrast with the above work dealing with one-dimensional flow, Benis (1968) 

presented a theory to consider non-Newtonian fluid flow through two-dimensional nar- 

row channels. The equations were solved numerically for the case of a power-law fluid. 

This method may be interesting for flow problems in fractured reservoirs. 

Viscoelastic effects for non-Newtonian flow in porous media were observed and 

studied by Wissler (1971). He used a third-order perturbation technique to analyze the 

flow of a viscoelastic fluid in a converging-diverging channel and concluded that the 

actual pressure gradient would exceed the purely viscous gradient by a certain factor. 

The modified Darcy's law for a visco-inelastic, power-law fluid can then be used. 

An important experimental study on flow of polymer solutions through porous 

media was reported by Dauben and Menzie (1967). They observed that the apparent 

viscosities of polyethylene oxide solutions under certain conditions was much higher 

than would be predicted from solution viscosity measurements. These polymer solu- 

tions exhibited dilatant behavior in porous media in contrast with the pseudoplastic 

behavior in simple flow systems. Glass bead packs were used as the porous material. 

The shear rate they derived is 

where vp is the pore velocity of flow, L is the spacing of the parallel plate instrument, 

and Dp is the diameter of the glass beads. 

Harvey and Menzie (1970) developed a method for investigating the flow through 

unconsolidated porous media of high molecular weight polymer solutions. By 



introducing the "pseudo Reynolds number" and the "effective particle diameter", they 

successfully analyzed experimental data for three different polymer solutions. From 

experiments conducted over a period of years under reservoir flow conditions, Jennings 

er al. (1971) found that viscoelastic behavior also contributed to the mobility control 

activity of some polymers. Complex flow behavior of viscoelastic fluids can result in 

very large flow resistances at high flow rates in porous media. However, viscoelastic 

flow is not significant under reservoir flow conditions. 

Mungan (1972) tested three partially hydrolized polyacrylamide polymers under 

experimental conditions and observed that the polymers exhibited pseudoplastic 

behavior over an eight-order-magnitude range of shear rates. The correlation for shear 

rate that he used is 

where R is the radius of the equivalent capillary of the porous medium, n' is the slope of 

the log-log plot of shear stress z vs. 4vJR. All of Mungan's experimental data show 

that the apparent viscosity of the polymers is a function solely of the shear rate defined 

in Equation 2.28. 

A detailed analysis of factors influencing mobility and adsorption in the flow of 

polymer solutions through porous media was provided by Hirasaki and Pope (1974). The 

pseudoplastic behavior was modeled with the modified Blake-Kozeny equation for the 

power-law fluid, and the apparent viscosity was defined as 

where the shear rate is given by 



A model to include dilatant behavior in the modified Blake-Kozeny equation was given 

as 

where peff is defined in Equation 2.14, and ef is the fluid relaxation time. 

A new experimental technique was recently developed by Cohen and Christ (1986) 

for determining mobility reduction as a result of polymer adsorption in the flow of poly- 

mer solutions through porous media. The experimental data were analyzed by correlat- 

ing mobility with fluid shear stress, z, , at the pore wall, under adsorbing and non- 

adsorbing conditions. Among many investigations conducted on the flow of polymer 

solutions in porous media, one of the most extensive studies was presented by Sorbie et 

al. (1987). They used both experimental and theoretical approaches to look at adsorp- 

tion, dispersion, inaccessible-volume effects, and non-Newtonian behavior as well. 

2.4 Previous Work on Analysis of Flow through Porous Media 

The subject of transient flow of non-Newtonian fluids in porous media is relatively 

new to many applications. Almost all of the analytical and numerical investigations have 

focused on the flow of one-dimensional, single-phase power-law fluids. The first paper 

in this area was published by van Poollen and Jargon (1969). They derived an equation 

that described the flow of a power-law non-Newtonian fluid in porous media. An analyt- 

ical solution for steady state flow was obtained, and the unsteady-state flow was studied 

by a finite difference model. They found that drawdown curves for a power-law fluid did 

not exhibit the semi-log straight-line relationship that exists for Newtonian fluid flow in 

a homogeneous medium. A number of transient well tests were used to examine the 



theory. 

Patton et al. (1971) presented an analytical solution to the linear polymer flood 

problem and also a numerical model utilizing a stream tube approach that could be used 

to simulate linear or five-spot polymer floods. However, the effects of non-Newtonian 

behavior were neglected. A more comprehensive three-phase and three-dimensional 

finite difference numerical code for polymer f l d n g  was developed by Bondor et al. 

(1972). This code represented the polymer solution as a fourth component fully rnisci- 

ble with the aqueous phase, in addition to the three other components, oil, water and gas. 

The rheological behavior of the polymer solution was included in the code by extending 

the modified Blake-Kozeny model to the multiphase flow problem. The apparent viscos- 

ity pa was modeled as that similar to the Meter model (2.8). As shown in Figure 2.6, 

the formulation is 

, low velocities 

, pseudoplastic region 

, high velocities 

where the coefficient peff is also given by Equation 2.14. However, to take into account 

the effects of multiphase flow, the permeability and porosity are replaced by an effective 

permeability to water phase, ( K k ) ,  and an effective porosity ($ S,) , respectively. 

Here k, is the relative permeability to water, and S, is the saturation of the water 

phase. This simulator also incorporated the adsorption of polymer, the reduction of rock 

permeability to the aqueous phase, and the dispersion of the polymer plug. The result 

was shown to represent the displacement as observed in a physical experiment. 

Pressure transient theory of flow of non-Newtonian power-law fluids in porous 

media was developed by Odeh and Yang (1979) and Ikoku and Rarney (1979). They 

simultaneously derived a partial differential equation for flow of power-law fluids 

through porous media using similar linearization procedures, and obtained approximate 

analytical solutions. Then, new well test analysis techniques were proposed for 
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Figure 2.6 Rheological Behavior of Polymer Solution in Porous Media 

(after Bondor et. al). 



interpreting pressure data observed during injectivity and falloff tests in reservoirs. The 

problem with this theory is the assumption used to linearize the governing equation, 

which requires 

where Q is the volumetric injection rate; and h is the thickness of formation. This is 

equivalent to assuming that the flow rate is constant at each radial location and that a 

steady-state viscosity profile exists. It has been shown numerically that this solution 

introduces significant errors by Vongvuthipornchai and Raghavan (1987a) when the 

power-law index n < 0.6. Generally, the linearized solution can not be used for pressure 

falloff test analysis when the power-law index n < 0.5. 

In another paper, Ikoku and Ramey (1980) extended their theory to include 

wellbore storage and skin effects using a numerical wellbore storage simulator. Pressure 

responses with storage and skin effects were obtained in terms of Duhamel's integral, 

which was solved numerically. This work was furthered by Vongvuthipornchai and 

Raghavan (1987b). They developed an approximate analytical solution in the Laplace 

domain, and a long-time asymptotic solution in the real domain for this problem. The 

solution in the Laplace domain was evaluated by a numerical inversion technique (Steh- 

fest, 1970), and was used to examine pressure falloff behavior dominated by storage and 

skin effects. 

The linearized governing equation derived by Odeh and Yang (1979) for a power- 

law fluid was solved by McDonald (1979) using a finite difference model. He found that 

very fine grids were needed for power-law flow calculations, and the coarser meshes led 

to unacceptable truncation errors. 

Pressure transient behavior during non-Newtonian power-law fluid and Newtonian 

fluid displacement has also been studied using numerical methods. Lund and Lkoku 



(1981) applied the partial differential equation for radial flow of power-law fluids by 

Ikoku and Rarney (1979) to non-Newtonian and Newtonian fluids in composite reser- 

voirs. The non-Newtonian fluid was injected to displace the Newtonian fluid under a 

piston-like displacement process. Polymer flooding projects are usually characterized by 

composite systems with moving banks of different fluids surrounding injection wells. 

Theory and analysis including a moving displacement front are more realistic than 

single-phase flow solutions. The well testing method of Ikoku and Ramey was extended 

to multiphase flow of non-Newtonian and Newtonian fluids by Gencer and Ikoku (1984). 

They used a numerical model to investigate the pressure behavior of power-law fluids 

during two-phase flow and gave an example for analysis of simulated injectivity and 

falloff test data. 

A detailed numerical study of the flow of non-Newtonian power-law fluids in a 

vertically fractured well was reported by Vongvuthipornchai and Raghavan (1987a). 

They presented a new numerical analysis technique for fractured well tests, and also 

examined the general pressure falloff behavior in unfractured wells after the injection of 

non-Newtonian power-law fluids. 

A more sophisticated numerical simulator of compositional rnicellar/polymer flow 

was developed by Camilleri et al. (1987a). This model took into account many important 

process properties, such as polymer inaccessible pore volume, permeability reduction, 

adsorption, residual saturations, relative permeability, phase, and non-Newtonian 

behavior as well. The phase behavior was modeled by four pseudocomponents: surfac- 

tant, alcohol, oil, and brine (Camilleri et al., 1987b). The polymer apparent viscosity 

was calculated from the Meter model, and the shear rate equation used was Equation 

2.30 from the work of Hirasaki and Pope (1974). This new phase behavior code was 

used to match many simulated and experimental data, and satisfactory results were 

obtained (Camilleri et al., 1987~). The success of closely matching experimental phase 

concentration histories showed that this code provided a good description of the physical 



processes occurring during the displacement of oil by surfactant. 

Compared with studies conducted on flow of non-Newtonian power-law fluids, 

there are only a few publications dealing with flow problems in porous media involving 

non-Newtonian Bingham fluids (Barenblatt et al., 1984; Scheidegger, 1974). However, 

it has long been observed in heavy oil development and in laboratory experiments that 

there exists a minimum pressure gradient for heavy oil to start flow (Mirzadjanzade et 

al., 1971). Similar phenomena occur when groundwater flows in strongly argillized 

rocks and in clay soils (Bear, 1972). In such cases, the formulation of Darcy's law has 

been modified as 

where G is the minimum pressure gradient. The physical meaning of G can be found by 

considering flow of a Bingharn fluid through a capillary with radius R. Then, the Bing- 

ham equation was solved by Buckingham (Scheidegger, 1974; Skelland, 1967) to give 

the average flow velocity over the cross-section of the tube. By comparing this velocity 

with the result from Darcy's law, we can obtain 

where d is a characteristic pore size of a porous medium, d = 3W8. Therefore, physi- 

cally, the minimum pressure gradient G is the pressure gradient corresponding to the 

yield stress z,, in a porous medium. 

In the petroleum and groundwater literature, very few solutions or analysis 

methods consider non-Newtonian Bingham plastic behavior, based on the modified 

Darcy's law (2.34). As pointed out by Scheidegger, "the mathematical difficulties in the 

integration of such flow equations become very great so that no solution for practical 



cases seems to be available." 

2.5 Conclusions from Literature Survey 

To date considerable progress has been made in understandmg the flow of non- 

Newtonian fluids through porous media. The experimental and theoretical studies per- 

formed in this field have focused on single-phase flow behavior. Solutions for single- 

phase non-Newtonian fluid flow are very useful in providing fundamentals for well test- 

ing analysis techniques, which are widely used in petroleum reservoir engineering and 

groundwater hydrology to determine reservoir and fluid properties. The main goals of 

the laboratory investigations are to correlate rheological properties with flow conditions 

for a particular non-Newtonian fluid in a given porous medium. An apparent viscosity is 

also needed in Darcy's equation for further study of the flow behavior. The general pro- 

cedure in the experimental studies is to find a relationship between the most important 

physical quantities, such as shear rate, shear stress, and pressure gradient for the fluid of 

interest. This is normally done by using a capillary model to approximate the porous 

system. The remaining unknown parameters are left to be determined from flow experi- 

ments. The primary objectives of the theoretical studies are to develop well testing 

analysis methods for field applications. Based on theoretical pressure responses calcu- 

lated from analytical or numerical solutions, the transient pressure analysis methods 

developed for non-Newtonian flow will permit approximate estimations of fluid and for- 

mation properties by matching observed pressure data fiom wells. - 

Despite considerable advances over the past three decades in studying the flow of 

non-Newtonian fluids through porous media, it is obvious that further studies are needed 

in understanding the physics of non-Newtonian flow in a complicated porous system. It 

has been well-documented that pseudoplastic fluids exhibit Newtonian behavior at high 

and low velocities. Even for single-phase nowNewtonian fluids, few theoretical 



investigations including such complicated phenomena have been published that are 

based on the more realistic rheological model of Meter, Equation 2.8. The flow behavior 

of pseudoplastic fluids in porous media is still poorly understood. Also there are no tech- 

niques or theories available for analysis of non-Newtonian flow behavior in a fracture 

system. However, many underground fonnations for energy recovery or for waste 

storage have been found to be naturally fractured reservoirs. 

At present, there is no standard approach in the petroleum engineering or ground- 

water literature for analyzing well test data for Bingham-type fluids. Interpretation of 

transient pressure responses with Bingham flow in porous media will be very important 

for heavy oil development, for groundwater flow evaluation in certain clay formations, 

and for foam flow analysis. A thorough study of Bingham-type fluid flow in reservoir 

conditions is needed not only for engineering applications, but also for the physical 

insights of aansport behavior. 

Non-Newtonian and Newtonian fluid immiscible displacement occurs in many 

EOR processes. These operations involve the injection of non-Newtonian fluids, such as 

polymer and foam solutions, or heavy oil production by waterflooding. However, very 

little research has been published on multiple phase flow of both non-Newtonian and 

Newtonian fluids in porous media, and there are no analytical solutions available for 

such flow. Even using numerical methods, very few studies have been performed to look 

at the physics of displacement. As a result, the mechanisms of immiscible displacement 

involving non-Newtonian fluids is still not well understood. Until we are able to predict 

how immiscible flow is affected by the properties of non-Newtonian fluids, it seems 

unlikely that a realistic theoretical model can be developed to describe the complex 

problems when such fluids are present. 

It should be pointed out that non-Newtonian behavior is only one important factor 

that affects the flow of these fluids through porous media. There are many other factors 

which also have effects on the flow behavior. These include adsorption on pore surfaces 



of rock, dispersion, inaccessible pore volume, viscous fingering, and lithology of the for- 

mation of interest, etc. A complete understanding of the flow behavior of non- 

Newtonian fluids in porous media with consideration of all these physical phenomena 

will be possible only after much more theoretical and experimental studies have been 

performed. 



Chapter 3 

Rheological Model 

The rheological model or condition is the connection between shear stress and 

shear rate in the fluid (and their time derivatives). For flow in porous media, the rheolog- 

ical model is usually referred to the correlation of apparent viscosities of a non- 

Newtonian fluid and flow conditions for a given porous material. For an incompressible 

Newtonian fluid, Newton's law defining the dynamic viscosity p is generalized to the 

following form (Savins, 1962; Fahien, 1983): 

where 2 is the stress tensor and D is the "rate-of-strain" tensor, or "rate-of-deformation" 
- - 

tensor. It is defined as 

where VJ is the velocity gradient, and Dij is the (i, j) component of the tensor - D ( i, j = 

1,  2 ,3 ), VP is the transpose of v?, and vi is the component of vector Ji in the xi 

direction (xl = x, x2 = y, x3 = z). The ijth component of tensor V? is given by 

For an incompressible non-Newtonian fluid, termed as the generalized Newtonian 

fluid in fluid mechanics (Astarita and Marmcci; 1974), Newton's law of viscosity can be 

modified to read 
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z = - 2 pa(s) p - (3.5) 

where pa is an apparent or effective viscosity which varies with the velocity gradient 

function s, which is defined as 

Several forms of the pa(s) function in Equation 3.5 have been proposed in the literature 

and are widely used in flow calculations. Among the rheological models for non- 

Newtonian fluids, only the power-law and Bingham models have been extensively used 

in research on porous media flow problems. 

In this study, Darcy's law is assumed to be applicable to describe the flow of non- 

Newtonian fluids in porous media, in the form: 

where the non-Newtonian behavior is taken into account by the apparent viscosity H, , 

and the flow potential 0 is defined as (Narasimhan, 1982; and Hubbert, 1956), 

where Po is a reference pressure; and the positive z-direction is chosen to be downward 

in the Cartesian coordinates (x, y, z). 

Since theoretical and experimental considerations of non-Newtonian flow are based 

on an analysis of the microscopic properties of flow, we need to use the concept of "pore 

velocity", The pore velocity is defined to represent the "real" flow velocity along flow 

channels. However, it is physically meaningful only in an average or statistical sense 

because the actual velocity of the fluid will change within one flow channel and from 

one flow channel to another. In practice, it is generally assumed the porous medium is 



isotropic in so far as the distribution of the porosity over the section is concerned. A 

commonly accepted hypothesis for the connection between pore velocity 3t, and Darcy's 

velocity ii' is the Dupuit-Forchheimer assumption (Scheidegger, 1974; Marsily , 1986): 

ii' 
qp=-=-- V@ 

4) &4) 

By definition, the viscosity of a non-Newtonian fluid is a function of the shear rate. 

For single-phase flow of non-Newtonian fluids through porous media, it has been shown 

experimentally that shear rate depends only on the pore velocity for a given porous 

material and the particular fluid used (Gogarty, 1967; Savins, 1969; Hirasaki and Pope, 

1974). For simplicity in the analytical and numerical solutions, it is better to correlate 

the non-Newtonian viscosity directly to the flow potential gradient. For single phase 

flow problems through porous media, the flow potential has been traditionally used as 

the primary dependent variable from its easily-measurable property. If we also want to 

use the potential as a primary variable in study of a non-Newtonian flow problem, it is 

logical to express all the other dependent variables in terms of functions of the flow 

potential and flow potential gradient. Non-Newtonian viscosities in a flow system 

change with the pore velocity, and the pore velocity changes accordingly with flow 

potential gradient, which is described by the Dupuit-Forchheimer formulation, Equation 

3.9 and Darcy's law, Equation 3.7. Therefore,the treatment of non-Newtonian viscosi- 

ties as functions of flow potential gradient will become necessary in the development of 

the calculable numerical and analytical solutions in Chapters 4-7. Specifically, it would 

be extremely difficult to relate viscosity of a Bingham fluid with pore velocity in a flow 

study from Equation 2.34. This treatment can be verified 

pore velocity vp by Equation 3.9 as follows: 

to be valid by representing the 



This equation implicitly states that the apparent viscosity used in Darcy's law for a non- 

Newtonian fluid is a function of the potential gradient only. Therefore, it is assumed in 

this work that the apparent viscosity in the modified Darcy's equation 3.7 depends 

only on the potential gradient for the flow system under consideration, 

& = &(v@) (3.10) 

For flow of a power-law fluid in porous media, a comparison of Equation 2.13 with 

Equation 3.7 leads to the following explicit relationship, 

where peff is defined in Equation 2.14. 

If the four-parameter model by Meter (Meter and Bird, 1964) is used to describe 

the rheological behavior 

form masak i  and Pope, 

of shear-thinning fluids, one may choose the shear rate in a 

1974), 

Using Equation 3.12 in the Meter model (2.8) will result in (Camilleri et al., 1987a), 

where the constants h ,  p,, and yx are defined in Equations 2.7 and 2.8, and the con- 

stant p may be different from a in Equation 2.8. Then, Equation 3.13 gives an implicit 

expression for the viscosity CL, as a function of the potential gradient in the Meter 

model. 

For purposes of numerical simulation, the flow of Bingham fluids is best 

represented by a constant viscosity and a threshold pressure gradient, as in Equation 



2.34. However, formally it is  also possible to treat Bingham fluids as having a IVOI 

dependent viscosity, which will be used to evaluate the analytical solution for immisci- 

ble displacement in Chapter 7. From Darcy's law (2.34), we have 

and 

, for lV@I I G 

where G is the minimum potential gradient. Flow takes place only after the applied 

potential gradient exceeds the value of G. 

Similarly, many viscosity functions can be derived in terms of the potential gra- 

dient from rheological models available in the literature for flow of non-Newtonian 

fluids in porous media, such as those given by Scheidegger (1974). 

All the viscosity models discussed above for non-Newtonian fluids were obtained 

originally from an analysis of experimental data or from the capillary analog for a 

porous medium, and they are valid only for single phase flow in porous media. The 

interest of this work is not only in single phase flow, but also in multiple phase flow. 

Therefore, the previously modified versions of Darcy's law for single non-Newtonian 

fluids are extended to include the effects of multiple phase flow on the viscosity of non- 

Newtonian fluids. The permeabilities, which are constants for single phase non- 

Newtonian fluid flow, may become functions of other dependent variables, such as 

saturation, from the inherent complexities of multiple phase flow. Since the viscosity of 

a non-Newtonian fluid is a flow property, it depends on the shear rate among other 

parameters for the multiphase flow case. Physically, it is reasonable to assume that the 

shear rate of a non-Newtonian fluid in multiple phase flow is also a function of the pore 

velocity of that fluid only for a given fluid and a given porous medium, based on the 

results for single phase non-Newtonian flow. The average shear rate, or pore velocity, 



during multiple phase flow in a porous medium is determined by the local potential gra- 

dient in the direction of flow and also by the local saturation of the flowing phase. 

Hence, the apparent viscosity of non-Newtonian fluids for multiple phase flow is sup- 

posed to be a function of both flow potential gradient and saturation. For a given porous 

m d u m  in the study, this may be expressed by 

This correlation should be obtained from experiments with non-Newtonian multiple 

phase flow where relative permeability and capillary pressure are known. A simpler way 

to find the dependence of viscosity on flow potential gradient and saturation may be to 

modify the viscosity function that is available for the single phase non-Newtonian fluid 

(Gencer and Ikuko, 1984; and Bondor et al., 1972). In this method, the corresponding 

permeability for single phase flow is replaced by the effective permeability (h), and 

porosity by (@,) in the single phase viscosity function. 



Chapter 4 

Mathematical Model 

4.1 Introduction 

Conservation of mass, momentum and energy governs the behavior of fluid flow 

through porous media. The physical laws at the pore level in a porous medium are sim- 

ple and well-known. In practice, however, only the global behavior of the system is of 

interest. Due to the complexity of pore geometries, the macroscopic behavior is not 

easily deduced from that on the pore level. Any attempts to directly apply the Navier- 

Stokes equation to flow problems in porous media will face the difficulties of poorly- 

defined pore geometries and the complex phenomena of physical and chemical interac- 

tions between fluids or between fluids and solids, which cannot be solved at the present 

time. Therefore, the macroscopic continuum approach has been used prevalently both 

theoretically and in applications. Almost all theories on flow phenomena occurring in 

porous media lead to macroscopic laws applicable to a finite volume of the system under 

considera tion whose dimensions are large compared with those of pores. Consequently, 

these laws lead to equations in which the medium is treated as if it were continuous and 

characterized by the local values of a certain number of parameters defined for all 

points. 

It should be pointed out that recent theoretical developments in new cellular- 

automaton models (lattice-gas) have provided an alternative approach for building 

microscopic models in hydrodynamics (Frisch et al., 1986). They introduced an entire 

discrete lattice-gas model for the numerical solution of the two-dimensional Navier- 

Stokes equation. The macroscopic behavior of the lattice-gas automaton asymptotically 

approaches continuum flow. This new theory has been extended to develop a new and 



generally applicable computational model of immiscible two-phase flow and applied to 

the study of flow in porous media (Rothman et al., 1988). However, it seems that there is 

a long way before this new technique can find engineering applications in the industry. 

The physical laws governing equilibrium and flow of several fluids in a porous 

medium are represented mathematically on the macroscopic level by a set of partial dif- 

ferential equations, which generally are non-linear when multiple phase or non- 

Newtonian fluids are involved. Solutions of the governing differential equations can 

often be obtained only by numerical methods. Under very special cases with appropriate 

idealizations, analytical solutions may be possible, such as in the case of the Buckley- 

Leverett solution for a linear waterflood situation. 

The governing equations used for non-Newtonian and Newtonian fluid flow in this 

study are similar to those of multiple phase flow in porous media, and Darcy7s law is 

assumed to be valid and to include the effects of the rheological properties of non- 

Newtonian fluids on flow behavior. In the present work, the flow system is assumed to 

be isothermal, so that the energy conservation equation is not required. 

4.2 Governing Equations for Non-Newtonian and Newtonian Fluid Flow 

Consider an arbitrary volume V, of a porous medium with porosity @, filled with a 

Newtonian fluid of density p,, and a non-Newtonian fluid of density p,, bounded by 

surface S (Figure 4.1). It is assumed that the non-Newtonian and Newtonian fluids are 

immiscible, and no mass transfer occurs between the two phases. The formal develop- 

ment and notations used here for the governing equations follow the work in the 

"TOUGH User's Guide" by Pruess (1987). The law of conservation of mass for each 

fluid states that the sum of the net fluxes crossing the boundary plus the generation rate 

of the mass of the fluid must be equal to the rate of the mass accumulated in the domain 

for the fluid, in an integral form, 
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Figure 4.1 Arbitrary Volume of Formation in a Flow Field Bounded 

by Surface S. 



Where for Newtonian fluid P = ne, for non-Newtonian fluid P = nn, d is the unit out- 

ward normal vector on surface S, and qp is source terms for fluid P . The mass accumu- 

lation terms Mg for Newtonian and non-Newtonian fluids ( P = ne, nn ) are 

where Sp is the saturation of phase P ( P =ne, nn ), and pp is density of phase 

P ( P = n e , n n ) .  

The mass flux terms gP in Equation 4.1 are described by Darcy's law for 

Newtonian and non-Newtonian fluids as 

where K is absolute permeability, is relative permeability to phase P, pp is dynamic 

viscosity of phase P, Pp is pressure in phase P, and? is gravitational acceleration. 

Upon applying the Gauss theorem to Equation 4.1, the surface integral on the right 

side of Equation 4.1 can be transformed into a volume integral, 

Since Equation 4.4 is valid for any arbitrary region in the flow system, it follows that 

This is a differential form of the governing equations for mass conservation of non- 

Newtonian and Newtonian fluids. 
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From the definition of saturation, it follows that 

Sne + S, = 1 

This constraint condition is always valid in a two phase flow problem. 

The governing equations for flow of single-phase non-Newtonian fluids in porous 

media can always be considered as a special case of the multiphase equations. They are 

readily derived from Equations 4.1, or 4.5 by setting Sn, = 0, and S, = 1 . 

4.3 Constitutive Equations 

The mass transport governing Equations 4.1, or 4.5 need to be supplemented with 

constitutive equations, which express all the parameters as functions of a set of primary 

thermodynamic variables of interest ( Pg, Sp ). The following relationships will be used 

to complete the statement of multiple phase flow of non-Newtonian and Newtonian 

fluids through porous media. 

Equations of state of the densities for Newtonian and non-Newtonian fluids are, 

respectively, 

Pne = Pne ( Pne ) (4.7) 

The difference in pressure between the two phases may be described in terms of capil- 

lary pressure, 

and the capillary pressure PC is determined experimentally as a function of saturation 

only. 

The relative permeabilities are also assumed to be functions of fluid saturation only 

(Honarpour et al., 1986), 



As pointed out by other workers (Bird et al. , 1960), the permeability for single-phase 

non-Newtonian fluid flow should be obtained from core experiments with Newtonian 

fluids. In order to reduce the uncertainties when non-Newtonian flow is involved, the 

relative permeability data for multiphase flow of non-Newtonian fluids should also be 

determined by using Newtonian fluids in the laboratory experiment. 

4.4 Numerical Model 

When a non-Newtonian fluid is involved in a flow problem, the apparent viscosity 

as used in Darcy's law depends on the pore velocity, or the potential gradient. Therefore, 

the governing integral or partial differential equations are highly non-linear. Solutions 

for such problems can only be found by numerical methods. However, under some spe- 

cial circumstances, analytical and approximate analytical solutions are possible. Both 

analytical and numerical methods have been employed in this work in order to provide a 

general theoretical approach to analysis of the flow behavior of non-Newtonian fluids. 

The numerical technique in this work is the "integml finite difference" method 

(Narasirnhan and Witherspoon, 1976). A modified version of the "MULKOM" family of 

multi-phase, multi-component codes (Pruess, 1983; 1988) for non-Newtonian and 

Newtonian fluid flow has been developed in analyzing flow problems of single and mul- 

tiple phase non-Newtonian fluids in porous media. The input data and running pro- 

cedures are similar to those for the code "MULKOM-GWF", which was developed to 

model the flow of gas, water and foam solutions in porous media (Pruess and Wu, 1988). 

This simulator for Newtonian fluid flow calculations has been validated by Pruess and 



his co-workers at Lawrence Berkeley Laboratory. MULKOM has been used extensively 

for fundamental and applied research on geothermal reservoirs, oil and gas fields, 

nuclear waste repositories, and for the design and analysis of laboratory experiments 

(Pruess, 1988). 

Based on the integral finite difference method, the mass balance equations for each 

phase are expressed in terms of the integral difference equations, which are fully impli- 

cit to provide stability and time step tolerance in highly non-linear problems (Thomas, 

1982). Thermodynamic properties are represented by averages over explicitly defined 

finite subdomains, while fluxes of mass across surface segments are evaluated by finite 

difference approximations. The mass balance difference equations are solved simultane- 

ously, using the Newton/Raphson iteration procedure. 

The capillary pressures and relative permeabilities are treated as functions of 

saturation, and can be specified differently for different flow regions. Thermophysical 

properties of water and gas (methane) substance, such as density and viscosity, are 

represented within experimental accuracy by the steam table equations given by the 

International Formulation Committee (1967) and by Vargaftik (1975), respectively. The 

rheological properties for non-Newtonian viscosity need special treatments and depend 

on the rheological models used. A number of the common viscosity functions have been 

implemented in the codes, such as the power-law and Bingham models. 

A brief description of the numerical method used in this non-Newtonian flow ver- 

sion of MULKOM is included in the following section for completeness. It is almost 

identical to that given in the TOUGH code (Pruess, 1987). The continuum Equation 4.1 

is discretized in space using the "integral finite difference" scheme. Introducing an 

appropriate volume average, it follows that 



Where M is a volume-normalized extensive quantity, and M, is the average value of M 

over the domain Vn . The surface integrals are approximated as a discrete sum of aver- 

ages over surface segments A,, : 

Here F,, is the average value of the (inward) normal component of 3 over the surface 

segment A,,,,, between volume elements Vn and V,. This is expressed in terms of 

averages over parameters for elements Vn and Vm. For the basic Darcy flux term, 

Equation 4.3, we have 

where the subscripts (nm) denote a suitable averaging (interpolation, harmonic weight- 

ing, upstream weighting). Dm is the distance between the nodal points n and m, and 

g,, is the component of gravitational acceleration in the direction from m to n. 

Substituting Equations 4.12, and 4.13 into the governing Equation 4.1, a set of 

first-order ordinary differential equations in time is obtained, 

Time is discretized as a first order difference, and the flux and sink and source 

terms on the right hand side of Equation 4.15 are evaluated at the new time level, 

tktl = t!'+ At, to obtain the numerical stability needed for an efficient calculation of 

multi-phase flow. This treatment of flux terms is known as "fully implicit," because the 

fluxes are expressed in terms of the unknown thermodynamic parameters at time level 

tk+' , so that these unknowns are only implicitly defined in the resulting equations. The 

time discretization results in the following set of coupled non-linear, algebraic equa- 

tions: 



Following Pruess (1987), "the entire geometric information of the space discretiza- 

tion in Equation 4.16 is provided in the form of a list of grid block volumes V, , inter- 

face areas A,, nodal distances Dm and components g, of gravitational accelera- 

tion along nodal lines. There is no reference whatsoever to a global system of coordi- 

nates, or to the dimensionality of a particular flow problem. The discretized equations 

are in fact valid for arbitrary irregular discretizations in one, two or three dimensions, 

and for porous as well as for fractured media. This flexibility should be used with cau- 

tion, however, because the accuracy of the solutions depends on the accuracy with 

which the various interface parameters in equations, such as in Equation 4.14, can be 

expressed in terms of average conditions in grid blocks. A sufficient condition for this to 

be possible is that there exists approximate thermodynamic equilibrium in (almost) all 

grid blocks at (almost) all times. For systems of regular grid clocks referenced to global 

coordinates (such as r-z, x-y-z), Equation 4.16 is identical to a conventional finite differ- 

ence formulation." 

For each volume element (grid block) V, there are two equations for the primary 

thermodynamic variables, P, and S, , if the problem is two-phase flow of one 

Newtonian and one non-Newtonian fluid. For a flow system which is discretized into N 

grid blocks, Equation 4.16 represents a set of 2N algebraic equations. The unknowns are 

the 2N independent primary variables xi (i=l, 2, 3, ..., 2N) which completely define the 

state of the flow system at time level $+' . These equations are solved by 

Newton/Raphson iteration, which is implemented as follows. An iteration index p is 

used here, and the residuals are expanded in terms of the primary variables xi,, at item- 

tion level p: 



Retaining only terms up to first order, a set of 2N linear equations for the increments 

1 - xip) is obtained : 

All terms - in the Jacobian matrix are evaluated by numerical differentiation. Equa- axi 

tion 4.18 is solved with the Harwell subroutine package "MA 28" (Duff,1977). Iteration 

is continued until the residuals hk+' are reduced below a preset convergence tolerance. 

4.5 Treatment of Non-Newtonian Behavior 

The apparent viscosity functions for non-Newtonian fluids in porous media depend 

on the pore velocity, or the potential gradient, in a complex way, as discussed in 

Chapters 2 and 3. The rheological correlations for different non-Newtonian fluids are 

quite different. Therefore, it is impossible to develop a general numerical scheme that 

can be universally applied to various non-Newtonian fluids. Instead, a special treatment 

for the particular fluid of interest has to be worked out. However, for some fluids, such 

as power-law, Bingham plastic, pseudoplastic fluids, which are most often encountered 

in porous media, the numerical treatment developed in this work will be discussed here. 

The implementation of the treatment for these three non-Newtonian fluids in the code 

"MULKOM", is given in Appendix F. 



4.5.1 Power-Law Fluid 

The power-law model, Equation 3.11, is the most widely used to describe the rheo- 

logical property of shear-thinning fluids, such as polymer and foam solutions. The 

power-law index n ranges between 0 and 1 for a shear thinning fluid, and the viscosity 

becomes infinite as the flow potential gradient tends to zero. Therefore, direct use of 

Equation 3.11 in the calculation will cause numerical difficulties. A formulation incor- 

porated in the code for a power-law fluid is to use a linear interpolation when the poten- 

tial gradient is very small. As shown in Figure 4.2, the viscosity for a small value of 

potential gradient is calculated by 

for lV@l 5 S1 . Where the interpolation parameters 61 and 62 are defined in Figure 4.2. 

If the potential gradient is larger than 61 , Equation 3.1 1 is used in the code. In order to 

maintain the continuities in the viscosity and its derivative at (Sly pl), the difference in 

values of 61 and 82 should be chosen sufficiently small. Then, the values for ply and p2 

may be taken as 

The numerical tests show that the treatment of power-law fluids by Equation 4.19 works 

very well for a power-law fluid flow problem with various potential gradients. The accu- 

racy of this scheme has been confirmed by a number of runs. Another way for the linear 

interpolation at small potential gradient is to use the tangential slope h'[&, in (4.19) 

instead of the the chord slope used. In the numerical studies of transient flow problems 

of power-law fluids in Chapter 8, the values of the interpolation parameters are taken as 

S1 = 10 (Pdm), and S1 - 62 = (Pdm). 



Flow Potential Gradient, I V@ I , (Palm) 
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Figure 4.2 Schematic of Linear Interpolation of Viscosities of Power-Law 

Fluids with Small Flow Potential Gradient. 



A similar treatment is also incorporated in the numerical code and used for the 

modeling transient flow of power-law fluids through fractured media in Chapter 8. In 

that application, the viscosity function for a power-law fluid is given by Equation C.8, 

derived in Appendix C, instead of Equation 3.11 for porous media flow. 

4.5.2 Bingham Fluid 

The apparent viscosity of Bingham fluids, as given by Equation 3.14, has a similar 

behavior to that of a power-law fluid. As the potential gradient decreases and comes 

close to the minimum potential gradient G, the viscosity tends to be infinite. It is possi- 

ble to use a linear interpolation approximation for the viscosity when the potential gra- 

dient nears G to overcome the associated numerical difficulties. However, a much better 

approach that has been found is to introduce an effective potential gradient V<De , whose 

scalar component in the x direction, flow direction, is defined as 

where (VO), is the scalar component of the potential gradient VQ . As shown in Figure 

4.3, Darcy's law as used in the code for a Bingham fluid is 

and replaces Equation 2.34 in Chapter 9 in the numerical calculations. This treatment of 

the code using the effective potential gradient has proven to be the most efficient when 

simulating Bingham fluid flow in porous media. 
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Figure 4.3 Effective Potential Gradient for a Bingharn Fluid, the Dashed 

Linear Extension for Numerical Calculation of Derivatives 

When (VO) is near + G or - G. 



Modeling of Bingham fluid flow in porous media is a very difficult problem numer- 

ically because of the minimum pressure gradient phenomenon. For a single well flow 

problem with a uniform initial pressure distribution in the formation, the fluid in many 

grids near wellbore maybe change from immobile to mobile within only one time step at 

early transient times after the well is put into production. With each Newton-Raphson 

iteration during a time step, pressure disturbance may penetrate one more grid. As a 

result, more Newton-Raphson iterations for convergence at each time step are then 

needed in the calculation. Therefore, no explicit formula can be used in the code, and we 

have to use some fully implicit numerical scheme to handle the non-linear convergent 

problem with Bingham fluids. 

4.5.3 General Pseudoplastic Fluid 

In this study, a general pseudoplastic fluid is defined as a fluid whose apparent 

viscosity is described by the Meter four-parameter model, Equation 3.13, (Meter and 

Bird, 1964). The shear rate, y ,  in Equation 3.13 for single phase one-dimensional flow 

of a power law fluid is given by Equation 3.12 (Camilleri et al., 1987a; Hirasaki and 

Pope, 1974). For the special cases, where 110 = pD,, or, P = 1, the fluid becomes 

Newtonian. 

For a horizontal flow problem, ignoring the effects of gravity on shear rate in Equa- 

tion 3.12, and introducing the resulting shear rate function into Equation 3.13, one can 

obtain 
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Note that (-dP/ax) 2 0 for injection and C, is 

Equation 4.23 implicitly defmes the viscosity & as a function of the pressure gradient 

(-dP/ax) . For the pseudoplastic fluid in porous media, this has been implemented in 

the numerical code to correlate apparent viscosity of the psuedoplastic fluid with pres- 

sure gradient in the numerical study of Chapter 8. 

One may try to use Equations 3.12 and 3.13 directly in the code by using the values 

of viscosity from the previous iteration in calculation of the current iteration in order to 

avoid solving the non-linear algebraic equation 4.23 for H, from (4P/dx)  at each itera- 

tion. However, numerical tests have shown that the convergence is even slower than the 

above method because of the highly non-linear relationship between viscosity and pres- 

sure gradient. The fully implicit treatment used in this work gives satisfactory conver- 

gence. 



Chapter 5 

Analytical Solution for Immiscible Displacement 

5.1 Introduction 

Immiscible and miscible flow of multiple phase fluids through porous media, as 

compared with single phase flow, is much more complicated and is not well understood 

in many areas due to the complex interactions of the different fluid phases. Many contri- 

butions to this subject have been made since the 1940's. In the petroleum industry, the 

simultaneous flow of oil, gas and water in reservoirs is important in connection with the 

production of oil and gas. The flow of moisture in unsaturated soils ( i.e., the simultane- 

ous flow of water and air ) is often encountered in soil science. Multiple phase flow of 

water, hydrocarbons, air and chemicals is also involved in evaluating problems of under- 

ground contamination. 

The study of multiple phase flow in porous media has been divided into different 

parts according to the flow behavior prevalent in each part. The most important distinc- 

tion is whether the fluids are miscible or immiscible, leading to "miscible" and "immis- 

cible" displacement in porous media (Scheidegger, 1974; Marle, 1981; Stalkup, 1983). 

These two types of displacement are limiting cases that can be investigated theoretically. 

In miscible displacement, the two fluids are completely soluble in each other. The inter- 

facial tension between the two fluids is zero, and the two fluids dissolve in each other. 

Whereas in immiscible displacement, we have a simultaneous flow of two or more 

immiscible fluids or phases in the porous medium. The interfacial tension between the 

fluids is nonzero, and distinct fluid-fluid interfaces separate the fluids within the pore 

space. 



Immiscible displacement is involved in most of the EOR methods in the petroleum 

industry. Most EOR processes consist of injecting a fluid (gas or liquid) into a reservoir 

to displace the in-situ oil or gas. A fundamental understanding of immiscible displace- 

ment of Newtonian fluids in porous media was contributed by Buckley and Leverett 

(1942) in their classical study of the fractional flow theory. The Buckley-Leverett solu- 

tion gives a saturation profile with a sharp front along the flow direction, but ignores 

capillary pressure and gravity effects. As time progresses, the saturation becomes a 

multiple-valued function of the distance coordinate, x, which can be overcome by 

material balance considerations. Where the initial saturation is uniform, a simple graphic 

approach developed by Welge (1952) can be used to determine the sharp saturation front 

without difficulty. Effects of gravity and capillary pressure on linear waterflood was 

included by Fayers and Sheldon (1959), Hovanessian and Fayers (1961), by numerical 

models. More recently , some special analytical soh  tions of immiscible displacement 

including the effects of capillary pressure were obtained by Yortsos and Fokas (1983) 

and Chen (1988). 

The Buckley-Leverett fractional flow theory has been applied and generalized by 

various authors to study the EOR problems (Pope 1980), surfactant flooding (Larson and 

Hirasaki, 1978; Hirasaki, 1981), polymer flooding (Patton, Coats and Colegrone, 1971), 

the mechanism of chenlical methods (Larson, Davis and Scriven, 1982), detergent flood- 

ing (Fayers and Pemne, 1959), displacement of oil and water by alcohol (Wachmann, 

1964 ; Taber, Karnath and Reed, 1961), displacement of viscous oil by hot water and 

chemical additive (Karakas, Saneie, and Yortsos, 1986), and alkaline flooding (deZa- 

bala, Vislocky, Rubin and Radke, 1982 ). An extension to more than two immiscible 

phases dubbed "coherence theory" was described by Helfferich (1981). However, no 

non-Newtonian behavior has been considered in any of these extensive investigations. 

The state of the art in the mathematical modeling of immiscible Newtonian fluid 

displacement processes has advanced considerably since the 1950's (Douglas et al., 



1959; Peaceman et al., 1962; Coats, 1987; Aziz and Settari, 1979; Thomas, 1982, and 

Peaceman, 1977). A large number of numerical models have been developed to simulate 

the process of waterflooding under quite general conditions. The approaches usually 

followed in simulating immiscible flow include derivation of mass, momentum, and 

energy conservation equations for the displacing and displaced phases, plus the con- 

struction of certain numerical schemes for the solution of the resulting partial differen- 

tial or integral equations with proper boundary and initial conditions. However, the 

numerical modeling cannot replace the analytical methods completely, since i) the 

numerical codes need checking against an analytical solution, and ii) the analytical solu- 

tion if available provides a better insight into the physics of the transport phenomena 

occurring within the porous media. 

Immiscible displacement of Non-Newtonian and Newtonian fluids occurs in many 

EOR processes, such as the injection of non-Newtonian fluids, especially, polymer solu- 

tions, microemulsions, macroemulsions, foam solutions, and heavy oil displacement by 

waterflooding. As mentioned in Chapter 2, almost all theoretical studies on non- 

Newtonian fluid flow in porous media have focused on single phase flow. Very little 

research has been carried out on multiple phase flow of non-Newtonian and Newtonian 

fluids through porous media. There are no analytical solutions available on this subject 

for theoretical studies or for engineering applications, and the physics of immiscible 

flow with non-Newtonian fluids is poorly understood. 

In this chapter, analytical solutions to describe displacement mechanisms of non- 

Newtonian / Newtonian fluids in porous media will be developed for the one- 

dimensional linear flow case. A practical procedure to evaluate the behavior of non- 

Newtonian and Newtonian linear displacement is also provided, based on the analytical 

solutions, which is similar to the graphic method of Welge (1952). The result can be 

regarded as an extension of the Buckley-Leverett theory for flow of non-Newtonian 

fluids in porous media. The analytical results reveal how the saturation profile and the 



displacement efficiency are controlled not only by the relative penneabilities, as in the 

Buckley-Leverett solution, but also by the inherent complexities of non-Newtonian 

fluids. 

The results of this analytical solution will have applications in two areas. First, they 

can be used to study the displacement mechanism of non-Newtonian and Newtonian 

fluids in porous media. The second application is demonstrated in this chapter. The 

analytical solution will be used to verify the numerical simulator developed for non- 

Newtonian flow in Chapter 4. The results from the numerical code and the analytical 

solution for a power-law fluid displacement problem are found to be in excellent agree- 

ment with each other. 

5.2 Mathematical Formulation 

Two-phase flow of non-Newtonian and Newtonian fluids is considered in a homo- 

geneous and isotropic porous medium. There is no mass transfer between non- 

Newtonian and Newtonian fluids, and dispersion and adsorption on the rock are ignored. 

The governing equations are given by Equation 4.5, 

for the Newtonian fluid, 

for the non-Newtonian fluid. The flow for Newtonian and non-Newtonian phases is 

described by a multiple phase extension of Darcy's law, Equation 3.7 



and 

The pressures in the two phases depend on the capillary pressure, 

ke, k, and PC are assumed to be functions of saturation only. Also, from the definition 

of saturation, we have 

5.3 Analytical Solution for Non-Newtonian and 

Newtonian Fluid Displacement 

For the derivation of the analytical solution, the following additional assumptions 

are made: 

the two fluids and the porous medium are incompressible, 

the capillary pressure grahent is negligible, 

the viscosity of non-Newtonian fluids is a function of pressure gradient and 

saturation only, as described in Equation 3.15, 

one-dimensional linear flow. 

The flow system is a serni-infinite linear reservoir with a constant cross-sectional 

area A, as shown in Figure 5.1. The system is initially saturated with a Newtonian fluid, 

and a non-Newtonian fluid is injected. It is further assumed that gravity segregation is 

negligible and stable displacement exists near the displacement front. Equations 5.1 and 

5.2 can then be changed to read 
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Figure 5.1 Schematic of Displacement of a Newtonian Fluid by a 

Non-Newtonian Fluid. 



and 

where q.,, and y, are the volumetric flow velocities of Newtonian and Newtonian 

fluids, respectively. For the Newtonian phase, the flow velocity is 

and for the non-Newtonian phase, 

To complete the mathematical description of the physical problem, the initial and boun- 

dary conditions must be specified. Initially, the Newtonian fluid is at its maximum 

saturation in the system. 

where S- is the initial immobile non-Newtonian fluid saturation. For most practical 

field problems, S- is usually zero, which can be treated as a special case. 

In this problem, we are concerned with continuously injecting a non-Newtonian 

fluid at a known rate q(t) , which can be a function of injection time t. The boundary 

conditions at x = 0 are: 



In this semi-infinite system, the following condition must be imposed as x + .o , 

and 

The solution procedure follows the work by Buckley and Leverett (1942), as out- 

lined by Willhite (1986). The fractional flow concept is also used to simplify the govern- 

ing equations in terms of saturation only in this study. The fractional flow of a phase is 

defined as a volume fraction of the phase flowing at x and t to the total volume of the 

flowing phases (Willhite, 1986). For the Newtonian phase, this can be written 

and for the non-Newtonian phase, 

where u(t) = y,, + h. From a volume balance, the sum of Equations 5.16 and 5.17 

yields 

The fractional flow function for the non-Newtonian phase may be written in the follow- 

ing form (Willhite, 1986): 



where the component of the potential gradient V<P along the x coordinate for the non- 

Newtonian fluid is 

Here a is the angle between the horizontal plane and the flow direction of the x coordi- 

nate. Equation 5.19 indicates that the fractional flow f, for the non-Newtonian phase is 

generally a function of both saturation and potential gradient. 

However, for a given injection rate, and given fluid and rock properties, the poten- 

tial gradient at a given time can be shown to be a function of saturation only (Appendix 

This shows that the flow potential gradient and the saturation are dependent on each 

other for this particular displacement system. Therefore, the potential gradient in the 

system is implicitly defined as a function of saturation by Equation 5.21. 

The governing Equations 5.7 and 5.8 subject to the boundary and initial conditions 

(5.1 1)-(5.15) can be solved to obtain the following solution (see .4ppendix A): 

This is the frontal advance equation for the non-Newtonian displacement, and is in the 

same form as the Buckley-Leverett equation. The difference is the dependence of the 

fractional flow f, for the non-Newtonian displacement on saturation not only through 

the relative permeability, but also through the non-Newtonian phase viscosity, as 

described by Equation 5.19. Equation 5.22 shows that, for a given time and a given 



injection rate, a particular non-Newtonian fluid saturation profile propagates through the 

porous medium at a constant velocity. As in the Buckley-Leverett theory, the saturation 

for a vanishing capillary pressure gradient will in general become a triple-valued func- 

tion of distance near the displacement front (Cardwe11,1959). Equation 5.22 will then 

fail to describe the velocity of the shock saturation front, since afJaS, does not exist 

on the front because of the discontinuity in S, at that point. Consideration of material 

balance across the shock front ( Sheldon, et al., 1959 ) provides the velocity of the front, 

r > 

where Sf is the front saturation of the displacing non-Newtonian phase. The super- 

scripts "+" and "-" refer to values ahead of and behind the front, respectively. 

The location xs of any saturation S, traveling from the inlet at time t can be 
rm 

determined by integrating Equation 5.22 with respect to time, which yields 

XS= = )i'iIY A g as, ,_ 

where Q(t) is the cumulative volume of the injected fluid, 

A direct use of Equation 5.24 , given x and t, will result in a multiple-valued saturation 

distribution, which can be handled by a mass balance calculation , as in the Buckley- 

Leverett solution. An alternative graphic method of evaluating the above solution will 

be discussed in the next Section. 
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5.4 Graphical Evaluation of Linear Displacement Solution 

The fractional flow of the displacing non-Newtonian phase is a function of its 

saturation only, after taking into account the constraint condition (5.21). Therefore, the 

Welge (1952) graphic method can be shown (Appendix B) to apply to a non-Newtonian 

fluid displacement by an integration of the mass balance of the fluid injected into the 

system and incorporating the result of Equation 5.24. The only additional work is to take 

into account the contribution of a velocity-dependent apparent viscosity of the non- 

Newtonian fluid on the fractional flow curve. 

At the moving saturation front, we have (see Appendix B), 

and the average saturation in the displaced zone is given by, 

where S, is the average saturation of the non-Newtonian phase in the swept zone. To 

satisfy both Equations 5.26 and 5.27, a simple geometric construction can be used (see 

Figure 5.2). On a curve of fractional flow f, versus saturation S, , draw the tangent to 

the fractional flow curve, from the point ( S, = S-, f, = 0 ). The point of tangency 

has coordinates ( S, = Sf, f, = f,lsf ) , and the extrapolated tangent must intercept the 

- 
line f, = 1 at the point ( S = S,, f, = 1 ) . Therefore, the graphic method of Welge 

applies if the fractional flow curves are provided for the non-Newtonian displacement 

process. The only difference is in the determination of the non-Newtonian fractional 

flow curve because we have to include the effects of the apparent viscosity of non- 

Newtonian fluids, which are also a function of saturation. 
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Figure 5.2 Method of Determining Shock Front and Average Displacing 

Non-Newtonian Phase Saturations from Fractional Flow Curves. 



With given relative permeability data and the rheological model h, the general 

procedure for evaluating the flow behavior of non-Newtonian one-dimensional linear 

displacement is as follows: 

1. Solve pressure gradients (-JPIax) with respect to various saturations, from 

Equation 5.21 for different injection rates and plot the relationship between 

pressure gradient and saturation corresponding to the injection rate, as shown 

in Figure 5.3. This requires use of the apparent non-Newtonian viscosity 

model, such as Equation 3.15 for the fluid of interest. 

2. Calculate the fractional flow, f, , by Equation 5.19 using the pressure gra- 

dients from Figure 5.3 to calculate the corresponding potential gradients. 

Then use the rheological viscosity model to compute the non-Newtonian 

phase viscosity. An example of fractional flow curves is shown in Figure 5.4. 

3. Calculate the derivatives of fractional flow , afJaS,, with respect to satura- 

tion from Figure 5.4. These are shown in Figure 5.5. 

4. Determine the shock front saturations from Figure 5.5, as illustrated in Figure 

5. Calculate the saturation profile for Sf < S, < 1 - S,,;, from x = 0 to x = xf 

according to Equation 5.24 for a given injection rate and using the 

corresponding potential gradients from Figure 5.5. This profile is shown in 

Figure 5.6. 

6. Determine the average saturation in the swept zone from Figure 5.4, as illus- 

trated in Figure 5.2. This can be used to calculate the cumulative Newtonian 

fluid displaced, Np , for the swept region, 

- 
N, = A $ xf (S, - S-) 

The above procedure has been computer-programmed for use in this work. 
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Figure 5.3 Pressure Gradients versus Displacing Non-Newtonian Phase 

Saturation for Different Injection Rates. 
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Figure 5.4 Fractional Flow Curves of Non-Newtonian Fluids for Different 

Injection Rates. 
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Figure 5.5 Derivatives of Fractional Flow with Respect to Non-Newtonian 

Phase Saturation for Different Injection Rates. 
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Figure 5.6 Saturation Distributions of Non-Newtonian Fluids in the 

System at a Given Injection Time. 
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5.5 Verification of the Numerical Method 

The numerical simulator discussed in Chapter 4, which is a m d f i e d  version of 

MULKOM (Pruess, 1983) has the ability to model multiple phase flow of non- 

Newtonian and Newtonian fluids in porous media under a wide range of operating con- 

ditions and using different rheological models for non-Newtonian fluid behavior. Here 

the power-law model has been used to check the code. The validity of the numerical 

results from this code has been tested for immiscible displacement of a Newtonian fluid 

by a non-Newtonian power-law fluid using the Buckley-Leverett-type solution described 

above. The example of interest is a one-dimensional linear flow problem of incompres- 

sible two-phase fluids in a semi-infinite, horizontal, homogeneous and isotropic porous 

medium. A constant injection rate is maintained at the inlet ( x = 0 ) from time t = 0. Ini- 

tially, the reservoir is fully saturated with only the Newtonian liquid. The relative per- 

meability curve used for both the analytical and numerical calculations is shown in Fig- 

ure 5.7. Capillary effects are assumed to be negligible. 

In order to reduce the effects of discretization in the finite system, a very fine mesh 

spacing ( Ax = .0125m ) was chosen for the first 240 elements, then the mesh spacing 

was increased by a factor of 1.5 to the 290th element. The analytical solution for the 

non-Newtonian displacement was evaluated using the computerized-graphic method 

outlined in the previous section. The power-law non-Newtonian fluid has been used 

extensively in the study of non-Newtonian fluid flow through porous media both theoret- 

ically and experimentally. Therefore, a power-law liquid was used as a displacing agent 

to drive the initially saturated Newtonian liquid in the porous medium. 

The properties of rock and fluids are given in Table 5.1. The rheological model for 

a power-law fluid, Equation 3.11 is used here. For the two phase flow problem, a 

modification for p,ff , defined in Equation 2.14, is made by replacing 

K by Klh, and $ by ($3, - S-), to obtain 
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Figure 5.7 Relative Permeability Functions Used for Code Verification. 



Table 5.1 

Parameters for Linear Power-Law Fluid Displacement 

Porosity 

Permeability 

Cross-Sectional Area 

Injection Rate 

Injection Time 

Displaced Phase Viscosity 

Irreducible Newtonian Saturation 

Initial Non-Newtonian Saturation 

Power-Law Index 

Power-Law Coefficient 

K=l darcy 

1 m2 

q=0.8233x10-5m3/s 

T=10 hrs 



x f 
Distance From Inlet (m) 

Figure 5.8 Comparison of Saturation Profiles Calculated from XBL 893-7522 
T.I.D. Illus. 88 

Analytical and Numerical Solutions after 10 Hours 
3/29/89 

of Injection of a Power-Law Fluid. 



If we use a power-law index of n = 0.5 , then the pressure gradients for this hor- 

izontal flow problem can be derived from Equation 5.21 as, 

Equation 5.30 is employed in calculating the fractional flow f, to incorporate non- 

Newtonian effects of a power-law fluid in the analytical solution. A comparison of the 

saturation profiles from the numerical and the analytical solutions after 10 hours of non- 

Newtonian fluid injection into the system is given in Figure 5.8. This shows that the 

numerical results are in excellent agreement with the analytical prediction. Considering 

the complexity introduced when non-Newtonian fluids are involved in a multiple phase 

flow problem, Figure 5.8 provides an excellent indication that the numerical model is 

correct in describing the multiple phase immiscible displacement of a Newtonian fluid 

by a non-Newtonian fluid in porous media. Viscosity profiles for the non-Newtonian 

fluid are given in Figure 5.9, and also show good agreement between the analytical and 

numerical results over the whole swept region, x < xf. Only at the shock advancing 

saturation front does the numerical solution deviate somewhat from the analytical solu- 

tion, which is typical of "smearing" effect from numerical dispersion. 



Distance from Inlet (m) 

Figure 5.9 Comparison of Apparent Viscosity Profiles Calculated 

from Analytical and Numerical Solutions after 10 Hours XBL 895-76*3 

of Injection of a Power-Law Fluid. 



Chapter 6 

Immiscible Displacement of a Newtonian Fluid 

by a Power-Law Non-Newtonian Fluid 

6.1 Introduction 

A physical example of a Newtonian fluid being displaced by a non-Newtonian 

power-law fluid in porous media is the recovery of oil by polymer flooding in EOR 

processes. Since almost all theoretical studies on non-Newtonian power-law fluid flow 

in porous media have been focused on single phase flow, the displacement mechanisms 

with power-law fluids are not well understood. In this chapter, a theoretical study of 

immiscible displacement of a Newtonian fluid by a power-law fluid will be presented 

using the analytical solution developed in Chapter 5. 

In the stabilized displacement of Newtonian fluids where capillary pressure is 

ignored, the process is described by the BucMey and Leverett theory. Under the stabil- 

ized condition, the displacement data for linear floods are not affected by the length of 

the system or injection rate. The saturation distribution at a time is uniquely determined 

by the fractional flow curve for the given reservoir rock and fluid properties (Sheldon et 

al., 1959). The sweep efficiency is independent of flow rate as long as the displacement 

process is stable (Willhite, 1986; Yortsos and Huang, 1986; and Bentsen, 1985). How- 

ever, the Buckley-Leverett frontal advance theory has certain limitations in applications. 

Some are from its assumptions used in developing the solution, such as isotropic and 

homogenous porous media, incompressible fluids, and strictly one-dimensional flow. 

One important phenomenon associated with frontal movement that has been ignored in 

the theory is the frontal instability and viscous fingering (Collins, 1961; Scheidegger, 

1974). Instability of a displacement front has been found to be strongly dependent on 



mobility ratio in both the macroscopic analysis (Chen and Whitson; 1988) and the 

microscopic model (Collins, 1961). The inhomogeneous nature of a porous medium or 

certain perturbation will initiate the instability and hence fingering, but gravity, capillar- 

ity, and diffusion may act to eliminate the fingers as they are formed. 

The displacement process becomes more complicated when a non-Newtonian fluid 

is involved. Under the idealized condition of the Buckley-Leverett theory, the immisci- 

ble displacement is still determined by the fractional flow curve if the capillary pressure 

effects are ignored. The fractional flow function, as defined by Equation 5.19, depends 

not only on the relative permeabilities, as in the Buckley-Leverett frontal theory, but 

also on the rheological behavior of the non-Newtonian fluid. Therefore, the sweep 

efficiency with a non-Newtonian fluid as the displacing phase will be affected by the 

rheological behavior of the non-Newtonian fluid, in addition to the effects of relative 

permeability. All these factors are included in the analytical solution of Chapter 5, and 

the basic displacement behavior can now be analyzed as discussed below. 

6.2 Evaluation of Analytical Solution. 

The physical flow model is a one-dimensional linear porous medium, which is ini- 

tially saturated only with a Newtonian Fluid. A constant volunletric injection rate of a 

power-law fluid is imposed at the inlet, x = 0, from t = 0. The relative permeability 

curves used for all calculations in this chapter are shown in Figure 6.1, and the proper- 

ties of rock and fluids are given in Table 6.1. The solution (5.24) is evaluated to obtain 

the saturation profiles by the computerized-graphic method, as outlined in Section 5.4. 

The apparent viscosity for the power-law fluid is represented by Equations 3.11 and 

5.29. In order to calculate the fractional flow function from Equation 5.19, the constraint 

condition (5.21) is needed to correlate the potential gradient with the saturation for this 
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Figure 6.1 Relative Permeability Functions Used for Evaluation 

of Displacement by a Power-Law Fluid. 



Table 6.1 

Parameters for Linear Power-Law Fluid Displacement 

Porosity 

Permeability 

Cross-sectional Area 

Injection Rate 

Injection Time 

Displaced Phase Viscosity 

Irreducible Saturation 

Power-Law Lndex 

Power-Law Coefficient 

Qd.20 

K=l darcy 

1 m2 

q= 1 .OX 1 ~ - ~ r n ~ / s  

T=10 hrs 

ke=4 C P  

sne;=0.20 

n d . 5  

H=0.01 Pasn 



one-dimensional linear flow problem. Introducing Equations 3.1 1, and 5.20 into Equa- 

tion 5.21, we can obtain the following relationship for the pressure gradient correspond- 

ing to a particular value of S, , 

where peff is defined in Equation 5.29. Equation 6.1 is incorporated in the calculation 

of the fractional flow to solve potential gradients corresponding to saturations under dif- 

ferent flow conditions. 

6.3 Displacement of a Newtonian Fluid by a Power-Law 

Non-Newtonian Fluid 

For a given operating condition, non-Newtonian fluid displacement in porous 

media is controlled not only by relative permeability data, as in Newtonian fluid dis- 

placement, but also by the rheological properties of the non-Newtonian fluid. Some fun- 

damental aspects of power-law non-Newtonian fluid displacement will be discussed in 

this section using the results from the analytical solution. 

6.3.1 Effects of Non-Newtonian Rheological Properties 

There are two parameters that characterize the flow behavior of a power-law fluid, 

which are the exponential index, n, and the coefficient, H. For a pseudoplastic shear- 

thinning fluid, 0 < n <1 . If n = 1, the fluid is Newtonian. The effect of the power-law 



index , n, on linear horizontal displacement can be quite significant. Figure 6.2 shows 

that pressure gradients are changed significantly as a function of saturation for different 

values of n. At both high and low values for the non-Newtonian phase saturation, the 

pressure gradients are sm&rrkcaillsc: the flaw resismce deamsesas the f l~w tends to 

single phase flow. The apparent viscosities of several non-Newtonian fluids with dif- 

ferent power-law indices n are given in Figure 6.3, and the resulting fractional flow 

curves are shown in Figure 6.4. Figure 6.5 presents the derivatives of the fractional flow 

function with respect to saturation for different values of n. Saturation profiles after a 

10-hour injection period in the system are plotted in Figure 6.6. Note the significant 

decreases in sweep efficiency as the power-law index n is reduced. 

Since the power-law index, n, is usually determined by experiment or from well 

test analysis, some errors cannot be avoided in determining the values of n. These results 

show how difficult it will be to use a numerical code to match experimental data from 

non-Newtonian displacement investigations in the laboratory, because of the extreme 

sensitivity of the core saturation distribution to the value of n. The sensitivity of the dis- 

placement behavior to the power-index suggests that in determining the index for flow 

through porous media, it may be helpful to match experimental saturation profiles using 

the analytical solution. 

The effects of the consistence coefficient, H, are also examined. From Equation 

3.11, the apparent viscosity of a power-law fluid for this linear displacement can be 

expressed as, 
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Figure 6.2 Effects of the Power-Law Index on Pressure Gradients. 
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Phase Apparent Viscosity. 
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Figure 6.4 Effects of the Power-Law Index on Non-Newtonian 

Phase Fractional Flow. 
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Figure 6.5 Effects of the Power-Law Index on Derivative of Fractional 

Flow with Respect to Non-Newtonian Phase Saturation. 
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Figure 6.6 Non-Newtonian Phase Saturation Distributions, Effects of 
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the Power-Law Index on Displacement Efficiency 
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Figure 6.7 Pressure Gradients versus Displacing Power-Law Fluid Phase 

Saturation, Effects of the Coefficient H. 



Therefore, H acts a scaling factor of the viscosity for a given power-law index, n. The 

pressure gradients and the viscosities as functions of saturation are shown in Figures 6.7 

and 6.8 for the three values of H. The corresponding fractional flow and its derivatives 

are given in Figures 6.9 and 6.10, respectively. Figure 6.9 exhibits the linear-scaling 

effect of H. The resulting saturation profiles after 10 hours of injection are shown in 

Figure 6.1 1. The horizontal lines in this figure are the average saturations in the swept 

zone, which reflect the sweep efficiency. The results indicate that the effects of H on the 

displacement process are also significant. 

6.3.2 Effect of Injection Rates 

For a stable Newtonian displacement in porous media based on the Buckley- 

Leverett theory, the injection rate has no effect on displacement efficiency or sweep 

efficiency. When a non-Newtonian fluid is involved, changes in the injection rate will 

result in changes in the pore velocity, or in the shear rate, which will affect the viscosity 

of the non-Newtonian phase and therefore alter the fractional flow curve. The fluid and 

rock parameters used for the calculations in this section are similar to those used in the 

previous section, as given in Table 6.1 and any differences are indicated on the figures to 

follow. Figure 6.12 gives non-Newtonian viscosity versus saturation curves for three 

different injection rates in a semi-infinite linear horizontal system. The calculated 

saturation profiles corresponding to the injection rates are shown in Figure 6.13. Since 

the only variable parameter in this calculation is the injection rate, the saturation dism- 

butions in Figure 6.12 indicate that the injection rate has a significant effect on displace- 

ment. For a displacement process with this type of shear thinning fluid, the lower the 

injection rate, the larger the viscosity of the displacing phase, and the higher the dis- 

placement efficiency will be. 
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Figure 6.8 Effects of the Coefficient H on the Non-Newtonian 

Apparent Viscosity. 



0.2 0.4 0.6 0.8 

Power-Law Fluid Saturation 

XBL 891 1-7844 
T.I.D. Illus. 88 

Figure 6.9 Effects of the Coefficient H on Non-Newtonian 

Phase Fractional Flow. 
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Figure 6.10 Effects of the Coefficient H on Derivative of Fractional 

Flow with Respect to Non-Newtonian Phase Saturation. 
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Figure 6.11 Non-Newtonian Phase Saturation Distributions, 

Effects of the Coefficient H on Displacement Efficiency. 
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Figure 6.12 Effects of Injection Rates on Non-Newtonian Phase 3/29/89 

Apparent Viscosities. 
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Figure 6.13 Non-Newtonian Phase Saturation Distributions, Effects 

of Lnjection Rates on Displacement Efficiency. 



6.3.3 Effect of Gravity 

It is expected that gravity may have more effect on non-Newtonian displacement 

than on Newtonian displacement because it influences the mobility by affecting the 

non-Newtonian phase viscosity, in addition to occurring in the potential gradient term. 

This can be demonstrated by the following example. A power-law non-Newtonian fluid 

is injected upwards (a=n/2) , horizontally , and downwards (a=-n/2) , to displace 

a heavier in-situ Newtonian fluid. This is a potential application of foam flooding in oil 

recovery. The fractional flow curves are given in Figure 6.14. Since counterflow may 

occur physically at very low or very high displacing phase saturations under the effects 

of gravity, we will have the situations in which f, > 1 for upflow and f, < 0 for 

downflow. The final saturation distributions in Figure 6.15 show the significance of 

effects of gravity on non-Newtonian displacement in porous media. For this particular 

problem, the upflow displacement results in the lowest efficiency since the gravity helps 

the lighter displacing phase flow faster, and its viscosity becomes smaller, as shown in 

Figure 6.16. 

6.3.4 Conclusions 

In summary, the calculated analytical results for displacement with a power-law 

fluid reveal that the non-Newtonian displacement is a complicated process. The dis- 

placement process is controlled by the rheological properties of the particular non- 

Newtonian fluid used, the injection condition in addition to relative permeability, and is 

more sensitive to gravity effects as well. The power-law index, n, has the most 

significant effect on immiscible displacement involving a power-law fluid. The magni- 

tude of the consistence coefficient, H, serves as a scaling factor, which also has a 
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Figure 6.14 Fractional Flow Curves of a Power-Law Fluid Including 3/29189 

Gravity Effects. 
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Figure 6.15 Non-Newtonian Phase Saturation Distributions, Effects 
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of Gravity Rates on Displacement Efficiency. 
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Figure 6.16 Effects of Injection Rates on Non-Newtonian Phase 

Apparent Viscosities. 



significant effect on the displacement efficiency. 

For the displacement of a Newtonian fluid by a shear-thinning power-law fluid, the 

sweep efficiency can be improved by reducing injection rates of the power-law fluid. 

Then, the apparent viscosity of the displacing non-Newtonian fluid will increase, and 

more percentage of the Newtonian fluid will be driven out of the system. Also, a better 

displacement can be obtained under the influence of gravity to decrease the flow poten- 

tial gradient in the flow direction which results in an increase in the apparent viscosity of 

the displacing power-law fluid. 



Chapter 7 

Immiscible Displacement of a Bingham Non-Newtonian Fluid 

by a Newtonian Fluid 

7.1 Introduction 

In this chapter, the analytical solution developed in Chapter 5 is used to study the 

physical mechanisms of a Bingham-type non-Newtonian fluid being displaced by a 

Newtonian fluid. One application of this study is to look at the production process of 

heavy oil by waterflooding. Many heavy oil reservoirs have been found worldwide and 

have contributed a considerable percentage of oil to the supply market. A common 

feature of the highly viscous heavy oil production is the low percentage of oil recovery, 

which is caused by the high oil viscosity and the effects of the minimum pressure gra- 

dient existing at reservoir conditions. The non-Newtonian behavior of heavy oil flow 

through porous media has been noted in the literature (Mirzadjanzade et al., 1971; Kas- 

raie et al., 1989). The flow of heavy oil in many reservoirs has been observed to exhibit 

a kind of Bingham-type behavior, i. e., a threshold minimum pressure gradient G must 

be exceeded before flow starts (Barenblatt et al., 1984). Even with a value of only a few 

hundredths of a bar per meter for the minimum pressure gradient, it was reported that a 

very large stagnant zone in the heavy oil formation developed during production, and a 

significant decrease in oil recovery resulted. In order to increase the rate of heavy oil 

recovery, many efforts have been made, and various thermal recovery techniques, such 

as steam flooding, have been developed by industry (Chu, 1987). A number of labora- 

tory experiments and theoretical studies have been published on thermal recovery in 

porous media. Analytical models (Marx and Langenheim, 1959; Rarney, 1959; Mandl 

and Volek, 1969) and numerical simulators (Coats et al., 1974; Coats, 1978; 1980) were 



used to predict the thermal displacement performance. However, heavy oil viscosities 

were treated as a function of temperature only, and the effects of non-Newtonian 

behavior were neglected completely in all these studies. 

The physical mechanisms behind the displacement of a Bingham type fluid are of 

fundamental importance to many engineering designs, such as heavy oil production by 

water flooding, or drilling mud invasion into a permeable formation during the drilling 

operations. However, very few studies have been reported on multiple phase flow 

involving a Bingham fluid in porous media. The immiscible displacement behavior with 

a Bingham non-Newtonian fluid is the least understood in the literature. Therefore, the 

purpose of this chapter is to obtain some insights into the physics behind the displace- 

ment of a Bingham fluid by a Newtonian fluid under isothermal conditions using the 

general solution for immiscible non-Newtonian flow developed in Chapter 5. 

7.2 Evaluation of Analytical Solution. 

The flow physical model is a one-dimensional linear porous system with a constant 

cross-sectional area, A. Initially, the system is saturated with only a Bingham fluid, and 

a Newtonian fluid is injected at a constant volumetric rate at the inlet, x = 0, from t = 0. 

The relative permeabilities used in this chapter are given as functions of saturation of the 

displacing Newtonian fluid by Figure 7.1. The fluid and rock properties are summarized 

in Table 7.1, and the effects of capillary pressure gradient are ignored. 

The rheological model for the flow of a single-phase Bingham plastic fluid in 

porous media, Equation 3.14, is extended to this two-phase flow problem, 

(7. la) 
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Figure 7.1 Relative Permeability Functions Used for Evaluation 

of Displacement of a Bingham Fluid. 



Table 7.1 

Parameters for Linear Bingham Fluid Displacement 

Porosity 

Permeability 

Cross-Sectional Area 

Injection Rate 

Injection Time 

Displacing Newtonian Viscosity 

Irreducible Saturation 

Bingham Plastic Coefficient 

Minimum Pressure Gradient 

@=0.20 

K=l darcy 

1 m2 

q= 1 .OX 1 ~ - ~ r n ~ / s  

T=10 hrs 

h e = l  CP 

S-4.20 

pb= 4.0 cp 

G= 10,000 Pa/m 



for l&D/dxl > G , and 

for (dO/dx( lG. For a particular saturation Sne of the Newtonian phase, the 

corresponding flow potential gradient for the non-Newtonian phase can be derived by 

introducing Equation 7. l a  in Equation 5.21 as 

The apparent viscosity for the Bingham fluid is determined by using Equation 7.2 in 7.1, 

and then the fractional flow curves are calculated from Equation 5.19, in which SM is 

replaced by Sne for this problem. 

7.3 Displacement of a Bingham Non-Newtonian Fluid 

by a Newtonian Fluid 

For the given operating conditions similar to those used in the Buckley-Leverett 

theory, the non-Newtonian fluid displacement is described by the analytical solution in 

chapter 5. The displacement involving a Bingham fluid is also determined only by the 

fractional flow function, which is controlled not only by relative permeability effects, as 

in Newtonian fluid displacement, but also by the non-Newtonian rheological properties 

of Bingham fluids. Some fundamental behavior of Bingham type non-Newtonian fluid 

displacement will be discussed in this section. 
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7.3.1 Effect of Non-Newtonian Rheological Properties 

A Bingham fluid is characterized by the two parameters, the minimum potential 

gradient, G , and the Bingham plastic coefficient, pb. For a porous media flow problem, 

the two parameters should be determined by laboratory experiments or well tests. A 

well testing analysis technique will be discussed in Chapter 9 for determining the Bing- 

ham flow properties in porous media. The physical significance of the minimum pres- 

sure gradient G is described by Equation 2.35, which is related to the yield stress of the 

fluid and the characteristic length of the pore space in the porous medium. The range of 

values for the minimum potential gradient G is quite diversified for different reservoirs. 

A reasonable value of G is of the order of lo4 Pa/m for heavy oil flow (Mirzadjanzade 

et al., 1971), and it may exceed 3 . 0 ~ 1 6  Pa/m for groundwater flow in certain clay soils 

(Bear, 1972). Therefore, various values of G are used to examine its effects on the linear 

horizontal displacement process. 

The pressure gradients as functions of saturation for the displacing Newtonian 

phase at uferent values of minimum pressure gradients are given in Figure 7.2. The 

corresponding apparent viscosities of the Bingham fluids are shown in Figure 7.3. The 

basic displacement behavior with a Bingham plastic fluid in porous media, as revealed 

by Figures 7.4, 7.5 and 7.6, is that there exists an ultimate or maximum displacement 

saturation, S,, , for the displacing Newtonian phase. The maximum displacement 

saturation is reflected at the point of a fractional flow curve, at which f,,, = 1.0 in Figure 

7.4. The derivative of the fractional flow function with respect to saturation is discon- 

tinuous when the displacing phase reaches its maximum value S,,, as shown in Figure 

7.5. The resulting saturation distribution is given by Figure 7.6 showing effects of the 

minimum pressure gradient G. It is obvious that the sweep efficiency decreases rapidly 

as G increases, as described by the corresponding horizontal lines in Figure 7.6. For 

Newtonian displacement, the ultimate saturation for the displacing fluid is equal 
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Figure 7.2 Pressure Gradients versus Newtonian Fluid Saturation, 

Effects of the Minimum Pressure Gradient. 
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Figure 7.3 Effects of the Minimum Pressure Gradient on 

Bingharn Phase Apparent Viscosities. 
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Figure 7.4 Fractional Flow Curves for a Bingharn Fluid Displaced 

by a Newtonian Fluid, Effects of the Minimum Pressure Gradient. 



Newtonian Fluid Saturation 

XBL 891 1-7864 
T.I.D. Illus. 88 

Figure 7.5 Effects of the Minimum Pressure Gradient on Derivative 

of Fractional Flow with Respect to Newtonian Saturation. 



theoretically to the total mobile saturation of the in-situ fluid, such as that of the curve 

(G = 0) in Figure 7.6. 

Physically, the phenomenon of ultimate displacement saturation occurs as the flow 

potential gradient approaches the minimum pressure gradient, at which the apparent 

viscosity is infinite. Then the only flowing phase is the displacing Newtonian fluid. Con- 

sequently, once the maximum saturation has been reached for a flow system, no 

improvement of sweep efficiency can be obtained no matter how long the displacement 

process continues, as shown in Figure 7.6. The flow condition is more complicated in 

reservoirs than in this linear semi-infinite system. Since oil wells are usually drilled 

according to certain patterns, there always exist some low flow rate or low potential gra- 

dient stagnation zones between production and injection wells. The presence of the ulti- 

mate displacement saturation for a Bingham fluid indicates that no oil can be driven out 

of these regions. Therefore, the ultimate displacement saturation phenomenon is also 

responsible for the low oil recovery observed in heavy oil reservoirs developed by 

water-flooding, in addition to effects of the high oil viscosity. 

The effects of the other rheological parameter, the Bingham plastic coefficient pb , 

are shown in Figures 7.7, 7.8 and 7.9. It is interesting to note that the ultimate displace- 

ment saturations hardly change as pb changes. However, the average saturations in the 

swept zones are quite different for a different value of pb from Figure 7.9. The ultimate 

displacement saturation is essentially determined by the minimum pressure gradient G 

and also by the pressure gradient which is very close to the minimum pressure gradient 

G ,  as described by Equations 7.1 and 7.2. The changes in pb have little effects on the 

ultimate displacement saturation since the flow potential gradient used in Equation 7.1 a, 

calculated from Equation 7.2, hardly varies with pb as aP/ax -, G . 
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Figure 7.6 Newtonian Phase Saturation Distributions, Effects of the 

Minimum Pressure Gradient on Displacement Efficiency of a 

Bingharn Fluid by a Newtonian Fluid. 
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Figure 7.7 Fractional Flow Curves for a Bingharn Fluid Displaced by a 

Newtonian Fluid, Effects of Bingham's Coefficient pb . 
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Figure 7.8 Effects of Bingham's Coefficient pb on Derivative 

of Fractional Flow with Respect to Newtonian Saturation. 
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Figure 7.9 Newtonian Phase Saturation Distributions, Effects of Bingham's 

Coefficient pb on Displacement Efficiency of a 

Bingham Fluid by a Newtonian Fluid. 
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Figure 7.10 Pressure Gradients versus Newtonian Fluid Saturation, 

Effects of Injection Rates. 



7.3.2 Effect of Injection Rates 

In this problem, a Bingham fluid in the horizontal porous medium is displaced by 

water. If the water injection rate at the inlet is increased, the pressure gradient in the 

system will increase, and the apparent viscosity for the Bingham fluid will be reduced. 

Therefore, a better sweep efficiency will result. 

The pressure gradients and apparent viscosities as functions of the displacing 

Newtonian phase saturation for different water injection rates are shown in Figures 7.10 

and 7.11, respectively. Accordingly, the fractional flow functions and their derivatives 

with respect to saturation are given in Figures 7.12 and 7.13, which do exhibit the 

significant effects by the injection rate. Figure 7.14 presents the saturation profiles after 

injection of 10 hours with the different rates. It is encouraging to note that both the 

sweep efficiency and the ultimate displacement saturation can be greatly improved by 

only increasing the injection rate for the same flow condition. 

7.3.3 Effect of Gravity 

The effects of gravity on Bingham fluid displacement by a Newtonian fluid can be 

examined by considering the following example. A heavier Newtonian fluid with den- 

sity p,, = 1,000 Kg/m is used to displace a Bingham fluid with density p, = 850 Kg/m . 

The flow directions are upward (a = x/2), horizontal (a = O), and downward (a = -x/2). 

This is similar to using water to drive heavy oil in reservoirs. The fractional flow curves 

are shown in Figure 7.15, and the resulting saturation distribution is described by Figure 

7.16 for this particular problem. The difference in density of the two fluids is small, so 

the influence of gravity on displacement efficiency is not very significant. However, 

gravity does change the ultimate displacement saturation, as shown in Figure 7.16. The 
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Figure 7.11 Effects of Injection Rates on Bingharn Phase Apparent Viscosities. 
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Figure 7.12 Fractional Flow Curves for a Bingham Fluid Displaced 

by a Newtonian Fluid, Effects of injection Rates. 
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Figure 7.13 Effects of Injection Rates on Derivative of Fractional 

Flow with Respect to Newtonian Saturation. 
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Figure 7.14 Newtonian Phase Saturation Distributions, Effects of Injection Rates 

on Displacement Efficiency of a Bingharn Fluid by a Newtonian Fluid. 



.O 0.2 0.4 0.6 0.8 1 .O 

Newtonian Fluid Saturation 

XBL 891 1 -7875 
T.I.D. Illus. 88 

Figure 7.15 Fractional Flow Curves for a Bingham Fluid Displaced 

by a Newtonian Fluid, Effects of Gravity. 
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Figure 7.16 Newtonian Phase Saturation Distributions, Effects of Gravity on 

Displacement Efficiency of a Bingham Fluid by a Newtonian Fluid. 



.O 0.2 0.4 0.6 0.8 

Newtonian Fluid Saturation 

XBL 891 1-7872 
T.I.D. Illus. 88 

Figure 7.17 Effects of Gravity on Bingham Phase Apparent Viscosities. 



best displacement performance is obtained by the upward flow calculation. Since the 

gravity resists the upward flow of the heavier displacing phase, the flow potential gra- 

dient must be larger in order to maintain the same flow rate, as shown in Figure 7.17. 

Consequently, a decrease in the apparent viscosity of the Bingham fluid for upward flow 

as the flow potential gradient increases results in a better sweep efficiency. 

A more significant effect of gravity can be found if a gas phase with density 

p, = 10 kg/m3 is used to displace a heavier Bingham fluid. The results are shown in 

Figures 7.18 and 7.19. It is obvious that the best displacement is given by the downward 

injection under the gravity effect for this case. Of course, this is a very poor situation 

for application of the theory because gas is a very compressible fluid, but it dose give us 

some approximate insight for the displacement. 

7.3.4 Conclusions 

In summary, the fundamental feature of immiscible displacement involving a Bing- 

ham plastic fluid is that there exists an ultimate displacement saturation, which is essen- 

tially determined by the minimum pressure gradient G and the flow rate. Once the 

saturation approaches the ultimate saturation in the formation, no improvement can be 

obtained, regardless of how long the displacement lasts for a given operating condition. 

A simple way to gain a better sweep efficiency is to increase injection rates, then the 

apparent viscosity of the displaced Bingham fluid can be reduced. Gravity may have a 

significant effect on the displacement process if the difference in density of the two 

fluids is large. For a given flow rate, a better displacement can also be obtained by using 

gravity to increase the flow potential gradient in the flow direction. 
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Figure 7.18 Fractional Flow Curves for a Bingharn Fluid Displaced 

by a Gas, Effects of Gravity. 
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Figure 7.19 Newtonian Phase Saturation Dismbutions, Effects of Gravity 

on Displacement Efficiency of a Bingham Fluid by a Gas. 



Chapter 8 

Numerical Studies of Transient Flow 

of a Single-Phase Power-Law Non-Newtonian Fluid 

8.1 Introduction 

As reviewed in Chapter 2, considerable progress has been made since the early 

1960's in understanding the flow of a single-phase power-law non-Newtonian fluid 

through porous media. Among many researchers, Odeh and Yang (1979), Ikoku and 

Ramey (1979) made the major contributions to the analysis of flow behavior and well 

tests of power-law fluids in porous media. By using a linearization assumption that there 

exists a steady-state viscosity profile in the reservoir, as given by Equation 2.33, they 

obtained approximate analytical solutions. Based on these solutions, a number of 

analytical and numerical methods have been developed to interpret well testing data dur- 

ing injectivity and falloff tests of power-law fluids. 

Vongvuthipornchai and Raghavan (1987a) examined the approximate solutions by 

Odeh and Yang, and Ikoku and Rarney, and found that the solutions would give large 

errors in analyzing pressure falloff behavior when the power-law index n < 0.6. It has 

been found from laboratory experiments and field tests that the in-situ rheological pro- 

perties of polymer solutions in reservoirs may be quite different from the laboratory- 

measured values (Castagno et al., 1984; 1987). Changes in the non-Newtonian parame- 

ters of polymer solutions under reservoir condition may be caused by degradation in 

polymer concentration due to adsorption on the pore surface, or by effects of different 

shear rate distributions for flow through different pore geometries. In general, the two 

parameters, power-law index, n, and the consistency coefficient, H, are both unknowns 

in a well testing problem with a power-law fluid injection. Therefore, the conditions for 



the application of their methods may not be satisfied, and a direct use of the transient 

pressure analysis methods available for power-law fluid flow may result in significant 

errors in the predicted fluid and formation properties. 

The flow of power-law fluids in fractured media is of interest in many applications, 

such as in EOR operations by polymer-flooding in naturally fractured petroleum reser- 

voirs, or in the use of foam as a blocking agent in a fractured medium for underground 

energy and waste storage purposes. Very little research has been published on the flow 

of non-Newtonian fluids through fracture systems. In the petroleum literature, Luan 

(1981) extended the work of Ikoku and Rarney (1979) to the flow problem of power-law 

fluids in naturally fractured reservoirs (Warren and Root, 1963). He was able to obtain 

an approximate analytical solution by using the linearization assumption, Equation 2.33, 

for the fracture system and a constant viscosity for the power-law fluid in calculating 

interporosity flow between matrix and fracture. 

Pseudoplastic fluid flow in porous media shows more complicated behavior than 

that predicted by the power-law. It has been observed in many laboratory experiments 

that any pseudoplastic fluid exhibits Newtonian behavior at high or low shear rates 

(Savins, 1969; Fahien,1983, Christopher and Middleman, 1965). Therefore, a more real- 

istic rheological model, such as the Meter model, for general pseudoplastic fluids (Meter 

and Bird, 1964), should be used in further studies of power-law fluid flow through 

porous media. It should be possible to obtain a more comprehensive look at transport 

phenomena including Newtonian behavior at very high and very low shear rates during a 

pseudoplastic fluid flow in porous media. 

This chapter presents the following numerical studies: 1) well testing analysis dur- 

ing a power-law fluid injection; 2) transient flow of a power-law fluid through a frac- 

tured medium; and 3) transient flow of a general pseudoplastic non-Newtonian fluid, 

described by the Meter model, through a porous medium. The numerical simulator, out- 

lined in Chapter 4, is used here to simulate single phase non-Newtonian flow. 



8.2 Well Testing Analysis of Power-Law Fluid Injection 

The transient pressure analysis technique recommended in this work is a combina- 

tion of the existing analytical method with numerical simulation. First, a log-log plot of 

the observed pressure increase at the wellbore versus the injection time is used to obtain 

an approximate value of n. The long time approximate analytical solution (Ikoku and 

Ramey, 1979) is 

where Pwf(t) is the wellbore flowing pressure; Pi is the initial constant pressure in the 

formation; h is the thickness of the formation; Q is a constant volumemc injection rate; 

C,  is total system compressibility; and peff is defined in Equation 2.14. 

Equation 8.1 indicates that at long injection times, a graph of log (Pwr - Pi) versus 

log (t) yields a straight line with a slope 

which can be used to obtain a first-order approximation for n. The intercept at t = 1 

second, AP1 , can give the effective mobility heff from, 



The modified Darcy's law for this horizontal radial flow can be obtained by substituting 

Equation 3.1 1 into 3.7, 

Therefore, as long as the straight line occurs in the log-log plot of a well test, the 

power-law index n and the effective mobility heff can be calculated from the slope and 

intercept of the straight line if the porosity and compressibility are known. Then, the 

problem is well-posed for a numerical calculation since the parameters in Equation 8.4 

are defined. The observed pressure data can be matched by the numerical calculation 

using the value of n, and heff obtained as an initial guess. 

An injection test example is given here to illustrate the approach used. The well 

test data used are from the published data of a simulated polymer injection test (Lkoku 

and Rarney, 1979), and are in Table 8.1. The pressure responses, AP = (PWf - Pi), versus 

time are shown by the circles in Figure 8.1, which yields a straight line with a slope 

m' = 0.25. Then 

1-n 
m' = - = 0.25 

3-n 

and this gives, n = 0.33. Also, the intercept, AP1 = 4.61x1d Pa, can be determined at t = 

1 second, from Figure 8.1. Ikoku and Ramey obtained the following effective mobility, 

8 1.33 heff = 6.37~10- m /Pa-s 

Since n = 0.33 < 0.60, these results need to be checked according to Vongvuthi- 

pornchai and Raghavan (1987a). When the same parameters are input into the numerical 

model, the resulting pressure increase is given by the lower solid line on Figure 8.1. This 

would be the wellbore injection behavior if the fluid and formation flow properties were 

those determined above. The difference in the pressure responses shown in Figure 8.1 is 

22 % and indicates that the prediction by the approximate analytical solution introduces 



Table 8.1 

Parameters for Well Testing Analysis of Polymer Injection Test 

Initial Pressure 

Initial Porosity I $i=0.15 

Formation thickness I h=4.877m 

Total Compressibility ~ ,=9 .674~10- '~~a - '  I 
Production Rate 

Power-Law Index 

~=1.84x  1 0+m3/s 

n=0.33 

Wellbore Radius rw=0.0762m 
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Figure 8.1 Logarithm of Pressure Increase versus Logarithm of Injection Time 

for a Power-Law Fluid Injectivity Test (data from Ikoku and Rarney). 



a very large error for this test. However, the straight lines do develop for both curves in 

Figure 8.1, and are almost parallel with each other. Therefore, the slope of the straight 

line in the approximate solution gives a good approximation of the power-law index, n. 

we shall use n = 0.33, and adjust the effective mobility value to match the test data. The 

numerical results for two more test runs are shown in Figure 8.2, which are in good 

agreement with those from the polymer injection example. The effective mobility used 

in this calculation is 

This means that the actual effective mobility is only 70 % of that determined by Lkoku 

and Ramey, and indicates that the approximate analytical solution introduces an error of 

40 % in the calculation of the effective mobility, heff. 

The next example is a field test that was performed on biopolymer injection (Odeh 

and Yang, 1979). The pressure transient data are plotted on Figure 8.3 and formation 

properties are listed in Table 8.2. The slope of the log-log straight line part of the 

wellbore pressure increase versus injection time in Figure 8.3 is determined as 

rn' = 0.21, and then, n = 0.46. The intercept, API = 6.236~16 Pa is found at a time of 1 

second. A tentative effective mobility can be calculated by Equation 8.3 as 

Using these values of n and heff, and the parameters in Table 8.2, we have the 

pressure responses at the wellbore as shown by the bottom solid curve of Figure 8.4. 

Obviously, this result is unacceptable with an error in pressure increase by a factor of 5, 

when compared with the actual field data. However, the log-log straight line of the 
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Figure 8.2. Numerical Matching C w e  of Pressure Increase versus Injection 

Time for a Power-Law Fluid lnjectivity Test (data from Ikoku 

and Ramey). 
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Figure 8.3 Logarithm of Pressure Increase versus Logarithm of Injection Time 

for a Biopolymer Injectivity Test (data from Odeh and Yang). 
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Figure 8.4 Numerical Matching Curve of Pressure Increase versus Injection 

Time for a Biopolymer Fluid Injectivity Test (data from Odeh 

and Yang). 



Table 8.2 

Parameters for Well Testing Analysis of Biopolymer Injection 

Initial Pressure 

Initial Porosity 

Formation thickness 

Total Compressibility 

Production Rate 

Permeability 

Wellbore Radius 



pressure-time curve, with a slope m' = 0.22 is approximately parallel with that of the 

observed curve where the slope m' = 0.21. Therefore, the long time asymptotic solution 

by Ikoku and Ramey again gives a good approximation for the power-law index n. We 

shall use n = 0.46, and adjust heff. In four more test runs, the result is shown by the 

dashed curve in Figure 8.4, and this yields an effective mobility h, = 3.99x10-", and a 

slope m'= 0.22 . For this case, the permeability was known, K = 88 md, from a core 

analysis. Then, if the power-law model, Equation 3.1 1, holds for flow in the reservoir, 

we can calculate the consistency, H = 0.019 pa.sA6. These results further illustrate the 

errors that can occur in the analysis of field data using the approximate analytical solu- 

tions of Ikoku and Ramey (1979), Odeh and Yang (1979). 

8.3 Transient Flow of a Power-Law Fluid through a Fractured Medium 

A numerical study of the flow of a power-law non-Newtonian fluid in a fractured 

medium is performed in order to obtain some insight into its flow behavior. We shall 

assume the standard model of parallel smooth sides for the fractures (see Figure 8.5). 

This is the simplest model, and is often used to approximate more complicated fracture 

networks in reservoirs. The rheological model for a power-law fluid, Equation 3.1 1, is 

used for flow in the matrix system. However, because of the two-dimensional nature of 

flow through a fracture, the modified Darcy's law, such as Equation 2.13 derived from 

the capillary model, cannot be employed directly in fracture flow. Therefore, a modified 

Darcy's equation for a power-law fluid in a parallel-plate fracture is derived in Appendix 

C and is used in this chapter. The fracture model used in this study is given in Figure 

8.5 for a horizontal system of parallel-plate fractures. It can be shown (see Appendix C) 

that the modified Darcy's law for the flow of a power-law fluid in fractures can also be 

described by Equation 3.7. However, we may use the same form of the viscosity 
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Figure 8.5 Schematic of a Horizontal Fracture System. 



function as in Equation 3.11. Here, peff is replaced by 

where b is aperture of the fracture, and Kf is the effective fracture permeability used in 

the Darcy's equation, defined by Equation C.6. 

Flow through fractured media is of fundamental importance in many subsurface 

systems, such as the exploitation of hydrocarbon and geothermal energy, and under- 

ground waste storage in naturally fractured reservoirs. The study of fluid flow in natur- 

ally fractured reservoirs has been a challenging task, and considerable progress has been 

made since the 1960's (Barenblatt et al., 1960; and Warren and Root, 1963). Most stu- 

dies of flow in fractured reservoirs use the double-porosity concept and consider that 

global flow occurs primarily through the high-permeability, low-effective-porosity frac- 

ture system surrounding blocks of rock matrix. The mamx blocks contain the majority 

of the formation storage volume and act as local source or sink terms connected to the 

fracture system. The fractures are interconnected and provide the main fluid flow path to 

injection or production wells. 

A very important characteristic of a double-porosity system is the nature of the 

fluid exchange between the two constitutive media, the so-called interporosity flow. The 

conventional treatment of the interporosity flow between matrix and fractures resorts to 

an approximation that a quasi-steady state exists in the matrix elements at all times, with 

the interporosity flow rate being proportional to the difference of the average pressures 

in matrix and fractures. The quasi-steady assumption was originally proposed by Baren- 

blatt et al. and Warren and Root and has been used by many subsequent authors. For 

isothermal single phase Newtonian fluid flow, this assumption was shown to give accu- 

rate results by Kazerni (1969) using a numerical model. However, for more complicated 

flow problems, such as those involving heat exchange between matrix and fractures, and 



for multiple phase flow with strong mobility effects, transient interporosity flow condi- 

tions may last a long time (decades) before reaching quasi-steady state. Under these 

conditions, it is necessary to treat the flow inside the blocks and at the block-fracture 

interface as a transient process. Pruess and Narasirnhan (1982, 1985) developed a "mul- 

tiple interacting continua" technique (MINC), in which fully transient flow in the matrix 

and between mamx blocks and fractures is described by a numerical method. Using 

appropriate subgridding in the matrix blocks,. it is possible to resolve the details of the 

gradients (of pressure, temperature, etc.) which drive the interporosity flow. The 

MINC-method has been successfully applied to a number of geothermal reservoir 

( h e s s ,  1983a) and multiple phase flow problems (Wu and m e s s ,  1986). 

For the flow of a single phase power-law fluid in a fractured medium, the apparent 

viscosity of the fluid inside the mamx and at the matrix-fracture interfaces depends on 

the pore velocity, or pressure gradient, as described by Equation 3.1 1. One should 

expect a strong effect of the non-linearity in non-Newtonian viscosity on flow behavior. 

Therefore, the MINC-method will be used in simulating the interporosity flow of a 

power-law fluid. Also, a comparison of the MmC-calculations with the conventional 

double-porosity results is given here to demonstrate that the double-porosity approxima- 

tion is generally not suitable in simulating non-Newtonian fluid flow in fractured media. 

Let us first consider a simple case. A power-law fluid is injected into a horizontal 

fracture system with impermeable matrix blocks such that the system is equivalent to a 

porous medium. Pressure responses for injection only into the fracture system and for 

injection into the porous medium can be compared. The equivalent porosities and per- 

meabilities for the fractured and porous systems are taken to be the same, respectively 

(see Table 8.3). The only differences in the input parameters for the two runs are the 

viscosity functions, as given in Equations 3.11 and C.8, and their dependence on the 

inherent effects of the distinctly different geomemes of these two systems. The 

wellbore pressure increases AP = (Pwf - Pi) during injection of the power-law fluid are 



Table 8.3 

Parameters for Power-Law Fluid Injection in a Fracture System 

Initial Pressure 

Fracture Aperture 

Half Fracture Spacing 

Matrix Porosity 

Effective Fracture Porosity 

Matrix Permeability 

Effective Fracture Permeability 

Fluid Compressibility 

Rock Compressibility 

Initial Fluid Density 

Injection Rate 

Wellbore Radius 

Power-Law Index 

Power-Law Coefficient 



shown in Figure 8.6. It is interesting to note that a log-log straight line also develops on 

the fracture flow curve after the early transient period, and its slope is m' = 0.20. From 

Equation 8.2, we can write 

This indicates that the same well test analysis method, as discussed in Section 8.2, may 

apply to the flow of power-law fluids in purely-fractured media. 

It is important to note on Figure 8.6 that a larger injection pressure is needed in 

order to maintain the same injection rate for flow in the porous model as in the fracture 

network. If a Newtonian fluid were used, the injection pressures for both systems would 

be exactly the same. For this particular problem, however, the flow of the power-law 

fluid in the porous media suffers more flow resistance than in the single fracture, even 

with the same equivalent porosities and permeabilities. This can be seen in Figure 8.7, 

which gives the apparent viscosities for the non-Newtonian fluid as it flows through 

either media under the same conditions. The viscosities for flow in the porous model are 

always higher than in the fracture. This suggests that the viscosity function, Equation 

3.1 1 for porous media flow, cannot be extended to flow problems in fractures. 

Let us now consider the flow of a power-law fluid in a fracture system where the 

matrix blocks are permeable. The same horizontal fracture model is used, as shown in 

Figure 8.5. The mamx subgridding in this numerical simulation employs the MINC- 

technique and is generated by a mesh generator - GMINC (Pruess, 1983b). The basic 

section of the horizontal fracture system is first partitioned into "primary" volume ele- 

ments (or grid blocks) such as would be employed for a porous medium. The interblock 

flow connections are then assigned to the fracture continuum, and each primary grid 

block is sub-divided into a sequence of "secondary" volume elements. Here, the secon- 

dary elements are a number of horizontal layers parallel to the fracture in each primary 

element. The flow inside the mamx system and between matrix blocks and fractures is 
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Figure 8.6 Comparison of Transient Pressures of a Pure Fracture 

System and an Equivalent Porous medium. 
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Figure 8.7 Apparent Viscosities of a Power-Law Fluid Calculated 

from the Porous Model and the Fracture Model. 



assumed to be vertical. 

The MINC-method contains the double-porosity approximation as a special case by 

defining only two continua in each primary grid block, representing fracture and matrix, 

respectively. Therefore, we can check the applicability of the double-porosity concept to 

the injection of a power-law fluid into a fractured reservoir. The fluid and formation 

parameters for this power-law fluid injection are given in Table 8.4. A comparison of 

wellbore injection pressures is shown in Figure 8.8, and were calculated for different 

levels of subgridding with 2-10 continua. The matrix block was sub-divided into equal- 

volume subdomains in this calculation, except the element connected with the fracture, 

whose volume was taken as 1 % of the total matrix volume. It is obvious that the 

double-porosity approximation (MINC-2) introduces larger errors during the early tran- 

sient time and only approaches the correct solution at long injection times. As the 

number of subdivisions in the matrix system increases, the results become more accu- 

rate, and little improvement could be obtained after eight sub-domains were used. 

Therefore, meshes with eight sub-divisions are used in the following study. The reason 

the double-porosity method is inaccurate for non-Newtonian fluid flow is apparent on 

Figure 8.9, which gives a distribution of the pressure increases in the fractures after t = 

10 seconds. When the number of subdivisions is small, the double-porosity prediction 

overestimates pressures in the fractures. This indicates that flow into the matrix system 

is underestimated by the double-porosity approximation, which treats the matrix as a 

single continuum with locally uniform pressure and fluid distributions. The pressure 

gradient and pore velocity into the matrix from this calculation are smaller than it should 

be, and the result is a higher viscosity for this shear-thinning fluid. This phenomenon is 

similar to that obtained using the double-porosity method for multiple phase flow in 

fractured reservoirs, as discussed by Wu and Pruess (1986). It is concluded that, in gen- 

eral, the double-porosity method cannot be used for the analysis of non-Newtonian fluid 

flow in fractured media, and some method of transient interporosity flow, such as MINC, 



Table 8.4 

Parameters for Power-Law Fluid Injection in a Double-Porosity System 

Initial Pressure 

Fracture Aperture 

Half Fracture Spacing 

Matrix Porosity 

Fracture Porosity 

Matrix Permeability 

Effective Fracture Permeability 

Fluid Compressibility 

Rock Compressibility 

Initial Fluid Density 

Injection Rate 

Wellbore Radius 

Power-Law Index 

Power-Law Coefficient 

pi=3xl 06pa 

b=2.3x10-~m 

D=0.5m 

@,=0.20 

$ F 2 . 3 ~ 1 ~ 4  

15 2 Km=9.869x10- m 

~ ~ 1 . 0 1 4 ~ 1 0 - ' ~ r n ~  

~~=4.557x10- '~~a- '  

~,=5.443x10-'~~a-' 

~ ~ = 9 7 2 . 7 8 ~ j j / m ~  

Q ~ = ~ X  1 O - ~ K ~ I S  

r,=O. 1 Om 

n=.5 

H=0. 1 OPa- sn 
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Figure 8.8 Transient Pressure Responses in a Double-Porosity System 

during a Power-Law Fluid Injection, Effects of Subdivisions 

of the Matrix System on Interporosity Flow. 



MlNC - 2 (Double Porosity) 

0 10 20 30 40 50 
Distance From Wellbore (m) 

XBL 891 2-791 8 
T.I.D. lllus.88 

Figure 8.9 Distributions of Pressure Increases in the Fracture System 

for Different Subdivisions of the Matrix System. 



will have to be utilized instead. 

As pointed out by Warren and Root (1963), the flow of a Newtonian fluid in frac- 

tured reservoirs is indicated on serni-log plots of pressure buildup by two parallel 

straight lines. This enables one to determine two parameters, the storage coefficient, o, 

and the interporosity flow coefficient, h, which are sufficient to characterize a fractured 

medium in double-porosity approximation. We shall use the same two parameters to 

discuss the flow behavior of a power-law fluid in a fractured medium. The storage 

coefficient is defined (Warren and Root, 1963) as, 

where Cf and C, are total compressibilities of fracture and matrix systems, respectively. 

The interporosity coefficient is defined (Lai, 1985) as, 

The characteristic curves of transient pressure behavior for power-law fluid flow in 

this idealized fracture model, calculated with MINC-8 subgridding, are given in Figures 

8.10 and 8.1 1. The fluid and formation parameters in these calculations are summarized 

in Table 8.4. Figure 8.10 shows that the flow of a power-law fluid in a fractured 

medium is now characterized by two parallel log-log straight lines, instead of the serni- 

log straight lines obtained for Newtonian flow. Interestingly, the slopes of the straight 

lines of log(AP) versus log(t) during the early and long injection times are also described 

by Equation 8.2 with m' = 0.20. This indicates that, at very early times, the pressure 

responses are dominated by flow only in the fractures; and the behavior approaches that 

of an equivalent system of a homogeneous reservoir at long times. The results on Fig- 

ures 8.10 and 8.1 1 indicate that the power-law flow behavior is also controlled by the 

same two dimensionless parameters, oand  h. The coefficient h governs the 



Injection Time (s) 

XBL 8912-791 9 
T.I.D. lllus.88 

Figure 8.10 Characteristic Curves of Flow Behavior of a Power-Law Fluid 

through a Double-Porosity Medium, Effects of Interporosity 

Flow Coefficient A. 
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Figure 8.1 1 Characteristic Curves of Flow Behavior of a Power-Law Fluid 

through a Double-Porosity Medium, Effects of Storage 

Coefficient o. 



interporosity flow and determines the time frame when the transitional period in the 

pressure plot will occur between the two log-log straight lines, as shown in Figure 8.10. 

The other parameter o is the ratio of the storage capacity of the fracture to the total 

storage capacity of the medium and is related to the vertical displacement between the 

parallel straight lines (see Figure 8.11). 

Ln a real field test of power-law fluid flow in a fractured reservoir, there may be 

only one of the two straight lines that develops on the log-log plot, depending on the 

fluid and formation properties. At early time, the log-log straight lines may not be evi- 

dent when the interporosity flow parameter h is large, because of wellbore flow condi- 

tions, such as wellbore storage and skin effects. For a finite system with a small value of 

h, the long time straight line may never form. Knowing these effects of the two dimen- 

sionless parameters, h and o , on pressure response helps in the analysis of well test data 

with power-law fluid flow in fractured reservoirs. 

There is a significant difference in the log-log plot for a Newtonian fluid. Figure 

8.12 shows the results for pressure increases in the same fracture system with a 

Newtonian fluid having a constant viscosity &, = 10 cp. The difference between 

Newtonian and power-law non-Newtonian fluid flow is that no straight line develops on 

the log-log plot for Newtonian flow. For the same fracture system with a Newtonian 

fluid, the usual semi-log plot of pressure increase versus time will exhibit two parallel 

straight lines (Kazerni, 1969). It is apparent that flow resistance in the fractured medium 

increases more rapidly with a power-law fluid than with a Newtonian fluid. 

8.4 Flow Behavior of a General Pseudoplastic Non-Newtonian Fluid 

The apparent viscosity of a general pseudoplastic fluid is assumed to be described 

by the Meter four-parameter model, Equation 3.13, (Meter and Bird, 1964). The shear 
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Figure 8.12 Comparison of Pressure Responses between Newtonian and Non- 

Newtonian Power-Law Fluid through a Double-Porosity System. 



rate function, j , needed in Equation 3.13 for single phase one-dimensional flow of a 

power law fluid is given by Equation 3.12 (Camillen et al., 1987a; Hirasaki and Pope, 

1974). Then, the viscosity is determined by Equation 4.23. As shown in Figure 8.13, 

viscosities calculated from Equation 4.23 for the pseudoplastic fluid depend on pressure 

gradients and approach constants CLO and h, respectively, for small and large values of 

pressure gradient. This is physically more realistic than the power-law model because 

the power law predicts an infinite viscosity in the limit of vanishing shear rate. 

Let us now consider the problem of injecting a pseudoplastic fluid into a horizontal 

porous formation through a well. The fluid and formation properties for this study are 

given in Table 8.5. It should be mentioned that, based on the literature, the non- 

Newtonian parameters used here are in a reasonable range for polymer solution flow in 

porous media. A log-log plot of pressure increase versus injection time is given in Fig- 

ure 8.14, showing the effects of maximum viscosities, h. It is evident that even at large 

injection times, no log-log straight lines develop on the curves of Figure 8.14. The 

slopes of the pressure-time curves decrease as injection time increases. As discussed in 

Section 8.2, a log-log straight line develops on the transient pressure curve at late times 

for power-law fluids. Therefore, the flow resistance for a power-law fluid increases more 

rapidly than for a pseudoplastic fluid under the same flow condition. If we keep the max- 

imum viscosity constant at pO = 100 cp , and change the minimum viscosities, p,, a 

comparison of the pressure responses is given in Figure 8.15. It is evident on this figure 

that the minimum viscosity parameter, p, , has little influence on wellbore pressure as 

long as p, << h. This simply means that the flow is essentially dominated by the low 

pore velocity (or shear rate) zone near the pressure penetration front, where the viscosity 

is close to the maximum viscosity h for this radial flow case. 

The effects of the parameter, yx , are shown in Figures 8.16 and 8.17. It serves as a 

shift factor on these log-log curves of both viscosity versus pressure gradient and pres- 

sure increase versus injection time. The exponential parameter, P, in Equation 3.13, 
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Figure 8.13 Apparent Viscosity Curves of a General Pseudoplastic Fluid, 

by Meter's Model, Effects of the Exponential Parameter P . 
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Figure 8.14 Transient Pressure Behavior of Pseudoplastic Fluid Flow 

in Porous Media, Effects of the Maximum Viscosity & . 



Table 8.5 

Parameters for Pseudoplastic Fluid Injection in a Porous Medium 

Initial Pressure 

Initial Porosity 

Formation Thickness 

Permeability 

Fluid Compressibility 

Rock Compressibility 

Initial Fluid Density 

Injection Rate 

Wellbore Radius 

Power-Law Index 
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Figure 8.15 Transient Pressure Behavior of Pseudoplastic Fluid Flow 

in Porous Media, Effects of the Minimum Viscosity p, . 
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Figure 8.16 Apparent Viscosity Curves of a General Pseudoplastic Fluid, 

by Meter's Model, Effects of the Coefficient yN . 
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Figure 8.17 Transient Pressure Behavior of Pseudoplastic Fluid Flow 

in Porous Media, Effects of the Coefficient ylh . 



affects the flow behavior more significantly, as shown in Figure 8.18. The magnitude 

and shapes of the wellbore pressure-time plots both change as P changes. 

Meter and Bird (1964) discussed a method for determining the parameters of the 

four parameter model, Equation 2.8, by analyzing laboratory experiments. However, 

flow properties obtained from core experiments are usually quite different from those 

observed for a reservoir in the field. Therefore, well test techniques are used in many 

applications to find the in-situ flow parameters for the system of interest. As the number 

of physical parameters increases, analysis of well test data becomes more difficult to 

perform and the results may not be unique. In practice, it is very important to reduce the 

number of unknowns so that a successful well test may be obtained. 

For the pseudoplastic non-Newtonian fluid flow problem, the semi-log plots of 

pressure increase versus time are given in Figure 8.19, in which the pressure-time data 

are the same as those in Figure 8.18. It is encouraging to note that semi-log straight lines 

develop at long injection times. This indicates that at long time, the behavior of pseudo- 

plastic fluids tends toward that of a Newtonian fluid. For P = 2 and 3, the semi-log 

straight lines are almost parallel to each other; their slopes are measured to be 

m 1 k2 = 9 . 2 1 ~ 1 6  Pa, and rnl b3 = 9.5 1x10' Pa per log-cycle, respectively. By using the 

standard serni-log analysis method (Earlougher, 1977; Matthews and Russell, 1967), we 

can calculate the equivalent Newtonian viscosity pqV at long times as, 

where Q is the constant volumetric injection rate. This calculated equivalent viscosity 

value is close to po, i.e., p,, = po = 100 cp. Therefore, this further confirms that the 

long time flow behavior is controlled by the low flow velocity and high viscosity region 

far from the well. This indicates that the maximum viscosity parameter for flow of a 

pseudoplastic fluid can be obtained approximately by a serni-log analysis of pressure 

drawdown tests. 
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Figure 8.18 Transient Pressure Behavior of Pseudoplastic Fluid Flow 

in Porous Media, Effects of the Exponential Parameter /3 . 
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Figure 8.19 Semi-log Plot of Transient Pressure Behavior of Pseudoplastic 

Fluid Flow in Porous Media. 



8.5 Conclusions 

A comprehensive numerical study of transient flow of single-phase power-law 

fluids has been carried out in this chapter. The semi-analytical test analysis method is 

discussed and recommended for transient pressure analysis of power-low fluid injec- 

tivity tests. This method combines the log-log analysis technique by Ikoku and Ramey 

with numerical simulation. Two published examples of well test data are analyzed by 

using this method to demonstrate its application to field problems. The results show that 

considerable improvement on the existing analysis techniques has been obtained for 

more accurate fluid and formation properties. 

By using an idealized fracture model, this study presents the fundamentals of the 

behavior of power-law fluid flow in a fractured medium. Transient flow of a power-law 

fluid in a double-porosity system is controlled by the two dimensionless parameters, the 

storage coefficient o and the interporosity parameter h , and is characterized by the 

two-parallel straight lines on a log-log plot of wellbore pressure increases versus injec- 

tion time. The slopes of the straight lines are related to the power-law index n. In gen- 

eral, the double-porosity approximation will result in large errors for the early time pres- 

sure prediction. 

Some insights into transient flow of a general pseudoplastic non-Newtonian fluid in 

porous medium have also been obtained in this chapter. Unlike power-law fluid flow, no 

straight lines appear in log-log plots of pressure increase versus injection time during 

pseudoplastic fluid injection. Lnstead, semi-log straight lines on the pressure-time plots 

develop at late times. Therefore, the long time flow behavior of pseudoplastic fluids 

approaches that of an equivalent Newtonian system and is essentially determined by the 

low flow velocity and high viscosity zone far from the injection well. 



Chapter 9 

Transient Flow of a Single-Phase Bingham Non-Newtonian Fluid 

9.1 Introduction 

Compared with the progress made in analyzing the flow of power-law fluids though 

porous media, the flow behavior of a Bingham plastic fluid in porous media is very 

poorly understood. To date research on Bingham fluid flow has been conducted mainly 

in laboratory experiments and field tests, from which a modified Darcy's law has been 

derived. Little work on flow and transport behavior through porous media can be found 

in the literature. To the best of my knowledge, no quantitative analysis has been pub- 

lished on Bingham fluid flow, and there is also no reliable well testing technique avail- 

able in the petroleum engineering and groundwater literature. Therefore, this chapter is 

devoted to a systematic study of Bingham fluid flow through a porous medium. 

This chapter presents an integral analytical method for analyzing non-linear Bing- 

ham fluid flow in porous media. The integral method, which has been widely used in the 

study of unsteady heat transfer problems (Ozisik, 1980), is applied here to obtain an 

approximate analytical solution for Bingham fluid flow in porous media. The integral 

approach to heat conduction utilizes a simple parametric representation of the tempera- 

ture profile, e.g. by means of a polynomial, which is based on physical concepts such as 

a time-dependent thermal penetration distance. An approximate solution of the heat 

transfer problem is then obtained from simple principles of the continuity and conserva- 

tion of heat flux. This solution satisfies the governing partial differential equation only in 

an average, integral sense. However, it is encouraging to note that many integral solu- 

tions to heat transfer and fluid mechanics problems have an accuracy that is generally 

acceptable for engineering applications (Ozisik, 1980). When applied to fluid flow 



problems in porous media, the integral method consists of assuming a pressure profile in 

the pressure disturbance zone and determining the coefficients of the profiles by making 

use of the integral mass balance equation. 

The integral solution obtained in this chapter for Bingham fluid flow has been 

checked by comparison with solutions for a special linear case where the exact solution 

is available. The numerical code of Chapter 4 is also used to examine the analytical 

results from the integral solution for general non-linear problems. It is found that the 

accuracy of the integral solution is surprisingly good when compared with the exact 

solution and with the numerical results for Bingham fluid flow through an infinite radial 

system. In addition, a pressure profile for integral solutions is proposed for radial flow in 

porous media that is better than what is typically recommended for heat conduction in 

radial flow systems (Lardner and Pohle, 1961). This pressure profile is able to provide 

very accurate results for transient fluid flow in a radial system. 

The effects of non-Newtonian properties on flow behavior during a slightly- 

compressible Bingham fluid flow are discussed using the integral solution. The analyti- 

cal results reveal the basic pressure responses in the formation during a Bingham fluid 

production or injection operation. Based on the analytical and numerical solutions, a 

new method for well test analysis of Bingham non-Newtonian fluids has been 

developed, which can be used to determine reservoir fluid and formation properties. In 

order to demonstrate the use of the new approach, two examples of pressure drawdown 

and buildup tests are created by the numerical and analytical simulations, and the simu- 

lated well test data are analyzed using this new technique. 



9.2 Governing Equation and Integral Solution 

The problem concerned here is the flow of a Bingham fluid into a fully penetrating 

well in an infinite horizontal reservoir of constant thickness, where the formation is ini- 

tially saturated with the same fluid. To formulate the flow problem, the following basic 

assumptions are made: 

1) isothermal, isotropic and homogeneous formation; 

2) horizontal flow of a single phase fluid without gravity effects; 

3) Darcy's law, Equation 3.7, applies with the viscosity function of (3.14) for the 

Bingham fluid; and 

4) constant fluid properties and formation permeability. 

The governing flow equation can be derived by combining Equations 4.5,4.3 and 3.14, 

and is expressed in a radial coordinate system as, 

a @L - G = dl[p(P)Q(P)] 
P [ a r  11 a 

for production of a Bingham fluid. The density, p(P) , of the Bingham fluid, and the 

porosity, @(P) , of formation, are functions of pressure only. 

The initial condition is, 

P(r, t=O) = Pi (Constant) (r 2 rw) (9.2) 

For the inner boundary at the wellbore, r = rw , the fluid is produced at a given mass pro- 

duction rate Qm(t) , 

where Po = Po(t) = P(rw, t) , the wellbore pressure. 



The integral solution for the radial flow into a well at a specified mass production 

rate Qm(t) is obtained (see Appendix D) as 

where q = 1+6(t)/rw . The unknowns, Po, the, wellbore pressure, and 6(t), the pressure 

penetration distance, are determined by solving Equation 9.4 by setting r = rw and the 

following integral equation simultaneously, 

where pi = p(Pi), and Qi = @(Pi) . Equation 9.5 is simply a mass balance equation in the 

region of pressure disturbance. 

For slightly compressible fluid flow, we can obtain the following explicit expres- 

sion of the integral mass balance equation (see Appendix D) as 

Solving Equations 9.6 and 9.4 with r = rw simultaneously for 6(t) and Po(t) and substi- 

tuting them into (9.4) give the final solution for Bingham fluid flow in a slightly 

compressible system. 
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9.3 Verification of Integral Solutions 

The solution from the integral method is approximate and needs to be checked by 

comparison with an exact solution or with numerical results. The accuracy of the 

integral solution obtained in Section 9.2 is examined and confirmed by comparison with 

an exact solution and numerical calculations. It has also been found that the accuracy of 

integral solutions depends on the choice of forms of pressure profiles for a radial flow 

problem, among other variables. 

9.3.1 Comparison with Exact Solution 

For the special case of minimum pressure gradient G = 0, a Bingham fluid becomes 

Newtonian, and the Theis solution can be used to to check the integral solution. At a fist 

step, the temperature profile, as given in Equation D.9 in Appendix D and as recom- 

mended for radial heat conduction problems (Lardner and Pohle, 1961; Ozisik, 1980), 

has been used to represent the pressure profile for the radial flow of a slightly compressi- 

ble fluid in porous media. The results for wellbore pressure in a single well injection 

problem are shown in Figures 9.1 and 9.2, in which first-degree and second-degree poly- 

nomials are used, respectively, in Equation D.9. The parameters used for checking the 

integral solutions with the exact solution are given in Table 9.1. Figure 9.1 indicates 

that for the linear flow case of G = 0 , the integral solution overestimates injection pres- 

sures, by about 5-10%. The distribution of pressures in the formation obtained using 

Equation D.9 is compared with the exact solution from the Theis equation on Figure 9.2. 

Up to an injection time of 1,000 seconds, the results expressed in terms of a logarithm 

multiplied by a fist- or second- polynomial do not match very well with the Theis solu- 

tion. It is apparent that the resulting integral solution introduces large errors into the 
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Figure 9.1 Comparison of Injection Pressures during Newtonian Fluid Injection, 

Calculated from the Exact Theis Solution and the Integral Solutions 

with Pressure Profiles Recommended in Heat Transfer. 
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Figure 9.2 Comparison of Pressure Distributions of Newtonian Fluid Injection, 

Calculated from the Exact Theis Solution and the Integral Solutions 

with Pressure Profiles Recommended in Heat Transfer. 



Table 9.1 

Parameters Used for Checking with Exact Solution 

Initial pressure 

Initial Porosity 

Initial Fluid Density 

Formation Thickness 

Fluid Viscosity 

Fluid Compressibility 

Rock Compressibility 

Mass Injection Rate 

Permeability 

Wellbore Radius 



radial flow results. 

If the pressure profile given by Equation D. l l  is used, the integral solution given 

by Equations 9.4-9.6 results. A comparison of the exact Theis solution and the integral 

solution is presented in Figure 9.3 and 9.4. Here, we see an excellent agreement on Fig- 

ure 9.3 for the wellbore pressures calculated from the two solutions. There are only 

minor errors in the pressure profile on Figure 9.4 near the pressure penetration front on 

the pressure profile after injection of 1,000 seconds. Many tests were performed to com- 

pare the integral solution with the Theis solution using different fluid and formation pro- 

perties, and excellent agreement has been obtained from all the calculations. 

9.3.2 Comparison with Numerical Solution 

For the radial flow problem during producing a Bingham fluid with G > 0, the 

results from the integral solution have been examined by comparison with a numerical 

simulation. The input parameters are given in Table 9.2. It should be mentioned that the 

numerical results are considered reliable for this problem because their accuracy has 

been verified in many simulations. The wellbore flowing pressures calculated from the 

integral and numerical solutions are shown in Figures 9.5-9.7 for three values of G, 

minimum pressure gradient. It is interesting to note that the agreement between the 

approximate integral and numerical results is excellent over the entire transient flow 

period. The pressure distribution in the formation after production of 1,000 seconds is 

shown in Figure 9.8. The integral solution also matches the numerical predictions very 

well. 

It is concluded that the pressure profiles, obtained with Equation D.ll ,  give very 

accurate results for a radial flow problem with both Newtonian and Bingharn fluids. The 

use of the temperature profile, Equation D.9, recommended in the heat transfer 
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Figure 9.3 Comparison of Injection Pressures during Newtonian Fluid Injection, 

Calculated from the Exact Theis Solution and the Integral Solutions 

with Pressure Profiles Recommended in This Work. 
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Figure 9.4 Comparison of Pressure Distributions of Newtonian Fluid Injection, 

Calculated from the Exact Theis Solution and the Integral Solutions 

with Pressure Profiles Recommended in This Work. 



Table 9.2 

Parameters Used for Checking with Numerical Solution 

Initial pressure 

Initial Porosity 

Initial Fluid Density 

Formation Thickness 

Bingham Plastic Coefficient 

Total Compressibility 

Mass Production 

Permeability 

Wellbore Radius 

Minimum Pressure Gradient 
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Figure 9.5 Comparison of Wellbore Pressures during Bingham Fluid Production, 

Calculated from the Numerical Solution and the Integral Solution 

(G = 100 P4m). 
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Figure 9.6 Comparison of Wellbore Pressures during Bingharn Fluid Production, 

Calculated from the Numerical Solution and the Integral Solution 

(G = 1000 Palm). 
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Figure 9.7 Comparison of Wellbore Pressures during Bingharn Fluid Production, 

Calculated from the Numerical Solution and the Integral Solution 
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Figure 9.8 Comparison of Pressure Distributions of Bingharn Fluid Production, 

Calculated from the Numerical Solution and the Integral Solution. 
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literature, is not satisfactory and will result in large errors. 

9.4 Flow of a Bingham Fluid through a Porous Medium 

The flow of a Bingham fluid in a porous medium is characterized by the two non- 

Newtonian parameters, the minimum pressure gradient G, and the Bingham plastic 

coefficient pb. The effects of the non-Newtonian rheological properties on the flow 

behavior in an infinite radial formation can be discussed using the integral solution of 

Section 9.2, since its accuracy has been confirmed. The input parameters that will be 

used for the fluid and formation are given in Table 9.3. 

Pressure drawdown at the wellbore is shown in Figure 9.9 when a Bingham fluid is 

produced at a constant mass production rate. Physically, the flow resistance increases 

with an increase in the minimum pressure gradient G in the reservoir. 

It can be seen from Figure 9.9 that in order to maintain the same production rate, the 

wellbore pressures will decrease more rapidly as G increases. The pressure profiles at 

different values of G after continuous production of 10 hours are given on Figures 9.10 

and 9.1 1. The pressure drops penetrate less deeply into the formation as the minimum 

pressure gradient increases. It should be note in the semi-log plot of the pressure distri- 

butions on Figure 9.1 1 that parallel semi-log straight lines of pressure versus log (r) in 

the formation exist near the wellbore for various values of G. Serni-log straight lines are 

also developed in the pressure drawdown curves of Figure 9.9. This suggests that the 

conventional semi-log analysis method to calculate flow and formation properties can be 

used. 

The effects of the Bingharn plastic coefficient, pb, are shown in Figure 9.12. This 

coefficient becomes the viscosity of a Newtonian fluid if G = 0. The apparent viscosity 



Table 9.3 

Parameters for a Bingham fluid Flow through a Porous Medium 

Initial Pressure 

Initial Porosity 

Initial Fluid Density 

Formation thickness 

Bingham Plastic Coefficient 

Fluid Compressibility 

Rock Compressibility 

Mass Production Rate 

Permeability 

Wellbore Radius 

Minimum Pressure Gradient 
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Figure 9.9 Transient Wellbore Pressure Behavior during Bingham Fluid 

Production, Effects of the Minimum Pressure Gradient. 
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Figure 9.10 Pressure Distributions in a Linear Plot of Bingharn Fluid XBL 891 1-7888 
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Production, Effects of the Minimum Pressure Gradient. 
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Figure 9.1 1 Pressure Distributions in a Semi-Log Plot of Bingharn Fluid 

Production, Effects of the Minimum Pressure Gradient. 
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Figure 9.12 Transient Wellbore Pressure Behavior during Bingham Fluid 

Production, Effects of the Bingharn Coefficient pb . 



of a Bingham fluid is proportional to p+, , as given by Equation 3.14. Therefore, as pb 

increases, the flow resistance increases, and the pressure drops more rapidly to satisfy 

the constant production rate at the well. Figure 9.12 also show that semi-log straight 

lines exist during the earlier transient time which can be used to estimate the value of 

pb- 

The pressure changes at r = 100 m from the wellbore during production from the 

system are given in Figure 9.13. The figure shows that pressures in the formation 

decrease more dramatically than in the wellbore after a period of time delay. At r = 100 

m, there is hardly a straight line developed in the serni-log graph of pressure versus time 

for G > 0. 

9.5 Well Testing Analysis of Bingham Fluid Flow 

A new method for analysis of transient pressure tests during a Bingham fluid pro- 

duction from and injection into a well can be developed, based on the integral and 

numerical solutions in this chapter. The most important factors for Bingham fluid flow 

through porous medium are the two characteristic rheological parameters, the minimum 

pressure gradient, G ,  and the coefficient, pb. Both of them can be determined by a well- 

controlled single well pressure test, discussed below. It is always possible to obtain 

these parameters by trial and error, using the integral or numerical solutions to match the 

observed pressure data. However, the following approach is more accurate and con- 

venient to use, and therefore is recommended for field applications. 

Let us consider the pressure buildup behavior at a producing well in an infinite hor- 

izontal formation. After a period of production, the well is shut in. Physically, the pres- 

sure in the system after a long enough shut-in period will buildup until a new equili- 

brium is reached. Then, there is a stable pressure drop formed from wellbore to a 
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Figure 9.13 Comparison of Wellbore and Formation Pressures during Bingham 

Fluid Production, Effects of the Minimum Pressure Gradient. 



certain pressure penetration distance, and the pressure gradient everywhere in the pres- 

sure drop zone is expected to be equal to the minimum pressure gradient. This is 

confirmed by a numerical study of the pressure buildup, as shown in Figure 9.14, after 

tp = 1,000 seconds of Bingharn fluid production from a well. The flow and formation 

properties used are provided in Table 9.4. If we know the cumulative mass production 

rate Q, before the well is shut in, and measure the stable wellbore pressure P, at a long 

time after stopping production from the well, the minimum pressure gradient of the sys- 

tem can be calculated (see Appendix E) by 

where AP = Pi - P, , the stable pressure drop at wellbore, measured at a long time after 

well shut-in. It is interesting to note that the minimum pressure gradient determined by 

the pressure buildup method, Equation 9.7, is independent of the flow properties, such as 

permeability K, and the coefficient pb , since the equilibrium is obtained in the system. 

A Bingham fluid buildup test example is here created by the numerical simulator, 

to illustrate the procedure of calculating the value of G. The input data are from Table 

9.4, and the stable wellbore pressure is found to be P, = .97474x107 Pa, at a long well 

shut-in time from the simulated test. A Bingharn fluid is produced at a mass rate 

Q, = 0.1 Kgls until the production time $, = 1,000 seconds, and then the well is shut in. 

Thus, the minimum pressure gradient can be calculated by Equation 9.7, 

This is very accurate compared with the input value, G = 10,000 Pa/m, in the numerical 

calculation. Then, the pressure penetration distance under the equilibrium is, 

AP - 2 . 5 2 6 ~ 1 6  
6(t) = - = 25.26 (m) 

lO,OOO.l4 



Table 9.4 

Parameters for Well Testing Analysis 

Initial Pressure 

Initial Porosity 

Initial Fluid Density 

Formation thickness 

Bingham Plastic Coefficient 

Total Compressibility 

Mass Production Rate 

Permeability 

Minimum Pressure Gradient 

Wellbore Radius 



Numerical Solution 

Mass Balance 
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Figure 9.14 Pressure Distribution at Long-Time of Well Shut-in after 1000 

Seconds of Bingharn Fluid Production. 



The pressure distribution after a long time shut-in calculated from the mass balance is 

also shown in Figure 9.14, by the solid line curve. The analytical and numerical results 

are essentially identical to each other in the figure. 

The apparent mobility, (K/CL$), is a flow property of the system, and may be deter- 

mined by only the transient flow tests of pressure drawdown and buildup. As shown in 

Figures 9.9 and 9.12, the semi-log straight lines occur in the pressure drawdown curves 

during the early transient period, when minimum pressure gradient, G, is not very large. 

The semi-log straight lines are almost in parallel with the straight line from the Theis 

solution (G = 0) on Figure 9.9. Therefore, if the serni-log straight line is developed dur- 

ing the earlier flow time in the transient drawdown analysis plot, the conventional 

analysis technique of pressure drawdown (Earlougher, 1977; Matthews and Russell, 

1967) can be used to estimate the value of (K/pb) for a Bingham fluid flow problem, 

where m is the slope of the semi-log straight line; and Q is the constant volumetric pro- 

duction rate. 

A simulated pressure drawdown test is generated by the integral solution, and the 

parameters used are the same as in Table 9.3. The pressure drawdown curves of the test 

are shown in Figure 9.15. The slope m of the serni-log straight line part of the curve G = 

100 Palm, is measured as 9 . 2 4 ~ 1 0 ~  Pa/loglo-cycle, and the slope of the curve G = 

1,000 Palm is 9 . 9 5 ~ 1 0 ~  Pa/loglo-cycle . Then, mb , can be estimated as, 

from the curve G = 100 Palm, and 
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Figure 9.15 Semi-Log Pressure Drawdown Curves for Determining 

the Apparent Mobility. 



From the curve G = 1,000 Pa/m. In the simulated test, the actual input is 

So, the relative errors introduced into the results are 0.5 % and 6.7 % from the two cal- 

culations, respectively. The curve G = 100 Pa/m gives a more accurate prediction. 

For a large value of minimum pressure gradient, G, in a system, there hardly exist 

serni-log straight lines in the pressure drawdown plots of Figure 9.9. However, the pres- 

sure buildup curves, as shown in Figures 9.16 and 9.17, do result in a long straight line 

even for the large minimum pressure gradient, G = 10,000 Pa/m. This pressure buildup 

test is conducted by the numerical code. The top curve is calculated from the integral 

solution, based on the superposition principle. It is obvious that the superposition tech- 

nique cannot be used for this non-linear problem. The slope of the semi-log straight line 

of Figure 9.16 can be measured, m=9.17x104 loglo-cycle . Then, we have 

This value introduces only 3.8 % errors in the result by comparison with the input value, 

10 2 K/pb = 1.97~10- m /Pas .  

If no straight lines have developed in both pressure drawdown and pressure buildup 

curves in a well test, then the apparent mobility can be obtained by using the integral 

solution to match the observed transient pressure data. In this procedure, the minimum 

pressure gradient, G, should be calculated first by the mass balance calculation of Equa- 

tion 9.7, which is always applicable. Then, the only unknown is the apparent mobility, 

(K/CLb ), and it will not be very difficult to determine by trial and error. 

In general, we cannot separate the permeability K and the Bingham plastic 

coefficient pb by the transient pressure tests only, even though their ratio, apparent 
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Figure 9.16 Pressure Buildup during Well Shut-in after 1000 Seconds 

of Bingharn Fluid Production. 
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Figure 9.17 Homer Plot of Pressure Buildup during Well Shut-in after 

1000 Seconds of Bingharn Fluid Production. 



mobility, has been determined. In order to estimate the non-Newtonian coefficient pb , 

we need some other techniques, such as core analysis, to find the permeability of the 

reservoir. 

Finally, the effects of wellbore storage and skin have not been considered in this 

study, which may significantly affect the early pressure transient data in a field test. 

Since little information about the formation can be obtained from transient test data 

dominated by the wellbore storage effect, in this case, it will be more complicated to 

determine the apparent mobility from the early transient data. However, the mass bal- 

ance calculation of the minimum pressure gradient is not influenced by the storage and 

skin effects. Also, the integral solution provided in this work have the ability to decrease 

the effects of wellbore storage on the analytical results by adjusting the production rate 

as a function of time. 

9.6 Conclusions 

An integral solution has been obtained for a flow problem of Bingham fluids 

through a porous medium, and its accuracy is confirmed by comparison of the integral 

results with the exact and numerical solutions. The analytical and numerical studies 

show that the transient flow behavior of a slightly compressible Bingham fluid is essen- 

tially controlled by the non-Newtonian properties, the minimum pressure gradient G, 

and the coefficient pb . Therefore, the transient pressure data will provide some impor- 

tant information related to the non-Newtonian fluid and formation properties. The well 

testing analysis technique, developed in this study, uses these flow test data to estimate 

the non-Newtonian flow properties in the system. 

The integral method with the pressure profile used in this work will find more 

applications for radial flow problems in porous medium. It is especially useful when the 



flow equation is non-linear and other analytical approaches cannot apply 



Chapter 10 

Conclusions and Recommendations 

10.1 Conclusions 

The primary objective of the present study was to develop a new methodology to 

investigate transport phenomena of non-Newtonian fluids through porous media. When- 

ever non-Newtonian fluids are involved in porous media, the flow problem will become 

non-linear because the apparent viscosity used in the Darcy equation is a function of 

shear rate. The viscosity function for a non-Newtonian fluid depends on shear rate, or 

pore velocity in a porous medium in a complex way. The non-Newtonian rheological 

behavior is quite different for different fluids and/or for different porous materials. 

Therefore, it is impossible to develop a universal approach for handling various non- 

Newtonian fluid flow problems. However, under some special circumstances, analytical 

solutions have been proven here to be possible for describing non-Newtonian flow in 

porous media. In this work both analytical and numerical methods have been employed, 

and major attention has been paid to power-law and Bingham plastic fluids, since they 

are the most likely to be encountered in reservoirs. 

Among the theoretical methods contributed from this work, a fully implicit three- 

dimensional integral finite difference model has been developed by modifying the gen- 

eral numerical code "MULKOM" to include the effects of non-Newtonian viscosity. 

This new simulator is capable of modeling both single and multiple phase non- 

Newtonian fluid flow through porous or fractured media. The numerical model can take 

account of all the important factors which affect the flow behavior of non-Newtonian 

and Newtonian fluids, such as capillary pressure, complicated flow domains, inhomo- 

geneous porous media, and various well operation conditions. Different non-Newtonian 



rheological models have been incorporated in the code. The validity of the numerical 

method has been checked by comparing the numerical results with analytical solutions 

for displacement of a Newtonian fluid by a power-law fluid. In this study, this code has 

been successfully applied to numerical investigations of transient flow of power-law 

fluids and to verification of the integral solution for Bingham fluid flow. 

Along with the numerical technique, an analytical solution for one-dimensional 

immiscible displacement of non-Newtonian and Newtonian fluids in porous media has 

been obtained, in analogy with the Buckley-Leverett theory for Newtonian fluid dis- 

placement. The non-Newtonian fluid viscosity is assumed to be a function of the local 

flow potential gradient and saturation. Therefore, this solution is generally applicable to 

various non-Newtonian and Newtonian fluid displacement. To apply this theory to a 

field problem, a graphic procedure for evaluating displacement of non-Newtonian and 

Newtonian fluids has also been developed from the analytical solution. The resulting 

method can be regarded as an extension of the Buckley-Leverett-Welge theory to the 

flow problem of non-Newtonian fluids in porous media. This solution has been used, i) 

to study the physical mechanisms of immiscible flow with power-law and Bingham 

fluids; and ii) to verify the numerical code in this work. 

An integral method has also been presented for analysis of non-linear single phase 

Bingham fluid flow through porous media. The integral method, widely used in the 

study of unsteady heat transfer problems, is applied to derive an approximate analytical 

solution for radial flow of a Bingharn fluid. Using a newly-proposed pressure profile, 

the integral solution has been examined numerically to give very accurate results for the 

Bingham fluid flow. Based on the integral solution, a well test analysis method for Bing- 

ham fluid flow is constructed to determine the rheological and formation properties. In 

addition, a general procedure for application of the integral technique to flow problems 

in porous media has been outlined, which can be applied for analyzing other non-linear 

flow problems through porous media. 



The physical mechanisms of non-capillary displacement with non-Newtonian fluids 

in porous media are revealed by the Buckley-Leverett type analytical solution. The 

non-Newtonian immiscible displacement is a complicated process, which is controlled 

by the rheological properties of the non-Newtonian fluids and the flow condition, in 

addition to relative permeability. It has been known from Buckley-Leverett theory that 

injection rate has no effects on displacement efficiency for Newtonian fluids under the 

stabilized condition. As discussed in this work, a fundamental difference between 

Newtonian and Non-Newtonian displacement is that the non-Newtonian displacement is 

flow rate dependent because of changes in non-Newtonian viscosity with pore flow velo- 

city. 

Power-law and Bingharn plastic fluids are the most commonly encountered non- 

Newtonian fluids in porous media flow problems. Therefore, a detailed study has been 

made on the displacement behavior of these two fluids in order to obtain an understand- 

ing of the physics behind the immiscible flow process. For displacement of a Newtonian 

fluid by a shearing-thinning power-law fluid, such as in oil production by polymer flood- 

ing, the sweep efficiency can be improved by reducing injection rates of the power-law 

fluid. As to a Bingham fluid displaced by a Newtonian one, with a practical example of 

heavy oil recovery by water flooding, the displacement is characterized by an ultimate 

sweep saturation, and no further improvement can be achieved when the saturation 

approaches the ultimate saturation under the same flow operatior,. 

A further theoretical study has been performed for transient flow problems of 

power-law fluids by using the numerical code. In the first place, this numerical investi- 

gation has improved the existing well test analysis technique of power-law fluid injec- 

tivity tests for general applicability. Secondly, an idealized fracture model has been used 

to study the transient flow of a power-law fluid through a double-porosity medium. The 

non-Newtonian behavior is found to be generate two parallel log-log straight lines on a 

wellbore pressure-time plot, instead of two parallel semi-log straight lines for 



Newtonian fluid flow. The third problem is to obtain some insights into pseudoplastic 

fluid flow through porous media. The Meter four-parameter rheological model was used 

for calculating apparent viscosity of the pseudoplastic fluid. The finding is that the tran- 

sient pressure responses in the flow system tend to an equivalent Newtonian system at 

long times, which is quite different from a power-law flow problem. 

A new theory for analyzing single phase Bingham fluid flow in porous media has 

been developed, based on the integral analytical and numerical solutions. The transient 

flow of a slightly-compressible Bingham fluid has been shown to be determined essen- 

tially by the Bingham rheological properties. Application of the theory has been demon- 

strated for analysis of two simulated pressure drawdown and buildup tests. 

10.2 Recommendations 

This work has focused on the theoretical aspects of non-Newtonian fluid transport 

through porous media, and its emphasis is on the physical insights in "non-Newtonian" 

behavior. As a result of this, many of the results in the theoretical development depend 

on the assumptions about rheological properties, which are based on the previous experi- 

mental research. Since most of the laboratory studies of non-Newtonian flow in the 

literature were conducted using only single phase non-Newtonian fluids, there certainly 

is a need for further experiments under multiple phase flow condition. Such experimen- 

tal studies should be designed to provide us with rheological models for the non- 

Newtonian fluid and porous materials of interest. In the present study, the apparent 

viscosity for multiple phase flow of non-Newtonian fluids is taken as a function of flow 

potential gradient and saturation. Physically, this is a natural extension of the single 

phase flow theory to a multiple phase flow problem. However, this assumption needs to 

be confirmed experimentally. Just as in multiple phase Newtonian fluid flow, the 



extension of Darcy's law to multiple phase flow is, in fact, a heuristic procedure sug- 

gested by the analogy with single phase flow. Then, experimental work is required to 

verify this speculation. 

Effects of capillary pressure on immiscible non-Newtonian fluid flow have been 

ignored in the analytical analysis, which is necessary to develop the Buckley-Leverett 

type solution. For Newtonian displacement, various investigators have concluded that 

for high flow rates the Buckley-leverett non-capillary theory gives a good approximation 

of the actual saturation distribution. At low flow rates, the influence of capillary pressure 

becomes important. For non-Newtonian displacement, similar experimental studies 

should also be carried out to look at capillary effects. This can be easily done by using 

the numerical code since it has the ability to include capillary effects, as long as the 

capillarity data are obtained from experiments. 

As an application of the theory developed in this work on the transient flow of 

Bingham type non-Newtonian fluids in porous media, transient pressure tests are recom- 

mended to perform in certain heavy oil reservoirs. Since no well test data are available 

for Bingham oil flow in the literature, the new analysis method proposed for analyzing 

Bingham fluid flow was here used to interpret only the simulated well testing examples. 

Currently, there is no quantitative approach in the petroleum engineering and groundwa- 

ter literature for well test analysis on Bingharn fluid production or injection in reservoirs. 

Many efforts should be made to obtain flow properties of Bingham fluid in porous 

media, which is very important for heavy oil development and numerous other applica- 

tions. 

Non-Newtonian fluid flow in porous media usually is affected by the chemical con- 

centration in the fluid. Such as for a polymer solution, changes in polymer concentration 

will result in changes in its viscosity. The chemical composition effect is not included 

in this work. It is obvious that the study of non-Newtonian flow coupled with chemical 

transport is a whole new area for further research efforts in this field. Among other 



factors, phenomena of adsorption and dispersion of chemicals in non-Newtonian fluids 

during flow through porous media must be understood first before a realistic theoretical 

model can be developed. Such an investigation will depend heavily on experimental and 

numerical approaches. Even though many results of chemical adsorption during polymer 

solution flow in porous media can be found in the petroleum literature, very few studies 

have been reported on dispersion of non-Newtonian fluids in porous media (Payne and 

Parker, 1973; Wen and Yim, 1971). Many mechanisms which govern non-Newtonian 

fluid and chemical transport process are very poorly understood. Therefore, a complete 

understanding of the physics of non-Newtonian fluid flow, coupled with chemical tran- 

sport, through porous media needs many more experimental and theoretical studies. 
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Appendix A. 

Derivation of Buckley-Leverett Type Solution 

The sum of Equations 5.7 and 5.8 gives 

This means that at a given time, the total volumetric flux through any cross-section in 

the flow system is independent of the distance coordinate, x. 

Physically this follows from the incompressible assumption. Substituting Equations 

5.9 and 5.10 into (A.2) leads to Equation 5.21, which is a constraint condition to 

relate the flow potential gradient and the saturation for the system. 

Introducing 

into Equation 5.8, for a given time t, it turns out, 

since the fractional flow f, is a function of saturation. 

Let us look at a particular saturation at this time, S ,  , 

The total derivative of S, , 



After some rearrangement, then we obtain 

Substituting Equation A.7 into Equation A.4, it follows that 

This will result in Equation 5.22 by cancelling the same terms aS,/ax on both [ I t  

sides of the equation. 



Appendix B. 

Derivation of Graphic Method 

The mass conservation of the injected non-Newtonian fluid in the swept zone of 

system for a given time t of injection gives, 

Q(t) = q(h)dh = (S, - S-)@A& I d 

Substituting Equation 5.24 into (B.l) yields, 

Noting that at x = 0, S, = 1 - SWk, and f, = 1, therefore, 

1 = (Sf - s-) [;:j& - - fmls. + 

in which f, = 0 at S, = S- is used, and both f, and af,/aS, are evaluated at the 

shock saturation Sf. 

Similarly, the average saturation in the displaced zone is defined as, 



then 

  AX^% - S-) = @A (S, - S-)dx = Q(t) I 0 

Using Equation 5.24 again, we will have, 



Appendix C. 

Modified Darcy's Law for Power-Law Fluid Flow in Fractures 

A velocity profile for flow of a power-law fluid through a uniform horizontal 

fracture between two parallel plates is shown in Figure C.1. Under steady state condi- 

tion, the velocity u, as a function of the x coordinate can be determined by solving 

the momentum balance equation (Bird et al., 1960; and Hughes and Brighton, 1967), 

where b is aperture of the fracture; and the pressure gradient is given by (see Figure 

C. 1) 

The average velocity across the fracture can be calculated as 

+b'2 

For flow across a basic section of the fracture system, as shown in Figure 8.5, 

the total flux from the Darcy's equation should be equal to 

where A, = W(2D + b) - 2WD , total cross-sectional area of the basic section; 

Af = W b, cross-sectional area of fracture only. Then, the Darcy's velocity can be 

derived as 
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Figure C.l Schematic of Power-Law Fluid Flow through a Fracture. 



If the cubic law is assumed to be valid for describing the permeability of the fracture, 

the effective permeability used in Darcy's law is 

Then, let Equation C.5 be equivalent to a Darcy's law in a form: 

A comparison of Equations C.5 and C.7 gives us 

Equation C.8 can be written in the form of Equation 3.11, and then peff in Equation 

3.11 is defined by peff* in Equation 8.5. 



Appendix D. 

Derivation of Integral Solution for Production of a Bingham Fluid 

A pressure penetration (disturbance) distance is defined at r = rw + 6(t) , in anal- 

ogy to the thermal layer thickness in a heat conduction problem ( Ozisik, 1980 ), such 

that it requires, 

ahead of the pressure penetration front, 

and 

the system is undisturbed by production and remains at the initial equilibrium condi- 

tion. 

Define 

~ * ( r ,  t) = P(r, t) - Pi + (r, + 6(t) - r)G 03.4) 

Then, 

Then, Equation 9.1 becomes 

- - 

The constraint conditions for the pressure penetration distance now become, 

~ * ( r  2 r, + 6(t), t) = 0 
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and the specified inner boundary condition, (9.3), gives 

= QJO 

Since Equation D.5 and the constraint conditions, (D.6)-(D.8) are similar to the 

heat conduction problem in form, the first pressure profile used in this study to 

describe the pressure distribution within the pressure disturbance zone, in analogy to 

the heat conduction problem (Lardner and Pohle, 1961; Ozisik, 1980), is given by 

~ * ( r ,  t) = [pn(r)] ln(r) (rw 5 rS rw+ &(t)) (D.9) 

where p,(r) is a nth-degree polynomial in r, and the time dependence is implicitly 

included in the coefficients of the polynomial, which is dependent on the pressure 

penetration distance. However, it has been found that the solutions in terms of a 

profile of Equation D.9 are not accurate when compared with the Theis solution, and 

always introduce 5-10 % errors, as discussed in Section 9.3. 

We know, from the Theis solution, that the pressure at a given time for radial 

flow is distributed as a logarithm in (tl?). Thus for > 100, the Theis solu- 
@iPct? 

tion is simplified as (Earlougher, 1977): 

which is very accurate except near the pressure penetration front. This suggests us to 

look for a pressure profile in r, such as 

~ * ( r ,  t) = constant x ln[(P,(r)] (D. 1 1) 

instead of the form of Equation D.9 to approximate the pressure profile for our prob- 

lem. By using Equation D. 11 as a pressure profile with Pn(r) being a second-degree 

polynomial in r, it can be shown that the following solution 



satisfies the constraint conditions (D.6)-(D.8). 

Performing the integration 

on both sides of Equation D.5 and use Equation D.7, we will have, 

(D. 13) 

Integrating Equation D.13 with respect to t from t = 0 to t = t, and using 6(t) = 0 for t 

= 0, we have the integral mass balance, Equation 9.5. 

For "slightly compressible" fluid and rock, compressibilities Cf and C, are very 

small constants. We have 

and 

(D. 1 6) 



where C, = Cf + C, , total compressibility of the system. 

Then, we can calculate the integral in Equation 9.5 by using the pressure profile 

given by Equation 9.4, 

(D. 17) 

Substituting (D.17) into (9 .3 ,  we have the mass balance equation 9.6 for the flow of a 

slightly compressible Bingham fluid. The complete integral solution consists of Equa- 

tions 9.4 and 9.6. 
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Appendix E. 

Mass Balance Calculation of Minimum Pressure Gradient 

The pressure gradient in the entire pressure drop zone at the well shut-in time is 

larger that the minimum pressure gradient G.  As shown in Figure E.l, the fluid 

masses should be equal to each other in the shadowed regions of the figure, and there 

is a linear relationship of pressure and radial distance with a slope G, if the equili- 

brium is achieved, 

P = P, + G[r - r,] for r, I r < rw+6(t) (E.1) 

and the minimum pressure gradient G and the final pressure penetration distance 6(t) 

at equilibrium are related by 

The mass balance in the pressure zone under the equilibrium condition gives 

For a slightly compressible system, using Equations D.16 and E.l in the integral of 

the right hand side of equation E.3, we will obtain the mass balance as 

Substituting Equation E.2 into E.4, and solving the resulting algebraic equation for G, 

we will have Equation 9.7. 
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Figure E.l Schematic of Pressure Distributions at Well Shut-in and 

Equilibrium Long Time after Well Shut-in after a Period of 

Time of Bingham Fluid Production. 



Appendix F. 

Subroutines for Treatment of Non-Newtonian Behavior 

The viscosity of non-Newtonian fluids in porous media is a flow property, and the 

numerical treatment of effects of non-Newtonian viscosities is included in the Subrou- 

tine "MULTI" of a modified version of MULKOM, since MULTI handles the flow- 

terms in the code (Pruess, 1987). The use and input data of the modified version of 

MULKOM for non-Newtonian flow are similar to those of the code "MULKOM-GWF" 

(Pruess and Wu, 1988). The following three subroutines have been incorporated in 

MULTI for power-law, Bingharn plastic, and general pseudoplastic non-Newtonian 

fluids, respectively. 

F.l Subroutine for Viscosity of Power-Law Fluids 

FUNCTION VISPOW(DPDX, PERM, PHI) 

C-----CALCULATION OF VISCOSITY OF A POWER-LAW FLUID 

C-----BY EQUATION 3.1 1 

C-----DPDX - ABSOLUTE VALUE OF FLOW POTENTIAL GRADIENT (Pa/m). 

C-----PERM - PERMEABILITY (m2). 

C-----PHI - POROSITY. 

COMMONIREOLGIALPHA BETA1 ,VISI,DPB,QF,RMWF 

C-----ALPHA - H, POWER-LAW CONSISTENCE (Pa.sn). 

C-----BETA1 - n, POWER-LAW INDEX. 

C-----VISI - ti,, LINEAR INTERPOLATION PARAMETER (Pa/m). 

C-----DPB - ti,, LINEAR INTERPOLATION PARAMETER (Pa/m). 

C-----QF AND RMWF - NOT USED. 

VISEFF=ALPHA*I12.*(9.+3.IBETAl)**BETAl *(ISO.*PERM*PHI)** 

1 ((1.-BETAl)l2.) 

Y=(BETAI -I .)/BETA I 

IF(DPDX.GTDPB) VISPOW= VISEFF*(PERMIVISEFF*DPDX)**Y 

IF(DPDX.LEBPB) THEN 



VISI =VISEFF*(PERMIVISEFF*DPB)**Y 

VIS2=VISEFF*(PERM/VISEFF*VISI)**Y 

VISPOW= VISl+ (VIS I -VIS2)l(DPB-VISI)*(DPDX-DPB) 

ENDIF 

RETURN 

END 

F.2 Subroutine for Equivalent Potential Gradient of Bingham Fluids 

C-----ADJUSTMENT OF POTENTIAL GRADIENT BY EQUATION 4.21. 

FUNCTION EPG(DPDX, VISBIN) 

C-----DPDX - ABSOLUTE VALUE OF FLOW POTENTIAL GRADIENT (Pdm). 

C-----VISBIN - EQUIVALENT VISCOSITY (Pas). 

COMMONIREOLGIALiHA,BETA I ,VISI,DPB ,QF,RMWF 

C----- ALPHA - pb, BINGHAM COEFFICIENT (Pas) 

C-----DPB - G, MINIMUM PRESSURE GRADIENT 

C-----BETA1, VISI, QF, AND RMWF, NOT USED. 

VISBIN =ALPHA 

DPBN=-DPB 

IF(DPDX.GTDPB) EPG=DPDX-DPB 

IF(DPDX.LT.DPBN) EPG=DPDX+DPB 

IF(DPDX.LEDPB AND.DPDX.GE.DPBN) EPG=O. 

RETURN 

END 

F.3 Subroutine for Viscosity of General Pseudoplastic Fluids 

C-----CALCULATION OF VISCOSITY OF GENERAL PSEUDOPLASTIC FLUIDS 

C-----BY EQUATION 4.23. 

FUNCTION VISGPF(DPDX, PERM, PHI) 

C-----DPDX - ABSOLUTE VALUE OF FLOW POTENTIAL GRADIENT (Pdm). 

C-----PERM - PERMEABILITY (rn2). 

C-----PHI - POROSITY. 

COMMONIREOLGIALPHA,BETAI ,VISI,DPB,QF,RMWF 



C-----ALPHA - h, MAXIMUM VISCOSITY AT LOW SHEAR RATE (Pass). 

C-----BETA 1 - P, EXPONENTIAL IN EQUATION 3.13. 

C-----VISI - p,, MINIMUM VISCOSITY AT HIGH SHEAR RATE (Pa-s). 

C-----DPB - [(3n+1)/4n]dn-')&, 

n - POWER-LAW INDEX, 

& - COEFFICIENT IN EQUATION 3.13 (s-l). 

C-----QF AND RMWF - NOT USED. 

VISGPF=ROOTV(DPDX, PERM, PHI) 

RETURN 

END 

C-----CALCULATION OF VISCOSITY AS ROOT OF EQUATION 4.23. 

C-----BY BISECTIONAL TECHNIQUE. 

FUNCTION ROOTV(DPDX, PERM, PHI) 

COMMONIREOLGIALiHA,BETAI ,VISI,DPB,QF,RMWF 

AA = VISI 

BB=ALPHA 

N=O 

X2=1 .E3O 

I XI=S*(AA+BB) 

Z= VISEQN(X1, DPDX, PERM, PHI) 

N=N+I 

IF(ZLT.0.) AA=Xl 

IF(Z.GT.0.) BB =XI 

IF(Z.EQ.0.) GOT0 10 

IF(N.GE.100) GOT0 5 

DX=ABS(X2 -XI)  

IF(DXLE.1 .E-5) GOT0 I 0  

GOT0 1 

5 PRINT 2 0 3 1  

GOT0 25 

10 CONTINUE 

ROOTV=XI 

20 FORMAT(2X,F20.10,10X,'NOT-CONVERGENCE') 

25 CONTINUE 

RETURN 

END 



C-----EQUATION 4.23 FOR CALCULATION VISCOSITY FROM 

C-----FLOW POTENTIAL GRADIENT. 

VISEQN(X, DPDX, PERM, PHI) 

COMMONIREOLGIALPHA,BETAl ,VISI,DPB,QF,RMWF 

BETA2=BETAl-1. 

CM=(DPB*SQRT(2 .*PERMIPHI))**BETA2 

Y=X**BETA2*CM 

VISEQN=X**BETAl +Y*X-ALPHA*X**BETA2-VISI*Y 

RETURN 

END 

F.4 Subroutine of "MULTI" in "MULKOM" 

C-----IMPROVED ON MAY 10,1988 FOR THE DOCUMENTATION OF THE GAS- 

C----- FOAM-WATER FLOW CODE FOR GRI. 

C-----MOP(19)=O, DEFAULT,KRW &KRG INPUT FROM TABULAR DATA, KRF 

IS 

C CALCULATED FROM STONE'S FUNCTION; 

C-----MOP(19)=1,FOR WATER AND GAS TWO PHASE FLOW,KRW & KRG ARE 

C DETERMINED BY TNE INTERNAL FUNCTION 

C-----MOP(19)=2, SHARP-FRONT TRACKING TECHNIQUE USED FOR GAS- 

C FOAM-WATER FLOW 

C 

SUBROUTINE MULTI 

COMMONIEl IELEM(1) 

COMMON/E2IMATX(l) 

COMMONIE3IEVOL(l) 

COMMONIE4IPHI(l) 

COMMONIE5IP(I) 

COMMONIE6IT(l) 

COMMONIPI IX(1) 

COMMONIP2IDX(I) 

COMMONIP3IDELX(l) 

COMMONIP4IR(l) 

COMMONIP5IDOLD(l) 



COMMONICI INEX1 (I) 

COMMON/C2/NM2(1) 

COMMONIC3IDELI (I) 

COMMONIC4IDEL2(1) 

COMMONIC5IAREA(I) 

COMMONIC6IBETA(l) 

COMMONIC7IISOX(l) 

COMMONIC8IGLO(l) 

COMMONIC9IELEMl (I) 

COMMONICI OIELEM2(1) 

COMMONlSECONDlPAR(1) 

COMMONICOMPOIFLO(1) 

COMMONlSOWDINMflAT(2~7)JM(27),POR(27),PER(3,27),CM(27),CH(2 7) 

COMMONlSOWlCOM(2 7),EXPAN(27),NADF(27) 

COMMONILI IIRN(1) 

COMMONIL2IICN(l) 

COMMONIL3ICO(l) 

COMMONIU IWKAR EA (1 ) 

COMMONILTIIKEEP(1) 

COMMONIMIIW(1) 

COMMONIL7IJVECT(l) 

COMMONIAMMISIMA ,lPN,U,IAB,NZ 

COMMONICYCIKCYC,lTER,ITERC,TIMIN,SUMTIM,GF,TIMOUT 

COMMONICOhTSTIREl ,RE2,RERM,NER,KER,DFAC 

COMMONlNNINEL,NCON,NOGN,NK,NEQ,NPH,NB,NKI ,NEQl ,NBK,NSEC,NFLUX 

COMMONIDMIDELTEN,DELTEX,FOR,FORD 

COMMONlKONITlKON,DELT JGOOD 

COMMONIDGIWUP,WNR 

COMMONISVZINOlTE,MOP(24) 

COMMONIPATCHISING 

COMMONIMODRELIMODEJDlMJREL,REL(7),REDLT,RINCR 

COMMONlLIQVISlNTLJQV,.NXlLIQV,TWQV(l5),VISLT(l5), 

AXlWQV(1 O),VISLXI (1 0) 

COMMONlFOAMVlvf(l001) 

COMMONIREOLGIALPHA,BETAl ,VISIDPB,TI,QFJZFOAM,RMWF 

COMMONlRELATWIASW(20,l O)PKRW(20,1O),AKRH(20,1 O),PCF(20,10) 



COMMONlRELATGIASG(2011 O ) J 4 K R G ( 2 0 , 1 0 ) ~ O l l  0) 

DlMENSlON D(1lI12),F(1 l,23) 

data imulll 1 

if(imul.gt.1) goto 99 

imul=imul+I 

&lta=l .e-I O**(l .lbetal) 

renn=l ./(I .+betal) 

exnn=(renn-l.)l(2.*renn) 

99 continue 

NZ=O 

IF(MOP(3).GE.I)WRlTE(6,2Ol)KCYCJTER 201 FORMAT(I39H SUBROUTlNE 

MULTIJ4H --- [KC 

AYCJTER] = [,I4,lH,,I3,lH]/) 

DO 100 N=l,NEL 

NLOC=(N-l)*NEQ 

NLOC2=(N-l)*NSEC*NEQl 

DO 20 K=l,NEQ 

20 R(NLOC+K)=O. 

PHIN=PHI(N) 

NMAT=MATX(N) 

CD=CH(NMAT)*DM(NMAT)*(l .-POR(NMAT)) 

DO 101 M=l,NEQI 

NLM2=NLOC2+(M-l)*NSEC 

DO 1011 K=l,NEQ 

1011 D(K,M)=O. 

DPRES=O. 

IF(M.EQ.2) DPRES=DELX(NLOC+I) 

PRES=X(NLOC+I)+DX(NLOC+I)+DPRES 

DPHI=PHlN*(COM(NMAT)*(PRES-P(N))+EXPAN(NMAT)*(PAR(NLM2+NSEC- 

1) 

A -T(N))) 

PHINN=PHIN+DPHI 

DO 102 NP=I,NPH 

NL2NP=NLM2+(NP-I)*NBK 

SNP=PAR(NL2NP+l) 

IF(SNP.EQ.0.) GOT0 102 



RHONP=PAR(NL2NP+4) 

PHISRO=PHINN*SNP*RHONP 

DO 103 K=l,NK 

XNPKM=PAR(NL2NP+NB+ K) 

103 D(K,M)= D(K,M) +XNPKM*PHISRO 

102 CONTINUE 

101 CONTINUE 

IF(MOP(3).GE.4) WRlTE(6,2OO)ELEM(N),((D(K,M),K= 1 ,NKl),M= 1 ,NEQI) 

200 FORMAT(I31 H ACCUMULATION TERMS AT ELEMENT &/(1 0(IX,E12 S))) 

DO I05 K=l,NEQ 

lF(lTER JVE .I) 

AR(NLOC+K)=R(NLOC+K)+D(K,l)-DOLD(NLOC+K) 

IF(lTER.EQ.1) DOLD(NLOC+K)=D(K,l) 

DO 106 L=I,NEQ 

IRN(NZ+ l)=NLOC+K 

IF(IAB.EQ.0) ICN(NZ+l)=NLOC+L 

IF(1ABJVE .O) JVECT(NZ+ I)= NLOC+L 

CO(NZ+l)=-(D(K,L+l)-D(K,l))IDELX(NLOC+L) 

IF(PHINN.EQ.O.AND.K.EQ.LAND.K.NEJVEQ) CO(NZ+l)=l. 

I06 NZ=NZ+l 

105 CONTINUE 

202 FORMAT(I22H RESIDUALS AT ELEMENT ,A5/(10(1X,E12 -5))) 

100 CONTINUE 

DO1 N=I,NCON 

vf(n)=O. 

N l  = NEXl (N) 

N2 = NEX2 (N) 

IF(N1 .EQ.O.ORN2.EQ.O) GOT0 1 

NlLOC=(Nl -I)*NEQ 

N2LOC=(N2-l)*NEQ 

NlLOC2=(NI-l)*NSEC*NEQl 

N2LOC2=(N2-I)*NSEC*NEQl 

D l  =DELl(N) 

D2 =DEL2(N) 

WTl  =D2/(D1 +D2) 

m = 1  .-WTl 



NMATI =MATX(NI) 

NMAl2 = MATX(N2) 

POI =POR(NMATI) 

PO2 =POR(NMAl2) 

poa= J*(pol +po2) 

ISO=ISOX(N) 

GX=BETA(N)*GF 

AX=AR EA (N) 

PER1 =PER(ISB,NMATI) 

PER2=PER(ISO,NMATZ) 

DPERI= WTI*PERI + W * P E R 2  

PERI=O. 

IF(DPERINE.0.) PERI=PERI *PERZIDPERI 

FACI =FORDIEVOL(NI) 

FAC2 =FORDIEVOL(N2) 

DPXO=X(N2LOC+l)+DX(N2U)C+ I)-X(NILOC+I)-DX(NlLOC+ I )  

DPXO=DPXOI(Dl +D2) 

IF(MOP(3).GE.5)WRITE(6,199)N,ELEM(NI),ELEM(N2),FACI ,FAC2 

199 FORMAT(I1 IH CONNECTION,I5,13H ELEMENTS (,A5,IH,,A5,11 H)  FACI = 

A ,E125,10H FAC2 = ,EI2.5) 

DO 2 M=l ,NFLUX 

DPRESI =O. 

DPRESZ=O. 

IF(M.EQ.2) DPRESI =DELX(NILOC+I) 

IF(M.EQ.NEQ+Z) DPRES2=DELX(N2LOC+I) 

PRESl =X(NILOC+ I)+DX(NILOC+ I)+DPRESI 

PRES2=X(N2LOC+I)+DX(N2LOC+I)+DPRES2 

DPX=(PRES2-PRESl)I(DI +D2) 

M2 =2 

IF(M.EQ.1) M2=0 

IF(2 LE.MAND.M.LE.NEQ1) M2=1 

NILM2=NILOC2+MOD(M2,2)*(M-l)*NSEC 

N2LM2=N2LOC2+(M2/2)*(M-NEQI)*NSEC 

DO 21 K=I,NEQ 

21 F(K,M)=O. 

IF(MOP(3).GE .6)WRITE(6,198)M,NILM2,N2LM2,PRESI ,PRESZ,DPX 



198 FORMAT(I9H FLUX NO .,U,ZH SECONDARY INDICES (J5,l H,J5,12H) 

APRESI = ,El2 5,IIH PRES2 = ,E12.5,9H DPX = ,E125) 

IF(MOP(3).GE.6)WRITE(6,197)CONI,PAR(NlLM2+NSEC-I), 

APAR(N2LM2+NSEC-l),DTX,F(NKI ,M) 

197 FORMAT(8H CON1 = ,E125,IIH TEMPI = ,El2 5,IIH TEMP2 = ,E125, 

DO 3 NP=I,NPH 

NlL2NP=NlLM2 +(NP-I)*NBK 

N2L2NP=N2LM2+(NP-I)*NBK 

RELI =PAR(NIL2NP+2) 

REL2=PAR(N2L2NP+2) 

FNPM=O. 

IF(REL1 .EQ.O.mD.REL2 .EQ.O..AI 

SI =PAR(NlL2NP+I) 

VISI =PAR(NlUNP+3) 

RHO1 =PAR(NIL2NP+4) 

A9H D'IX = ,E125,10H FNKl = ,E125) 

NPJ JE. 

RHOlO=PAR(NILOC2+(NP-I)*NBK+4) 

PCAPI =PAR(NIL2NP+6) 

PCAPlO=PAR(NILOC2+(NP-l)*NBK+6) 

S2 = PAR(N2L2NP+ I) 

VIS2 = PAR(N2L2 NP+ 3) 

RHO2 =PAR(N2L2NP+4) 

RH020=PAR(N2LOC2+(NP-I)*NBK+4) 

PCAP2=PAR(N2L2NP+6) 

PCAP20= PAR(N2LOC2+(NP-I)*NBK+6) 

W1=0.5 

IF(RHO1 .EQ.O.) Wl =O. 

IF(RH02.EQ.O.) W1 =I. 

w2=1 .-WI 

RHOX=WI *RHO1 + W2*RH02 
RHOXO= WI *RHOIO+ W2*RH020 

DR=(PCAP2-PCAPI)l(DI +D2)-RHOX*GX 

DR=DR+DPX 

DRO=(PCAP20-PCAPl O)I(Dl +D2)-RHOXO*GX 

DRO=DRO+DPXO 

C-for calculation of Bingharn fluid flow-10-6-89 



if(np.eq.3) then 

dr = epg(dr0,visJ 

endif 

C 

IF(DR.GT.O.AND.S2.EQ.O.) GOT0 31 

IF(DRLT.O.MDS1 .EQ.O.) GOT0 31 

IF(MOP(1 I).GE.I) WMI =WI 

IF(MOP(1 l).EQ.O.AND DRO.GT.0.) WMI = I .-WUP 

IF(MOP(1 I).EQ.OMVD.DROLE.O.) WMI = WUP 

IF(RHO1 .EQ.O.) WMI =O. 

IF(RH02.EQ.O.) WMI =I .  

WM2zI.-WMI 

if(mop(l9) .ne2) goto 50 

nfunl =nadf(nmatl) 

nfun2 =nadf(nmat2) 

if(np.ne.3) then 

if((drO.le.O.O.and.np.eq.I).or.(drO.gt.O.O.and.np.eq.2)) then 

sdl =I .-asg(2,nfunl) 

sd2 = I .-asg(1 ,nfunl) 

if(np.eq.2) sdl =I .-asw(2 ,nfunl) 

if(np.eq.2) sd2= I .-mw(1 ,nfunl) 

re11 =O. 

re12 =O. 

i f s l  .ge.sd2) re11 =I . 

if(s2 .ge.sd2) re12 = I .  

if(s1 .gt.sdl .and.sl .lt.sd2) re11 = I  .+(sl-sd2)l(sd2-sdl) 

if(s2 .gt.sdl .and.s2.It.sd2) re12=1 .+(s2-sd2)l(sd2-sdl) 

endif 

if((dr0.ge.0.0.and.np.eq.l).or.(dr0.le.0.O.and.np.eq2)) then 

sdI =asg(l ,nfunl) 

sd2=mg(2,nfunl) 

if(np.eq.2) sdl =asw(l ,nfinl) 

if(np.eq.2) sd2=asw(2,nfinl) 

re11 =O. 

re12 =O. 

if(s1 .ge.sd) re11 = I .  



if(s2 .ge.sd2) re12 = I .  

if(s1 .lt.sa2.and.sl .gt.sdl) re11 =I .+(sl -s&)l(sd2-sdl) 

if(s2 .lt.sd2 .and.s2 .gt.sdl) re12 = I .+ (s2-sa2)l(sd2-sdI) 

endif 

endif 

if(rel1 .gt.l.) re11 =I .  

if(rel1 k.0.) re11 =O. 

if(rel2.gt.l.) re12=I. 

if(rel2.lt.O.) re12=0. 

if(np.ne.3) goto 60 

if(beta(n).ne.O) goto 53 

swd=par(nlloc2 +nbk+l) 

if(drO.lt.0.) swd=par(n2loc2+nbk+l) 

ity=l 

if(swd.gt.5) ity=2 

sdl =asw(l ,nfunl) 

sa2=asw(2,nfunl) 

if(ity.eq.1) then 

re11 =O. 

re12=0. 

if(s1 .ge.sd2) re11 = I .  

if(s2 .ge.sd2) re12 = I .  

if(s1 .gt.sdl .and.sl .lt.sd2) re11 =I .+(sl -sd..)/(sd2-sdl) 

if(s2 .gt.sdl .and.s2 .lt.sd2) re12 =I .  + (s2 -sd2)l(sd2 -sdl) 

endif 

if(ity.eq.2) then 

reIl =O. 

re12=0. 

s&=l .-sa2 

~ d 4 = I  .-sdl 

i f s l  .ge.sd4) re11 = I .  

if(s2 .ge .sd4) re12 = I .  

if(s1 .lt.sd4.and.sl .gt.sd3) re11 = 1 .+ (s l  -sd4)l(sd2-sdl) 

if(s2.lt.sd4.and.s2 gt.sd3) re12 =I .+(s2-sd4)l(sd2-sdl) 

endif 

52 continue 



if(rel1 @.I.) re11 =I .  

if(rel1 lt.0.) re11 =O. 

if(rel2 .gt.l .) re12 = I .  

if(rel2.lt.O.) re12=0. 

goto 50 

53 continue 

re11 =sl 

re12=s2 

50 continue 

if(rel1 .gt.par(nI12np+2)) par(nl12np+2)=rell 

if(rel2 .gt.par(n212np+2)) par(n212np+2) =re12 

if(np.ne.3) goto 60 

c-----calculation of viscosity of power-law fluids 

visf=vispw(dr,dperi,poa) c-----calculation of viscosity of general pseudoplastic fluids 

visf=visgpe(dr,dperi,poa) 

if(visf.lt.par(nl12np+3)) par(nll2np+3)=visf 

if(visjX.par(n212pn+3)) par(n212np+3) =visf 

if(m.eq.l) vf(n)=visf 

60 continue 

DMOBI=(WMI *RELlIVISl+ WM2*REL2IVIS2)*PERI 

if(np.eq.3) dmobi= (wml *re11 + wm2 *rel2)*perilvisf 

RHOX= WMI *RHO1 + WM2*RH02 

FNPM=DMOBI*RHOX*DR*AX 

DO 4 K=l,NK 

XNPMK= WMI *PAR(NIL2NP+NB+K)+WM2*PAR(N2L2NP+NB+K) 

4 F(K,M)= F(K,M)+XNPMK*FNPM 

31 CONTINUE 

IF(MOP(3)LT.7) GOT0 190 

WRITE(6,I 96)NP,NIL2NPJV2L2NP 

I96 FORMAT(I5H NP =J3,22H SECONDARY INDICES (J5,IH,J5,1H)) 

WRITE(6,195)Sl JIELI ,VlSl ,RHO1 ,HI JCAPI 

195 FORMAT(5H S1 =,El2 S,8H RELl =,E125,8H VISI =,E125,8H RHO1 =, 

AE125,6H HI =,E12..5,9H PCAPl =,E12.5) 

WRITE(6,194)S2 ,RED, VIS2 ,RHO2 ,H2 ,PCA P2 

194 FORMAT(5H S2 =,E12SJ8H REL2 =,El2 J,8H VIS2 =,E125,8H RHO2 =, 

AE125,6H H2 =,E12.5,9H PCAP2 =,E12.5) 



WRITE(6,I 93)DMOBI,RHOX,DR,FNPM,HNPM,VISF 

193 FORMAT(8H DMOBI =,E125,8H RHOX =,E12.5,6H DR =,E12.5,8H 

A, FNPM =, E125,8H HNPM =,E125,' VlSF=',E125) 

190 CONTINUE 

IF(MOP(3).GE.6)WRITE(6,192)(F(K,M),K=l ,NKI) 

192 FORMAT(1I IH FLOW TERMSI(IO(IX,EI2 5))) 

IF(M.NE.1) GOT0 3 

FLD((N-I)*NPH+NP)=FNPM 

3 CONTINUE 

2 CONTINUE 

DO5 K=l,NEQ 

R(NILOC+K)=R(NlLOC+K)-FACI *F(K,I) 

R(N2WC+K)=R(N2LOC+K)+FAC2*F(K,l) 

DO 6 L=l,NEQ 

IRN(NZ+I)=NlLOC+K 

IF(IAB.EQ.0) ICN(NZ+ l)=N2LOC+L 

IF(IABNE.0) JVECT(NZ+l)=N2LOC+L 

CO(NZ+l)=FACl *(F(K,L+l +NEQ)-F(K,l))IDELX(N2LOC+L) 

IF(CO(NZ+ I).EQ.O.) CO(NZ+l)=SING 

IF(MOP(8).EQ.O.OR.CO(NZ+I).NE.O.) GOT0 40 

NZ= NZ- 1 

40 CONTINUE 

lRN(NZ+2)=N2LOC+K 

IF(IAB.EQ.0) lCN(NZ+2)=NlLOC+L 

IF(IAB NE .O) JVECT(NZ+2)=NlLOC+L 

CO(NZ+2)=-FAC2*(F(KJ+l)-F(K,I))/DELX(NlLOC+L) 

IF(CO(NZ+2).EQ.O.) CO(NZ+2)=SING 

lF(MOP(8).EQ.O.OR.CO(NZ+2).NE.O.) GOT0 41 

NZ=NZ-1 

41 CONTINUE 

NZ=NZ+2 

NlKL=(NI-I)*NEQ*NEQ+(K-l)*NEQ+L 

CO(NIKL)=CO(NlKL)+FACl *(F(K,L+I)-F(K,I))IDELX(NlLOC+L) 

N2KL=(N2-I)*NEQ*NEQ+(K-I)*NEQ+L 

CO(N2KL)= CO(N2KL)-FA C2 *(F(K,L+ 1 +NEQ)-F(K, I))IDELX(N2LOC+L) 

6 CONTINUE 



5 CONTINUE 

1 CONTINUE 

ZF(NOGNNE.0) CALL QU 

IF(IGOOD.EQ.3) RETURN 

RERM=O. 

DOlO N=l ,NEL 

NLOC=(N-l)*NEQ 

IF(MOP(3).GE .4) WRITE(6,202)ELEM(N),(R(NU)C+K),K= 1 ,NEQ) 

DOlO K=l,NEQ 

NLM=NLOC+K 

DOA=ABS(DOLD(NLM)) 

IF(D0A LTRE2)  RER=R(NLM)IRE2 

IF(DOA.GERE2) RER=R(NLM)IDOLD(NLM) 

IF(ABS(RER) LE.RERM) GOT0 10 

RERM=ABS(RER) 

NER=N 

KER=K 

10 CONTINUE 

RETURN 

END 
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