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Recently Kuramoto and one of the present authors have carried out a computer simula

tion for a chemically oscillating system and found a turbulence-like behavior similar to the 

hydrodynamic turbulence. The steady turbulent state of this system is theoretically studied. 

It is shown that there exist two characteristic regions of wavenumber k. One is a cascade 

region with ks~1, and the other is a dissipative region with kS> 1, where s is a characteristic 

length which is much larger than the reaction mean free path lr. Over these two regions 

the characteristic frequency Q• and the variance X• of phase fluctuations obey the scaling 

laws SJ.=k4F(kS) and x.=k'G(ks), where F(x) and G(x) are universal functions of x. In 

a cascade region it is shown that F(x) =c,x-'1' and G(x) =c,x-•. In a dissipative region 

with ks)>1, it is found that G(x) =1 and G(x) =ca exp( -c.x). An explicit calculation of 

Q• and X• over the whole k region is carried out in the Kraichnan direct interaction approxi

mation, and the results are compared with the computer simulation. 

§ 1. Introduction 

Recently many theoretical and experimental investigations on collective phe

nomena associated with chemical instabilities have been developed in various con

texts.1l Chemical reactions are usually considered on the assumption of spatial 

homogeneity. However, various phenomena can be understood by including a spa

tial inhomogeneity. For example, spiral waves and target patterns of concentrations 

associated with a temporal collective order cannot be understood without a spatial 

inhomogeneity. 

Zhabotinsky') has reported a new, interesting phenomenon in which a spatial 

inhomogeneity plays a crucial role. In the Belousov-Zhabotinsky reaction, Zhabot

isky has found that when a,, the ratio of the oxidizer (Br03 -) concentration to 

the reducer (CHBr(COOH) 2) concentration, is smaller than 0.3, a macrooscillation 

synphase in space can exist under any externally stirring condition. On the other 

hand, when a,>l, the macrooscillations depend on stirring conditions. Namely, 

without a stirring effect no macrooscillation has been detected, although oscillations 

exist locally, and then macroscopic patterns behave irregularly in space and time. 

When he stirred that system, the irregular motion instantly disappears and the 

synchronization of the oscillations revives. 

Very recently, Kuramoto and one of the present authors3) have studied the 

collective oscillation phenomena using the kinetic equation 
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Theoretical Study of a Chemical Turbulence 735 

where w(r, t) is a complex concentration of reaction molecules. A spatial in

homogeneity has been included in the diffusion term. They have shown that when 

1 +c1c2>0, (1·1) has solutions which describe target patterns and spiral \Vaves!1 

When 1 + c1c2 <0, the above solutions become unstable for a long wavelength per

turbation. 51' 51 In this case, (1·1) has been solved numerically, 71 leading to an 

irregular behavior in space and time, \vhich is similar to the irregular motion m 

Zhabotinsky's experiment. 

Furthermore one of the present authors and Kuramoto81 (this is referred to 

as I) h<::xe numerically integrated the reduced equation of motion of (1·1), *1 

(1· 2) 

·where 6 (r, t) lS the reduced phase of W, and the characteristic length ~is defined 

by 

(1· 3) 

with lr being a length of the order of the reaction mean free path. Equation (1· 2) 

has been derived by eliminating the amplitude of w near 1 + c1c2 = 0. They met 

also an irregular motion. This irregular motion will be called 'chemical turbulence', 

hereafter. Carrying out a statistical treatment, they have calculated an equal-time 

correlation function lOki' in a small wavenumber region such that lkl<~-\ where 

the bar denotes a time-average in a steady turbulent state, and obtained 1tlkl 2=!?- 2 • 

In the one-dimensional case, the nonlinearity of the equation of motion for u=P6 

has the same {orm as the Burgers equation. 91 This suggests that a statistical theory 

of chemical turbulences can be developed fron"l (1· 2) similarly to the hydrodynamic 

case. 10 ' 

It is the main purpose of the present paper to carry out this program. In 

§ 2 the model is described and its some general properties are derived by simple 

and physical arguments. It is shown that there exist two characteristic regions 

of wavenumber which have different forms for the scaling functions from each 

other. In § 3 we derive self-consistent equations for the relevant quantities char

acteristic of the steady chemical turbulence, and results are compared \vith the 

computer simulation in I. Section 4 is devoted to summary and discussion. 

§ 2. One-dimensional model and its general properties 

In terms of the Fourier transform of e (r, t), 

*1 By putting e, rand t by ;;-'a, t;r and t;'t, respectively, (l·2)becomes81 (a/at)O= ( -r'-p')O 

+ (178) 2• This equation has been solved in I instead of (l· 2) itself. 
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736 H. Fujisaka and T. Yamada 

Ok(t)=; fe-ikre(r,t)dr, O(r,t)=··7-.Eeikrok(t), 
yJJ yJJ k 

(2 ·1) 

J2 being the size of the system, (1· 2) takes the form 

(2 ·2) 

(2. 3) 

In the absence of the nonlinear coupling, a small perturbation 0, grows or clamps 

according as [k[<,;- 1 or [k[>,;-\ respectively, and the maximum growth rate occurs 

at !?"' = 2- 112,;- 1• The nonlinear term can easily be shown to satisfy an 'energy' 

conservation law 

which plays an important role in the following analysis: The above property 

is similar to the hydrodynamic case. As stated in § 1, the numerical integrations 

of (2 · 2) with deterministic initial values show a turbulence-like irregular motion. 8) 

This irregular motion originates from an instability of modes and the cascade 

process through nonlinear terms. The collisions (or the cascade process) among 

the unstable modes rapidly wash out the initial memory. Therefore, it is ap

propriate to adopt a statistical description, in ·which the time-average is replaced 

by an ensemble average. The same situation arises in the hydrodynamic turbu

lence. 

Thus the probability distribution function P(O, t) 1s gn-en by an ensemble 

average of 

where o is the Dirac delta function. Equation (2 · 2) leads to 

where 

}}_P(O, t) = -!l{(O)P(O, t), 
at 

!}{ = ,CJ{o + !}{'' 

!}{o=.E1Jkrkoek, !l{'=-J;1Jkvk(O), 
k k 

(2. 5) 

(2 ·6) 

(2. 7) 

with 1Jk= -3/30"'. The steady turbulent state is characterized by the steady dis

tribution function P, ( 0) '.vhich satisfies 

!]{ (0) P, (B) = 0. (2 ·8) 

Furthermore the energy conservation law (2 · 4) 1s reduced to 

(2·9) 
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Theoretical Study of a Chemical Turbulence 737 

where (- ·-) IS the average over P, (fJ). This can be rewritten as 

(2 ·10) 

with L:k< and L:k> defining the sums over the regions JkJ <~- 1 and JkJ >~-\ 
respectively. Equation (2 ·10) shows that growing irregularities in the small 

wavenumber region with JkJ <~- 1 flo·w out toward the large wavenumber region 

(dissipative region) with JkJ>~- 1 , in which intensities die out. Thus we can de

scribe the present turbulence as an 'energy' cascade process. In terminology o£ 

a hydrodynamic turbulence,lll the energy-input to the system occurs in the region 

with JkJ<~-I, and the 'energy' flows toward the region with JkJ>~- 1 through 

nonlinear couplings. It should be noted that in a hydrodynamic turbulence many 

authors12> have introduced an external stirring force which maintains a steady tur

bulence, and which is represented by an additional diffusion term to (2 · 6), whereas 

in the present model the mechanism of 'energy'-input is automatically included in 

the wavenumber region with a negative rko· 

It is difficult to solve (2·6) and (2·8) exactly. Some general properties, 

however, can be derived by simple and physical arguments. First the reductive 

perturbation method5> ensures the forms of the characteristic frequency Qk and the 

variance )(k(=(J8kj 2)) as follows: Qk=~- 4 f(k~, ~/lr) and xk= ~- 8 g(k~, ~/lr), 

where f(x, y) and g (x, y) are universal functions of x and y. The cutoff wave

number kc is assumed such that ~>k,- 1 ~lr. Thus in the limit ~/Zr~co, (kJr~O), 

one finds 

(2 ·11) 

(2 ·12) 

with f(x) f(x, co) and g (x) =g (x, co). In analogy with a thermodynamic cri

tical· phenomena, 13> these relations will be called scaling laws, hereafter. 

Since the energy cascade is realized through nonlinear couplings, we may 

assume the existence of a cascade region characterized by JkJ ~~-~ where vk (fJ) 

dominates over the other terms. In this region the steady distribution P, (fJ) must 

satisfy 

!){' (fJ) P, (fJ) =0. (2 ·13) 

The solution of (2 ·13) consistent to the above assumption is found to be a Gaussian 

distribution 

P (()) [ 1 "'' () k() -k] , ocexp --"'-' --. 
2 k Xk 

Here the prime denotes the sum over the cascade region, and the 

given by 

)(k =const ~- 5 JkJ- 2 , 

(2 ·14) 

vanance IS 

(2 ·15) 
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738 H. Fujisaka and T. Yamada 

where we have used the scaling law (2 ·12). Hence we obtain g (x) =x-2 for 

x~l. The numerical constant factor in (2 ·15) can be determined by including 

the statistics of large wavenumber modes. Equation (2 ·15) is equivalent to the 

scaling 6k--'>L6k with 

(2 ·16) 

for [k[,:=~l. Hence Mori's scaling method 14)' 15) leads to the scaling vk (6) 

--'>L- 112vk(6). Since this is larger than rko whose scaling is Tk 0 --'>L- 2Tk 0 for L::}>1, 

the characteristic frequency Qk is determined by vk (6) and is scaled similarly to 

vk (6) /6k. This leads to the frequency spectrum 

(2 ·17) 

where we have used (2·11). Hence one findsf(x)=x312 for x~l. Furthermore 

(2·15) is equivalent to <luk[ 2)=const with u=16. This spectrum and (2·17) 

seems to be a feature characteristic of the one-dimensional system with a mode

coupling of the inertial-term type, and indeed the same spectra as these have been 

derived by Mori about hydrodynamic fluctuations. 14)' 15) 

The dissipative region with large wavenumbers has a quite different beahvior. 

In this region the linear term as well as the nonlinear coupling plays a crucial 

role. With the characteristic length~ the dissipative region is specified by [k[~>l. 

Mori's scaling method leads to the scaling 

(2·18) 

Furthermore since the magnitude of the irregularity is smaller in this region than 

in the cascade region, it is expected that the renormalization of Tk 0 by nonlinear 

mode-couplings can be neglected. Thus one can put Tk=k4
• This leads to f(x) 

=x4 for x::}>1 from (2·11). In this stage, however, we cannot determine the 

asymptotic behavior of g (x) for x ::}>1, and further investigations are necessary. 

A detailed analysis of the whole k region will be given in the next section. 

§ 3. Self-consistent equations 

In order to simplify the discussions we will start with the scaled quantities 

k, r, i and fJ(r,i) defined by k=k~, r=rf;, i=~-·t and fJ(r,i)=~ 2 6(rH.~-·t). 8 ) 

Furthermore, the symbol A will be neglected, hereafter, as long as stated otherwise. 

These scaled equations are the same as (2 · 2) and (2 · 3) with ~ = 1. After all the 

calculations are carried out, we will return to the original units of the system by 

replacing k and r by k~ and r/~, respectively. 

(A) Diagrammatic method16),17) 

Let us consider the steady turbulent state and introduce two propagators by 

< (6k, Ct1) 6k, Ct2)) +> = ok,-k,Fk, Ct1- t2) k1 -2, 

< (6k, Ct~) fJk, Ct2)) +> = okl-k,ckl Ct1- t2) 

(3·1) 

(3·2) 
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Theoretical Study of a Chemical Turbulence 739 

= + -----1®~--

Fig. 1. Dyson equations for the propagators G and F. The thin straight line, the thick 
straight line and the thick curved line represent the propagators c.· (t) =r; (t) exp (-r .'t)' 
G.(t) and F.(t), respectively, where r;(t) is a step function; r;(t)=l for t>O and 0 otherwise. 

with the definitions of {}k(t) and ek(t), 

(3 ·3) 

where ok is unity if k = 0, and zero otherwise. Here ( · · ·) + denotes a time ordering 

operator such that operators are ordered from the right to the left as time increases 

and the average is given by (( .. ·))=fllk d{}k( .. ·)P,({}), P,(fJ) being the steady 

distribution function given by (2. 8) with rk 0 = - k2 + k<. 
The Dyson equations for G and F are shown in Fig. 1. These yield 

(3 ·4) 

(3· 5) 

Now the Fourier components are defined by*J 

where a function X denotes one of G, F, 1:1 and 2 2 • The equations of motion 

for G and F become 

-iwG(k, w) =1- [Tk 0 - l:1 (k, w)] G(k, w), 

-iwF(k, w) =- [rko_ l:1 (k, w) ]F(k, w) +G( -k, -w) 1:2 (k, w), 

(3·7) 

(3·8) 

respectively. The self-energy 1:1 represents a renormalization of the bare growth 

or damping rate ro by the nonlinear coupling, and the last term in the r.h.s. of 

(3 · 8) represents the nonlinear source term by which the system is maintained 

to be steady in time. Integrating the both sides of (3 · 8) over w, we obtain 

(3·9) 

*J We here assume the stability of the steady state or the existence of the Fourier components, 
G(k, w) and F(k, w), etc. 
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740 H. Fujisaka and T. Yamada 

= 

= 
I 

Fig. 2. Lowest order diagrams for the self-energy parts of G and F. 

(3 ·10) 

The self-energy parts 1:1 and 2 2 in the lowest order approximation are shown 

in Fig. 2. On the assumption of the following equations 

G(k, w) = ( -iw+T") -I, 

F(k, w) = [G(k, w) +G( -k, -w)]Ik, 

the contributions from these diagrams can be evaluated as 

.I:l(k, w) =- L J,_cck', w')F(k-k', 0)-()) 1 )4kk'' 

.52 (k,o))=k" f f 4F(k',cu')F(k-k',w-w'), 
2 Jk' J,, 

(3 ·11) 

(3 ·12) 

(3 ·13) 

(3 ·14) 

where f k'= (1/2n') .f:":oo dk' and .fw,= (1/2rr)J:":oo do/. Equations (3 ·11) and (3 ·12) 
exactly hold on a Markoffian assumption. Finally, substitution of these expressions 

into (3·11) and (3·12) yields the coupled equations for Tk and Ik 

Tk=Tk0 -ZJ(k, 0) =Tk0 + _!_ Joo 4kk'Ik-k' dk', 
2rr -oo r k' + r k-k' 

0=-Tkoik-_!_foo- 4kk'Ik-k' Ikdk' 
2rr -ooTk'+Tk-k'+Tk 

+ k2 _!_ soo _ _jj__k~Ik-k'--dk' . 
2 2rr -ooTk'+Tk-k'+Tk 

(3 ·15) 

(3 ·16) 

The set of (3 ·15) and (3 ·16) is equivalent to the one derived by Kraichnan's 

direct interaction approximation18> in the theory of the hydrodynamic turbulence 

when a Markoffian approximation is adopted in the latter. It is worth while to 

note that in (3·16) the sum-rule I:; Tk 0Ik=O is satisfied. Asymptotic solutions 
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Theoretical Study of a Chemical Turbulence 741 

of (3 ·15) and (3 -16) in the small and large wavenumber regions can be derived 

in the following. 

(a) Small wavenumber (cascade) region (k~1) 

The dominant term in this region is the nonlinear mode-coupling term, and 

the asymptotic solution can be obtained in the limit, Tk 0--"0. By setting Tk=T1k'~> 

and Ik=I1ka in (3·15) and (3·16), k being JkJ, a self-consistent calculation yields 

¢ = 3/2 and a= 0, and thus Xk = I 1k- 2
• 

sumption rk~1Tk 0 [, and agree with 

These results are consistent with the as

(2·15) and (2·17) with Qk=Tk. From 

(3 ·15) constant factors I 1 and T 1 are related each other by 

T/ = _! s= dx X ~4 X 0.311 ~1.24. 
I1 2n -= JxJ 312 + J1-xJ 312 

(3 -17) 

The II and rl cannot be determined, since in the limit Tk 0 --'>0, (3 ·16) is always 

satisfied for any I 1 and T 1• Thus in the small wavenumber region, nonlinear coupl

ings give two important effects; one is the renormalization of damping rates and 

the other the self consistent formation of the nonlinear source. 

Let us introduce an equal-time average difference of phases fJ (r1) and fJ (r2) 

at points r 1 and r 2• Defining this by LlfJ(r)=<[fJ(r1) -fJ(r2)]"/12 with r=h-r2 [ 

(~1), one finds 

LlfJ (r) ocr112 • (3 ·18) 

Let us summarize above results. Returning to the original units of the system, 

from (2·11) and (2·12) one finds that the characteristic frequency Qk(=Tk), 

the variance Xk and the phase difference LlfJ (r) behave as f- 512k312, f- 5k- 2 and f- 512r 112, 

respectively, for k~f-\ (r~f), and that universal functions f and g take the 

forms c1X 312 and c2X- 2, respectively, where c1 and c2 are certain numerical factors. 

(b) Large wavenumber (dissipative) region (k~1) 

In the dissipative region with k~1, the irregularity is expected to be small, 

compared with the one in the small wavenumber region. Thus the renormalization 

of damping rates can be dropped out, and one can put rk~Tk 0 ~k 4 • However, 

the nonlinear source term must be retained. Equation (3 ·16) becomes 

k4I = k 2 s= dk' 4Ik,Jk-k' 
k 2 -= 2n Jk'[ 4 + Jk-k'[ 4 +[k[ 4 • 

(3 ·19) 

By assuming the following form of the solution in (3 ·19) 

Ik = Bk" exp ( - Ak8 ) , 

the mam contribution to the right-hand side of (3 ·19) 

k' r-.Jk/2. Thus (3 ·19) can be approximated as 

(3·20) 

comes from the region 

(3. 21) 

where a, b and C are certain numerical constants such that o::=;a<b<1 and C>O. 
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742 H. Fujisalw and T. Yamada 

Inserting (3 · 20) into (3 · 21), we obtain 

k6+"exp(- A.h'9) "--'BCk2" H S:dx x"(1-x)" 

X exp[- Ak11 {x'1 + (1-x) ~}]. (3·22) 

This equation can be solved by putting 

a=5, /1=1. (3. 23) 

Thus we find the intensity 111 the dissipative region has the form 

Ik~Bk' exp( -Ak), 'Xk~Bk' exp( -Ak), (3. 24) 

where B= [CJ~ dxx5 (1-x) 5]-\ and L1 is determined by the statistics over a 

whole regwn. 

By making use of the result (3 · 24), an average equal-time phase difference 

of two points separated by a distance r( ~1) is obtained as 

LIB(r) ocr, (3. 25) 

·which agrees with the result in the dissipati-v-e regwn 111 a hydrodynamic turbu

lence.19J 

A summary of the above is as follo-vvs: Returning to the original units, 

from (2 ·11) and (2 ·12) one finds that .Qk, xk and LIB (r) behave as k", 

/-:3 exp( -Ilk~) and ~- 3 r, respectively, for /~);>~-\ (r~;), and that universal 

functions become f(x) =x" and g(x) =c3x 3exp( -c4x), where c3 and C1 are certain 

numerical constants. 

(B) Vertex corrections 

vVe here evaluate the lowest order 

vertex corrections. The dominant cor

rections to the renormalized damping 

rate and the kinetic equation (3 · 9) come 

from those diagrams whose intermediate 

states consist of the small wavenumber 

modes only. Since the distribution func

tion for these modes is of the Gaussian, 

one can neglect the vertex corrections 

to the kinetic equation (3 · 9), and the 

+ 

Fig. 3. Diagrams representing the simplest ver

tex correction of the self-energy part of G. 

vertex corrections become important for the renormalizecl clamping rates. The sim

plest vertex correction Lll.\ of 1:1 is given by Fig. 3, which gives 

X Ik-k" k 2k" (/?- k') 

Tk'+Tv-k"+Tk-k" Ik 
(3. 26) 
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Theoretical Study of a Chemical Turbulence 743 

where we have used the relation for the cascade region, 

~+j2_+~=0 
Ik, Ik, Ik, 

with k1 + k2 + k3 = 0. This type of relation is characteristic of the Gaussian distribu

tion.20l Inserting the asymptotic solutions Tk=T1 [k[ 312 and Ik=l1 into (3·26), one 

finds JZ! (k, 0) = (I/1 Tl3) X 16 X 0.0233k312, and thus [JZ! (k, 0) I z! (k, 0) J ~ 0.24. 

This correction decreases damping rates. It is worth while to note that to all 

orders the vertex corrections have the same power spectra k312 and hence these 

contribute to rk only through the modulation of the constant factor r!. 
(C) Numerical results 

Numerical solutions of Eqs. (3 ·15) and (3 ·16) in a whole regwn m k-space 

are shown in Figs. 4~5. The variance Xk and renormalized damping rate Tk are 

shown in Figs. 4(a) and (b), respectively. The solid line in Fig. 4 represents 

solutions of (3 ·15) and (3 ·16). Our results should be compared with those of 

the computer simulation in I. The qualitative features in the small and large 

wavenumber regions are good. However, the 11 is larger by about decuple than 

the one in the simulation. Furthermore the most distinct difference is the non

existence of a hump in the middle region of Xk• which appears in the simulation. 

Noting that vertex correction have the same power spectra k312, and are dominant 

only in the small wavenumber region, we can parametrically take into account 

these effects by replacing 2 1 by cZ1 in (3 ·15), where c is a certain positive 

constant. By the use o£ the fact that the lowest order vertex correction decreases 

the damping rate, it may be natural to select O<c<l. For c =0.5, the numerical 

10 1 (b) 

10° 

//// 

I 

/,/ 

//' 

k 

' 
I 
I 

I 
// 

I 

' 
' ' 

10° 

Fig. 4. Solid lines correspond to numerical results for c=l, and dotted lines for c=0.5. In 
the small wavenumber region, x.C~<III.\')) and r. behave as k-' and k'l', respectively. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

7
/3

/7
3
4
/1

9
4
0
8
5
6
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



744 H. Fujisaka and T. Yamada 

results are shovn1 by the dotted lines m 

Figs. 4(a), (b). The curve in the small 

wavenumber region has a tendency to 

agree vvith the simulation, but a quantita

tive agreement is not still good. More

over, even under the above improvement, 

there appears no hump. As will be dis

cussed in § 4, the hump seems to be 

caused by the memory effect21 ' ·which be

comes crucial in one-dimensional case. 

Figure 5 shows the numerical result 

of 7?- 3 /'_k v·s 1~ in the large wavenumber 

region. The qualitative agreement with 

00 r-------,----,---------, 

-5.0 

-10.0 

2.0 
k 

3.0 40 

Fig. 5. Numerical reo;ult of Dk:=:Jog1o (k- 3xk) 

vs k in the di:;sipative region. 

the theoretical prediction (3 · 24) is clear. The unknown constant A. is about 8. 7. 

We have analyzed the simulation in the large wavenumber region, and have found 

that for k> 1 the form (3 · 24) is more fav·orable than a simple povver-law spectrum. 

§ 4. Summary and discussion 

It has been shown that the chemical turbulence which vvas numerically found 

by Kuramoto and one of the present authors 8' can be theoretically investigated 

vvith the methods similar to the hydrodynamic case. We have derived self-con

sistent equations for the variance J::k(-(!6k!')) and the renormalizecl clamping rate 

T'k, which have the same form as Kraichnan's direct interaction approximation, 18' 

if a Markoffian approximation is adopted in the latter. 

Qualitative agreements of the present results with the computer simulation 

have been also shovvn in the two limits; the cascade region with k~_i;-l and the 

dissipativ-e region with k>;-1. In the whole 1~ region Xk and rk haYe the scaling 

formulae T'k=;··:t(k;) and lJ=;- 3g(k;), f(x) and g(x) being uniYersal functions 

of x. The functions f and g behave as x 3 '[:r'J and .x- 2 [:r3exp( -A.:r)], respec

tively, in the cascade [dissipative] region. It should be emphasized that these 

two limiting regions obey the different scaling (2 ·16) and (2 ·18). In the lowest 

order approximation quantitative agreements in the cascade region is not so good. 

However, by including the vertex corrections of 1:1 this disagreement tends to be 

imprcJYecl. 

Qualitativ-e features in the middle wavenumber region (/.c=/;- 1) cannot be 

comprehensible even by including the vertex corrections. This difficulty may be 

attributed to the Markoffian assumption. Expanding (3 ·13) as 

(4·1) 

we can evaluate the memory effect, obtaining [iwl:/ (k, 0) /1:1 (k, 0)] ~0.59. This 

correction is rather large, and the non-Markoffian corrections seem to have impor-
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tant effects on the decay processes. In fact, in one-dimensional case a long-time 
tail appears and plays a crucial role in various phenomena. 211 

Therefore, in order to study the present model in a more precise way, the 
original equations (3 · 7) and (3 · 8) ,,-ith (3 ·13) and (3 ·14) are hoped to be 

solved. 

The extension of the present formalism to higher dimension can be made 
straightforward. This problem is also hoped to be studied elsewhere. 
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