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Abstract

Microphone arrays as a means of sound field acquisition have been the topic of extensive research

for more than eight decades now. A number of designs have been suggested, each trying to overcome

difficulties that are inherent to either the decomposition of the sound field, the transducers in use

or the presence of the array itself. This work presents a theoretical analysis of circular microphone

arrays that do not measure the sound pressure but the component of its gradient that is tangential

to a given boundary. Its performance is compared to that of a conventional pressure sensor array

as a benchmark. The focus of the analysis and subsequent assessment lies on spatial aliasing and

performance in the presence of noise.

1 Introduction

The general idea behind microphone arrays is to record sound not only at one point in space, but to

capture information about the sound field, such as the direction of travel of incoming wave fronts.

Although it is not necessarily the main objective, one ambitious application of microphone arrays is to

make a recording of the entire sound field. While in theory this goal can be achieved easily [1], there

are various limitations in practice that will degrade the accuracy of the results. Examples of limiting

factors are acoustic transducer noise, impractical requirements on the measurement resolution and

assumptions on the sound field that cannot be satisfied in practice. Therefore, the focus of the latest

research has been on finding means and ways to overcome those limitations.

The field of array technology is vast and certainly not limited to acoustical applications. For

example, Van Veen and Buckley presented a general work on array technologies for beamforming ap-

plications in wave fields [2], among which are e.g. antennas, sonar systems and microphone arrays.
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Krim and Viberg presented beamforming with sensor arrays as a problem in the field of signal process-

ing, based on a wave propagation model [3] and considering different array geometries. Even though

not conceptually limited, this work focuses on airborne wave fields and circular (or cylindrical) arrays.

The earliest approach to a pressure sensor array in the field of airborne acoustics that was ap-

plied to make recordings for stereophonic purposes was presented by A. Blumlein [4, 5], which had

later been modified into using two coincident pressure gradient (figure-of-eight) microphone capsules

(also referred to as a ”Blumlein-pair”). This recording technology is still used by today’s recording

engineers, yet it only allows for a two dimensional analysis of the sound field. The first approach

to achieve a three dimensional analysis was based on decomposition of the sound field by means of

spherical harmonics and was presented by Craven and Gerzon [6], thereby founding the ambisonics

technique. The ambisonics approach and also the Higher Order Ambisonics (HOA) approach involve

the representation of a sound field as a weighted series of elementary functions in the spatial domain.

These functions are determined by the underlying spherical coordinate system, leading to an infinite

set of both radial (Bessel- and Hankel-functions) and angular (spherical harmonics) functions. Their

form is independent of the sound field itself, ergo the individual weights of the series are sufficient in-

formation to know the sound field in its entirety. This is similar to the Fourier analysis presented in [1].

However, it has proven itself difficult to find reliable ways to obtain these weights from measurements.

The general approach of preceding works [7–10] relies on the exploitation of the orthogonality

relation of the underlying basis functions and on its application to the array’s measured data. One

variation of this approach was presented by Rafaely and Park [11, 12], who proposed to decompose

the sound field into plane waves, which however still involves the exploitation of the orthogonality

relation of spherical harmonics. The latter plays a major role in many microphone array designs,

but in order for these relations to hold without exception, the sound field must be observed at every

single point on the observation boundary. This is so far not feasible in practice, since the number of

observation points would need to be infinite. The practical solution is to sample the sound field on that

boundary instead. Sampling is however bound to cause aliasing if the observed object’s complexity is

not within the limitations imposed by the sampling scheme. This is already well known in the field of

digitalisation of time domain signals. A thorough analysis of aliasing phenomena in spherical arrays is

presented in references [8, 9, 13]. However, aliasing still remains one of the most prominent problems

in microphone array design.

Rafaely also identified noise of the array’s sensors and inaccuracies in their positioning as significant
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sources of error, and presented a detailed analysis of these issues in [8]. Supporting these results, Poletti

has shown that noise induced by the capsules of the array is a problem, especially at low frequencies,

because the recovery of the information describing the sound field from the array’s observation requires

considerably high gain factors for higher order modes. He showed that, for a spherical array with

pressure sensors on a rigid sphere, the presence of noise may already pose a fundamental problem for

the recovery of the fourth order mode, even with a large dynamic range of 120 dB for each capsule [14].

Fazi and Nelson presented the theory and analysis of the problem of nonuniqueness [15], as it

occurs in the context of sound field acquisition and reproduction, significantly affecting the design of

microphone arrays.

For applications in which it is sufficient to consider the sound field in two dimensions only, circular

arrays have been investigated as an alternative to spherical arrays. One such application would be a

teleconference scenario where one part of the participants is situated at a table and the array serves to

separate the individual speakers into individual audio signals. Another example is that of a humanoid

robot that needs to distinguish between people addressing him from different directions, so it can then

turn towards them. Meyer presented a work on beamforming in combination with circular microphone

arrays mounted on spherical objects and already considered the use of pressure sensors as well as dipole

sensors [16]. Teutsch and Kellermann have investigated the theory and practicability of a circular array

fitted into a cylindrical baffle for source detection and localisation purposes [17]. Kleider et al. [18]

investigated the aliasing behaviour of circular arrays based on a two dimensional analysis of the sound

field, while Meyer and Elko [19] used a circular array to achieve modal beamforming, still assuming a

spherical (three dimensional) sound field model. Poletti [20] investigated the performance of circular

arrays w.r.t. noise and transducer variability.

Ever since Blumlein proposed the recording technique based on pressure gradient sensors, the choice

of sensors used in microphone arrays was mainly that of pressure sensors. Meyer investigated the use of

dipole sensors in a circular array arranged on the equator of a sphere [16]. His work considered radially

aligned dipoles as well as dipoles aligned in the circumferential direction. Poletti has considered the

application of directional sensors in an open sphere design pointing radially outward, and he found that

the problem of nonuniqueness as it occurs with pressure sensors can be overcome [14]. Another more

recent design based on differential sensors was presented by Craven, Law and Travis, who proposed a

spherical array based on tangential velocity sensors [21]. They found that such a design allows for a

reduced effect of noise at lower frequencies. As theirs was a conceptual study, a theoretical analysis
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of the design has so far not been presented.

On the background of the work of Craven, Law and Travis, it should be noted that, in homogeneous

sound field conditions, the pressure gradient relates to the velocity by Euler’s equation. On the surface

of a rigid object, however, this relation is no longer valid and needs to be replaced by a set of equations

describing the laminar sound field behaviour within the acoustic boundary layer. These can be derived

from the Navier-Stokes equations. A detailed analysis of this is not within the scope of this work, but

should be mentioned for the sake of completeness.

In this study, a theoretical analysis of a circular microphone array is presented, where the array

is composed of sensors that measure the tangential component of the pressure gradient. An initial

study of this design was presented by the authors in reference [22]. This work complements the initial

work with further theoretical and numerical in-depth analysis, as well as with an investigation of the

noise and aliasing performance and the array’s optimal frequency band. In Section 2, a mathematical

model of the sound field is presented that is based on the Herglotz Wave Function, modelling a sound

field as a superposition of plane waves. The relation between the sound field and the observation

of the microphone array is expressed by means of an integral operator. This leads to an inverse

problem, which is dealt with in a functional analysis framework. This mathematical approach is not

very common in the field of transducer array research, but it is a very neat and effective tool to

perform the type of analysis this work presents. It has been applied in previous work by Colton and

Kress [23] and by Fazi [24]. In Section 3, the presented array model is discretised and a thorough

analysis of the array’s aliasing behaviour is undertaken. Section 4 provides a simulation based study of

the array’s performance for the measurement of the approximated sound field of a single plane wave,

comparing the recovered sound field information to the theoretical results, evaluating the overall error

of the recovery and discussing the significance of aliasing and transducer noise as a problem. The final

section summarises the findings of this work and gives a brief overview on upcoming research.

2 Model of the Sound Field

For the subsequent analysis, a mathematical model describing the pressure of an arbitrary sound

field within a given region of space (or area, in the two-dimensional case) Λ is needed. The model

relies on the assumption that the measured sound field can be represented as the superposition of an

infinite number of plane waves. This model is particularly useful when considering a limited number
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Figure 1: (left) Schematic description of the volumes and boundaries involved in the sound field model,
(right) schematic description of an infinite cylinder of radius rV .

of incoming plane waves (see Section 4). When dealing with spherical or cylindrical geometries, it is

convenient to represent the plane wave model by means of Fourier expansion. This is the approach

chosen in this work.

2.1 Plane-Wave Decomposition

The equation

p(x, ω) =

∫

Ω
H(x, ŷ, ω)q(ŷ, ω)dΩ(ŷ), x ∈ Λ, (1)

as given in [25], describes the acoustic pressure at an arbitrary position x as a linear superposition of

an infinite number of plane waves travelling into all possible directions ŷ, where ŷ is a unitary vector.

ω = 2πf denotes the angular frequency corresponding to the acoustic frequency f and Ω represents

the unit sphere or circle in R
3 or R2, respectively. The above integral equation is also referred to as the

Herglotz Wave Function (HWF) [25] where the Herglotz density (HD) q(ŷ, ω) describes the complex

amplitude of the different plane waves. These are expressed by the kernel H(x, ŷ, ω) = eikx·ŷ, where

i =
√
−1 is the imaginary unit and k is the acoustic wave number1. In principle, equation (1) is

valid for Λ = R
3 (or Λ = R

2), provided that the sound field satisfies the homogeneous wave equation

in that domain. In practice, this equation is often used to represent a sound field that satisfies the

homogeneous wave equation only in a bounded domain Λ.

This representation is used as a foundation for the theory of the baseline microphone array design,

using pressure sensors only. For the sake of brevity, the argument ω is omitted in all equations used

hereunder, since all calculations are derived for a single frequency ω.

1Note that the Herglotz Wave Function as given in [25] uses a complex conjugate kernel e−ikx·ŷ instead, since Fazi et
al. define ŷ as the direction of arrival, instead of the direction of propagation.
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In the subsequent analysis, all considerations are limited to a two-dimensional scenario, assuming

that the sound field is constant along the x3-axis with

p(x1, x2, x3) = p(x1, x2). (2)

This is a common means of simplification when a height-invariant sound field is observed on the

boundary δV of an infinitely long cylinder extending along the x3-axis, as depicted in Fig. 1. The

assumption given in equation (2) then allows for another simplification from cylindrical coordinates

to polar coordinates, so that

x1 = rx · cosφx, and (3)

x2 = rx · sinφx, (4)

where φx = arctan x2
x1

is the polar angle of a vector x = [x1, x2]
T .

Since this study aims at an array design observing the tangential component g of the pressure

gradient, an expression similar to (1), relating the HD and the tangential pressure gradient (TPG)

component, needs to be found. With the assumptions made in the previous paragraph, the latter is

defined by the scalar product

g(x)

∣
∣
∣
∣
x∈∂V

= ∇p(x) · b(x). (5)

∂V denotes the boundary of the microphone array which embeds all the observation points2 or sensors,

respectively. b(x) represents the unit vector pointing in the direction tangential to ∂V at the obser-

vation point x. It is important to realise that, depending on the chosen coordinate system and on the

shape of ∂V , the analytical expression for g given by (5) may become considerably more complicated.

Let ∂V be a circle of radius rV . Using the Jacobi-Anger expansion [23]

eikx·ŷ =
∞∑

n=−∞
inJn(krx)e

inφxe−inφy , (6)

to replace the kernel, equation (1) can be reformulated in polar coordinates, thus obtaining

p(rx, φx) =

∞∑

n=−∞
inJn(krx)e

inφx

∫ 2π

0
e−inφyq(φy)dφy. (7)

2This denomination is compliant with the work of Williams [1], chapter 8, page 258.
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φx and φy correspond to the polar angles of x and ŷ, respectively. Jn(krx) denotes the Bessel function

of order n and describes the radial component of the sound field. To allow for modelling either free

field conditions (FF) or the sound field in the presence of a rigid infinite cylindrical scatterer (CS) of

radius rs at the origin, Jn(krx) needs to be replaced by a more general radial function Rn(krx). For

reasons of brevity, the complex factor in in (7) is also included in this radial function, so that the

latter is defined by

Rn(krx) = in







Jn(krx) , FF

Jn(krx)− J ′

n(krs)

H
(1)′
n (krs)

H
(1)
n (krx) , CS

(8)

where H
(1)
n (x) denotes the Hankel function of the first kind of order n, and J ′

n(krs) and H
(1)′
n (krs)

are the derivatives of the Bessel function and the Hankel function, respectively, evaluated at the

boundary of the rigid cylindrical scatterer. The derivation of Rn(x) can be found in [1], Section 6.10.

For rs = rV , the tangential component of the pressure gradient on ∂V is now a function of φx only

and is given by [1]

g(φx) =
1

rx

∂p(rx, φx)

∂φx

∣
∣
∣
∣
rx=rV

. (9)

Equations (7) and (9) then provide the relation between the HD q(φy) and the pressure on ∂V and its

gradient, respectively. In order to obtain q(φy) from the observed pressure p(φx) or from its gradient

g(φx), respectively, the corresponding integral equations need to be solved for q(φy).

A common approach [8,14,26] to obtain a solution, based on the observation of the pressure, is to

represent the HD by a Fourier series

q(φy) =

∞∑

m=−∞
qm

eimφy

√
2π

, (10)

where

qm =

∫ 2π

0
q(φy)

e−imφy

√
2π

dφy. (11)

Replacing q(φy) in (7), replacing inJn(krx) with Rn(krx) and using the orthogonality relation

∫ 2π

0
eimφe−inφdφ = 2πδm,n, (12)
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leads to the expression of the Fourier coefficients

qm =
1

Rm(krV )(2π)
3
2

∫ 2π

0
e−imφxp(φx)dφx, ∀m ∈ Z. (13)

It is important to realise that this approach leads to a unique solution only if Rm(krV ) 6= 0, ∀m ∈ Z, ∀k.

Similarly, as Rm(krV ) can converge to zero for high values of m, a solution may exist and be unique,

yet be potentially unstable. As shown below, such a solution based only on the observation of the

TPG on a boundary ∂V recovering all coefficients qm,m ∈ Z cannot be found. This poses a significant

problem to the intended array design.

Nevertheless, a derivation similar to that shown in the previous paragraph and based on equation

(9) would lead to a very similar solution, however, only for this particular geometry. For the sake of a

more general approach, the recovery of q(φy) from g(φx) is derived in the following subsection, using

functional analysis as a tool.

2.2 Analysis of the Integral Operator G

The two quantities of major interest in the given sound field model are the HD q(φ) and the pressure

gradient g(φ). Both q(φ) and g(φ) are assumed to be square-integrable and are considered as elements

of an open Hilbert space A. Furthermore, it is assumed that q and g can be described through an

infinite weighted sum of orthonormal basis functions an(φ) ∈ A.

q(φ) =
∞∑

n=−∞
qnan(φ), qn ∈ C, and (14)

g(φ) =
∞∑

n=−∞
gnan(φ), gn ∈ C. (15)

Note that, since both functions are elements of A, the indices x and y of both r and φ have been

dropped in the following. The operator H is defined by evaluating equation (7) only for x ∈ ∂V and

by replacing Jn(x) by Rn(x), yielding

(Hq) (x) := p(φ, rV )

=
∞∑

n=−∞
Rn(krV )e

inφ

∫ 2π

0
e−inφ′

q(φ′)dφ′,x ∈ ∂V,
(16)
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with H : A → A, which is of no further interest in this study. However, replacing p in (9) by (16)

leads to the integral equation

g(φ) =
∞∑

n=−∞
Rn(krV )

1

rV

∂

∂φ

(

einφ
)∫ 2π

0
e−inφ′

q(φ′)dφ′, (17)

that is similar to (16). This equation defines a new integral operator G : A → A that maps a given

HD q(φ) to the corresponding pressure gradient g(φ) on ∂V :

(Gq)(x) := g(φ)

=
∞∑

n=−∞
Rn(krV )

in

rV
einφ

∫ 2π

0
e−inφ′

q(φ′)dφ′,x ∈ ∂V.
(18)

This equation perfectly describes what a TPG sensor located at φ observes in a sound field that is

defined by the HD q(φ). This result was presented before in [22] and is also very similar to what Meyer

described in principle for dipole sensors aligned with a circumferential orientation on the equator of a

sphere [16].

Aiming at a more general approach to aliasing analysis, the following subsection briefly introduces

the eigenvalue decomposition of G.

2.3 Eigenvalue Decomposition (EVD) of G

G has been identified as a mapping operator from a function q(φ) ∈ A to a function in g(φ) ∈ A. For

a better understanding of the relation between q and g, G is analysed w.r.t. how the strength of a

mode (see below) of q is transmitted to the corresponding mode of g.

The eigenvalue decomposition of the operator G is based on the equation

(Gan)(φ) = λnan(φ), (19)

where λn denotes the eigenvalue associated to the corresponding eigenfunction an(φ) of G, where the

latter is hereafter referred to as a mode. The eigenvalues and eigenfunctions of G for the case under
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consideration are

λn = 2π
inRn(krV )

rV
, (20)

an(φ) =
einφ√
2π

. (21)

When comparing equation (18) to the results of the EVD (equations (20) and (21)), it can be assumed

that the operator G can be written as follows:

(Gq)(φ) =
∞∑

n=−∞
an(φ)λn 〈an|q〉Ω = g(φ). (22)

This expression may be interpreted as the spectral decomposition of the compact operator G [23],

where 〈f |g〉Ω =
∫

Ω f∗(x)g(x)dΩ(x) describes the scalar product of two functions in A. This scalar

product serves to extract the coefficient qn of the nth mode an as a component of q. The extracted

mode strength qn is then weighted by the corresponding eigenvalue λn and multiplied with the mode

itself again. This formulation allows for the interpretation of the eigenvalues as coupling factors that

describe how the mode strength in q(φ) is transformed to the resulting function g(φ) [24].

It is evident that not all eigenvalues are non-zero. The most trivial case is that of λ0 = 0, which

corresponds to the mode a0(φ) =
1√
2π
. This result implies that a constant

q(φ) = κ ∈ C, (23)

is an element of the null space N(G) of the operator G. This can be easily proven when evaluating

equation (18) for a constant q. In fact, the latter is still of the form given in (14) and, hence, an

element of A, where qn = 0, ∀n 6= 0. Further zero eigenvalues can arise from an open cylinder array

design when Rn(krV ) = 0. The null space of G has a crucial influence on the existence of a unique

solution to the inverse problem, as shown in subsection 2.5.

2.4 The Eigenvalues λn

A deeper analysis of the eigenvalues provides a theoretical insight into the system’s vulnerability to

both aliasing and transducer noise. The latter becomes a problem when the observation g(φ) is heavily

amplified for the recovery of a coefficient qn, while the former is an inherent product of discretisation.
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The influence of the eigenvalues on the aliasing behaviour is investigated in more detail in Section 3.

In this section, the noise performance is analysed. First, it is necessary to analyse how the strength

qn of a mode an(φ) in q(φ) is transformed into the corresponding mode strength gn in g(φ). With

g(φ) = (Gq)(φ) and comparing the different factors in equations (22) and (15), it can be seen that the

following equation must hold:

gn = λn 〈an|q〉Ω = λnqn. (24)

As the scalar product simply extracts the strength of the nth mode from q(φ), it is evident that the

eigenvalues serve as complex gain factors. When assessing the theoretical performance of microphone

arrays, it is more interesting to study the above equation after rearranging it for qn. This yields

qn =
1

λn
gn, for λn 6= 0. (25)

This shows that the desired mode strength qn is calculated by extracting gn from the array observation

and then weighting it by 1
λn

. However, for very small λn, the fraction in (25) becomes very large. In

such a case, when gn happens to be slightly corrupted by measurement noise, the resulting qn is very

likely to significantly deviate from the actual value, as the noise component in gn is heavily amplified.

To define if the problem introduced above is of any practical significance, the behaviour of the

eigenvalues as a function of frequency needs to be analysed. Fig. 2 shows the graphs of the magnitude

of the first3 seven non-zero eigenvalues (n = 1 . . . 7) within the audible frequency range. It can be
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Figure 2: Magnitude of the eigenvalues |λn| of G for n = 1 . . . 7, f = 10 . . . 20 · 103 Hz for an array on
a rigid cylindrical structure at the origin with rV = 0.1 m.

observed that the development of eigenvalues of different orders for a TPG array roughly compares to

3Since the eigenvalues have not been ordered so far, the term ’first’ simply refers to the index n.
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that of the eigenvalues of the operator H

νn = 2πRn(krV ) (26)

for a conventional pressure sensor array, which is presented in Fig. 3. An analogous plot was already

presented by Meyer [16] for a circular array mounted on the equator of a sphere and by Elko and

Meyer [7] for the case of spherical arrays. Poletti presented an equivalent plot for a spherical array

with radially aligned first order sensors [14].
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Figure 3: Magnitude of the eigenvalues |νn| of H of a conventional array based on pressure sensors on
a rigid cylindrical structure with rV = 0.1 m for n = 0 . . . 7, f = 10 . . . 20 · 103 Hz.

Two major differences between the two figures are that, firstly, Fig. 2 does not include λ0 and,

secondly, the additional component |n|
rV

, which does not affect the shape of the individual graph (in a

dB scale) but translates them vertically.

In conclusion, similar to an array using radially outward pointing gradient sensors [14], the design

investigated in this work is expected to achieve a better noise performance than arrays with pressure

sensors [21]. This is not only the case at low frequencies but overall because of the additional gain

component mentioned above. Of course, this statement relies on the assumption that pressure gradient

sensors and pressure sensors are of equal quality. However, for n = 7, the gain that needs to be applied

to the measured g7 for the recovery of q7 is approximately +25 dB at f = 1 kHz and rV = 0.1 m

with the TPG sensor array, while it is more than +50 dB for the same scenario with a pressure sensor

array. This leads to the assumption that a TPG sensor array allows for an increased spatial resolution

in scenarios with transducer noise (see Section 4).

While the overall development of the eigenvalues appears to make the array more robust against

noise, the additional component |n|
rV

, which depends linearly on the order n, reduces the system’s

robustness against aliasing. This is further investigated in Section 3.
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2.5 Solution of the Inverse Problem

In order to retrieve q(φ) from the observation of g, it is necessary to invert G. Considering equation

(22) and taking into account that the basis functions are orthonormal, the solution to the inverse

problem is

q̃(φ) =
∞∑

n=−∞
n 6=0

an(φ)
1

λn
〈an|g〉Ω =

∞∑

n=−∞
n 6=0

an(φ)q̃n. (27)

From equation (27), it is evident why, in order for q̃ to be bounded, the mode a0(φ) corresponding to

the eigenvalue λ0 = 0 must be excluded from the solution. As a matter of fact, the mode a0(φ) is in

the null space of the adjoint operator G∗ and therefore does not satisfy the first Picard condition for

the uniqueness of a solution [23,24]. Furthermore, considering equation (20) it is also evident why the

solution does not exist when

Rn(krV ) = 0. (28)

The limitation implied by (28) is a well-known problem in the field of microphone array research [14,15],

which is often overcome in practice by choosing designs based on a rigid array structure.

Another requirement for the solution to be bounded is that the expression

∞∑

n=−∞
n 6=0

| 〈an|g〉Ω |2
λ2
n

< ∞

is satisfied, which corresponds to the second condition of Picard’s theorem. In theory, this is potentially

not satisfied; however, the order truncation discussed in Section 3 ensures that this condition is always

satisfied. Finally, the explicit expression of the solution is

q̃(φ) =
∞∑

n=−∞
n 6=0

einφ
−irV

4π2nRn(krV )

∫ 2π

0
e−inφ′

g(φ′)dφ′. (29)

It follows from (27), (29) and (12) that the series coefficients are given by

q̃n =
−irV

(2π)
3
2nRn(krV )

∫ 2π

0
e−inφ′

g(φ′)dφ′, ∀n ∈ Z\{0}. (30)

Equations (29) and (30) have already been presented in [22] but they were derived from a Singular

Value Decomposition instead. The result in (30) is very similar to that given in (13). The minor
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difference in the denominator of the fraction is due to the use of the TPG instead of the pressure

itself.

The solution presented above leads to a valid HD. However, it is crucial to realise that, since the

nullspace of G (see eq. (23)) is non-trivial, the solution q̃(φ) recovered from the observation of g may

differ from the original HD q(φ) by an additional constant factor α, because any solution

q(φ) = q̃(φ) + α, α ∈ C (31)

is also a solution. This must be the case since α = q0 (compare eq. (11) for m = 0), which can also

be extracted from q(φ) by exploiting orthogonality (see eq. (12)).

The zero-order mode represents the direct component q0 in (14). The physical interpretation of this

mode is most easily understood, considering the source-receiver reciprocity, as the sound field generated

by a breathing cylinder, i.e. an outgoing or incoming wave with a constant magnitude and phase for

all angles at a fixed radius rV . This can be easily proven by evaluating (7) for q(φ) = q0a0(φ) =
q0√
2π
.

As a consequence, the TPG g is not affected by a direct component q0 of q, which unfortunately

implies that q0 cannot be recovered from the knowledge of g. Moreover, the implicit assumption made

in this section, that q0 = 0, imposes a significant restriction to generality.

These findings are rather discouraging, considering the original objective to capture an entire sound

field from an array consisting of TPG sensors only. Nevertheless, it is shown below that this problem

can be overcome in certain conditions by adding one or more pressure sensors to the array.

3 Discretisation and Aliasing Analysis

Similar to the sampling of a time domain signal, the sampling of the pressure gradient on a circle

with radius rV leads to spatial aliasing effects, if the sound field contains modes of higher order than

those captured by the array. These higher order modes are bound to corrupt the observed modes. An

odd number L of TPG sensors distributed uniformly on the circle allows for the recovery of modes

an(φ), |n| ≤ N with

N =
L− 1

2
. (32)

The reconstruction of a sound field containing modes of order higher than N is investigated in the

following. For reasons of brevity, the argument of the radial functions Rn(krV ) has been omitted
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hereunder.

The integral in (30) is discretised with L sampling points and the equation is then rewritten as

q̃n =
−irV

nRn(2π)
3
2

L∑

l=1

e−in∆φlg(∆φl)∆φ, ∀n ∈ Z\{0} (33)

where ∆φ = 2π
L is the angular spacing between neighbouring sensors.

3.1 The Aliasing Pattern

Replacing g by the series expansion given in (15) and using (21) leads to

q̃n =
1

λn

∞∑

m=−∞
gmAm,n, (34)

where the factors

Am,n =
1

L

L∑

l=1

e−in∆φleim∆φl =







1 ,m = n+ uL, u ∈ Z

0 , otherwise

(35)

are the elements of a matrix that describes the aliasing pattern of the system. The results in (34)

and (35) have already been found in a similar form by Poletti in [20]. Fig. 4 shows the values of

(35) evaluated for a circular array with L = 15 microphones and n ∈ [−7, . . . , 0, . . . , 7] and m ∈

[−22, . . . , 0, . . . , 22]. Black cells indicate values of Am,n that are different from zero, hence indicating
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Figure 4: Visualisation of the orthogonality matrix Am,n for a circular array with L = 15 microphones.
Each cell represents whether two modes am and an are orthogonal (white cell) or not (black cell), when
sampled at L points on a circle. The two light grey lines indicate the mode range (±N) of the array.

15



a pair of modes that are not orthogonal to each other. As such, Fig. 4 is a good indicator of which

modes n recovered by the array are corrupted by modes of order m of the sound field - in other words,

aliasing. For example, a recovered coefficient q̃7 of the mode corresponding to n = 7 is corrupted by

aliasing, if the sound field contains modes of order m = 7 + uL, u ∈ Z, i.e. m = −8 and m = 22 as

given in Fig. 4.

Repeating the same steps as above, starting from equation (13) leads to the same orthogonality

matrix Am,n for an array composed of pressure sensors. This shows the aliasing scheme to be the same

for both array types.

Using eq. (24) in (33) and exploiting (35) leads to the following equation describing precisely the

aliasing behaviour

q̃n = qn +
∞∑

u=−∞
u 6=0

λn+uL

λn
qn+uL. (36)

Following mathematical passages similar to those presented above, it can be easily shown that equa-

tions (24) and (36) are the same for a pressure sensor array but with different eigenvalues νn [24].

The ratio of two eigenvalues
λn+uL

λn
in (36) has a major effect on the vulnerability to aliasing. The

reason for this can be seen from the graphs of the eigenvalues in Fig. 2. The additional factor |n| leads

to an amplified contribution of aliased modes on the TPG observation. It can therefore be expected

that for the proposed design the aliasing induced at high frequencies by high order modes is worse

compared to that of pressure sensor arrays for which the ratio |νn+uL

νn
| remains close to one (compare

to Fig. 3 and the results in [14]). However, since the maximum of λn shifts towards higher frequencies

with increasing n (see Fig. 2), this effect is only relevant up to a certain ua where
λn+uaL

λn
< 1.

Considering the case of n = 0, Fig. 4 does not give any information on the aliasing pattern for the

0th order mode since q0 cannot be recovered from an array using pressure gradient sensors only. To

overcome this limitation, the array needs to be extended by at least one pressure sensor, leading to

an overall amount of L+ 1 sensors.

A linear algebra formulation of the mode recovery problem is introduced in the following subsection

and then one additional pressure sensor is included into the system.
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3.2 Mode Recovery using Linear Algebra

In the following, the objective is to recover modes up to order N from the data acquired with L

sensors. For a given HD with limited order N (aliasing free case)

q(φ) =

N∑

n=−N

qnan(φ), (37)

the result of equation (18) can be rewritten as a function of the coefficients qn. Using (15), (21) and

(24) yields a solution for the TPG with limited order N , given by

g(φ) =
N∑

n=−N

in

rV
Rn

√
2πeinφqn. (38)

The expression of (38), when evaluated for all L observation points, leads to a system of linear

equations, which can be written using matrix notation:

g =









g(∆φ · 1)
...

g(∆φ · L)









L×1

= HJ



















q−N

...

q−1

q1
...

qN



















2N×1

= HJq, (39)

where

J =
i
√
2πL

rV
· diag(−NR−N , . . . ,−R−1, R1, . . . , NRN ) (40)

and

H =
1√
L









e−iN∆φ1 · · · e−i1∆φ1 ei1∆φ1 · · · eiN∆φ1

...
...

...
...

e−iN∆φL · · · e−i1∆φL ei1∆φL · · · eiN∆φL









. (41)

Note that the mode coefficient q0 is not included in any of these equations. In order to recover the mode

vector q from the observations g, the linear equation system needs to be solved by matrix inversion. J

is a diagonal matrix is therefore trivial to invert. However, with L > 2N , the overall equation system
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is overdetermined, hence H needs to be inverted by its Moore-Penrose Pseudoinverse [27]

H† = (HHH
︸ ︷︷ ︸

I2N

)−1HH = HH , (42)

where I2N denotes the 2N × 2N unity matrix. The least-squares estimate q̃ of q based on the

observations g is then given by

q̃ = J−1HHg = J−1HHHJ
︸ ︷︷ ︸

I2N

q = q (43)

and hence even an exact solution. This is because the chosen g has no components in the nullspace of

HH and is order-limited (aliasing free case). An alternative way to obtain the weights qn is given by

equation (33).

In the next subsection, the recovery of the 0th mode is described.

3.3 Recovery of the 0th Mode using an additional pressure sensor

An additional pressure sensor located at φ = φp is used as a means to recover the coefficient q0, when

all other sensors are TPG sensors.

Similar to the TPG in (38), the pressure at φp can be expressed as a function of qn, where the HD

q(φ) has still a limited order N . Combining (16) and (10) leads to

p(φ) =
N∑

n=−N

Rn

√
2πeinφqn. (44)

This sum can also be expressed using linear algebra:

p(φp) =
[√

2πR0 b
]






















q0

q−N

...

q−1

q1
...

qN






















(45)
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with

b =
√
2π
[

R−Ne−iNφp · · ·R−1e
−i1φp R1e

i1φp · · ·RNeiNφp

]

.

With the recovery of all 2N + 1 coefficients but q0 from the TPG observation, the only unknown in

equation (45) is q0. Using the result for q̃, the solution for q̃0 is then given as

q̃0 =
1√
2πR0

[p(φp)− bq̃] = q0, (46)

which is also an exact solution when (38) is satisfied.

An equivalent formulation of the same result is to comprise the full array observation g and p(φp)

in an extended equation system

ge =






p

g




 = Y






q0

q




 = Yqe, (47)

Y =






√
2πR0 b

0 HJ






(L+1)×(2N+1)

, 0 =








0
...

0








L×1

.

The system matrix Y is a composition of different matrices and vectors, which clearly limits the

contribution of the 0th mode to the observed pressure p. The subscript e serves to distinguish between

the original and the extended vectors. In the light of the results found in (42), (43) and (46), the

Moore-Penrose Pseudoinverse of Y is of the form

Y† =






1√
2πR0

v

0 J−1HH




 , (48)

which has been confirmed by numerical results. As already implied by eq. (48), it is clear that p in

ge is not used to recover any coefficients other than q0, because the contribution of q0 to p cannot be

compensated for, in general, by a linear combination of the elements of g.

In fact, the analytic expression of the vector v can be derived from the findings above. From (43),
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(46) and (48) it is evident that v needs to satisfy

−1√
2πR0

bq =
−1√
2πR0

bJ−1HHg = vg (49)

=⇒ v =
−1√
2πR0

bJ−1HH . (50)

The L components of v are therefore

vl =
irV
LR0

N∑

n=−N
n 6=0

1√
2πn

einφP e−in∆φl, l ∈ [1, . . . , L]. (51)

The expression in (49) defines v uniquely, since g can be any element of an L dimensional vector

space.

The final result for all recovered mode coefficients is

q̃e = Y†ge. (52)

It has been shown that, provided the HD q(φ) defining the sound field leading to the observation of

ge does not contain any modes an(φ), |n| > N , the application of the Moore-Penrose Pseudoinverse

Y† leads to an exact solution for q̃e, and all coefficients qn, including the 0th order coefficient q0, are

recovered correctly.

Unfortunately, sound fields are typically not order-limited. The aliasing pattern for an array

observing the TPG only has already been presented in subsection 3.1; the consequences of aliasing on

the recovery of q0 are investigated in the following subsection.

3.4 Robustness of the 0th Order

It has been shown in the previous subsection that the mode coefficient q0 can be recovered successfully

if the condition

qn = 0, ∀|n| > N (53)

is satisfied (compare to eq. (46)). This subsection deals with the recovery of the coefficients qn in the

presence of spatial aliasing.

For a HD of infinite order, equation (36) describes exactly how the elements of q̃ are distorted, yet
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it does not predict how q̃0 is affected. Evidently, from equation (46) it can be seen that a recovered

coefficient vector q̃ corrupted by aliasing also results in an inaccurate recovery of q0, namely

q̃0 6= q0.

As a consequence, q0 can only be recovered accurately if (53) holds. Whenever this condition is not

satisfied, not only are the observed coefficients q̃ degraded in accordance with the scheme given by

orthogonality matrix Am,n, but q0 is subject to aliasing.

In conclusion, the aliasing pattern of the array with the additional pressure sensor can only partially

be described by Am,n as the corruption of the 0th order mode is not accounted for. Fig. 5 qualitatively

indicates the resulting orthogonality matrix Ãm,n obtained after combining Am,n with the effect that

corrupted higher orders q̃n, 0 < |n| ≤ N have on the 0th order.
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Figure 5: Schematic visualisation of the new orthogonality matrix Ãm,n for a circular array with
L = 15 TPG sensors and one pressure sensor. The two light grey lines indicate the mode range (±N)
of the array.

When comparing the aliasing patterns in Fig. 4 and Fig. 5, it can be seen that the TPG sensor

array with an additional pressure sensor is more vulnerable to aliasing than a system based only on

pressure sensors.

3.5 HD Coefficients of the Sound Field of a Plane Wave

The HD of a single plane wave of unity magnitude travelling in the direction φi is given by

q(φ) = δ(φ− φi). (54)
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This leads to the following TPG

g(φ) =
1

rV

∞∑

n=−∞
inRne

inφe−inφi . (55)

The Fourier coefficients of the HD given in (54) are

qn =

∫ 2π

0
q(φ)

e−inφ

√
2π

dφ =
1√
2π

e−inφi . (56)

For comparison with the work of Williams [1], the following equation describes the relation between

the coefficients used in this work and the helical wave coefficients Cn in Williams’ work (compare [1],

Section 4.3, pp. 121 ff).

qn =
i−n

(2π)
3
2

Cn (57)

Equation (56) shows that for a single plane wave, the magnitude of all coefficients is 1√
2π
.

3.6 Example of Mode Recovery With Spatial Aliasing

Fig. 6 shows the mode recovery performance of an array of L = 15 TPG sensors and one pressure

sensor. The simulated sound field has a limited order Ns ≥ N (qn = 0, ∀|n| > Ns) and the coefficients

qn are specified by (56). The wave field is an approximation of a plane wave within a radius rPW ≈ Ns

k

around the origin [28, 29]. The theoretical magnitude of the HD coefficients is indicated by a dashed
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Figure 6: Mode recovery performance of a circular array composed of L = 15 TPG sensors and one
pressure sensor with rV = 0.1 m. The incoming sound field has a frequency f = 5 kHz and the
results are shown for Ns = [7, 8, 12, 14]. The dashed grey line indicates the theoretical values for the
magnitude of the HD coefficients, while the black stems display the recovered coefficients’ magnitude.
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grey line in all four graphs. The top left graph shows that for Ns = 7 = N , the observed mode

coefficients are recovered perfectly. The other three graphs however confirm the findings of subsection

3.4 and the aliasing scheme shown in Fig. 5. The graph for Ns = 8 shows that q−7, q7 and q0 are

affected by aliasing. For Ns = 12, only the coefficients qn, n ∈ [−2,−1, 1, 2] are still recovered correctly,

while for Ns = 14 all coefficients are distorted by aliasing. This is consistent with the pattern given in

Fig. 5. The simulated sound field (φi = 0, f = 5 kHz, c = 343m
s , Ns = 8) and its reproduction based
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Figure 7: Visualisation of the sound field with φi = 0, f = 5 kHz, c = 343m
s , limited to order Ns = 8,

(a) original sound field, (b) sound field as reproduced from the observation of q̃n, using the microphone
array described above, (c) absolute amplitude error of the reproduced field, given in dB.

on the observed information q̃ can be seen in Fig. 7 for Ns = 8. Despite the order limitation, it still

resembles that of a plane wave. The middle picture shows that the shape of the incoming wave fronts

are significantly deformed, even though only three modes have been corrupted by aliasing (compare

to Fig. 5 and Fig. 6). Especially the influence of the corrupted 0th order mode is clearly visible in the

form of the concentric circle around the origin in the bottom graphic depicting the difference between

the original and the reconstructed sound field.

4 Simulations and Quantitative Error Analysis

As it has been argued in subsection 2.4, it can be expected that TPG sensor arrays are more robust

against measurement noise than pressure sensor arrays. This is due to the considerable difference in

the magnitude of the eigenvalues and is most significant at low frequencies. At the same time, the

findings in subsections 3.1 and 3.4 indicate that the TPG sensor design is more vulnerable to spatial
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aliasing than conventional designs. In order to confirm both hypotheses, a vast number of simulated

measurements of an arbitrary sound field specified by (56) with different φi have been performed

in MATLAB. These involve a simulated TPG array with LG = 15 uniformly spaced TPG sensors

plus an additional pressure sensor at φp = π
6 , yielding a total amount of 16 sensors. The simulated

conventional array consists of LP = 16 uniformly spaced pressure sensors. That leaves both arrays

with the same number of sensors overall and both had a radius of rV = 0.1 m. They were both set to

recover all the HD coefficients qn for |n| ≤ 7. The signals observed at the various array sensors have

been computed using the analytical solutions in equation (38) for the TPG and (44) for the pressure,

both accounting for orders up to |n| = Ns = 40. Note that this will lead to spatial aliasing with the

given array at high frequencies. The needed HD coefficients qn are specified by equation (56).

The following three subsections describe the noise model, the regularisation of the inverse matrix

Y† and the quality measure used in the simulations. Subsection 4.4 then presents the quantitative

performance results for both array types.

4.1 The Noise Model

In order to compare the robustness of the two different arrays to measurement noise, the simulated

measured signals were corrupted with a noise signal d. The noise in (ultrasonic) transducers has been

identified to originate predominantly from the electronic circuitry [30, 31]. Electrical noise consists

mainly of four components:

• thermal noise due to thermal agitation of charges in conductors [32],

• shot noise (as it typically occurs in semiconductors and vacuum tubes),

• 1/f noise (e.g. caused by impedance fluctuations in combination with DC currents occurring in

the sensor’s internal impedance converters) and

• flicker noise [33] (e.g. as it occurs in MOSFETs, which are frequently used as internal impedance

converters).

The last three kinds of noise are decaying in level towards higher frequencies, where they are covered by

the thermal noise, which is spectrally white. Assuming transducers with carefully designed impedance

converters in combination with high quality signal pre amplifiers, it is deemed valid to model the

overall noise with a white spectrum. Additionally, it is assumed that the conversion principle between

24



the acoustic and the electrical quantities as well as the thermal agitation of the molecules in the fluid

before the transducer are negligible compared to the electrical noise. Therefore, the overall noise can

be modelled as a random signal with the same constant average magnitude at all frequencies for both

types of transducers. For an individual sensor, the additive noise component is then specified by

d = σne
i2πµ, (58)

where µ is a uniformly distributed random variable on the interval [0, 1] and σn is the standard

deviation of the noise. To further randomise the nature of the noise, σn was chosen to also be a

random variable

σn = 1 · 10−60/20ξ, (59)

where ξ is a normally distributed random variable with unit variance. The average magnitude of the

noise is then set to 60 dB below that of a pressure sensor’s output signal in the undisturbed field of a

plane wave with unit amplitude. Note that on a rigid cylinder, the average magnitude of the measured

signals for either type of sensors depends on the sensor’s position, the frequency and the direction of

travel of the incoming plane wave.

The final signal model for the two sensors is then given as follows:

g̃(φs) = g(φs) + d, (60)

p̃(φs) = p(φs) + d. (61)

4.2 Regularisation Against Ill-Conditioning

The recovery of the coefficients qn from noisy measurements poses an ill-conditioned problem at low

frequencies due to the excessive gains applied as a consequence of the inversion of the eigenvalues λn

and νn. Therefore, these simulations require a regularised Moore-Penrose Pseudoinverse Y
†
R to solve

the inverse problem. In this work, a Tikhonov regularisation [34] has been applied. The regularised

pseudoinverse is then defined as

Y
†
R = (YHY + ΓTΓ)−1YH , (62)

where Γ = βI. The matrix I is an (LG + 1)× (LG + 1) identity matrix for the TPG sensor array and

an LP × LP identity matrix for the pressure sensor array, respectively. The value for β was chosen
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empirically and set to
√

10
−50
20 , which is equivalent to impose a maximum bound of 50 dB to the

largest eigenvalue of the inverse matrix. The coefficients q̃n,R are then calculated from the noisy array

observation g̃e using

q̃e,R = Y
†
Rg̃e. (63)

The elements of g̃e are computed for orders up to |n| = 40 and contain noise. The coefficients in q̃e,R

are thus corrupted by measurement noise, regularisation and spatial aliasing effects.

4.3 The Quality Measure

The accuracy of the recovered coefficients q̃n,R can be evaluated based on the energy of the error

between the original HD q(φ) and the recovered HD q̃(φ). The error-to-signal-ratio in dB for a given

frequency is then given by

ESR = 10 · log10

(∑N
n=−N |q̃n,R − qn|2
∑N

n=−N |qn|2

)

dB. (64)

4.4 Simulation Results

The ESR is used to compare the performance of the TPG array and the pressure array in a statistical

analysis for a finite number of frequencies in the range between 100 Hz and 10 kHz with a step size

of 10 Hz. For each considered frequency f , 100 simulated measurements were conducted: i.e. 10

iterations each for 10 randomly selected approximated plane wave fields (see subsection 3.6). This

allows for a good approximation of the noise model and the aliasing performance is not biased by the

choice of specific directions of incidence for the incoming waves.

Fig. 8 shows the result of the analysis, where the black line depicts the performance of the TPG

sensor array and the light grey line the performance of the pressure sensor array. The plots clearly

show the effects of spatial aliasing and noise. While the error at high frequencies is dominated by the

effect of spatial aliasing, the effect of transducer noise is dominant at low frequencies.

As suggested by the findings in subsections 3.1 and 3.4, the error due to spatial aliasing at high

frequencies is higher with the TPG sensor array than with the pressure sensor array. Above f =

1.8 kHz the conventional array clearly outperforms the TPG array with the ESR reaching values

below −30 dB, yet it should be mentioned that the conventional array with LP = 16 > 2N +1 sensors

is more robust to aliasing from higher orders than a conventional array with LP = 15 = 2N + 1
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Figure 8: Plots of the average ESR of the recovered coefficients q̃n,R from a simulated TPG sensor
array measurement (black line) and from a simulated pressure sensor array measurement (light grey
line) within the frequency range from 100 Hz to 10 kHz.

sensors.

At lower frequencies, the performance of the TPG sensor array is significantly better than that of

the conventional array.

Judging by the width of the respective frequency band in which the two arrays’ ESR falls below

−15 dB, both arrays achieve a band that is around 2.3 kHz wide. However, w.r.t. the lowest ESR

value, the conventional array outperforms the TPG sensor array by around 6.5 dB.

It is worth noticing that the optimum band of the TPG sensor array is shifted towards lower

frequencies. This can be achieved with a conventional array by increasing its radius, which shifts

the curves of the eigenvalues in Fig. 2 and Fig. 3 towards lower frequencies due to the change of the

argument in the radial functions. However, comparing a TPG sensor array with a conventional array of

the same radius, it is clear that the former performs better at low frequencies. Therefore, considering

audio applications, the two the arrays combined on one structure would extend the usable bandwidth

of the TPG sensor array by 45 % or that of the conventional array by 33 %, respectively. This would

gain a substantially increased accuracy within a frequency band where the human ear is very sensitive

(compare to the curves of equivalent loudness in ISO 226) and which is very important for localisation

(due to interaural time difference and spectral cues from head and torso reflections [35]).

The following simulation example visualises the effect of the improvement over conventional designs

at low frequencies.

4.5 An Example

With LP = 16 pressure sensors and LG = 15 TPG sensors plus the additional pressure sensor, the

respective arrays allow for the recovery of the coefficients qn, |n| ≤ 7. From Fig. 2 and Fig. 3 it can
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Figure 9: Visualisation of a plane wave approximation with φi =
π
7 , f = 800 Hz, c = 343m

s , limited
to order Ns = 15, (a) original sound field, (b) synthesis based on TPG array measurement with

β =
√

10
−50
20 , (c) synthesis based on pressure array measurement with β =

√

10
−50
20 , (d) synthesis

based on TPG array measurement with β = 0, (e) synthesis based on pressure array measurement
with β = 0.

be seen that the gain applied to the array observation for the recovery of q−7 and q7 at a frequency

of f = 800 Hz is about 35 dB for the TPG array and about 70 dB for the conventional array. With

a given SNR of 60 dB, it can be expected that the noise is going to affect the measurement of the

conventional array considerably more than that of the TPG array.

Fig. 9 shows the reconstruction of a plane wave approximation (φi = π
7 , f = 800 Hz, c =

343m
s , Ns = 15) on the basis of the coefficients q̃ recovered from a TGP sensor array and from a

pressure sensor array for the cases of β =
√

10
−50
20 and β = 0. It shows that the synthesis based on the

measurement of the TPG array with and without regularisation is only marginally different from the

original sound field. With the pressure array, regularisation leads to a suppression of higher orders,

resulting in a reduced size of the region of accurate reconstruction [28,29] and without regularisation,

the noise leads to a spatially distorted synthesis outside the region where 6th order contributions

become significant. This result supports the results in subsection 4.4 that TPG sensor arrays are more
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robust against transducer noise than conventional arrays.

5 Conclusions

The performance of a circular microphone array composed of TPG sensors has been investigated by

means of theoretical analysis and numerical simulations. The integral operator describing the sound

field model has been introduced and decomposed by means of the eigenvalue decomposition. This

allows for an entirely separate analysis of transducer noise induced errors and aliasing effects, since

both can be associated with different components of the EVD.

It has been shown that, at low frequencies, a TPG sensor array is more robust against transducer

noise than conventional arrays, while, at high frequencies, it is significantly more vulnerable to spatial

aliasing. In the simulations presented in this work, the lowest achievable ESR of the TPG sensor array

is surpassed by that of a comparable conventional array by approximately 6.5 dB. Furthermore, it

was found that the usable optimum frequency band is not extended by the new design, but it is shifted

towards lower frequencies. Finally, even though it has been found that this new design can potentially

gain on former designs in terms of transducer noise, this is only true under the condition that both

transducer types are of equal quality. The costs of a gradient sensor that matches the quality (w.r.t.

noise, symmetry of its directivity, etc.) of a state-of-the-art pressure sensor are however expected to

be considerably higher. It is therefore possible that what the TPG sensor array gains in robustness

at low frequencies is not enough to compensate for the generally higher transducer noise.

It has also been shown that for the recovery of the 0th mode, at least one pressure sensor needs to

be added to the array. This leads to a change in the spatial aliasing scheme of the TPG array, making

the 0th mode particularly vulnerable to aliasing.
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