
International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 3, No. 4, 450–471, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.4-033 

450 

Theoretical Study of Heat Transfer on Peristaltic Transport of Non-

Newtonian Fluid Flowing in a Channel: Rabinowitsch Fluid Model 

 
U. P. Singh 

Department of Applied Sciences and Humanities 

Rajkiya Engineering College, Sonbhadra, India 

 

Amit Medhavi 
Department of Mechanical Engineering 

Kamla Nehru Institute of Technology, Sultanpur, India 

 

R. S. Gupta 

Coordinator Faculty of Engineering 

University of Lucknow, India 

 

Siddharth Shankar Bhatt 

Department of Applied Sciences and Humanities 

Kamla Nehru Institute of Technology, Sultanpur, India 

Corresponding author: shankarbhatt56@gmail.com 

 
(Received January 14, 2018; Accepted April 7, 2018) 

 

 

 

Abstract 

The present investigation is concerned with the problem of heat transfer and peristaltic flow of non-Newtonian fluid 

using Rabinowitsch fluid model through a channel under long wavelength and low Reynolds number approximation. 

Expressions for velocity, pressure gradient, pressure rise, friction force and temperature have been obtained. The effect 

of different parameters on velocity, pressure gradient, pressure rise, streamlines, friction force and temperature have 

been discussed through graphs. 
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1. Introduction 
Peristalsis is an innate property of several biological systems and it occurs in the movement of 

urine from the kidney to bladder, vasomotion of small blood vessels, ovum transport in the 

fallopian tube and movement of chyme in the gastro-intestinal tract. It is an important transport 

mechanism not only in physiological processes but has a wide range of applications in 

engineering and industry. The principle of peristalsis has been used to develop pumps having 

physiological and industrial applications. 

 

Probably the first pioneering investigation was done by Latham (1966) in which a theoretical 

attempt has been made to understand the peristaltic action. Fung and Yih, (1968), Shapiro et al. 

(1969), Yin and Fung (1969), Gupta and Seshadri (1976) and Machireddy and Kattamreddy 

(2016) have made a significant contribution to understand the peristaltic flow of Newtonian fluid. 

Theory of non-Newtonian fluid has attracted researchers during past few decades. To understand 

the flow properties of physiological fluids, Raju and Devanathan (1972) considered a non-

Newtonian model (Power law fluid) of peristaltic motion in an axisymmetric tube caused due to 

the proliferation of sinusoidal wave on the walls. Considering the arbitrary wave shape, Kaimal 
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(1978) studied the peristaltic motion of a particle-fluid mixture in an axisymmetrical tube at low 

Reynolds number. Misra and Pandey (2002) studied the peristaltic transport of blood in small 

blood vessels. In this study, the core layer is casson fluid and the outer layer is an incompressible 

Newtonian viscous fluid. Vajravelu et al. (2005) presented peristaltic pumping of incompressible 

fluid with Herschel-Bulkley fluid model in a channel. The analytical solution for velocity, 

pressure gradient and stream function were determined. Pandey and Chaube (2011) investigated 

wall properties during the action of peristaltic motion of couple stress fluid and disclosed the 

result that means velocity reduces by raising couple stress parameter and increases with 

increasing wall tension. Reddy et al. (2011) investigated the peristaltic motion of Carreau fluids 

through an inclined channel in presence of magnetic field. The perturbation method is used to 

analyze the flow. Akbar and Butt (2015) studied heat transfer under the action of the peristaltic 

flow of viscous fluid with Herschel-Bulkley fluid model while considering that fluid flowing 

through a non-uniform inclined channel. Study of peristaltic flow of non-Newtonian fluid with 

power law fluid model through the channel of varying width was done by Chaube et al. (2015). 

Consequences of changes in fluid behavior index, slip parameter and angle between the walls on 

velocity profile, pressure gradient and trapping phenomenon were discussed. 

 

The study of heat transfer in association with peristalsis is essential because it plays a significant 

role in physiology. For instance, the thermodynamic features of blood are very useful in 

oxygenation and hemodialysis. Radhakrishnamacharya and Murty (1993) studied the heat transfer 

in the connection to peristaltic transport in a channel of varying width and found a perturbed 

solution for temperature and heat transfer coefficient. The problem of peristaltic pumping and 

heat transfer through an asymmetric channel was considered by Srinivas and Kothandapani 

(2008). Sinha et al. (2015) studied heat transfer analysis MHD flow through the asymmetric 

channel with variable viscosity. Bhatt et al. (2017) recently studied peristaltic transport and heat 

transfer through non-uniform geometry. Walls are assumed to be permeable and found that 

temperature decreases with increase in Darcy number. The study of heat and mass transfer in 

connection to the peristaltic transport of hyperbolic tangent fluid through a channel of varying 

width in presence of magnetic field was done by Sarvana et al. (2016). 

 

Rabinowitsch fluid model is a well-established model for studying the non-Newtonian nature of 

the fluid. The shearing stress and shearing strain for the Rabinowitsch fluid model is connected 

by the relation as given below: 

 

3

YX XY

U

Y
   


 


                                                                                                                      (1) 

 

where the nonlinear term   
is called coefficient of pseudoplasticity and the non-Newtonian 

nature of fluid depends on this parameter,   is the viscosity of the fluid, U  is velocity, X  and 

Y  are axial and transverse coordinate respectively. This model exhibits dilatant, Newtonian and 

pseudoplastic fluids nature for 0,  0   and 0  . Wada and Hayashi (1971) experimentally 

analyzed this model to justify theoretical results. Singh et al. (2011, 2012) and Singh, (2013) have 

utilized Rabinowitsch fluid model to investigate the performance of different types of hydrostatic, 

hydrodynamic and squeeze film bearing systems. Over the most recent couple of years, some 

researchers have explored peristaltic transport for the Rabinowitsch fluid model. Singh and Singh 

(2014) investigated peristaltic flow in a tube using Rabinowitsch fluid model. Akbar and Nadeem 

(2014) studied Rabinowitsch fluid model in peristalsis. Maraj and Nadeem (2015) studied 
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peristaltic flow in a curved channel for Rabinowitsch fluid. In the present paper, heat transfer and 

peristaltic transport of Rabinowitsch fluid flowing through a channel have been investigated. 

 

The present investigation is motivated because none of the investigators above have studied the 

effect of heat transfer on flow characteristics of peristaltic flow in a uniform channel with the 

Rabinowitsch fluid model. The present work is helpful to enhance the knowledge of physiological 

fluid of pseudoplastic nature. 

 

2. Analysis 
Consider the flow of a non-Newtonian fluid complying Rabinowitsch fluid model through a 

channel of uniform thickness. Sinusoidal wave proliferates on the wall of the channel and moving 

with speed c . Taking  ,X Y
 
as a rectangular coordinate in a fixed frame, the geometry of 

peristaltic flow is shown in Fig. 1. 

 

 

 
 

Fig. 1. Geometry of the peristaltic flow 

 

 

The geometry of wall surface is given as 

 

 
 2 '

, ' Sin
X ct

H X t a b




 
   

 
                                                                                         (2) 

 

where a  is half channel width, b  is the amplitude of the wave, 't  is time,   is the wavelength. 

 

Continuity equation 
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Momentum equation 
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Energy equation 
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where U  and V  are components of velocity in X  and Y  directions respectively in a fixed 

frame of reference, pc  is specific heat at constant pressure, T  is temperature, K  is thermal 

conductivity, p  is pressure,   is density, 't  is time. 

 

The transformation between fixed frame and wave frame is given by 

 

' , ' , ' ',u U c v V x X ct y Y                                                                                               (7) 

 

where ', ', ', 'u v x y  are axial velocity, transverse velocity, axial coordinate and transverse 

coordinate respectively in wave frame. 

 

Introducing non-dimensional parameters as follows 
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Using Eq. (7) and Eq. (8) in Eq. (1), Eq. (2), Eq. (3), Eq. (4), Eq. (5) and Eq. (6) with the 

assumption of long wavelength and low Reynolds number approximation, we get 
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where the dimensionless quantities , , Ec   and Br  are the parameters of pseudoplasticity, 

amplitude ratio, Eckert number and Prandlt number respectively. 

 

The boundary conditions for equations, Eq. (11-13) are as follow 
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On solving Eq. (11) and Eq. (13) with boundary conditions Eq. (14), we get 
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where Brinkman Number   .PrBr Ec . 

 

The coefficient of heat transfer    at the wall is given by 
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The corresponding stream function (cf. Appendix A) is obtained as: 
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The volume flow rate in fixed frame
  'Q and in wave frame  'q is given by 

 

0
'

H

Q U dY                                                                                                                               (19) 

0
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q u dy                                                                                                                                  (20) 

 

Using Eq. (7), Eq. (19) and Eq. (20) 
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 , we have 
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This can be reduced in dimensionless form as 

 

1Q q                                                                                                                                        (23) 
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Using Eq. (15) in Eq. (24), 
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In the limiting case, as 0   Eq. (25) reduces to result of Shapiro et al. (1969) 

 

3
3

dp q h
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                                                                                                                         (26) 

 

As Eq. (25) is the nonlinear equation of first order, it is difficult to find an analytic solution of 

pressure, however, for small values of the pseudoplasticity parameter  1  , Eq. (25) can be 

perturbed as follows 

 

1op p p                                                                                                                                (27) 

so that 
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Using Eq. (23) in Eq. (28) 
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The pressure rise and friction force are given by 
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3. Results and Discussion  
In the present section of this paper, the attempts have been made to analyze the effects of various 

parameters on pressure gradient, fluid velocity, pressure rise, friction force and fluid temperature 

in case of Newtonian, dilatant and pseudoplastic fluids. Looking at the need to scrutinize the 

qualitative effects of different parameters, the graphs have been drawn using MATHEMATICA. 

In order to perform numerical computation, following values of the parameters have been used: 

Amplitude ratio: 0 1  . 

 

The parameter of pseudoplasticity: 0.1 0.1   . 

 

The variation of pressure rise against the flow rate is shown in Fig. 2 for the parameter of 

pseudoplasticity 0.1,0,0.1    and amplitude ratio 0.3,0.4  . The pressure rise linearly 

connected to flow rate for the case of Newtonian fluids which agrees with the result derived by 

Shapiro et al. (1969) whereas the same is non-linear in the pseudoplastic and dilatant fluid. It is 

unambiguous from Fig. 2 that when the parameter of pseudopalsticity is large then the fluid will 

be thinner and small pressure rise is observed as compared to Newtonian and dilatant fluids in 

peristaltic pumping domain. The pressure rise for Newtonian fluid increases by increasing 

amplitude ratio in the region of peristaltic pumping whereas shows opposite behavior in the co-

pumping region. The result of pressure rise for Newtonian fluid at agrees with the established 

result of Vajravelu et al. (2005) for yield stress 0
 
and flow behavior index 1. Pressure rise 

decreases more rapidly for dilatant nature of the fluid in the peristaltic pumping region. 

Maximum pressure rise is observed for dilatant fluid at zero flow rate. 
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Fig. 2. Pressure rise vs. averaged flow rate for various values of ,   

 

 

 

 

Fig. 3 shows the variation of friction force against the flow rate for the parameter of 

pseudoplasticity 0.1,0,0.1    and amplitude ratio 0.3,0.4  . It is apparent that the impact 

of amplitude ratio on friction force is in contrast to the effect of amplitude ratio on pressure rise 

for Newtonian fluid. The result of friction force for Newtonian fluid at 0.4   is consistent with 

the established result of Vajravelu et al. (2005) for yield stress 0
 
and flow behavior index 1. The 

similar behavior is observed for pseudoplastic and dilatant fluids. 

 

 

Fig. 4 represents the change in pressure rise against the amplitude ratio for the parameter of 

pseudoplasticity 0.1,0,0.1    and flow rate 0.3,0.4Q  . Fig. 4 explains that pressure rise 

increases indefinitely for Newtonian and dilatant nature of the fluid at a constant flow rate but for 

pseudoplastic fluid, firstly pressure rise increases and then decreases indefinitely. On increasing 

flow rate pressure rise decreases at zero amplitude ratio (at no pumping). 
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Fig. 3. Friction force vs. averaged flow rate for various values of ,   

 

 

 

 

 

 
 

Fig. 4. Pressure rise vs. amplitude ratio for various values of ,Q 
 

 

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 3, No. 4, 450–471, 2018 

https://dx.doi.org/10.33889/IJMEMS.2018.3.4-033 

459 

Fig. 5 gives the information about the change in friction force against the amplitude ratio for the 

parameter of pseudoplasticity 0.1,0,0.1    and flow rate 0.3,0.4Q  . It is apparent that the 

effect of flow rate on friction force is in contrast to the effect of flow rate on pressure rise. 

 

 

 

 
 

Fig. 5. Friction force vs. amplitude ratio for various values of ,Q   

 

 

 

Fig. 6(a-b) explain the behavior of pressure gradient with change in the rate of flow and 

amplitude ratio. Pressure gradient starts decreasing when the flow rate starts rising. The small 

pressure gradient is observed for  0,0.6x  and higher pressure gradient occurs for 

 0.6,0.9x . The maximum pressure gradient is observed for dilatant nature of the fluid and 

minimum pressure gradient is observed for pseudoplastic fluid when  0,0.6 .x  Pressure 

gradient increases with increases in amplitude ratio for  0.6,0.9x . Unnoticeable change in 

pressure gradient is observed for  0,0.5x  with the change in amplitude ratio. The maximum 

pressure gradient is observed for dilatant nature of the fluid and minimum pressure gradient is 

observed for pseudoplastic fluid when  0.6,0.9x . 

 

Variation of velocity for various values of flow rate and amplitude ratio has been presented in 

Fig. 7(a-b). For Newtonian fluid, the magnitude of velocity is noticed to be highest in the middle 

of the channel. The magnitude of velocity decreases for pseudoplastic fluid and increases for 

dilatant nature of the fluid with an increase in flow rate. Opposite behavior is seen at the wall of 

the channel. A similar behavior is observed with an increasing value in amplitude ratio. 
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Fig. 6 (a). Pressure gradient for various values of ,Q   at 0.4 
 

 

 

 

 

 

 
 

Fig. 6 (b). Pressure gradient for various values of ,   at 0.1Q   
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Fig. 7 (a). Velocity profile for different value of ,Q   at 0.4, 0.75x    

 

 

 

 

 

 

 
 

Fig. 7 (b). Velocity profile for different value of ,   at 0.1, 0.75Q x   
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Fig. 8. Pressure rise vs. parameter of pseudoplasticity for various values of Q  at 0.5 
 

 

 

 

 

Fig. 8 depicts the change in pressure rise against the parameter of pseudoplasticity at flow rates  

0.1, 0.2, 0.3Q  . One can notice that while moving from Newtonian to pseudoplastic fluid the 

pressure rise decreases, whereas while moving from Newtonian to dilatant fluid, the pressure rise 

increases irrespective of the value of flow rate. 

 

The variation of temperature with y  at 0x   and at 0.2x   of the channel is shown in Fig. 9 

for 0.1,0,0.1   , 0.2Br  , 0.3Q  , 0.4  . The increment in the temperature is analyzed 

by moving from the inlet  0x   toward downstream  0.2x  . It is also clear that there is 

minor change noticed in the temperature close to the middle of the channel but a fast change in 

temperature is observed in the vicinity the wall of the channel. Maximum temperature is obtained 

for dilatant fluid and minimum temperature is obtained for pseudoplastic fluid at the middle of 

the channel. 

 

Fig. 10 depicts the variation of temperature against y  for 0.1,0,0.1   , 0.2,0.3Br  , 

0.3Q  , 0.4  , 0.2x  . It is observed that with an increase in Brinkman number, temperature 

increases in the middle of the channel. Minimum temperature is obtained for pseudoplastic fluid 

(thinner fluid) whereas maximum temperature is observed for dilatant nature of the fluid for a 

given value of the Brinkman number in the middle of the channel. 
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Fig. 9. Effect of   on temperature at 0.4, 0.2, 0.3Br Q     at inlet  0x   as well as downstream 

 0.2x   

 

 

 

 

 

 

 
 

Fig. 10. Effect of ,Br   on temperature at 0.4, 0.3, 0.2Q x     
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Fig. 11. Effect of ,   on temperature at 0.2, 0.3, 0.2Br Q x    

 

 

 

 

Fig. 11 shows change in temperature against y  for 0.1,0,0.1   , 0.2Br  , 0.3Q  ,

0.4,0.6  , 0.2x  . It is evident from Fig. 11 that temperature increases with increase in 

amplitude ratio. Maximum temperature is obtained in the middle of the channel and decreases 

near the wall of the channel for all types of fluid. 

 

The temperature profile is plotted against y as illustrated in Fig. 12 for 0.1,0,0.1   , 

0.2Br  , 0.3,0.4Q  , 0.4  , 0.2x  . It is clear from Fig. 12 that temperature decreases 

continuously by an increase in flow rate for pseudeoplastic, dilatant and Newtonian fluid. 

 

Fig. 13(a-b) shows the variation of heat transfer coefficient along the axial direction for different 

value of  0.1, 0,0.1, 0.1, 0.2Q Br     (a) 0.3   (b) 0.4  . It is clear from Fig. 13(a-

b) that the magnitude of the heat transfer coefficient increases with increase in amplitude ratio 

irrespective of the fluids nature. The maximum and minimum magnitude of the heat transfer 

coefficient is observed for dilatant and pseudeoplastic fluid respectively. This analysis is expected 

to be useful in physiology as well as in industry. 
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Fig. 12. Effect of ,Q   on temperature at 0.2, 0.4, 0.2Br x  
 

 

 

 

 

 

 

 

(a) 
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(b) 

 

 
 

Fig. 13. Heat transfer coefficient 0,0.1, 0.1, 0.2, 0.1Br Q     at (a) 0.3   (b) 0.4   

 

 

 

 

 

 

 

 

(a) 
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(b) 

 

 
 

(c) 

 

 
 

Fig. 14. Stream lines when 0.8, 0.6Q    (a) 0.1   (b) 0   (c) 0.1    

 

 

 

 

 

 

 

Fig. 14(a-c) shows the effect of coefficient of pseudoplasticity on the formation of bolus for 

0.8Q  , 0.6  . It is clear that the size of bolus decreases when nature of the fluid changes 

gradually from pseudoplastic (thinner fluid) to dilatant. More number of the boluses is formed for 

Newtonian fluid as compared to pseudoplastic and dilatant fluid. Fig. 15(a-b) reveals the 

interesting fact that with an increase in amplitude ratio, the size of the bolus decreases and gets 

shifted towards the wall of the channel. 
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(a) 

 

 
 

 

 
(b) 

 

 
 

Fig. 15. Stream lines when 0.8, 0.1Q    (a) 0.6   (b) 0.8   

 

 

 

4. Conclusions 
The following conclusion can be summarized: 

 Pressure rise for pseudopalstic fluid is small as compared to Newtonian and dilatant fluid in 

the peristaltic pumping region. 

 Friction force reflects the reverse trend to that of pressure rise. 
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 It is noticed that as the nature of fluid changes from Newtonian to pseudoplastic, the pressure 

rise decreases, whereas while changing from Newtonian to dilatant nature, the pressure rise 

increases irrespective of the value of flow rate. 

 It is clearly seen that the magnitude of velocity is maximum for Newtonian fluid at the middle 

of the channel and decreases with pseudoplasticity but increases with dilatant nature of the 

fluid. 

 It is analyzed that on moving from the inlet  0x   to downstream  0x  , temperature 

decreases for all types of fluid. 

 With increasing amplitude ratio, temperature increases for all types of fluid. 

 It is seen that bolus size decreases when nature of the fluid shifted from pseudoplastic (thinner 

fluid) to dilatant. More number of the boluses is formed for Newtonian fluid as compared to 

pseudoplastic and dilatant fluid. 

  The consequence of increasing amplitude ratio comes in the form of decrease in the size of 

the trapped bolus. 
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Appendix (A) 

Since u
y





, integrating equation (15) and using the condition 0   at 0y   we get 
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