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Abstract 

 
Assisted reproduction currently accounts for over one in every hundred births in 

developed countries. The chances of successful conception are closely related to the 

morphology of sperm used. Despite well-established microfluidic sorting techniques, 

and reliable mathematical models to quantify the swimming of microorganisms, 

research on sperm sorting via dielectrophoresis or magnetophoresis lacks theoretical and 

statistical support. In this thesis, the kinematics of sperm subjected to an external electric 

or magnetic field is investigated to provide a theoretical framework for computing the 

resultant velocity. The flagellum waveform is prescribed analytically, and subsequently 

solved from force and moment balance. The hydrodynamic force acting on the sperm is 

computed using Resistive Force Theory as well as Slender Body Theory, and the 

resulting velocity is compared qualitatively and quantitatively. As normal and abnormal 

sperm cells have different morphological parameters, their velocities under the influence 

of dielectrophoresis or magnetophoresis are altered to varying extents. This effect is 

more prominent in a viscoelastic Oldroyd-B fluid than in a Newtonian fluid medium. 

To account for the natural variations in sperm morphology and beating 

characteristics, pseudo-random data are generated from a normal distribution. The cross-

section of the microchannel is assumed to be much larger than the sperm, such that 

boundary effects can be ignored. A large number of velocity computations is performed 

to obtain statistically meaningful results. The difference in velocity distribution between 

normal and abnormal sperm cells can be widened using an external field to double the 

proportion of normal ones, with at least half the number of normal spermatozoa in the 

original sample retained. This sorting has potential to improve the probability of success 

for intrauterine insemination, given that pregnancy rates are similar as long as the 

percentage of normal cells exceed a minimum threshold, even if the initial motile sperm 

count is under a million. Supervised learning is proposed to reduce the computational 

costs by making predictions after a subset of the data is computed and used for training. 

By fitting the model to a tenth of the sample size required for statistical convergence, 

predicted results are precise and accurate to a handful of percentage points. This 

framework can be adopted to shortlist feasible designs of microfluidic devices before 

fabrication, as well as assess a wider variety of scenarios in preliminary hypotheses. 



iii 

 

Contents 

 

Abstract ............................................................................................................................ i 
Acknowledgements .........................................................................................................ii 
Contents ........................................................................................................................ iii 
List of Figures ................................................................................................................. v 
List of Tables ................................................................................................................. xi 
List of Symbols .............................................................................................................. xi 
Chapter 1 Introduction .................................................................................................... 1 

1.1 Significance of study ........................................................................................ 1 
1.2 Research gap .................................................................................................... 3 
1.3 Objectives and scope ........................................................................................ 5 
1.4 Overview of thesis ............................................................................................ 6 

Chapter 2 Literature Review ........................................................................................... 8 
2.1 Assisted Reproduction Techniques .................................................................. 8 

2.1.1 In vitro fertilisation (IVF) ......................................................................... 9 
2.1.2 Intracytoplasmic sperm injection (ICSI) ................................................. 10 
2.1.3 Intrauterine insemination (IUI) ............................................................... 11 
2.1.4 Risks involved ......................................................................................... 12 

2.2 Theory on microscale fluid mechanics and spermatozoa ............................... 13 
2.2.1 Resistive Force Theory ........................................................................... 13 
2.2.2 Slender Body Theory .............................................................................. 16 
2.2.3 Rheotaxis ................................................................................................. 16 
2.2.4 Wall effects ............................................................................................. 20 
2.2.5 Cell-to-cell interactions ........................................................................... 23 
2.2.6 Brownian motion .................................................................................... 25 
2.2.7 Stress-strain relation ................................................................................ 26 

2.3 Techniques for sorting spermatozoa .............................................................. 30 
2.3.1 Properties of sperm and its influence on reproduction ........................... 30 
2.3.2 Sperm preparation to obtain pure sample for fertilisation ...................... 34 
2.3.3 Sorting by sperm’s motility and morphology ......................................... 36 
2.3.4 Sorting by hydrodynamic effects ............................................................ 37 
2.3.5 Sorting by sperm’s chromosomes ........................................................... 38 
2.3.6 Manipulation by optics ........................................................................... 40 
2.3.7 Sorting by magnetophoresis .................................................................... 41 
2.3.8 Sorting by dielectrophoresis ................................................................... 43 

2.4 Moving forward .............................................................................................. 45 
Chapter 3 Sperm in Newtonian Fluid with Sinusoidal Flagellum ................................ 48 

3.1 The model ....................................................................................................... 48 
3.2 Adding dielectrophoresis force ...................................................................... 51 
3.3 Solving for linear and angular velocity .......................................................... 52 
3.4 Difference in velocity of X- and Y-spermatozoa ........................................... 55 
3.5 Feasibility of sorting ....................................................................................... 58 
3.6 Chapter Summary ........................................................................................... 59 

Chapter 4 Sperm in Viscoelastic Fluid with Active Flagellum .................................... 60 
4.1 Flagellum shape .............................................................................................. 60 
4.2 Velocity and trajectory ................................................................................... 68 
4.3 Shape of flagellum in presence of DEP ......................................................... 74 



iv 

 

4.4 Velocity in presence of DEP .......................................................................... 76 
4.5 Chapter Summary ........................................................................................... 78 

Chapter 5 Slender Body Theory for Sperm Locomotion .............................................. 79 
5.1 Mathematical model ....................................................................................... 79 
5.2 Difference between RFT and SBT ................................................................. 84 
5.3 Discretized flagellum under SBT model ........................................................ 94 
5.4 Numerical solution for flagellum waveform .................................................. 99 
5.5 Causality dilemma in solving flagellum waveform ..................................... 105 
5.6 Chapter Summary ......................................................................................... 110 

Chapter 6 Statistical Analysis and Machine Learning ................................................ 111 
6.1 The model ..................................................................................................... 111 
6.2 Sperm morphology and sorting assessment ................................................. 115 
6.3 Statistical analysis ........................................................................................ 118 
6.4 Supervised learning to predict sperm sorting ............................................... 120 
6.5 Chapter Summary ......................................................................................... 129 

Chapter 7 Conclusions. ............................................................................................... 130 
7.1 Summary of research done ........................................................................... 130 
7.2 A closer look ................................................................................................ 135 

7.2.1 Original contributions ........................................................................... 134 
7.2.2 Validation of results .............................................................................. 134 
7.2.3 DEP or magnetophoresis ....................................................................... 134 

7.3 Closing remarks ............................................................................................ 135 
List of Papers Published .......................................................................................... 137 
Conference Presentations ........................................................................................ 137 

References ................................................................................................................... 138 
Appendices .................................................................................................................. 153 

Appendix A – Derivations ....................................................................................... 153 
A.1 Derivation of the force-velocity relation in Resistive Force Theory .... 153 
A.2 Mathematical procedures used to derive equations in Appendix A.1 .. 168 

Appendix B – Solving Differential Equations ........................................................ 173 
B.1 Time dependence of flagellum waveform ............................................ 173 
B.2 Methods for solving ordinary differential equations ............................ 174 
B.3 Using MATLAB for numerical solution ............................................... 180 

 
  



v 

 

List of Figures 

Figure 1-1 – Illustration of different fields which can be combined for inter-displinary 
___research ..................................................................................................................... 4 

Figure 2-1 – Cumulative ongoing pregnancy rate after three CC-IUI cycles. Reprinted 
___from Ombelet et al. (2003) ...................................................................................... 12 

Figure 2-2 – (a) The lateral force FL and (b) propulsive force FP of C. elegans plotted 
___as a function of time. The experimental data (blue circular markers) contain a 
___systematic error of roughly 10% from uncertainty in the spring constant of the 
___micropipette. The prediction from RFT (red solid line), which has been fitted to the 
___data, has an error estimated to be 5%. Reprinted from Schulman et al. (2014)...... 15 

Figure 2-3 – Upstream and transverse mean velocities of human and bull spermatozoa 
___as a function of shear flow speed u20 at 20 μm from the surface, for viscosities of  
___1 mPa s (red squares), 3 mPa s (blue triangles), 12 mPa s (black circles) and 20 
___mPa s (green diamonds). All velocities are normalised by the sample mean speed 
___v0μ at zero shear rate. For human sperm, in order of increasing viscosity v0μ = 53.5, 
___46.8, 36.8, 29.7 μm/s, and for bull sperm v0μ = 70.4, 45.6, 32.4, 29.6 μm/s. 
___Reprinted from Kantsler et al. (2014) ..................................................................... 18 

Figure 2-4 – Trajectories of mouse (top; scale bar represents 200 µm) and human 
___(bottom; scale bar represents 100 µm) sperm without flow (left) and in flow 
___(right), as analysed by Computer-assisted sperm analysis (CASA). Reprinted from 
___Miki and Clapham (2013). ...................................................................................... 19 

Figure 2-5 – Forward swimming speed (left) and pitching rate (right) of the bacterial 
___model as a function of pitch angle θ and distance d from the wall normalised with 
___the width of the bacterial cell body. When θ = 0, the cell is swimming parallel to 
___the wall. The swimming speed is normalised using the swimming speed in free 
___space, and pitching rate is normalised with the angular velocity in free space. 
___Reprinted from Goto et al. (2005) ........................................................................... 21 

Figure 2-6 – Normalised force 𝐹/𝐹∞  as a function of normalised distance from the 
___wall, for a sphere of radius A translating between parallel chamber walls where the 
___half-depth is h. Square markers indicate the results of Ramia et al. (1993), while 
___cross markers indicate the computations by Gillies et al. (2009) corresponding to 
___the half-depth of the chambers used. Reprinted from Gillies et al. (2009) ............. 22 

Figure 2-7 – 2D Swimming trajectories for representative Janus spheres observed in 
___the x-z plane for spheres of radius 0.95 μm (black), 1.55 μm (red), and 2.4 μm 
___(blue). The swimmers were suspended in a 10 wt-% solution of H2O2. Gravity is 
___acting downward along the z-axis. Reprinted from Campbell and Ebbens (2013) 26 

Figure 2-8 – The ratio R of average free swimmer speed to that of the Newtonian free 
___swimmer, as a function of Deborah number De. The squares correspond to Deβ, 
___which is the ratio of polymer to solvent viscosity, fixed at 0.5. The diamonds 
___correspond to β, which measures the relative contribution of the polymeric stress to 
___momentum balance, fixed at 0.5. Inset: An estimate of swimming efficiency as a 
___function of De. Reprinted from Teran et al. (2010) ................................................ 29 

Figure 2-9 – (a) Helical-wave swimming speed U, normalised by the Newtonian 
___swimming speed UN, of filaments of varying thickness (A = 2n-2 for different n), 



vi 

 

___with ψ = π/40 and ηs/η = 0.5. (b) Normalised swimming speed with respect to 
___Deborah number, with filament thickness fixed at A = 0.5. Solid lines denote 
___helical waves, dashed lines denote rigid body rotation, for pitch angles of ψ = π/40 
___(black circle), π/10 (red square), and π/5 (blue triangle). (c) Normalised swimming 
___speed with respect to Deborah number, with filament thickness fixed at A = 0.2, 
___for the same pitch angles as in (b). (d) Normalised swimming efficiency with 
___respect to Deborah number. Symbols denote the same helices as in (b). Reprinted 
___from Spagnolie et al. (2013). .................................................................................. 29 

Figure 2-10 – Schematic of the microscale integrated sperm sorter. Sperm sample 
___enters from the left, and motile sperm deviate from their initial streamline while 
___nonmotile sperm and cellular debris remain along the straight path. Motile sperm 
___are collected at the bottom right of the channel. Reprinted from Cho et al. (2003)36 

Figure 2-11 – (a) Schematic of the microdevice for evaluating sperm quality. Flow 
___enters via channel A and exits via channels B and C. (b) Only motile sperm are 
___able to overcome the flow in channel B and go past the aperture to be counted. 
___Reprinted from Chen et al. (2011) .......................................................................... 37 

Figure 2-12 – Schematic of microfluidic sorting junction and the optical switch. Cells 
___are aligned to the channel centre by flow focusing. Based on the analysis, the laser 
___directs target cells to the collection output while other cells flow to the waste 
___output. Reprinted from Wang et al. (2005) ............................................................. 41 

Figure 3-1 – Schematic of a spermatozoon with the origin located at the centre of its 
___head. Inset: Normal and tangential hydrodynamic forces acting on an elemental 
___segment of length ds of the flagellum. Modified from Koh and Marcos (2014) .... 49 

Figure 3-2 – Time-averaged velocity <ux> in μm/s against 𝐷0, for 𝐷1 = 1000, 𝐷1 = 0, 
___and 𝐷1 = -1000, for spermatozoa of above and below one standard deviation of the 
___average morphology. Solid red and dotted blue lines represent X- and Y- 
___spermatozoon, respectively. The bold lines denote the velocity corresponding to the 
___average spermatozoa dimension, while the fine lines denote the velocity 
___corresponding to one standard deviation. ............................................................... 57 

Figure 3-3 – Time-averaged velocity <ux> in μm/s against 𝐷1, for 𝐷0 = 100, 𝐷0 = 0, 
___and 𝐷0 = -100, for spermatozoa of above and below one standard deviation of the 
___average morphology. Solid red and dotted blue lines represent X- and Y- 
___spermatozoon, respectively. The bold lines denote the velocity corresponding to the 
___average spermatozoa dimension, while the fine lines denote the velocity 
___corresponding to one standard deviation. ............................................................... 57 

Figure 4-1 – Schematic of a spermatozoon with the origin located at the centre of its 
___head. Inset: Normal and tangential hydrodynamic forces, internal shear and axial 
___forces, and bending moment acting on an elemental segment of length ds of the 
___flagellum. Modified from Koh and Marcos (2015) ................................................ 61 

Figure 4-2 – Flagellum shape for Sp = 7, corresponding to different internal force and 
___De. The solid blue line corresponds to a dimensionless time of 𝑡 = 0 while the 
___dashed green, dashed red, dash-dotted black and dash-dotted pink lines corresponds 
___to 𝑡 = π/4, 𝑡 = π/2, 𝑡 = 3π/4 and 𝑡 = π, respectively. ............................................ 67 



vii 

 

Figure 4-3 – Flagellum shape for De = 0, corresponding to different Sp and k. The solid 
___blue line corresponds to a dimensionless time of 𝑡 = 0 while the dashed green, 
___dashed red, dash-dotted black and dash-dotted pink lines corresponds to 𝑡 = π/4,  
___𝑡 = π/2, 𝑡 = 3π/4 and 𝑡 = π, respectively. .............................................................. 68 

Figure 4-4 – Sperm with body-fixed frame centred at o in the inertial frame. The position 
___vector r represents a vector in the body-fixed frame, while R represents a vector in 
___the inertial frame. .................................................................................................... 71 

Figure 4-5 – Trajectory of spermatozoon for 𝑘 = 0, corresponding to Sp and De. The 
___path history is marked by the red line. The vertical axis corresponds to 𝑌, and the 
___horizontal axis corresponds to 𝑋. ............................................................................ 73 

Figure 4-6 – Trajectory of spermatozoon for 𝐷𝑒 = 0, corresponding to Sp and 𝑘. The 
___path history is marked by the red line. The vertical axis corresponds to 𝑌, and the 
___horizontal axis corresponds to 𝑋. ............................................................................ 73 

Figure 4-7 – Shape of flagellum under different DEP force, for Sp = 7 and 𝑘 = π. The 
___solid blue line corresponds to a dimensionless time of t ̃= 0 while the dashed green, 
___dashed red, dash-dotted black and dash-dotted pink lines corresponds to t ̃= π/4, t ̃= 
___π/2, t ̃= 3π/4 and t ̃= π, respectively. The x-axis and y-axis represent the positions x 
___and y, non-dimensionalised with respect to the flagellum wavelength. ................. 75 

Figure 4-8 – Velocity of spermatozoa (in µm s-1) one standard deviation away from the 
___mean value, where the solid red lines and dotted blue lines denotes the X- and Y-
___spermatozoa, respectively. The plots on the top corresponds to a Newtonian fluid of 
___De = 0, for (a) 𝐷1 = 0 and (b) 𝐷0 = 0, while the plots on bottom corresponds to a 
___viscoelastic fluid of De = 5, for (c) 𝐷1 = 0 and (d) 𝐷0 = 0. .................................... 77 

Figure 5-1 – Flagellum comprising N discrete straight segments, each represented by a 
___dotted rectangle. Inset: The local coordinate system XL and YL of a segment at an 
___angle θ with respect to the general x-axis of the body-fixed frame. ....................... 80 

Figure 5-2 – Passive horizontal cylindrical rod subjected to a relative fluid velocity of 
___magnitude Vrel at an angle β with respect to the x-axis. .......................................... 85 

Figure 5-3 – Flagellum shape when flexural rigidity is infinite. The solid black line 
___corresponds to a non-dimensional time of 𝑡  = 0, while the dashed blue, green, 
___magenta, and red lines correspond to 𝑡 =  π/4, 𝑡 =  π/2, 𝑡 =  3π/4 and 𝑡 =  π, 
___respectively. ............................................................................................................ 93 

Figure 5-4 – Instantaneous non-dimensionalised linear and angular velocities for a 
___sperm with a flagellum of infinite flexural rigidity, over a non-dimensionalised time 
___from 0 to 2π, where hydrodynamic force is computed using (Left) RFT and (Right) 
___SBT. The solid blue, green, and red line corresponds to 𝑢𝑥, 𝑢𝑦 and ø, respectively. 
___ ................................................................................................................................. 93 

Figure 5-5 – Schematic of a sperm comprising a spherical head and N discrete straight 
___segments of equal length. ........................................................................................ 94 

Figure 5-6 – Flagellum discretized into 15 straight segments., where the mid-point of 
___each segment follows a moving sinusoidal wave, with the local axis of each segment 
___parallel to the tangent of the imaginary sinusoidal curve. The solid black line 
___corresponds to a dimensionless time of 𝑡 = 0, while the dash-dotted blue, green, 



viii 

 

___magenta, and red line corresponds to 𝑡 =  π/4, 𝑡 =  π/2, 𝑡 =  3π/4 and 𝑡 =  π, 
___respectively. ............................................................................................................ 95 

Figure 5-7 – Instantaneous velocity in the x-direction of the body-fixed frame, computed 
___using RFT (solid red line) and SBT (solid blue line) from a non-dimensionalised 
___time of 0 to 2π. ........................................................................................................ 99 

Figure 5-8 – Non-dimensionalised force per unit length, multiplied by the relevant 
___coefficients in the differential equations, along the curvilinear coordinate 𝑠. The 
___blue, green, and red lines represent iSp4h, 𝑓𝑦𝑅𝐹𝑇 and 𝑓𝑛𝑅𝐹𝑇, respectively. The real and 
___imaginary parts are represented independently by the solid and dashed lines, 
___respectively. .......................................................................................................... 102 

Figure 5-9 – Numerical solution of flagellum waveform, obtained using the analytically-
___obtained exact initial conditions (green line), and modifying the initial conditions of  
___𝑦′′′ by a factor 1.005 (red line), 1.007 (blue line) and 1.008 (magenta line), plotted 
___against analytical solution (black line) in equation (4.31). ................................... 103 

Figure 5-10 – (Left) Non-dimensionalised force per unit length, multiplied by the 
___relevant coefficients in the differential equations, along the curvilinear coordinate 𝑠 
___of the flagellum. The blue line represents iSp4h, while the green and black lines 
___represent 𝑓𝑛𝑅𝐹𝑇  for a continuous and discretized flagellum, respectively, varying 
___from N = 10 to N = 20 discrete segments. The real and imaginary parts are 
___represented independently by the solid and dashed lines, respectively. (Right) 
___Numerical solution (blue line), representing the flagellum waveform, plotted against 
___the segmented flagellum obtained from the analytical solution (black line). ....... 105 

Figure 5-11 – Non-dimensionalised force per unit length, multiplied by the relevant 
___coefficients in the differential equations, along the curvilinear coordinate 𝑠 of the 
___flagellum. The blue line represents iSp4h, the green line represents 𝑓𝑛𝑅𝐹𝑇  for a 
___continuous flagellum, while the black and red lines represent 𝑓𝑛𝑅𝐹𝑇  and 𝑓𝑛𝑆𝐵𝑇 , 
___respectively, for a discretized flagellum varying from N = 10 to N = 20 discrete 
___segments. ............................................................................................................... 106 

Figure 5-12 – Numerical solutions corresponding to initial conditions 
   guess FDA

0 0
          1.08*   0.895

s s
y y y y y y y y

= =
     = (green),    guess FDA

0 0
    1.05*   0.90

s s
y y y y y y y y

= =
     =  

___(blue), and    guess FDA

0 0
    1.02*   0.91

s s
y y y y y y y y

= =
     =  (red line), plotted against the 

___analytical solution discretized into 15 straight segments (black line). ................. 106 

Figure 5-13 – Causality dilemma encountered in solving for the flagellum shape using 
___Slender Body Theory. ........................................................................................... 109 

Figure 5-14 – Illustration of how the flagellum waveform at different phases of a beating 
___period are related. .................................................................................................. 109 

Figure 6-1 – Flagellum comprising N discrete straight segments, each represented by a 
___dotted rectangle. Inset: The local coordinate system xL and yL of a segment at an 
___angle θ with respect to the general x-axis of the body-fixed frame x-y. ............... 112 

Figure 6-2 – (a) Trajectory of spermatozoa, initially heading in the negative x-direction, 
___subjected to C0 = - 0.1 mN/mm3 (orange line), - 0.05 mN/mm3 (green line), and 0 
___(blue line) over 10 seconds. (b) Trajectory of spermatozoa, initially heading in the 
___negative (orange) or positive (red line) x-direction, subjected to C0 = - 0.1 mN/mm3 

ZEqnNum319270


ix 

 

___for 20 seconds. In both plots, the upward-pointing triangles denote the starting 
___position of the sperm while the inverted triangles denote the ending position. The 
___horizontal and vertical axes are the X- and Y-position of the inertial frame, 
___normalised with respect to the flagellum arclength. ............................................. 115 

Figure 6-3 – Sperm in 2D channel heading in the negative X-direction, subjected to 
___magnetic force and a flow in the positive X-direction. ......................................... 117 

Figure 6-4 – (a) Cumulative mean flagellum length (red line), head length (green line), 
___and computed velocity (blue line) normalised with respect to mean values obtained 
___from 100,000 samples. (b) Proportion of morphologically normal cells in percentage 
___points. The x-axis, in logarithmic scale, of each plot denotes the number of samples 
___used in the computation. ....................................................................................... 118 

Figure 6-5 – Purity as a function of C0. The red circles, green squares and blue triangles 
___denote the computed purity corresponding to a yield of 50%, 70% and 90%, 
___respectively. The dotted lines in matching color are the best-fit polynomials. .... 119 

Figure 6-6 – (a) Sperm subjected to no external field, versus (b) sperm subjected to C0 
___of -1 mN/mm3. Purity χ computed using 100,000 samples (blue star) for different 
___yield η, compared with purity obtained from supervised learning algorithms trained 
___on 10,000 samples to predict remaining 90,000 samples (hollow red markers) using 
___k-nearest neighbor (circle), ridge regression (square), random forest (triangle) and 
___artificial neural network (inverted triangle). ......................................................... 122 

Figure 6-7 – Velocity of spermatozoa in the test set of 90,000 samples (a) computed 
___using SBT computation and (b) obtained from predictions made using an ensemble 
___of supervised learning trained on 10,000 samples. The blue and green region 
___represents the number of morphologically normal and abnormal cells, respectively. 
___The sperm cells are not subjected to any applied field (C0 = 0). .......................... 123 

Figure 6-8 – Velocity of spermatozoa in the test set of 90,000 samples (a) computed 
___using SBT computation and (b) obtained from predictions made using an ensemble 
___of supervised learning trained on 10,000 samples. The blue and green region 
___represents the number of morphologically normal and abnormal cells, respectively. 
___The sperm cells are subjected to C0 = -1 mN/mm3. .............................................. 123 

Figure 6-9 – Velocity of spermatozoa in the test set of 99,900 samples (a) computed 
___using SBT computation and (b) obtained from predictions made using an ensemble 
___of supervised learning trained on 100 samples. The blue and green region represents 
___the number of morphologically normal and abnormal cells, respectively. The sperm 
___cells are not subjected to any applied field (C0 = 0). ............................................ 124 

Figure 6-10 – Velocity of spermatozoa in the test set of 99,900 samples (a) computed 
___using SBT computation and (b) obtained from predictions made using an ensemble 
___of supervised learning trained on 100 samples. The blue and green region represents 
___the number of morphologically normal and abnormal cells, respectively. The sperm 
___cells are subjected to C0 = -1 mN/mm3. ................................................................ 125 

Figure 6-11 – Flowchart illustrating possible approaches to investigate the non-
___deterministic process of sperm sorting. ................................................................ 125 

Figure 6-12 – Boxplots representing results computed (left column) and predicted (right 
___column) from training sets of size 100, 1,000, and 10,000 samples in the first row 



x 

 

___(a, b), second row (c, d) and third row (e, f), respectively. The circle markers are 
___results computed from 105 samples, while the dashed-line is the best fit polynomial. 
___The sperm cells are subjected to C0 = -1 mN/mm3. The machine learning model 
___makes predictions on the remaining of the 100,000 samples less those used for 
___training. ................................................................................................................. 127 

Figure 6-13 – Boxplots representing results computed (left column) and predicted (right 
___column) from training sets of size 100, 1,000, and 10,000 samples in the first row 
___(a, b), second row (c, d) and third row (e, f), respectively. The circle markers are 
___results computed from 105 samples, while the dashed-line is the best fit polynomial. 
___The sperm cells are not subjected to any applied field. The machine learning model 
___makes predictions on the remaining of the 100,000 samples less those used for 
___training. ................................................................................................................. 128 

Figure 6-14 – Flowchart illustrating approach taken for performing statistical analysis 
___in Chapter 6. .......................................................................................................... 129 

Figure B-1 – Solution y(s) to some ODE, as represented by the solid black curve. The 
___blue dot denotes the value y(sa) at the beginning of the step, while the green dot 
___denotes the actual solution y(sa+ds) after the independent variable s is incremented 
___by a step of ds. The red dot denotes the estimated solution y*(sa+ds), using (Left) 
___first-order RK method with a slope k1(sa) and (Right) second-order RK method with 
___a slope k2(sa+ds/2) as denoted by the dotted straight line. .................................... 176 

Figure B-2 –Flagellum waveform using real initial conditions obtained from finite 
___difference approximation (dotted red line), with the exact analytical solution (solid 
___blue line). .............................................................................................................. 184 

Figure B-3 – Flagellum waveform obtained using initial conditions obtained from finite 
___difference approximation with first-order (dotted blue line), second-order (dotted 
___red line), third-order (dotted pink line) and fourth-order (dotted black line) accuracy, 
___plotted against the exact analytical solution (bold green line), for a discretization of 
___(Left) 100 steps and (Right) 10,000 steps. ............................................................ 185 

 

  



xi 

 

List of Tables 

Table 2-1 – Lower reference limits (5th centiles and their 95% confidence intervals) 
___for semen characteristics. Adopted from World Health Organisation (2010) ........ 33 
Table 2-2 – Descriptive statistics of the semen parameters for fertile (n = 107) and 
___subfertile (n = 103) groups. P < 0.0001 for differences between means of all semen 
___parameters presented in the table. AI = acrosome index; P10 = 10th percentile; SC 
___= strict criteria; TZI = teratozoospermia index. Adopted from Menkveld et al.  
___(2001) ...................................................................................................................... 34 
Table 2-3 –  Summary of theoretical aspects of microscale locomotion and sperm sorting 
___techniques discussed in Chapter 2 .......................................................................... 46 
Table 3-1 – Parameters of measurement for X- and Y-spermatozoa (mean ± SD) from 
___Cui (1997) ............................................................................................................... 55 
Table 4-1 - Convergence test using swimming velocity in body lengths per second, 
___corresponding to various combinations space- and time-discretization ................. 71 
Table 5-1 – Force per unit length in the x-direction, normalised with viscosity μ and 
___relative fluid velocity at angles of between 0 and 0.25π rad, computed using RFT 
___or SBT of varying number of discretized segments. ............................................... 86 
Table 5-2 – Force per unit length in the y-direction, normalised with viscosity μ and 
___relative fluid velocity at angles of between 0 and 0.25π rad, computed using RFT 
___or SBT of varying number of discretized segments. ............................................... 87 
Table 5-3 – Resistive coefficients KN and KT and their ratios, where the superscript 
___RFT and SBT denote values computed using RFT and SBT models, respectively, 
___for different number of discrete segments N. .......................................................... 89 
Table 5-4 – Force per unit length fx, resistive coefficients KN and KT and their ratios, 
___for different number of discrete segments N and radius p of a rod 50 μm in length. 
___ ................................................................................................................................. 91 
Table 5-5 – Force per unit length fx, resistive coefficients KN and KT and their ratios, 
___for different number of discrete segments N of a rod 50 μm in length and 0.0025 
___μm in radius. ........................................................................................................... 92 
Table 7-1 – Categories of sperm according to their head morphology, and the 
___corresponding flagellum beat frequency and amplitude given with their respective 
___standard deviations. Data from Katz et al. (1982). ............................................... 116 
 

  



xii 

 

List of Symbols 

 a Radius of spermatozoon head 

 b Beat amplitude of spermatozoon flagellum 

 B Magnetic field strength 

 Ci Constants in solution to homogeneous equation 

 C0 Force density due to magnetophoresis 

 dsep Electrode separation distance 

 D0 DEP force density 

 D1 DEP force density per unit length in x-direction 

 D2 DEP force density per unit length in y-direction 

 De Deborah number 

 De2 Deborah number multiplied by viscosity ratio 

 e Unit vector 

 E Electric field strength 

 E Young’s modulus 

 Fi Force along the i-direction 

 F Force vector 

FDEP  Force due to DEP 

FB
  Force due to magnetophoresis 

CMf   Clausius-Mossotti factor 

mf  Internal sliding force per unit length within flagellum 

mf  Dimensionless  mf  independent of space and time 

 foldroyd Hydrodynamic force in an Oldroyd-B fluid 

 fviscous Hydrodynamic force in a viscous fluid 

 h Deflection of flagellum as a function of space 

 i Imaginary number 1−  

 I Second moment of area 

 k Spatial distribution of internal force within flagellum 

 K Resistive force coefficient 

 Mi Moment along the i-direction 

 Mbend Internal bending moment within flagellum 



xiii 

 

 M Moment vector 

 n Sample size 

 N Number of segments flagellum is discretized into 

 p Radius of spermatozoon flagellum 

 q Half segment length of flagellum in Slender Body Theory 

 Q Internal shear force within flagellum 

 

ir  Roots to homogeneous equation 

 r Radial position vector in body-frame 

 R Radial position vector in inertial-frame 

 Ri Surface force per unit area 

 Re Reynolds number 

 s Curvilinear position along flagellum 

 Sp Sperm number 

 St Strouhal number 

 t Time 

 T Internal tension within flagellum 

 iu  Velocity along i-axis in body-frame 

 iU   Velocity along i-axis in inertial-frame 

 vwiggling Velocity of infinitesimal segment of flagellum in body-frame 

 vswim Velocity of sperm head in body-frame 

 vrel Relative fluid velocity in body-frame 

 V Velocity vector 

 V Voltage across electrodes 

V   Particle volume 

 x Position vector in cartesian coordinates 

 X Position vector of Stokeslet 

 y  Deflection of flagellum as a function of space and time 

 Z Shear 

   Ratio of the wavelength to the arc length of the flagellum 

   Angle between fluid velocity and cylinder 

   Shape factor 

ij
   Kronecker delta 



xiv 

 

 εmedium Medium permittivity 

ij
  Function of parameters relating force to velocity 

   Yield 

   Angular displacement between local-frame and body-frame 

  Wavelength of flagellum waveform 

  Length of flagellum 

  Fluid viscosity 

i   Function of parameters relating force to velocity 

  Density 

   Fluid relaxation time 

ij
  Stress tensor 

   Angular displacement between body-frame and inertial-frame 

  Angular velocity 

  Transformation matrix that maps to local coordinates 

   Purity 

   Normalised statistic 

 ωwave Beating frequency of flagellum 

 L Superscript denoting parameter in local coordinate frame 

 x Subscript denoting parameter in x-direction 

 y Subscript denoting parameter in y-direction 

 T Subscript denoting parameter in tangential direction 

 N Subscript denoting parameter in normal direction 

   Non-dimensionalised parameter 

  Time-average parameter 

  



1 

 

Chapter 1  

Introduction 
 

1.1 Significance of study 

 

The study of human spermatozoa has significant medical applications relating to 

fertility and assisted reproduction, as well as social implications. Singapore has one of 

the lowest fertility rates in the world, with an average of 1.2 births per woman 

(Singapore Department of Statistics). Many other countries, such as Japan and South 

Korea, also have a birth rate much lower than what is required for the population to 

replace itself (The World Bank). Apart from encouraging the setting up of families, it is 

also important that assistance is provided to couples who wish to conceive but face 

medical difficulties, and minimise the social stigma that some may experience. Fertility 

issues are actually commonplace, with about 10% of the couples worldwide (World 

Health Organisation 2002) and 16% of the couples in Singapore (NUH Women’s 

Centre, Singapore) experiencing difficulties conceiving, where male infertility accounts 

for half of the cases (Cui 2010). In 2012, a population-based study on nearly 5,000 men 

found that one in four will experience prolonged waiting time if they intend to father a 

child, while another 15% are likely to require medical assistance in order to have 

biological children (Jørgensen et al. 2012). 

Assisted reproduction techniques account for over 1% of the infants born in 

developed countries today (Sutcliffe and Ludwig 2007). Despite advancements in 

medical technology, each cycle of fertility procedure is likely to turn out futile. An IUI 

cycle costs over SGD700 in Singapore, excluding medications or consultation fees, and 

comes with a success rate of only 9% (NUH Women’s Centre, Singapore).  Therefore, 

it is important to maximise the success rate by tapping on the knowledge from research 

and putting the information together. One way is to select healthy spermatozoa, or 

increase the likelihood of a healthy one fertilising the oocyte, so as to improve the 

chances of a successful pregnancy. Research has found that the chances of successful 

conception is significantly dependent on sperm morphology, both in natural fertilisation 

(Bartoov et al. 1994) as well as the various forms of assisted reproduction (Berkovitz et 

al. 1999, De Vos et al. 2003, Cassuto et al. 2009). While desirable sperm cells are 
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manually selected for IVF or ICSI, this is not feasible for IUI where a large number of 

sperm is used. Therefore, it will be advantageous to have a passive sorting procedure 

that gives a higher proportion of morphologically normal sperm, thus reducing the 

likelihood of morphologically abnormal sperm reaching the oocyte and competing for 

fertilisation.  

From an applied engineering perspective, we first need to understand the 

mechanics of sperm locomotion, before looking into techniques for sorting them. The 

physical dimensions of the flagellum (Dresdner and Katz 1981, Serres et al. 1984) and 

head (Katz et al. 1982), as well as kinematic properties such as flagellum waveform 

(Ishijima et al. 1986), beat frequency (Katz et al. 1978) and progressive velocity 

(Mortimer et al. 1986) were measured decades ago. Due to the small characteristic 

length and velocity of a swimming sperm with respect to the kinematic viscosity of its 

fluid environment, the associated Reynolds number is many orders of magnitude smaller 

than unity. In this regime, viscous force dominates over inertia force, and motion is 

governed by the Stokes equation (Nguyen et al. 2014). Force scales linearly with relative 

velocity (Happel and Brenner 2012) rather than the square of it, and organisms are 

unable to swim by reciprocal motion due to kinematic reversibility (Purcell 1977).  

With knowledge of how microorganisms behave (Lauga and Powers 2009), the 

desire for applications follow. Microfluidics allows researchers to investigate and 

manipulate particles as well as living cells (Lam et al. 2012, Nguyen 2012). Sperm cells 

have been sorted by the motility, morphology or chromosome contents using flow 

cytometry (Johnson et al. 1987), optics (Shi et al. 2009), magnetophoresis (Said et al. 

2008), filtration (Henkel et al. 1994), density gradient centrifugation (Bolton and Braude 

1984), boundary attraction (Guidobaldi et al. 2014), or the sperm’s own motility in a 

microfluidic channel (Cho et al. 2003, Seo et al. 2007). A few years ago, the first paper 

on subjecting sperm to dielectrophoresis was published (Rosales-Cruzaley et al. 2013). 

A literature review on the different disciplines led the author to see an area for 

improvement with far-reaching effects on society (which is the success rate of ART), 

know the objectives that should be worked towards (which is to acquire motile and 

normal sperm), understand the physics behind what influences the behaviour of sperm, 

as well as recognise the variety of established microfluidic procedures which may 

potentially be applied to achieve the objectives. The author then narrowed down the 
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choices to using dielectrophoresis or magnetophoresis. Both fields of research have led 

to the effective sorting of cells. Dielectrophoresis have been used to concentrate rat 

sperm and distinguish between mature and spermatogenic cells (Rosales-Cruzaley et al. 

2013), while magnetic activated cell sorting even led to the birth of a healthy human 

baby (Rawe et al. 2010).  

The known published studies on sperm sorting by dielectrophoresis or 

magnetophoresis have been confined to experimental work. Without a theoretical 

framework, future studies exploring new set-ups are likely to be associated with trial-

and-error. While there are comprehensive theoretical studies on modelling sperm 

motion (Gaffney et al. 2011, Lauga and Powers 2009), these are focused on the 

hydrodynamics and do not include the effects of an external electrical or magnetic field. 

Morever, statistical uncertainties are not incorporated. Given that morphometric 

parameters of sperm vary substantially (Katz et al. 1986), each cell responds differently 

under the same environment, and this should be accounted for in cell sorting. The author 

is interested to explore the sorting of sperm using an external field from a theoretical 

approach coupled with statistical analysis. In addition, the use of machine learning to 

reduce computational costs will be explored. 

The contents in this thesis are written with the aim of improving our knowledge 

of sperm subjected to external fields, providing a framework which may be built upon 

by follow-up studies to develop applications that enhance the success rate of assisted 

reproduction. Every contribution towards this field of research can potentially lead to 

future breakthroughs, and even a slight improvement in the odds can help thousands of 

families realise their dreams of parenthood. 

 

1.2 Research gap 

 

There are numerous microfluidic sorting techniques, of which many have been 

applied to sort sperm using different concepts. However, the published information 

typically contains information to replicate the experiment, but lack equations for other 

researchers to adopt the experiment to their own specific research objectives. If a 

different outcome is desired, the experiment set-up may have to be tuned by trial-and-

error before a trend can be observed, thus taking up precious resources which could have 

been put to better use. 
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The mathematical models available allow the locomotion of micro-organisms to 

be described with high accuracy. With the advancement in computation power, 

numerical simulations which would have been impossible to solve by hand decades ago 

can now be performed by moderately-priced personal computers. However, these 

models often describe the response of a single cell rather than provide a distribution-

based response of the entire cell population in the sample. A full detailed computation 

taking into account all the cells would undoubtedly be mathematically complicated and 

resource-intesive. Nonetheless, distributions in response ought to be taken into account 

for applications such as cell sorting, and making approximations would be better than 

ignoring the need to take variations into account.  

It has been over 40 years since the birth of the world’s first baby conceived by 

IVF. Despite tremendous technological progress in many areas of science, the success 

rate of IVF is still barely over 30%, while IUI is like a roll of the die given its one in six 

chance of leading to pregnancy. The community has a thorough understanding of the 

factors influencing the outcome of successful reproduction, but is still unable to control 

the fertilisation outcome as desired. There is much emphasis placed on the biological 

and chemical aspects of assisted reproduction, and rightly so, but perhaps adding an 

engineering perspective might contribute to breakthroughs. 

 

 

Figure 1-1 – Illustration of different fields which can be combined for inter-displinary research. 

 
Data science, which encompasses statistical analysis and machine learning, has 

seen a boom in popularity over the past few years. Supervised learning has already led 

to human-level performance in image recognition, while the use of reinforcement 
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learning has led to computers which defeated world masters in chess and Go. 

Corporations of all sizes are looking to join the wave and improve their workflow or 

profits. Surprisingly, the benefits of data science are not widely tapped by the fluid 

dynamics community. 

Each field described above (Figure 1-1) has a vast amount of knowledge which 

can be applied. However, partnerships encompassing all the above disciplines are rare. 

There is tremendous potential for progress if multi-disciplinary synergy can be 

established, and the benefits can be more than just the sum of its parts. 

 

1.3 Objectives and scope 

 

The key objective of this thesis is to study the feasibility of sperm sorting by an 

external field to increase the proportion of morphologically normal sperm cells for use 

in assisted reproduction. First, the factors influencing the success rates of assisted 

reproduction, and the existing sperm sorting techniques, will be identified. Second, the 

mathematics behind sperm locomotion in an external field will be studied, so that 

experimentalists can have a clearer picture of the relative contribution from each 

variable involved. Third, the effect of sperm manipulation in a Newtonian and non-

Newtonian fluid will be investigated, to understand the significance of the fluid 

environment on the sperm velocity and flagellum waveform. Fourth, the velocity 

distribution of a sample population of sperm will be computed to account for variations 

in morphology which may result in overlapping response between normal and abnormal 

sperm. Finally, the use of supervise learning to make predictions will be assessed to 

determine the conditions upon which supervised learning may be applied to predict the 

outcome of sperm sorting. 

The studies will be theoretical, although comparisons are made to experimental 

observations for specific cases. Hydrodynamic force will be modelled using Resistive 

Force Theory or Slender Body Theory. Boundary effects and interactions between cells 

are ignored in the context of a dilute sample in a large microchannel, and the electric or 

magnetic field is assumed to be unaltered by the presence of cells or fluid. Biological 

responses of spermatozoa are also neglected.  
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1.4 Overview of thesis 

 

With an understanding of the rational for carrying out research in this field, the 

rest of this thesis will be presented systematically as follows. The literature review in 

Chapter 2 provides a broad knowledge on available assisted reproduction techniques 

and the physical aspects of sperm, followed by the theory and supporting experiments 

regarding hydrodynamic forces and interesting phenomena present in microfluidics. 

Thereafter, readers will be introduced to a variety of established methods to sort sperm 

by different properties. 

Chapter 3 contains a simplified analytical study on the effects of 

dielectrophoresis on the velocity of sperm. Using an approximate analytical relation 

between the velocity and electric field gradient, it will be shown that larger sperm will 

be more strongly influenced by an applied field. Given the difference in morphology 

between the X- and Y-sperm, the results provide proof-of-concept that sperm may be 

sorted by gender using a non-uniform electric field. 

Chapter 4 treats the flagellum as a flexible filament and solves for beating pattern 

analytically as a function of the Sperm number, internal force distribution, as well as 

fluid properties. The extent to which dielectrophoresis modifies the flagellum waveform 

will be considered, and subsequently shown to be insignificant within the range of 

conditions sufficient for sorting. The induced velocity in a Newtonian fluid and 

viscoelastic fluid according to this model will be studied.    

Chapter 5 delves deeper into theoretical aspects of hydrodynamics and looks into 

the mathematical framework of Slender Body Theory (SBT), which has an improved 

accuracy over Resistive Force Theory (RFT). The force-velocity relation given by these 

two theories will be compared, and the sources of deviation will be discussed. 

Thereafter, SBT will be applied to solve for the beating pattern of a flexible flagellum, 

and the rationale for choosing a prescribed waveform for subsequent statistical analysis 

will be given. 

 Chapter 6 explores the feasibility of sorting sperm to obtain a higher proportion 

of morphologically normal sperm, with the objective being to increase the success rate 

of assisted reproduction. Recognising that the physical dimensions of sperm are widely 

distributed, a statistical approach will be taken, and the results will be interpreted in 
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terms of probabilities and confidence intervals. This framework is a novel improvement 

to existing sperm studies which involve deterministic computations and lacks the 

accountability for random distributions. Supervised learning will also be implemented 

in a bid to reduce computational costs. 

 Chapter 7 provides a summary of the research carried out and key findings to 

take away from this thesis, and concludes with suggestions on possible future directions 

on how studies on sperm sorting may be furthered.  
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Chapter 2  

Literature Review 
 

In this chapter, a review is done on the principles and effectiveness of various 

assisted reproduction procedures available. Thereafter, the fluid mechanics and various 

phenomena in microscale locomotion are discussed. This is followed by a review of 

established sorting techniques used to sort microparticles and sperm cells. Finally, the 

author concludes this chapter by highlighting the key points and discussing how the 

existing literature may be built upon to fill the research gap and serve as a foundation 

for practical applications. 

Roosen-Runge (1977) has described the process of how primordial germ cells 

develop into spermatogonia, spermatocytes, spermatids and finally completing the 

differentiation process to become spermatozoa. In this thesis, the word 'spermatozoa' 

and 'sperm' is used interchangably for convenience, as is the common practice among 

the general public. 

 

2.1 Assisted Reproduction Techniques 

 

It is estimated that 10% of the couples globally experience some degree of 

infertility (World Health Organisation 2002), and assisted reproduction techniques 

account for at least 1% of the infants born in developed countries (Sutcliffe and Ludwig 

2007). Infertility could be attributed to the sperm (Agarwal and Said 2003; Fisch and 

Lipshultz 1992), or various other factors such as immunologic (Schwimmer et al. 1967), 

uterine (Hunt and Wallach 1974), environmental (Hruska et al. 2000), and psychological 

factors (Edelmann and Connolly 1986). Assisted reproductive techniques are 

procedures which increase the chance of a woman conceiving through the use of 

scientific methods. Couples who are unable to conceive will first be asked to undergo 

further tests for male infertility (Sharma et al. 2010) and female infertility (Smith et al. 

2003) before doctors recommend appropriate actions. In this section, the three most 

widely-used methods will be presented. 
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2.1.1 In vitro fertilisation (IVF) 

 
The term IVF is synonymous with assisted reproduction to many people, despite 

being neither the first approach recommended by doctors, nor the procedure with the 

highest chance of conception. As evident from the name, this technique involves 

fertilisation outside the female body. This idea was introduced in the 1950s, and the 

advancement as well as acceptance of this technology over the decades are discussed by 

one of the pioneers who won the Nobel Prize for IVF (Edwards 2001). IVF begins with 

the patient given ovarian stimulation, after which the oocytes were collected and 

inseminated, then placed in an incubator (Edwards 2000). After fertilisation, a zygote is 

formed, and the cell multiplies to form an embryo, which is then transferred to the 

uterus. It has been found that the success rate is dependent on the spermatozoa motility 

(Verheyen et al. 1999) and morphology (Grow et al. 1994). The first baby conceived by 

IVF was borned in 1978, and since then, IVF had led to the birth of over 5 million infants 

(National University Hospital, Singapore). 

According to a review (Henkel and Schill 2003) of sperm preparation techniques 

used in ART, the three common classes of methods are migration, density gradient 

centrifugation and filtration. The migration technique, which includes swim-up (Sakkas 

et al. 2000) and migration-sedimentation (Tea et al. 1984), are low-cost methods 

suitable only when female factor infertility is involved. Although a clean fraction of 

highly motile sperm can be recovered, this method has a low yield, and hence it requires 

both a high sperm count and motility. A second category is density gradient 

centrifugation, which gives a clean fraction of highly motile sperm and is suitable for 

low sperm density samples (Mortimer 1994). Lastly, filtration may be done using glass 

wool (Henkel et al. 1994), fibrous polyester L4 membranes (Agarwal et al. 1992) or 

Sephadex beads (Drobnis et al. 1991) which are synthetic cross-linked polymers. 

Filtration gives a high yield and reduces the level of reactive oxygen species, which are 

shunned as they oxidise sperm plasma membrane and impair sperm functions. More 

details of sperm preparation techniques are given in section 2.3. 

IVF involves the transfer of multiple embryos to the womb, and couples could 

get more than they asked for. Approximately a quarter of the successful cases resulting 

in live birth are multiple gestations (Land and Evers 2003), as compared to less than 2% 

in a natural conception (National University Hospital, Singapore), hence increasing the 
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risk of premature birth or delivery complications. Therefore, elective single embryo 

transfer (eSET), where only one good-quality embryo is transferred, is encouraged for 

the initial treatment cycles (van Montfoort et al. 2005). This mitigates the risks of twin 

pregnancies, at the expense of a slightly lower but still comparable rate of successful 

conception (National University Hospital, Singapore). 

Apart from couples facing limited success in achieving pregnancy, some opt for 

IVF along with preimplantation genetic diagnosis (PGD) to avoid transmitting a genetic 

disorder or disease to their child. In a bid to support parenthood and mitigate the aging-

population, the Singapore government not only provides a basket of monetary and non-

monetary incentives for parents, but also supports couples with difficulties conceiving 

by co-funding up to 75% of the costs involved in IVF or other approved assisted 

reproduction treatments (Ministry of Health, Singapore). 

 

2.1.2 Intracytoplasmic sperm injection (ICSI) 

 
ICSI can be deemed as a modification to IVF. A single spermatozoon is selected 

and placed using an injection pipette into the plasma membrane of the oocyte, which is 

then left for fertilisation to occur (Malter and Cohen 2002). The subsequent procedure 

is similar to IVF, where the embryo is transferred to the uterus a few days later. ICSI 

has the highest pregnancy rate and is well-suited for cryptozoospermia, that is, the 

condition of extremely low number of viable spermatozoa (Van Steirteghem 2002).  

It may appear as though the motility and health of the spermatozoa can now be 

neglected, given that the spermatozoon is selected and placed into the oocyte without its 

own efforts. However, a study done on 1000 ICSI cycles proved otherwise (De Vos et 

al. 2003). The fertilisation rate was about 11 percentage points higher when 

spermatozoon with a normal morphology was selected, as compared to spermatozoon 

with an abnormal morphology. To address concerns raised over the lack of natural 

selection, Takeda et al. (2012) proposed using spermatozoa sorted by cervical mucus-

penetration for ICSI. They highlighted that the procedure is simple, and gives a higher 

percentage of morphologically normal spermatozoa compared to those obtained from 

density gradient centrifuge with swim-up technique, without the need for centrifugation. 
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Bartoov et al. (2001) introduced the motile-sperm organelle-morphology 

examination (MSOME), in which inverted light microscope and digital imaging allows 

the nuclear contents to be examined at 6600×, improving the pregnancy rate of ICSI 

from 30% to 58%. MSOME allows spermatozoa with large nuclear vacuoles to be 

identified and avoided, with subsequent research finding that large nuclear vacuoles is 

correlated with DNA fragmentation (Utsuno et al. 2013). A review by Komiya et al. 

(2014) has summarised how ‘large vacuoles’ is defined in various studies. This 

improvisation to ICSI is termed Intracytoplasmic morphologically-selected sperm 

injection (IMSI), and follow-up studies bear testament to the improved pregnancy rate 

(Antinori et al. 2008, Balaban et al. 2011, Bartoov et al. 2003).  

 

2.1.3 Intrauterine insemination (IUI) 

 
For IUI, fertilisation occurs inside the female body, unlike IVF and ISCI. In this 

procedure, semen from the male partner or a donor is washed and centrifuged, and the 

motile spermatozoa is then deposited by means of a catheter into the uterus during the 

ovulation period (Human Fertilisation Embryology Authority), and what happens after 

is left to nature. It was found that age was the most important factor in determining the 

success of IUI, followed by the number of motile spermatozoa (Campana et al. 1996). 

The cumulative ongoing pregnancy rate after three IUI cycles is comparable to one IVF 

cycle (Ombelet et al. 2003). Since IUI is a simpler and less invasive procedure, with the 

cost-per-maternity being around half compared to IVF and ICSI, it is promoted as a 

good first approach for cases of mild male infertility (Zayed et al. 1997). 

A review of 55 studies which investigated sperm parameters in relation to IUI 

success found that initial motile count (IMC) was deemed the most important (Ombelet 

et al. 2014), with the majority citing a threshold value of between 1 and 2 million. Sperm 

morphology using the strict criteria was deemed the second most important parameter, 

with the majority citing a threshold of 5%. If these criteria are not met, the success rate 

is significantly lower, but meeting these criteria still does not come close to guaranteeing 

success. Another review reported that two-thirds of the studies set the benchmark for 

IMC at 5 million (Tomlinson et al. 2013). Ombelet et al. (2003) reported that as long as 

the morphologically normal sperm exceeds 4%, the cumulative ongoing pregnancy rate 

after three IUI cycles with clomiphene citrate ovarian stimulation is similar regardless 
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of the initial motile sperm count (Figure 2-1). Since a morphologically satisfactory 

sample is a sufficient condition for infertile couples without tubal factor to undergo their 

desired choice of treatment, it is apparent that a preparation procedure which improves 

the morphology of the sperm sample will be highly valued, and one which improves 

motility at the same time will be an added bonus. 

 

Figure 2-1 – Cumulative ongoing pregnancy rate after three CC-IUI cycles. Reprinted from Ombelet et al. 

(2003). 

 

2.1.4 Risks involved 

 
The price of assisted reproduction techniques to infertile couples is not just on 

the financial aspect. Even after a successful pregnancy and live birth, the health of their 

offspring is of another concern, such as the higher likelihood of low birth weight 

(Schieve et al. 2002) and risk of major birth defects (Olson et al. 2005). Hansen et al. 

(2005) reviewed 25 published papers on the prevalence of birth defects associated with 

assisted reproduction techniques and cited that two-thirds of the studies showed an 

increased risk of at least 25%. 

On the flip side, one should keep in mind that the age of couples who undergo 

assisted reproduction is generally higher than those who conceive naturally, as couples 

would not choose this option at the first instance. Statistics showed that the age of the 

mother (Andersen et al. 2000) and father (Kidd et al. 2001) have a significant effect on 

the chances of a successful pregnancy. According to the Human Fertilisation 

Embryology Authority of the United Kingdom, 32% of IVF/ICSI cycles and 16% of the 

IUI cycles resulted in a live birth for women under 35 years of age, and the success rate 

declined steadily and rapidly as the age increase. This explains why some studies 
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looking into the risks of assisted reproduction give a corrected result taking into account 

such factors. The odds ratio of congenital malformation for children conceived by IVF 

is 1.20 times that of children conceived naturally, but after correction for different 

factors such maternal age, the odds ratio is reported to be a mere 1.03 (Anthony et al. 

2002). Another study found the odds ratio of major malformation for children conceived 

by ICSI to be 1.44, and after correction for risk factors, to be 1.24, hence concluding 

that while much risk can be attributed to parental factors, technique-related risk is still 

not negligible (Katalinic et al. 2004).  

In spite of the concerns discussed, the risks could be worth taking as long as a 

well-informed and careful decision is made with the expected benefits outweighing the 

expected costs, and with parents prepared to care for their children regardless of possible 

medical complications. Given that spermatozoa play a direct role in reproduction, we 

need to understand it not just biologically but also physically, and seek to apply this 

knowledge for the betterment of related fields in reproduction. 

 

2.2 Theory on microscale fluid mechanics and spermatozoa1 

 

In light of the earlier discussions on assisted reproduction, there is much to be 

contributed by physicists and engineers as new applications can be created with an 

understanding of what influences the sperm behaviour. In this section, an overview of 

the physics in low Reynolds number locomotion will be explored. 

 

2.2.1 Resistive Force Theory 

 
It is widely accepted that inertial effects can be ignored when dealing with 

microorganisms (Pedley and Kessler 1992). As such, their motion is governed by Stokes 

equation. Self-propulsion due to a purely viscous force is first discussed by Taylor 

(1951) in the form of a waving sheet with small amplitude, and subsequently Hancock 

(1953) considered the propulsion of an infinite filament. This leads to RFT, in which a 

“suboptimal” resistive coefficient (Lighthill 1976) is used to linearly relate the viscous 

force to the fluid viscosity, relative fluid velocity, and the object’s length scale. In RFT, 

                                                           
1
 Published in Koh JBY, Shen X, Marcos (2016) Theoretical modeling in microscale locomotion.  

   Microfluidics and Nanofluidics 20:1-27 
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the flow field is assumed to be uninfluenced by other parts of the filament (or flagellum), 

and ignores the presence of any cell body. The first application of RFT on 

microorganisms was by Gray and Hancock (1955), who modelled the force acting on a 

sperm as the summation of independently determined viscous force acting on each 

infinitesimal segment of the flagellum in the normal direction, denoted subscript N, as 

well as tangential direction, denoted by subscript T: 

  
   

 F e eN N N T T TK V K V ds= + , (2.1) 

where s is the curvilinear position along the flagellum, 
NK  and TK  are the resistive 

force coefficients, 
NV  and TV  are the velocity components, while eN

 and eT  are the 

unit vectors in the normal and tangential directions, respectively. Gray and Hancock 

(1955) proposed an analytical relation for 
NK  and TK , which was subsequently refined 

by Lighthill (1976) to be 

 
( )( )

4
ln 0.18 / 0.5N LighthillK

p




=
+

, (2.2) 

 
( )( )

2
ln 0.18 /T LighthillK

p




= , (2.3) 

where µ  is the fluid viscosity, λ is the wavelength, and p is the radius of the flagellum. 

The procedure in which Lighthill derived RFT is presented in the Appendix A, with the 

intermediate steps filled by the author. 

The solutions to analytical models depend on the dimensionless ratio 
N TK K . 

In the limit of infinitely long filaments, the ratio approaches 2, which is the 

approximation used in some studies (Fu et al. 2008; Koh and Marcos 2014; Tournus et 

al. 2015). However, any real finite filament will have 
NK  less than twice the value of 

TK . Experimental investigations have led to varying conclusions regarding the 

measured and computed ratio. Friedrich et al. (2010) used high-precision tracking of 

bull spermatozoa to measure the instantaneous velocities as well as flagella beat pattern, 

after which RFT was used to reconstruct the instantaneous velocities. Using a least 

square fit, the ratio between the normal and tangential resistive force coefficient was 

determined to be 1.81 ± 0.07. Using this model, the team found that RFT can be used to 

predict instantaneous velocities with an error of 6% on average (Friedrich et al. 2010). 
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Bayly et al. (2011) analysed the images of three phenotypes of uniflagellate 

Chlamydomonas cells under high speed video microscopy, and plotted the observations 

against analytical predictions using coefficients which give the smallest mean-squared 

error. They concluded “good qualitative agreement” between measured velocities and 

those predicted by RFT. However, the values of resistive coefficients determined 

experimentally differ by a factor of two as compared to the theoretical values computed 

using Lighthill’s coefficients. They proposed that the deviations may have resulted from 

long-range interactions being neglected. It is worthy to note that Chlamydomonas has a 

flagellum length of only 12 µm, and is a pulling cell which generates a different flow 

field (Elgeti et al. 2015) compared to that generated by a pushing cell like spermatozoa. 

The nematode C. elegans, although not a microscopic cell, is used in some 

experiments as a swimmer in low Re, with justifications being made by Sznitman et al. 

(2010). Being in the scale of 10-3 m, C. elegans generate a force which can be measured 

more conveniently than microscopic cells. Measurements revealed that the resistive 

force coefficient ratio is 1.4 and swimming speed is 0.36 mm/s, while calculations from 

RFT predicted the ratio to be 1.5 and the speed to be 0.43 mm/s. Also dealing with C. 

elegans, Schulman et al. (2014) found that variations in drag coefficients vary little for 

nematodes of all sizes ranging from 0.4 to 1.2 mm. They measured the normal and 

tangential force coefficients to be (5.1 0.3)  and (3.4 0.2) , as compared to 

theoretical predictions of (4.9 0.4)  and (3.0 0.3) , respectively. In addition, the 

lateral and propulsive force plotted over several periods showed excellent agreement 

between theory and experimental measurements (Figure 2-2). 

 

Figure 2-2 – (a) The lateral force FL and (b) propulsive force FP of C. elegans plotted as a function of time. The 

experimental data (blue circular markers) contain a systematic error of roughly 10% from uncertainty in the 

spring constant of the micropipette. The prediction from RFT (red solid line), which has been fitted to the 

data, has an error estimated to be 5%. Reprinted from Schulman et al. (2014). 
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The validity of RFT is also supported by experiments done using robotic 

swimmers. A macro-scale robotic swimmer with tail length and diameter in the order 

10-1 m and 10-4 m, respectively, and speed of 21 µm/s at an actuation frequency of 35 

Hz was built (Yu et al. 2006) to model microbes. The results show that the propulsive 

force matches theoretical values predicted by RFT. Another team fabricated an 

externally-powered propeller, with tail length and diameter in the order 10-6 m and 10-7 

m, respectively, and a bending stiffness of 10-24 N m2 to model cells (Pak et al. 2011). 

The theoretical predictions of speed, as a function of the external field frequency and of 

Sperm number Sp, fall almost within one standard deviation of the measured data. 

Despite some studies showing the shortfalls of RFT (Chattopadhyay and Wu 

2009, Kurtuldu et al. 2013, Rodenborn et al. 2013), this model nonetheless serves as a 

useful estimate for studying new scenarios, as its predictions match experimental 

observations at least to the order of magnitude. As Michael Cates, Lucasian Professor 

of Mathematics at the University of Cambridge, writes in a review (Cates 2012): “simple 

models are the first to be falsified. Yet a model that clearly does not fit the data, but 

nearly does so despite its gross simplifications, can provide crucial mechanistic 

insights... even if a more complicated model already exists and fits the data better.” 

 

2.2.2 Slender Body Theory 

 
Slender Body Theory (SBT) is an improvement over RFT. While the latter 

ignores the effects of interactions and describes hydrodynamic force as a linear function 

of the local velocity, SBT provides a non-linear relation and accounts for hydrodynamic 

interactions across the entire body. The body is assumed to be slender, such that its 

cross-section is small relative to the body length, with small curvature and is in Stokes 

flow where inertial is negligible relative to visous forces. SBT was first introduced by 

examining the velocity of a long ellipsoid and a finite circular cylinder stationary under 

the uniform flow, and extended to general cases by Batchelor (1970) and Cox (1970).  

Lighthill (1976) and Higdon (1979) applied SBT to relate the velocity distribution on 

the flagellum to the force per unit length, by considering the contribution of Stokeslet 

and doublet. A Stokeslet is a concentrated point force while a doublet is a pair of 

concentrated point force which is equal in magnitude but opposite in direction. The 

theory is further developed to analyze the behavior of flagellum or filament by adding 
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the contributions of higher order singularities (Johnson 1980). Both Lighthill’s and 

Johnson’s SBT agree ‘extremely well’ with experiemental measurements of helixes of 

various pitch angles (Liu et al. 2013).  For organisms with negligible rotational velocity, 

the flagellum can be replaced by a distribution of Stokeslets and doublets along the 

centerline to satisfy the no-slip boundary condition on the flagellum surface.  

The velocity of a single-flagellum bacterium swimming in a straight line is 

compared to a mathematical model which treats the specific bacterium as a rigid helical 

flagellum attached to a spherical head. SBT is shown to agree with the experimental 

observations qualitatively, with the measured velcocity differing by ~7% for a small cell 

(E. Coli), and ~17% for a large cell (V. alginolyticus) (Chattopadhyay and Wu 2009). 

Another team compared numerical computations with experimental measurements on a 

nanobot driven by rotating helical flagellum and found a good match (Rodenborn et al. 

2013). The presence of error arising from the use of SBT can generally be attributed to 

the fact that Stokeslets are used instead of a collection of singularities, and that imposing 

centerline boundary conditions correspond to better accuracy when analyzing a slender 

spheroid (Bouzarth and Minion 2011). SBT only allows the velocity of the swimmer to 

be computed. If information about the velocity, pressure and stress at any point of 

interest in the fluid or body is desired, it will be necessary to turn to more sophisticated 

models such as the Method of Regularized Stokeslet (Leiderman et al. 2013). 

 

2.2.3 Rheotaxis 

 
Rheotaxis occurs when a body experiences different local forces due to a shear 

flow. A review by Pedley and Kessler (1992) noted that cells swimming in flow 

channels have the tendency to travel upstream, due to the inclination of swimming 

towards the wall coupled with the torque induced by shear. Spermatozoa are one such 

category of cells which have long been observed to exhibit such behaviour (Bretherton 

1961). There are suggestions that in the female mammalian reproductive tract, 

chemotaxis is significant only near the ovum and that the major factor in sperm guidance 

is rheotaxis (Miki and Clapham 2013). More recently, it was noted that spermatozoa do 

not simply swim upstream in shear flow; they tend to exhibit spiral-shaped trajectories 

along the boundaries of a cylindrical channel (Kantsler et al. 2014). In fact, a numerical 

study predicted that rheotaxis is possible regardless of whether there is a surface in the 
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vicinity, as long as the background flow does not wash the cell away (Ishimoto and 

Gaffney 2015). 

The effects of rheotaxis for human and bull spermatozoa peaks when the shear 

rate reaches 3 to 3.5 s-1 (Winet et al. 1984). However, this value may vary when for 

spermatozoa of different species. Using the sperm of an abalone species which fertilizes 

externally, it has been shown that sperm velocity and fertilization success was higher at 

low shears of 0.1 ~ 1 s-1 as compared to still water, but lower when the shear is increased 

beyond 4 s-1 (Riffell and Zimmer 2007). The authors noted that the binding force 

between a sperm and the zona pellucida of an ovum is in the range of 10-10 to 10-9 N 

(Thaler and Cardullo 1996), and that a shear rate of 10 s-1 results in a force of 10-11 N, 

which is unlikely to cause dislocations between the gametes. Coupled with an 

experimental validation using a control test, they concluded that shear rates of up to 10 

s-1 is not detrimental to cell viability, and that the lower fertilization when shear is too 

large is simply due to hydrodynamic factors. The effects of rheotaxis may be analysed 

by comparing the normalised swimming velocity with respect to the normalised velocity 

of shear flow (Kantsler et al. 2014). When subjected to shear flow with a magnitude 

equivalent to its free-swimming velocity, a sperm cell can achieve an upstream velocity 

over a third of its free-swimming velocity (Figure 2-3). The authors pointed out that 

viscosity of the sperm in their natural environment is approximately 3 mPa s (Owen and 

Katz 2005), and higher values of viscosity actually decreases the effects of rheotaxis. It 

was also observed that under flow reversal, the sperm realigns against the new flow 

direction in a matter of seconds. 

 

Figure 2-3 – Upstream and transverse mean velocities of human and bull spermatozoa as a function of shear 

flow speed u20 at 20 μm from the surface, for viscosities of 1 mPa s (red squares), 3 mPa s (blue triangles), 12 

mPa s (black circles) and 20 mPa s (green diamonds). All velocities are normalised by the sample mean speed 

v0μ at zero shear rate. For human sperm, in order of increasing viscosity v0μ = 53.5, 46.8, 36.8, 29.7 μm/s, and 

for bull sperm v0μ = 70.4, 45.6, 32.4, 29.6 μm/s. Reprinted from Kantsler et al. (2014). 
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It may not be immediately intuitive that a shear flow may cause some organisms 

to travel sideways rather than along the flow axis. However, this is indeed the case for 

helical swimmers such as many bacteria. Marcos et al. (2012) investigated the effects 

of rheotaxis on B. subtilis through experiments and found that the presence of a shear 

flow may induce a rheotactic velocity of nearly 10% of the mean swimming speed at a 

shear rate of 10 s-1, in a direction perpendicular to the shear flow. They also 

demonstrated experimentally that bacteria rheotaxis is a passive process which results 

from the coupling of motility, shear, and geometry. Miki and Clapham (2013) proposed 

that although rheotaxis does not rely on sensory mechanisms, sperm rheotaxis is not 

entirely passive as it is mediated by Ca2+ intake via the Cation channels of sperm 

(CatSper) which induces hyper-activated motility (Qi et al. 2007). They demonstrated 

that ordinary mouse and human sperm have a high tendency to align (Figure 2-4) against 

a flow of ~50 µm/s, with over half of the population orienting within ±22.5° of the 

forward vector, but mouse sperm lacking CatSper are indifferent to a flow and exhibits 

circular trajectories. Interestingly, indifferent to the presence or absence of CatSper, sea 

urchin sperm do not demonstrate rheotaxis. The circular trajectories of a sea urchin 

sperm might be attributed to the fact that the ratio between the head volume and flagellar 

length, and therefore the torque, for a sea urchin sperm is approximately 50 times greater 

(Smith et al. 2009) than that of a human sperm. 

 

Figure 2-4 – Trajectories of mouse (top; scale bar represents 200 µm) and human (bottom; scale bar represents 

100 µm) sperm without flow (left) and in flow (right), as analysed by Computer-assisted sperm analysis 

(CASA). Reprinted from Miki and Clapham (2013). 

 
Even though gravitaxis, and hence gyrotaxis (Kessler 1985), is evident in motile 

flagellates as well as ciliates (Durham et al. 2009), it is negligible for spermatozoa 

(Winet et al. 1984) and hence will not be discussed here. 
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2.2.4 Wall effects 

 
The presence of boundaries influences the swimming speed and trajectory of 

micro-swimmers. In microfluidic set-ups, the channels are usually narrow, which means 

that a good portion of the particles or cells studied will be in close proximity to a 

boundary. Research has found that a swimmer moving towards a solid boundary 

experiences an increased drag force and stress on its surface (Ramia et al. 1993), and 

therefore its swimming speed is reduced if the swimmer is unable to produce enough 

thrust for compensation. In this section, we discuss the constraints under which it is fair 

to neglect the wall effect on microbes. 

The average velocity of a bacterium with a single helical flagellum rotating at a 

constant rate in the vicinity of a surface has been computed (Ramia et al. 1993) by the 

boundary element method (BEM). Having found the normalised velocity, force and 

torque experienced as a function of the relative separation distance, the authors 

concluded that hydrodynamic interactions is significant only when the separation 

distance is no larger than the largest physical dimension of the organism. The model 

was compared with experiments by Frymier et al. (1995), in which a three-dimensional 

tracking microscope to track the motion of a dilute sample of E. coli near a glass plate. 

Results show that wall effect is negligible when the bacteria is more than 10 µm from 

the surface, but significantly reduces the speed of bacteria within 2 µm from the planar 

surface. Frymier and Ford (1997) reported that the speed of the wild-type E. coli strain 

NR50, with a cell size of 1 µm, swimming perpendicular to the wall is significantly 

affected by the wall when it is up to 10 µm away. However, the speed of those cells 

swimming approximately parallel to the surface remains constant regardless of the 

distance. 

Similar results are obtained when the monotrichous bacteria V. alginolyticus is 

observed using inverted phase-contrast microscopy (Goto et al. 2001; Goto et al. 2005). 

They noted that, with all else kept constant, the wall effect on cells swimming towards 

the boundary differs from that of cells swimming away. Observing the swimming speed 

and pitching rate as a function of the distance away from the wall and the orientation, it 

was concluded that wall effect was negligible on the bacteria at a distance of at least 

12.5 times the diameter of the cell body (Figure 2-5). This is in line with the cell 

distribution study of E. coli between two glass plates, in which there is a sharp spike in 
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the population density within a distance of 10 to 12.5 times the cell length away from 

the wall but little variations at further distance (Berke et al. 2008). 

 

   

Figure 2-5 – Forward swimming speed (left) and pitching rate (right) of the bacterial model as a function of 

pitch angle θ and distance d from the wall normalised with the width of the bacterial cell body. When θ = 0, 

the cell is swimming parallel to the wall. The swimming speed is normalised using the swimming speed in free 

space, and pitching rate is normalised with the angular velocity in free space. Reprinted from Goto et al. (2005). 

 
Researchers have also looked into whether wall effects may be neglected for 

spermatozoa, which are much larger than the bacterial cells. Fauci and McDonald (1995) 

modelled two-dimensional spermatozoa with beating flagella as a distribution of the 

singularities to study its motion in the presence of two parallel boundaries. For the 

spermatozoa that was placed midway between the channel walls, the wall effect can be 

neglected when the ratio between the half channel width and the flagellum amplitude is 

around 5. The spermatozoa model has been extended to a more general case, comprising 

a distribution of regularized Stokeslet over an ellipsoid and along a slender filament 

(Gillies et al. 2009). The sperm motion in a slide chamber is computed, in which the 

walls are modelled as parallel plates and discretized by a distribution of regularized 

Stokeslets. The force acting on the sphere-rod body as computed by them is in good 

agreement with the results by Ramia et al. (1993), and the boundary effect becomes 

insignificant when half-depth of the chamber slide approaches 10 times the size of the 

swimmer (Figure 2-6). 
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Figure 2-6 – Normalised force 𝐹/𝐹∞ as a function of normalised distance from the wall, for a sphere of radius 

A translating between parallel chamber walls where the half-depth is h. Square markers indicate the results 

of Ramia et al. (1993), while cross markers indicate the computations by Gillies et al. (2009) corresponding to 

the half-depth of the chambers used. Reprinted from Gillies et al. (2009). 

 
Based on the results from studies discussed in this section, it is safe to conclude 

the wall effect can be neglected when the distance from the swimmer to the wall is at 

least an order of magnitude greater than the body length of the swimmer. If the distance 

from the wall is of the same order of magnitude as the body of interest, wall effects can 

be incorporated using Faxen’s law. The drag force experienced by a sphere of radius a 

moving parallel to two parallel walls (Happel and Brenner 2012) as a function of the 

distance from the centre of the sphere to the nearer wall and the further wall. In the 

special case of a sphere, the drag force is 
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If the sphere is moving parallel to a single plane wall (Happel and Brenner 2012) at a 

distance of l away, the equation becomes 
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and for a sphere moving perpendicular to a single plane wall, 
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When the sphere is far away from boundaries such that ( )/ 0a l → , we can see that the 

drag force simply becomes 6F aU= . 
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2.2.5 Cell-to-cell interactions 

 
Theoretical studies on microorganisms are at times simplified by considering 

only a single cell in an environment many orders of magnitude greater than its length 

scale. While this is achievable in laboratory settings, microorganisms such as bacteria 

and spermatozoa are often found in dense populations under their natural environment. 

Hydrodynamic interactions between cell bodies are important, but only at levels of high 

cell concentrations (Koch and Subramanian 2011; Li and Tang 2009). As such, it is 

necessary to know the constraints under which such interactions are negligible, and 

when the behaviour of micro-swimmers will be influenced by the presence of their 

neighbouring counterparts. 

Many researchers have studied the inter-organism hydrodynamic interaction. 

Synchronisation of sperm cells have been noted nearly a century ago, where Gray (1928) 

pointed to observations of spermatozoa tail beating synchronously when their heads are 

in close contact. Analytical calculations by Taylor (1951) found that significantly less 

energy is dissipated when the tails of neighbouring microorganisms form waves which 

are in phase, and that viscous stresses in the fluid creates a tendency for the waves to be 

in phase. Depending on whether the organism is a ‘pusher’ or ‘puller’, the cell-cell 

interaction alters the speed of both swimmers and reorients their swimming directions 

in an opposite manner (Lauga and Powers 2009). However, these hydrodynamic 

interactions do not significantly alter the propulsive force and torque, even at small 

separation distances in the order of a few body-length (Ramia et al. 1993). Experimental 

and theoretical analysis indicate that beyond a “surprisingly small length scale of a few 

microns”, hydrodynamic interactions between microorganisms are insignificant relative 

to other noises present (Drescher et al. 2011). 

Once the effective volume fraction of swimmers exceeds 10-2, the behaviour of 

a swimmer is no longer independent, and interactions should be taken into account 

(Underhill et al. 2008). This is evident from the observation that for 10 µm beads in high 

concentrations of 5 × 1010 /cm3, which corresponds to a volume fraction of about 0.03, 

large positional fluctuations similar to the Brownian motion of small particles can be 

noted and is attributed to the collective dynamics (Wu and Libchaber 2000). If the 

volume fraction is greater than 0.30, stark differences become obvious, as large-scale 

flow across the channel results in the absence of the typical high population densities 
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near a wall (Hernandez-Ortiz et al. 2005). Exceeding the certain dilution limit, a dense 

population of cells generates very complicated hydrodynamic behaviour (Lauga and 

Powers 2009). Henceforth, the hydrodynamic interactions in the limit of two identical 

microorganisms shall be briefly discussed. 

The first 3D-model regarding the propulsion by flagellar interaction is proposed 

by Ramia et al. (1993), who applied BEM to investigate two helical swimmers parallel 

to each other. When swimming in phase, they found the time-averaged swimming speed, 

angular velocity, propulsive force and torque were almost identical to those of a solitary 

swimmer, as long as the separation distance was greater than the head radius. Further 

investigation of the swimming speed at a separation distance of half the head radius led 

to the conclusion that the optimal swimming speed occurs when the flagella are in anti-

phase. However, the increment in swimming speed is only around 10% as compared to 

swimming alone. Nasseri and Phan-Thien (1997) verified the model using BEM and the 

reflection method. The hydrodynamic interaction for two swimmers side-by-side was 

concluded to be “insignificant” once the separation distance is beyond 1.5 times the total 

body length. When the two swimmers are in line in a highly viscous fluid medium, the 

leading mechanical swimmer acquires a higher velocity while the lagging one has a 

lower velocity due to the hydrodynamic interaction. However, this effect becomes trivial 

when the separation distance exceeds 6 times the total body length. 

The interaction between artificial swimmers has been researched on as well. 

Particle-based numerical simulations have been carried out to study the hydrodynamic 

interaction between two artificial swimmers driven by a paramagnetic filament tail 

under planar and rotational magnetic field. The hydrodynamic interaction between the 

two swimmers, which each has a tethered sphere with a radius of slightly over a sixth of 

the filament length, is much less than the local force (Keaveny and Maxey 2008). When 

in a consecutive configuration, the speed of the swimmers is almost identical when the 

separation distance is 2.5 times larger than the body length. In a side by side 

configuration approaches, the speed of the swimmers differs by no more than 2% from 

that of a solitary swimmer when they are at a distance of 10 times the head radius. 

 
  



25 

 

2.2.6 Brownian motion 

 
In a fluid medium, cells and particles are constantly being bombarded by the 

random Brownian motion of the fluid molecules. The degree of Brownian translational 

and rotational diffusion is respectively characterized by the diffusion coefficient D and 

time scale of rotational diffusion τrotation (Campbell and Ebbens 2013): 
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where 
Bk T  is the thermal energy,   is the medium viscosity, a is the particle radius, 

and 2
L  is the mean-squared displacement within the time period of t . 

If the cells or particles are sufficiently large, diffusion due to Brownian motion 

can be neglected. However, it is increasingly common for lap-on-a-chip devices to deal 

with sub-micron particles and cells (Lewpiriyawong et al. 2011; Lewpiriyawong and 

Yang 2012). In such length scale, models need to incorporate active Brownian motion 

in order to accurately account for their motion (Kim et al. 2008; Volpe et al. 2014), as 

the sub-micron bodies cannot be predicted deterministically nor simply be treated as 

passive particles. Applying direct numerical simulations on the generalized Taylor 

dispersion model, Croze et al. (2013) showed that the effective diffusivity of gyrotactic 

cells are at least an order of magnitude smaller than passive particles of similar size. In 

addition, swimming microorganisms modifies the flow field due to the hydrodynamic 

interactions and stresses they induced, and significantly so when the cell concentration 

is high (Bearon et al. 2012; Ishikawa 2009). Romanczuk et al. (2012) gave a 

comprehensive review explaining the dynamics of the active particles as well as the 

relevant governing equations. Separately, the similarities and differences in the 

dynamics of motile bacterial have been compared with the Brownian motion of micro-

particles (Cates 2012).  

It has been shown that 0.40 µm nanoscrews (Schamel et al. 2014) and micro-

propellers below the length of 0.90 µm (Ghosh et al. 2013) are dominated by Brownian 

motion and directional motion is not discernible. For bacterial cells smaller than 1 µm, 

simulations which ignores Brownian motion leads to results that contradict microscopy 

observations, regardless of the parameters selected (Li et al. 2008). Even spheres of 1.9 
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µm diameter are dominated by Brownian motion. This can be seen in Figure 2-7 which 

portrays the trajectories of spherical Janus swimmers with heterogeneous mass 

distribution exhibiting synthetic negative gravitaxis (Campbell and Ebbens 2013).  

Directional motion becomes prominent only for the larger swimmers of 4.8 µm 

diameter, although some degree of randomness is still evident. The characteristic 

diffusion time scales as 3
D a  , where 

D  is the time-scale taken for a passive micro-

particle of length scale a µm to diffuse a µm via Brownian motion in water (Bechinger 

et al. 2013). As a rule of thumb, Brownian motion is negligible for particles with length 

scale of at least 10 µm (Garcia et al. 2013; Smith 2000). 

 

Figure 2-7 – 2D Swimming trajectories for representative Janus spheres observed in the x-z plane for spheres 

of radius 0.95 μm (black), 1.55 μm (red), and 2.4 μm (blue). The swimmers were suspended in a 10 wt-% 

solution of H2O2. Gravity is acting downward along the z-axis. Reprinted from Campbell and Ebbens (2013). 

 
Although a sperm head has a length scale in the order of 100 µm, its total length 

is ~50 µm once the flagellum is included, and hence sperm cells are not observed to be 

subjected to Brownian motion (Alvarez et al. 2014; Smith et al. 2009). Interestingly, 

even some small bacteria, such as E. coli which has a length of ~2 µm, are reported to 

move in a “rather straight line” (Eisenbach 2011). Eisenbach published a list of some 

common bacteria species which appears to be dictated by Brownian motion as well as 

others which exhibit reasonable directional motion. 

 

2.2.7 Stress-strain relation 

 
In their natural environment, cells such as the spermatozoa carry out their 

activities in non-Newtonian fluid (Wolf et al. 1980), where stress is not linearly related 

to strain. Due to the time reversibility of the Stokes equation, reciprocal motion with 
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negligible inertia in a purely viscous fluid achieves zero net propulsion (Purcell 1977). 

However, this is not the case in a polymeric fluid such as the Oldroyd-B fluid. A 

mathematical analysis by Normand and Lauga (2008) on a two-dimensional model of a 

tethered flapper led to the theoretical prediction that reciprocal motion in the low 

Reynolds number regime does generate a net force. They extended the calculations to a 

more general polymeric model, FENE-P, and drew the same conclusions. Artificial 

swimmers have thereafter been used to demonstrate experimentally that reciprocal 

motion is possible in a polymeric fluid (Keim et al. 2012). Therefore, models ought to 

incorporate the non-linearity of fluid behaviour if the object of study resides in a non-

Newtonian environment (Koh and Marcos 2015a). In the following paragraphs, the 

extent to which the kinematic behaviour of swimmers vary under different fluid medium 

will be explored, to determine if a common correction factor exists. 

Lauga (2007) considered the Oldroyd-B model as “arguably the most famous 

constitutive equation”, which is supported by experimental observations “reasonably 

well” when the Weissenberg number,  Wi  = , where τ is the relaxation time of the 

fluid, has an order of one. The force f
oldroyd  acting on a filament in an Oldroyd-B fluid 

is related to the force fviscous  acting on a pure Newtonian fluid by the following first-

order differential equation (Fu et al. 2008): 

 ( )  f f f foldroyd oldroyd viscous s viscous   + = + , (2.9) 

which by mathematical manipulation leads to a correction factor which relates the 

viscous force to an Oldroyd-B force: 
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In the Oldroyd-B model, mathematical procedures lead to the swimming 

velocity of an infinite sheet with travelling-wave in an Oldroyd-B fluid being related as 

(Lauga 2007): 
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where s p
  = +  is the solution viscosity, s  and p

  are the solvent and polymer 

viscosity, respectively, and f is the wave frequency. (The author would like to point out 
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that Lauga (2007) and Fu et al. (2008) defined Deborah number to be De ,=  while 

others such as Teran et al. (2010) and Spagnolie et al. (2013) define De f= ). It was 

also shown that the FENE-P model, which is valid for large strain rates (Bird and Wiest 

1995) unlike the Oldroyd-B model, leads to the same velocity ratio as well. Fu et al. 

(2009) applied the Oldroyd-B model to an infinite filament subjected to small 

deflections, and found the velocity ratio to be in agreement with Lauga (2007). In a 

study to verify the effect of viscoelasticity on a swimmer’s velocity, the speed of C. 

elegans in Newtonian as well as viscoelastic fluid, with solvent viscosity 0.05 times of 

polymer viscosity, is measured experimentally (Shen and Arratia 2011). The velocity 

ratio at De = 1 is found to be approximately 0.65, and it reaches an asymptotic value of 

close to 0.4 when De is raised beyond 4. The authors reasoned that the discrepancies 

with equation (2.11) could be due to the finite length which was not accounted for in the 

theoretical model, as well as C. elegans being unconfined to small amplitude wiggling. 

According to the preceding paragraph, an infinite sheet or filament with small 

amplitude deflections will necessarily achieve a lower velocity in a viscoelastic 

Oldroyd-B fluid. However, numerical simulations of a free finite sheet suggest 

otherwise. A swimmer in an Oldroyd-B fluid may be faster or slower than that in a 

Newtonian fluid, depending on the parameter De which is a function of the viscoelastic 

property of a polymeric fluid. Teran et al. (2010) validated their numerical simulations 

with Lauga (2007) under the assumptions of an infinite sheet subjected to small 

deflections, and found good agreement even for large deflections, but found that the 

results differ for a finite swimmer not confined to small deflections. When De is 1, a 

swimmer in an Oldroyd-B fluid attains a peak velocity and swims faster than in a 

Newtonian fluid (Figure 2-8), which is attributed to the higher stress concentration 

behind the swimmer’s tail. A numerical study subsequently showed that the effect of 

fluid viscoelasticity on the velocity of a helical body depends on the pitch angle and 

filament thickness (Spagnolie et al. 2013). A swimmer with smaller pitch angle and 

thicker filament tend to achieve a lower velocity in a viscoelastic medium (Figure 2-9), 

while a swimmer with larger pitch angle and thinner filament may, at De ~ O(0.1), enjoy 

an enhanced velocity relative its counterpart in a Newtonian fluid. 
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Figure 2-8 – The ratio R of average free swimmer speed to that of the Newtonian free swimmer, as a function 

of Deborah number De. The squares correspond to Deβ, which is the ratio of polymer to solvent viscosity, fixed 

at 0.5. The diamonds correspond to β, which measures the relative contribution of the polymeric stress to 

momentum balance, fixed at 0.5. Inset: An estimate of swimming efficiency as a function of De. Reprinted from 

Teran et al. (2010). 

 

 

Figure 2-9 – (a) Helical-wave swimming speed U, normalised by the Newtonian swimming speed UN, of 

filaments of varying thickness (A = 2n-2 for different n), with ψ = π/40 and ηs/η = 0.5. (b) Normalised swimming 

speed with respect to Deborah number, with filament thickness fixed at A = 0.5. Solid lines denote helical 

waves, dashed lines denote rigid body rotation, for pitch angles of ψ = π/40 (black circle), π/10 (red square), 
and π/5 (blue triangle). (c) Normalised swimming speed with respect to Deborah number, with filament 

thickness fixed at A = 0.2, for the same pitch angles as in (b). (d) Normalised swimming efficiency with respect 

to Deborah number. Symbols denote the same helices as in (b). Reprinted from Spagnolie et al. (2013). 

 

The viscoelasticity of a fluid can have an impact on not just the velocity of a 

swimmer. Expanding on the study of passive synchronisation between swimmers in a 
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Newtonian fluid (Elfring and Lauga 2009), Elfring et al. (2010) presented mathematical 

formulations to show that synchronisation can occur faster in an Oldroyd-B fluid, which 

in turn leads to improved energy efficiency and hence higher swimming velocity. The 

wall effects may also be altered by the viscoelasticity of the fluid. Numerical simulations 

showed that a ‘pusher’ in a viscoelastic fluid may become confined by the 

hydrodynamic interactions with the wall, and hence swims along the boundary in 

steady-state, as compared to its counterpart in a Newtonian fluid which would reorient 

and depart the wall (Li et al. 2014). 

An equation relating the effect of viscoelasticity on a swimmer’s velocity is 

appealing for analytical procedures. However, the literature in this section suggests that 

the equation does not accurately depict the kinetics of finite-length swimmers. Based on 

the studies carried out till date, a common correcting factor does not appear to exist, 

because the velocity ratio depends not only on the viscoelastic properties of the fluid, 

but also the morphology of the swimmer. 

 

2.3 Techniques for sorting spermatozoa2 
 

 Having looked at how the behaviour of sperm is governed by physics, the next 

section of the literature review investigates how sperm may be manipulated. Common 

preparation methods for spermatozoa used in assisted reproduction will be introduced. 

The section begins with a summary on the properties of sperm, and continues with 

microfluidic sorting of sperm according to their motility, morphology, chromosomes 

and membrane integrity, as well as manipulation techniques by optics or external fields. 

 
2.3.1 Properties of sperm and its influence on reproduction 

 
The journey of a sperm is long and tedious, as it has to travel as much as 20 cm 

in the female reproduction tract (Kirkman-Brown and Smith 2011), the equivalent of a 

person swimming over 6 km in a realm where inertia is negligible, and once the sperm 

has undergone capacitation, its life span typically does not exceed 4 hours (Cohen-

Dayag et al. 1995). Merely 0.1% of the sperm initially deposited will successfully 

                                                           
2
 Published in Koh JBY, Marcos (2015a) The study of spermatozoa and sorting in relation to human  

   reproduction. Microfluidics and Nanofluidics 18:755-774 
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penetrate the cervical mucus and pass through the uterus to enter the oviducts (Fauci 

and Dillon 2006), and there are complicated biological reactions involved when sperm 

cells pass through the oocyte cumulus complex and gets near the oocyte (Zhu et al. 

1994). Oviductal and follicular fluids induces an increase in the sperm’s straight-line 

velocity of up to 35% and 31%, respectively (Oliveira et al. 1999). The hyperactivated 

spermatozoa also display asymmetrical flagellum wiggling pattern with large amplitude, 

instead of a relatively symmetrical, low amplitude wiggling pattern as displayed by non-

hyperactivated spermatozoa (Suarez et al. 1991). In addition, chemotaxis is induced 

when the human sperm olfactory receptor is activated leading to an influx of calcium 

ions (Spehr et al. 2004). Without further discussion on the biological aspects of this 

multi-disciplinary field, this thesis will take an approach from the physical aspects. 

Many researchers have looked into the properties and behaviour of spermatozoa 

(Brennen and Winet 1977; Dresdner and Katz 1981; Mortimer and Swan 1995). Early 

studies on the human spermatozoa involve studying the physical parameters. The 

average flagellum length and diameter is 42 µm (Cui 1997) and 0.5 µm (Dresdner and 

Katz 1981), respectively, while the head length ranges from 4.8 µm (Aksoy et al. 2012) 

to 5.8 µm, with a width of 3.1 µm on average (Brennen and Winet 1977). Although the 

head of a spermatozoon is an ellipsoid, it has been found that for a given volume of the 

spermatozoon head, its length-to-width ratio do not alter the straight-line velocity 

significantly (Gillies et al. 2009). Therefore, approximations can be made to consider 

the spermatozoon head as a perfect sphere with an equivalent volume. 

 It is common knowledge that the X-spermatozoa, upon fertilising the ovum, 

results in a female offspring, while the Y-spermatozoa results in a male. Interestingly, 

human spermatozoa carrying the different sex chromosomes have slightly different 

dimensions (Cui and Matthews 1993, Cui 1997); the average lengths of the X- and Y-

spermatozoa are (42.2 ± 4.4) µm and (41.2 ± 3.5) µm, respectively. Although a recent 

study stated that there is negligible difference in dimension between spermatozoa 

carrying the different sex chromosomes (Carvalho et al. 2013), that study was done on 

bovine spermatozoa, and there have been no other studies to the best of the author’s 

knowledge that refute the findings on human spermatozoa made by Cui (1997). 

Researchers then moved on to gain a deeper understanding on the kinematics of 

spermatozoa, such as observing the flagellum waveform (Ishijima et al. 1986, Katz and 
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Davis 1987). The mean progressive velocity for human spermatozoa was found to vary 

from 17 to 42 µm s-1 in a sample of 100 semen (Mortimer et al. 1986), while the beating 

frequency is observed to vary from 14 Hz in semen and 17 Hz in cervical mucus 

(Dresdner and Katz 1981) to between 10 Hz and 24 Hz depending on the viscosity of 

the fluid medium (Smith et al. 2009). In a time scale many orders of magnitude greater 

than the beating period of its flagella, spermatozoa travel in a linear direction in general 

(David et al. 1981, Katz et al. 1978). Although a sperm’s swimming speed is linearly 

related to its beat frequency when in semen or Tyrode’s solution, but not cervical mucus, 

its progressive swimming speed is similar in all three fluid medium (Katz et al. 1978). 

This suggests that laboratory studies investigating the swimming speed of spermatozoa 

can be carried out in Tyrode’s solution rather than semen or cervical mucus. 

A spermatozoon is able to wiggle its flagellum due to an active force which 

creates relative sliding motion between groups of tubules (Summers and Gibbons 1971). 

This is analogous to how the interaction between myosin and actin filaments allow 

animals to contract their muscles and move (Krans 2010). A number of studies have 

incorporated an internal force in their model and linearized the problem (Camalet and 

Jülicher 2000; Riedel-Kruse et al. 2007; Fu et al. 2008). Gadélha et al. (2010) presented 

that under certain conditions, the internal shear force within a sperm’s flagellum can 

result in buckling and change the waveform as well as trajectory. They hence suggested 

that the linearized model is inaccurate and does not capture buckling effects when the 

radius of curvature is under a tenth of the flagellar length or when Sp (a dimensionless 

parameter known as the sperm number or sperm compliance, which is inversely related 

to the flexural rigidity of the spermatozoon’s flagellum) takes a large value. It is 

noteworthy that the buckling occurs when the sperm number exceeds 15, while an 

average human sperm has a sperm number of 7.7 (Fu et al. 2008) which corresponds to 

a flexural rigidity of approximately 16 times that which would lead to buckling. 

The swimming velocity of spermatozoa, as well as the percentage of 

spermatozoa which have normal morphology, are found to be the key factors in 

determining fertility (Malo et al. 2005), with another important factor being the sperm 

concentration (Nallella et al. 2006). Spermatozoa with normal morphology typically 

swim faster and exhibit higher beat frequencies (Katz et al. 1982). On the other hand, 

those with abnormal morphology (Aziz et al. 2007) or low-motility (Barroso et al. 2006) 

display higher incidence of early apoptosis, which increases the likelihood of the sperm 
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dying before it is able to reach the oocyte. In fact, even slight morphological variations 

of the sperm nucleus affect the success of ICSI (Bartoov et al. 2002). However, an 

abnormal morphology does not relate to the sperm having abnormal chromosomes 

(Martin and Rademaker 1988), and hence a morphologically satisfactory sperm does not 

guarantee an offspring free from genetic disorders. There are criteria to evaluate a sperm 

according to its morphology (Menkveld et al. 1990, Bartoov et al. 2002) or swimming 

velocity (Cooper and Yeung 2006). One should remain mindful that the morphology 

and motility are continuous parameters, and even after a line is drawn between what is 

‘normal’ and ‘abnormal’, there is still plenty of variation within each group. 

Semen analysis have long been used to determine the likelihood of male-related 

infertility, and a range of parameters have been defined as a guide for doctors. Table 2-1 

(World Health Organisation 2010) shows the lower limit of semen characteristics and 

sperm parameters, which is met by 95% of the sample population of men whose partners 

became pregnant within 12 months of discontinuing contraceptive use. The motility of 

spermatozoa is categorised into three groups by the World Health Organisation (2010): 

Progressive motility (PR) applies to spermatozoa “moving actively, either linearly or in 

a large circle, regardless of speed”, non-progressive motility (NP) applies to 

spermatozoa exhibiting “all other patterns of motility with an absence of progression”, 

and immotility (IM) applies to spermatozoa with no movement. The total motility count 

includes both spermatozoa with progressive as well as non-progressive motility. The 

previous edition of WHO manual labels “Grade A” spermatozoa as those which possess 

a speed of at least 25 µm/s, although no definition is made in the 2010 edition. A 

comparison between the semen characteristics of fertile and subfetile men was carried 

out by Menkveld et al. (2001) as shown in Table 2-2, giving an idea of the range and 

standard deviation of the respective parameters. 

 
Table 2-1 – Lower reference limits (5th centiles and their 95% confidence intervals) for semen characteristics. 

Adopted from World Health Organisation (2010). 

 



34 

 

Table 2-2 – Descriptive statistics of the semen parameters for fertile (n = 107) and subfertile (n = 103) groups. 

P < 0.0001 for differences between means of all semen parameters presented in the table. AI = acrosome index; 

P10 = 10th percentile; SC = strict criteria; TZI = teratozoospermia index. Adopted from Menkveld et al. (2001). 

 

 
2.3.2 Sperm preparation to obtain pure sample for fertilisation 

 
Details on sperm preparation methods have been given by Mortimer (2000), 

while Henkel and Schill (2003) have summarized the advantages and disadvantages of 

common sperm preparation procedures such as the swim-up, migration-sedimentation, 

density gradient centrifugation and glass wool filtration methods.  

In the normal swim-up procedure, semen sample is diluted and centrifuged, and 

the resulting pellet is re-suspended and centrifuged again. The appropriate medium is 

then added and the sample incubated before the supernatant, which contains the swim-

up spermatozoa, is collected (Lopes et al. 1998). Concerns over the forces experienced 

by the spermatozoa during centrifugation prompted some to avoid the centrifugation 

process, and hence a direct swim-up procedure is introduced. Younglai et al. (2001) 

carried out a trial to compare human spermatozoa obtained from the two types of swim-

up procedures, and found that DNA damage was under 5% for both, but sperm 

concentration decreased from 59 to 35 and 6.5 million/ml for normal and direct swim-

up method, respectively. Meanwhile, normal morphology improved from 69%, and 

motility improved from 61%, to over 90% for both normal and direct swim-up. The 

swim-up technique results in a sperm sample with superior DNA integrity relative to an 

unprocessed sample (Marchesi et al. 2010), but one drawback is that spermatozoa at the 

bottom are trapped regardless of their motility (Henkel et al. 1994). Some studies found 

that the sperm prepared this way and used in assisted reproduction led to a higher 

proportion of male births (Check and Katsoff 1993, Khatamee et al. 1999, Manzur et al. 

2004). However, Yan et al. (2006) concluded that the ratio between the X- and Y-

spermatozoa remains statistically indifferent even after 150 minutes of swim-up. 
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The migration-sedimentation method is another way in which sperm can be 

prepared. Motile sperm 'jump' across the boundary and subsequently settle in the central 

tube due to gravity, where they are collected by aspiration. The average motility of the 

human sperm prepared from this method improved from 51% to 93%, while abnormal 

morphology decreased from 36% to 21%, and the sample are free from cellular debris 

(Tea et al. 1984). The prepared sperm was used for IVF and each patient have at least 

one oocyte fertilised, even for husbands with asthenozoospermia (low sperm motility). 

Risopatron et al. (1996) tested the migration-sediment method using bovine sperm and 

found that spermatozoa motility was 85% while fertilisation rate was 93%, although this 

is at the expense of a low 17% yield. 

Another sperm preparation method is the density gradient centrifugation. Unlike 

the migration-sedimentation or swim-up procedure, which is meant for sorting motile 

spermatozoa, this method can be applied to any particle in general. Hinton and Dobrota 

(1978) explained the working principles of density gradient centrifugation, such as how 

a density gradient influences the particles' speed and supports the sedimenting zones. 

After centrifugation, motile and morphologically normal sperm will settle in the lower 

region of the gradient, while dead or abnormal spermatozoa settle in the middle, and 

debris settle at the upper layer of the gradient (Bolton and Braude 1984). By collecting 

the lowermost 1 ml, Bolton and Braude (1984) recovered 16% of the total spermatozoa 

and found that percentage motility increased from 63% to 93%. 

 A basic and intuitive method of sorting will be to use a filter, with gaps large 

enough to allow, or small enough to prevent, particles of a target size from passing. 

Glass wool filtration is an example of how this can be applied to sperm preparation, in 

which columns of glass wool separates human spermatozoa based on its head size and 

motility (Henkel et al. 1994). Henkel et al. (1994) also reported that the quality of the 

sperm chromatin condensation is correlated to its head size, and 61% of the spermatozoa 

prepared from this technique has good chromatin condensation as compared to 41% of 

those prepared from standard swim-up. In addition, spermatozoa motility improved to 

87%, with over a 1.5 times yield of total spermatozoa as compared to the swim-up 

technique done in comparison. Van der Ven et al. (1988) showed that viability of the 

spermatozoa remains good, with 78% of the 64 samples collected from glass wool 

filtration fertilising at least one human egg in IVF. 
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2.3.3 Sorting by sperm’s motility 

 
By making use of the fact that motile sperm orientate and swim against the flow, 

Seo et al. (2007) used a Polydimethylsiloxane (PDMS) microchannel to separate non-

motile sperm and debris and collect motile sperm at the outlet, with flow being driven 

by hydrostatic pressure of up to 10 mm difference in the height of liquid columns. PDMS 

is often used in soft lithography as it can be easily fabricated, largely suitable for use in 

biological experiments, and allows the synthesis of cell micro-environment at the 

cellular resolution (El-Ali et al. 2006). Seo et al. (2007) also proposed modifying the 

device to include a function of separating the sperm head and flagellum for ICSI 

procedures. 

A “microscale integrated sperm sorter” as depicted in Figure 2-10 can be used 

to sort out and collect motile spermatozoa, because the non-motile spermatozoa remain 

within their initial streamlines during the 20 seconds in the microchannel while motile 

ones are able to deviate from the stream and into a different outlet (Cho et al. 2003). 

The fluid reservoirs are arranged to balance gravity and surface tension, allowing a 

steady flow rate. A purity of nearly 100% motile spermatozoa could be obtained 

regardless of the initial motile sperm purity, and the proportion with desirable 

morphology improved from 10% to 22%. Another study reported a 98% purity of motile 

spermatozoa using this concept of sorting, but admitted the drawback being that only 

10-20 µl of semen can be processed in half hour (Schuster et al. 2003). Wu et al. (2006) 

proposed a modification to the sperm-sorting microchannels by using graft-co-

polymerization to make the channel surface moderately hydrophilic and non-fouling, 

thus minimizing adsorption of cellular debris or flow resistance. 

 

 

Figure 2-10 – Schematic of the microscale integrated sperm sorter. Sperm sample enters from the left, and 

motile sperm deviate from their initial streamline while nonmotile sperm and cellular debris remain along the 

straight path. Motile sperm are collected at the bottom right of the channel. Reprinted from Cho et al. (2003). 
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Chen et al. (2011) proposed an interesting set-up as shown in Figure 2-11 to 

access the concentration and motility of sperms, by using a detector to count the number 

of sperms which successfully swim against a flow field within a specified time. If the 

concentration and/or the motility is low, the corresponding number of counts will be 

low as well. Although this device is proposed for use as an assessment of sperm quality, 

it can potentially be modified for separating spermatozoa by their motility as well. 

 

    

Figure 2-11 – (a) Schematic of the microdevice for evaluating sperm quality. Flow enters via channel A and 

exits via channels B and C. (b) Only motile sperm are able to overcome the flow in channel B and go past the 

aperture to be counted. Reprinted from Chen et al. (2011). 

 

2.3.4 Sorting by hydrodynamic effects 

 
This sorting technique is another example of how knowledge is built upon 

knowledge. It was observed many decades ago that motile sperm accumulate near the 

wall surface (Rothschild 1963), and hence Sakar (1984) made use of a pipette to create 

a cylindrical flow column in which non-motile sperm and debris are flushed away, 

enriching the motility level of the remaining sperm. 

Subsequently, it was explained that microorganisms such as sperms and bacterial 

tend to swim near walls due to hydrodynamic interactions (Berke et al. 2008, Elgeti et 

al. 2010). Experimental observations showed that sperms swim not just near walls, but 

rather almost against channel walls and corners (Denissenko et al. 2012). The influence 

of an external flow on micro-swimmers near walls have also been considered recently 

(Chilukuri et al. 2014). Another experimental study found that sperm cells are trapped 

near the apex of a V-shape wall, but are not trapped when the V-tip is made rounded 

(Guidobaldi et al. 2014). Therefore, it is possible to use this method to increase the 

sperm concentration for the purpose of IUI, without subjecting the sperm to any 

unnaturally high forces or shear stresses. 
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2.3.5 Sorting by sperm’s chromosomes 

 
Spermatozoa can be sorted not only according to their motility and morphology, 

but also according to the chromosomes they contain. This allows gender selection by 

tapping on the differences between the X- and Y-chromosome-bearing sperm, because 

sperm can be selected from a skewed population, giving a higher probability of the 

offspring having the desired gender. According to the Human Fertilisation Embryology 

authority, UK (2003), sex selection is regulated for couples who wish to "avoid having 

a child with a serious inherited disorder", such as Duchenne's Muscular Dystrophy 

which affects males but not females. There are papers discussing the ethical (Robertson 

2001) and social (Chan et al. 2002, Hesketh and Zhu 2006, Zhu et al. 2009) issues 

involving gender selection. In this thesis, the author explores the possibility of gender 

selection solely from a technical perspective. 

Ericsson et al. (1973) first proposed the method of separating the faster Y-sperm 

from the slower X-sperm by passing them through liquid albumin until a sample with 

higher concentration of Y-sperm is obtained. The sample has to first be centrifuged, and 

the pellet re-suspended in Tyrode’s solution and laid over an albumin column with 

various concentrations. The albumin medium, in which motile spermatozoa had swam 

into, is centrifuged and the pellet re-suspended and laid over albumin again. Using a 

three-step isolation procedure, a population of 85% Y-sperm have been obtained, with 

a motility of 98%. Beernink et al. (1993) reported that passing sperm through liquid 

albumin, and insemination on human patients using the sorted sperm resulted in over 

1,000 births. There are four protocols, each with unique procedures and different 

albumin gradients. One protocol led to a 16% conception rate with 76% male births, 

while another protocol gave a 22% conception rate with 69% females births. The authors 

admitted that the mechanism leading to a skewed gender ratio is “unknown” and 

“unclear’, but suggested different swimming speed and response to clomiphene citrate 

as contributing factors. 

A clinic in Hong Kong applied Ericsson’s method of sperm separation and 

concluded that “sex selection for boys is effective”, as substantiated by 15 out of the 18 

couples giving birth to boys as desired (Rose and Wong 1998). However, Rose and 

Wong (1998) were unable to obtain the enriched population of Y-sperm as described by 

Ericsson et al. (1973). They suggested that the theory “may be wrong even though the 

practice of gender selection is effective”, and proposed that the reason for a skewed 
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probability towards males is because the albumin inactivates X-spermatozoa to a greater 

extent than Y-spermatozoa. Flaherty et al. (1997) found that the X:Y ratio as determined 

by fluorescence in-situ hybridization remains very close to 1.0. and concluded that any 

skewed sex ratio at birth is not the result of a higher percentage of Y-spermatozoa. In 

the rest of this section, we turn our attention to flow cytometry, which is a proven gender 

selection technique applied to animals (Garner 2001). 

Flow cytometry is defined as the measurement of physical or chemical 

characteristic of cells or particles as they pass through a flow cytometer in a fluid stream. 

For example, laser beam can be used to differentiate stained sperms by virtue of 

differences in their nucleus. A cell sorter is a flow cytometry which uses mechanical or 

electrical means to divert and collect cells with a certain range of user-defined 

characteristics. Details on how flow cytometry work and various flow sorting techniques 

are presented by Shapiro (2005), and the development of flow cytometry technology for 

sperm sorting in terms of rate and efficiency have been described by Sharpe and Evans 

(2009). Fluorescence activated cell sorting involves marking target cells with 

fluorescence, detecting the marked cells, and collecting the cells through some 

microfluidic means. (Krüger et al. 2002; Wang et al. 2005). 

This method has proven to be successful in obtaining spermatozoa for the desired 

gender with a purity of over 80% (Johnson et al. 1987). The cell viability was verified 

by live births of rabbits, but due to the staining of the nuclei, there was increase embryo 

motility presumably attributed to the stained DNA (Johnson et al. 1989). However, 

Munné (1994) advised caution over the flow cytometry process, citing that exposing the 

spermatozoa to ultraviolet light may cause mutation such as chromosome structural 

abnormalities (Matsuda and Tobari 1988). He added that the DNA binding stain, 

Hoechst 33342, have been reported by Durand and Olive (1982) to cause mutagenesis. 

Another drawback is that sorting by high-speed flow cytometry subjects the 

spermatozoa to a pressure of up to 50 psi, which damages the spermatozoa and leads to 

a decrease in its motility (Suh et al. 2005). Sorting by gender has also been tested on 

bovine sperm, where the cell DNA was stained and the allele amplified using 

polymerase chain reaction before sorting by flow cytometry (Welch et al. 1995). A 

greater than 90% purity for both the X- and Y-sperm populations have been verified by 

molecular genetic analysis on hundreds of sperm or flow cytometric measurement on 

thousands of sperm. 
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Technology today has progressed to the stage where gender selection has already 

become a reality for people. The world's first clinical pregnancy from sorted sperm was 

reported (Levinson et al. 1995) some two decades ago, and 22 out of 25 embryos were 

analysed to be female. The concept of sorting sperm based on DNA is as follows: Sperm 

is stained with Hoechst 33342, and during the flow cytometry process, X-sperm (which 

has more DNA contents than the Y-sperm) shines more brightly when passed through 

the laser. This procedure is patented as MicroSort®, and have been reported in 1998 that 

sorted sample X-spermatozoa had a purity of approximately 85%, with pregnancies 

from IUI, IVF, or ICSI giving 88% female foetus as desired (Fugger et al. 1998). The 

track record continues growing, achieving 88% purity for XSort® and 73% purity for 

YSort® out of more than 5000 sorts. Amongst the over 900 human babies borned, 

XSort® resulted in 92% females while YSort® resulted in 82% males, with major 

congenital malformations were comparable to pregnancies from unsorted sperm 

(Karabinus 2009). The author would like to reiterate that gender selection is not 

advocated in this thesis; rather, potential applications of sperm sorting are investigated 

purely in the interest of broadening academic knowledge. 

 

2.3.6 Manipulation by optics 

 
Electromagnetic wave can be utilised for manipulating particles, and there is a 

brief review on optical manipulation, which talks about how optical tweezers use a 

strongly focused light beam to exert a force for various applications (Grier 2003). 

Optoelectronic tweezers have allowed parallel micro-manipulation of human cells 

(Chiou et al. 2005), while individual spermatozoon can be micro-manipulated in three 

dimensions through the use of a laser trap (Colon et al. 1992). Apart from micro-

manipulation, optical forces can also be used to actively direct cell path along a channel. 

Wang et al. (2005) described using a laser for the detection and measurement of 

fluorescence, and a focused beam deflects target cell to a collection channel while other 

cells flow to the waste channel as shown in Figure 2-12, such that the collected cells 

remain viable and unstressed. There is also the development of the optoelectronic 

tweezer (Hsu et al. 2010), which makes use of optically-induced DEP for increased 

parallel manipulation with the flexibility of optical tweezers, allowing 15,000 individual 

traps spanning 1 mm2. 
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Figure 2-12 – Schematic of microfluidic sorting junction and the optical switch. Cells are aligned to the channel 

centre by flow focusing. Based on the analysis, the laser directs target cells to the collection output while other 

cells flow to the waste output. Reprinted from Wang et al. (2005). 

 
Sperm motility is approximately linearly related (Nascimento et al. 2006) to the 

required laser power for trapping it. Based on this fact, Shao et al. (2007) reported using 

a three-dimensional ring-shaped laser trap with adjustable power to confine human 

sperm with motility below a certain threshold within the trap while allowing sperm with 

higher motility to escape. A sample of highly motile sperm is desirable for increasing 

success rate in IUI, if it can be verified that the cells are not impaired after sorting. 

Annular laser trapping is subsequently improved for high-throughput analysis and 

sorting of human and gorilla sperm (Shi et al. 2009). Optical trapping can also be used 

as a non-invasive technique for cell analysis. Subramani et al. (2014) studied the 

rotational dynamics of optically trapped human sperm, and found that the rotational 

speed of sperm from infertile men is significantly lower than the control group. 

 

2.3.7 Sorting by magnetophoresis 

 
Magnetic-activated cell sorting (MACS) is another approach which can be used 

on cells. Sperm can be separated according to their membrane integrity using 

paramagnetic microbeads conjugated with a protein which bind to apoptotic 

spermatozoa or those with damaged membrane, but not to healthy spermatozoa (Paasch 

et al. 2003). The undesired cells marked with magnetic colloids can be separated using 

a magnetic field of 0.5 to 1.5 tesla, resulting in a higher percentage of motile and viable 
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sperm (Said et al. 2005). The removal of apoptotic spermatozoa via MACS also leads 

to a higher proportion of normal morphology sperm and improved cryosurvival rates 

(Said et al. 2008), with higher oocyte penetration capacity documented. 

Apart from manipulating damaged sperm cells, healthy spermatozoa can also be 

loaded with superparamagnetic nanoparticles and directed with magnetic field, by virtue 

of the principle of targeted drug delivery (Schulze et al. 2005). PVA–Fe3O4 

nanoparticles can significantly increase the sperm’s relative magnetic susceptibility and 

hence its response to the applied field, without impeding the sperm’s motility or 

compromising its fertilisation capability (Ben-David Makhluf et al. 2006). In fact, a 

healthy baby was born from ICSI using sperm subjected to magnetic field (Rawe et al. 

2010). Even so, comprehensive studies on a large number of babies will be required to 

understand the potential risks involved. 

In its natural form, sperm cells can also be manipulated by diamagnetic force. 

Unlabelled living cells are generally diamagnetic, and hence exhibit 

diamagnetophoresis, also known as negative magnetophoresis, where they experience a 

repulsive force in the presence of a magnetic field (Hejazian et al. 2015). While it is 

beneficial to have a sorting procedure where the sperm cells do not have to be modified 

in any way, diamagnetic forces are much weaker than magnetic forces (Hejazian et al. 

2015) and a stronger magnetic field will be required for sorting.  

In the presence of a magnetic field B, a particle of volume V  experiences a 

magnetic force as follows (Peyman et al. 2009): 

 ( )
0

( )
F B B

p m

B V
 

−

=  , (2.12) 

where p
  and m  are the particle and medium magnetic susceptibility, respectively, 

and µ0 is the vacuum magnetic permeability. Reference is available for the magnetic 

susceptibility of some biological materials (Senftle and Hambright 1969). A magnetic 

particle suspended in diamagnetic medium leads to a positive ( )
p m

 − , and hence 

experiences a magnetic force FB
 directed towards the region of higher magnetic field 

density. On the other hand, a diamagnetic particle in paramagnetic medium (Peyman et 

al. 2009) experiences a magnetic force FB
 directed away from the region of higher 

magnetic field density due to a negative ( )
p m

 − . 
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2.3.8 Sorting by dielectrophoresis 

 
Micro-particles can be sorted by dielectrophoresis, in which a particle in a non-

uniform electric field becomes polarised but experiences different magnitude of forces 

on either end due to the different electric field strength. This non-uniform electric field 

can be generated by a variety of electrode set-ups (Khoshmanesha et al. 2011). It has a 

proven track record of sorting a wide variety of particles with high efficiency, giving 

numerous industrial and clinical applications (Lewpiriyawong and Yang 2014). 

Dielectrophoresis (DEP) has been used to separate bacteria and yeast cells (Moncada-

Hernández and Lapizco-Encinas 2010), viable and non-viable human cells (Jen and 

Chen 2011), different submicron viruses (Morgan et al. 1999), as well as human 

leukaemia cells (Huang et al. 1997), breast cancer cells (Becker et al. 1995), or malaria-

infected cells (Gascoyne et al. 2002) from normal blood cells.  

The principles of dielectrophoresis and its relevant equations are well-

established in various reviews (Gascoyne and Vykoukal 2002, Pethig 2010). When a 

particle, regardless of its charge, is placed in a non-uniform field, it experiences a net 

electric force. This dielectrophoresis force has the following expression using a dipole 

approximation where higher-order poles are neglected (Pethig 2010): 

 2Re( )F EDEP medium CMf=   ,  (2.13) 

where   is the shape factor, medium  is the medium permittivity, Re( )CMf  is the real part 

of the Clausius-Mossotti factor (Lewpiriyawong and Yang 2012), which accounts for 

the effective polarizability of the body, and 2
E  is the gradient of the mean square of 

the electric field. The shape factor for a cylindrical rod of length L and radius p is 

( )2 6p L = , while that for a sphere of radius a is 32 a = . Re( )CMf  is the real part 

of the Clausius-Mossotti factor which takes a value between +1 and -0.5 (Voldman 

2006). It depends on the complex permittivity of the particle and its surrounding fluid, 

which in turn is dependent on their electrical conductivity, dielectric constant, and 

frequency of the electric field. A typical mammalian cell experiences negative DEP at 

low frequencies, but when low medium conductivity with sufficiently high frequency, 

the cell experiences positive DEP as it becomes more polarizable relative to the fluid. 

The ratio between the contribution from the dipolar and quadrupolar terms can 

be estimated by scaling analysis (Jones and Washizu 1996, Jones 2003), but is 
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dependent on the electrode geometry as well as particle size. Jones (2003) commented 

that for most micro-sized particles, “quadrupolar corrections are negligible”, but the 

higher order terms “may become dominant” at the scale of 100 nm where electrical 

charge distribution becomes discernible. This is in line with the observation that 

electrostatic interactions become significant once the distance is as low as 10 ~ 100 nm 

(Klein et al. 2003). On the other hand, the approximation also becomes less accurate as 

particles increase in size (Jones 1985). 

Apart from particle size, the validity of the dipole approximation also depends 

on the relative electrode spacing and spatial distribution of the particles. Schnelle et al. 

(1999) calculated that for particles with a diameter under a tenth of the electrode spacing, 

the error is less than 1%, and the error increases to 5% when the particle is a quarter of 

the electrode spacing. Once the particle diameter reaches half the electrode spacing, 

dipole approximation becomes inaccurate as the quadrupole and octupole contributes 

22% and 3%, respectively, to the total force. An analytical investigation on the 

interaction between two particles found that the dipole approximation is inaccurate 

when they are closer than a tenth of their diameter, but is otherwise accurate (Washizu 

and Jones 1996). Analytical solutions modelling 1 to 5 µm particles between an infinite 

bottom electrode and semi-infinite top electrode showed that the “first-order DEP force 

alone is sufficient” to determine the total DEP force, as higher-order terms are at least 

one order of magnitude smaller and have “negligible contributions” (Kua et al. 2008). 

Based on the above-mentioned findings, it is evident that the dipole 

approximation can accurately determine the DEP force acting on particles in the scale 

of 1~10 µm, which are located away from the centre of the field and spaced no closer 

than a tenth of their dimension, with the electrode separation being at least an order of 

magnitude larger than the particles. 

Despite having been established for decades and showing success in a multitude 

of sorting applications, dielectrophoresis has not been widely studied on sperm cells. 

The first publication of such research was by Rosales-Cruzaley et al. (2013), in which 

insulator-based dielectrophoresis was used to separate mature spermatozoa from non-

mature spermatogenic cells due to different dielectrophoretic effect. The viability of the 

sperm cells remained above 80% after being subjected to DC potential of 1,000 V for 

30 seconds, with a maximum electric field in excess of 52.6 10  V/m. Subsequently, 



45 

 

theoretical studies explored the feasibility of sorting spermatozoa by dielectrophoresis 

by modelling a passive sperm in Newtonian fluid (Koh and Marcos 2014) as well as an 

active sperm in an Oldroyd-B fluid (Koh and Marcos 2015b). Due to the novelty of 

sperm sorting using an electric field for ART, there is a lack of published materials to 

substantiate the safety or risks of this method. The cell viability is a necessary, but not 

a sufficient, metric for assessing the suitability of sorting sperm by dielectrophoresis. 

The fertilisation capability of spermatozoa subjected to strong electric fields, as well as 

the health of the offspring if conception is successful, remains an unknown to be 

researched. 

 

2.4 Moving forward 

 

Current assisted reproduction procedures have an unimpressive success rate, and 

it is known that selecting motile spermatozoa of normal morphology will increase the 

chances of success. IUI, being the least invasive procedure, is a good first approach to 

assisted reproduction chosen by many. Since the natural selection process is not 

bypassed and fertilisation still occurs the natural way, couples have little reason to worry 

about potential health complications associated with IVF or ICSI. The sperm sample 

used in IUI is first prepared to obtain an enriched population. However, due to the large 

number of sperm used in IUI, there is no individual selection of ideal healthy cells. The 

author proposes combining the preparation with a subsequent sorting by an external 

electric or magnetic field to obtain a population skewed towards a range of desired 

morphology. This will be studied from a theoretical approach to establish a relation 

between the sperm velocity and parameters which can be tuned to manipulate the sperm. 

The physics associated with microscale locomotion and existing sperm sorting 

techniques reviewed in this chapter are summarised in Table 2-3. According to the 

literature review carried out, there is no published work till date on the use of 

dielectrophoresis or magnetophoresis for sorting sperm by morphology to improve 

assisted reproduction. Meanwhile, theoretical computations carried out on sperm studies 

are typically focused on the precise mathematics of sperm not subjected to any 

electromagnetic fields. Hence, experimentalist do not have access to a direct quantitative 

prediction of the extent of sperm response and its associated sorting outcomes. 
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Table 2-3 – Summary of theoretical aspects of microscale locomotion and sperm sorting techniques discussed 

in Chapter 2. 

Theoretical 
aspects of 
microscale 
locomotion 

Resistive Force 
Theory 

Neglect body-to-body interactions. Relate the local 
force as a linear function of relative velocity. 
Predicted velocity vary from measurements by tens of 
percentage points. 

Slender Body 
Theory 

Takes into account body-to-body interactions. Gives 
accurate theoretical results which differ from 
measurements by as little as a few percentage points. 

Stress-strain 
relation of fluid 

Influences cell kinematics substantially. General 
correction factor not known to exist. Sperm motion in 
Newtonian and viscoelastic fluid considered in thesis. 

Rheotaxis Flow field of environment influence directionality of 
sperm. Shear rate up to 10 s-1 not detrimental to 
viability. Insignificant influence on waveform or 
velocity when shear rate is under a tenth of flagellum 
beating frequency. 

Wall effects Significantly reduces swimmer’s velocity at a distance 
of less than five times the cell length. May be 
neglected when distance from wall is over one order 
of magnitude greater than cell length. 

Cell-to-cell 
interactions 

Beyond a few microns, interactions are insignificant 
relative to other noises. Negligible effect when 
separation distance is an order of magnitude greater 
than the cell length scale. 

Brownian motion Significant for particles which scale under 1 µm, but 
may be neglected when body is over 10 µm. 
Insignificant effect on sperm motion. 

Typical sperm 
preparation 
procedures for 
ART 

Swim-up Pellet of sperm sample suspended and incubated, 
supernatant containing cells which swam up is 
collected. 

Migration-
sedimentation 

Motile sperm able to cross elevated boundary and 
settle in a tube by gravity. 

Density gradient 
centrifugation 

After centrifugation, motile and normal sperm reside 
in lower portion of the gradient.  

Glass wool 
filtration 

Separate sperm according to their head size and 
motility. Improve sperm chromatin condensation. 

Other sperm 
sorting 
techniques 

By motility Motile sperm able to swim upstream against flow, or 
across streamlines, and collected in different outlet.  

By hydrodynamic 
effects 

Sperm swim near walls due to hydrodynamic effects. 
Microchannel may be designed for sperm to 
accumulate.   

By optics Laser trap allows three-dimensional manipulation of 
individual sperm, power can be adjusted to confine 
sperm with low motility. 

By 
dielectrophoresis 

Has been used to separate mature spermatozoa from 
non-mature spermatogenic cells. Theoretical 
framework to sort sperm by morphology will be 
studied in thesis. 

By 
magnetophoresis 

Has been used to remove apoptotic sperm. 
Fertilisation capability maintained. Theoretical 
framework to sort sperm by morphology will be 
studied in thesis. 
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In this thesis, Resistive Force Theory and Slender Body Theory will be used to 

compute the swimming velocity of a sperm. The effect of dielectrophoresis and 

magnetophoresis on the sperm kinematics will be considered. Statistical analysis will be 

performed to predict the feasibility of sorting sperm using an external field, such that 

distribution and uncertainties are accounted for. Finally, an ensemble of supervised 

learning algorithms will be used to make predictions on the sorting outcome, to assess 

whether machine learning can be used in this context to give comparable results with 

substantially lower computational costs.  
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Chapter 3  

Sperm in Newtonian Fluid with Sinusoidal Flagellum3 
 

In this chapter, a simple analytical model will be used to predict how the velocity 

of a sperm with a sinusoidal flagellum waveform is influenced by a non-uniform electric 

field (Koh and Marcos 2014). An approximate analytical solution will be obtained for 

the velocity as a function of the sperm dimensions and electric field properties. 

 

3.1 The model 

 
As a preliminary study, the spermatozoon is modelled as a perfect sphere of 

radius a, depicting its head, attached to a thin filament of length Λ with uniform 

thickness, depicting its flagellum. Although the head of a sperm is an ellipsoid, it has 

been shown that variations in the length-to-width ratio of a sperm head does not alter its 

linear velocity significantly for the same head volume (Gillies et al. 2009). Since the 

spermatozoa of many organisms take on a sinusoidal wave form (Brennen and Winet 

1977, Fulford et al. 1998), the motion of the flagellum in this model is assigned to take 

the shape of a single complete sine wave: 

 
2 ( )

sin wave

x a
y b t

 

− = − 

 
, (3.1) 

where b is the amplitude, λ is the wavelength, and 
wave  is the beating frequency of the 

flagellum. The waveform of the flagellum is prescribed to follow a small amplitude 

deflection (Katz et al. 1982) of one less order of magnitude relative to the flagellum 

length, so as to allow an analytical expression for the velocity of the spermatozoa to be 

derived. The axis of origin is set at the centre of the spermatozoon head (Figure 3-1). 

The spermatozoon is assumed to move only in the x-y plane and has three degrees of 

freedom. The ratio between the wavelength and arclength of the flagellum is introduced 

as a dimensionless constant 

 
( )x a

s

 −
= =


. (3.2) 

                                                           
3 Published in Koh JBY, Marcos (2014) Effect of dielectrophoresis on spermatozoa. Microfluidics and  

   Nanofluidics 17:613-622 
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Figure 3-1 – Schematic of a spermatozoon with the origin located at the centre of its head. Inset: Normal and 

tangential hydrodynamic forces acting on an elemental segment of length ds of the flagellum. Modified from 

Koh and Marcos (2014)  

 
The sperm has a translational velocity of xu  and y

u  in the x-direction and y-

direction, respectively, and an angular velocity  , such that the velocity of a point on 

the flagellum due to the sperm swimming is 

      v e e e rswim x x y y zu u = + +  , (3.3) 

where the position vector r can be expressed as 

 ( )( ) sin 2x wave ya s b s t  = + +  −r e e . (3.4) 

The wiggling velocity of each elemental segment of the flagellum is the time rate of 

change of the respective position vector 

 wiggling

d

dt
=

r
v . (3.5) 

The relative velocity of fluid with respect to each elemental segment is determined as 

follows: 

 v v v
rel swim wiggling
= − − . (3.6) 

According to the resistive force theory (Childress 1981; Gray and Hancock 

1955), the force acting on a flagellum is directly proportional to the relative fluid 

velocity. The normal and tangential component of the force, NF  and 
TF , acting on a 

slender filament of length z is 
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 ( )( )   v eT viscous rel T TdF K ds= , (3.7) 

 ( )( )    v eN viscous rel N NdF K ds= .  (3.8) 

with 
NK  and TK  being the normal and tangential resistance coefficients as defined in 

equations (2.2) and (2.3) of the previous chapter. The normal component of the relative 

velocity can be computed from the tangential component 

 ( ) ( )  v e e v v e erel N N rel rel T T= − , (3.9) 

where the unit tangential vector is 

 T

d d

ds ds
= r r

e . (3.10) 

Dimensionless analysis shall be performed, using Λ as the characteristic length 

and 1 wave  as the characteristic time, wave  as the characteristic velocity, 2
N waveK   

as the characteristic force, and 3
N waveK   as the characteristic moment: 

 
x

x =


,   
y

y =


,   
r

r =


,   
s

s =


,   
a

a =


,   
b

b =


,  
p

p =


, (3.11) 

 
wavet t= ,   

wave




= ,   
wave

=


v
v , (3.12) 

 
2

N waveK 
=


F

F ,   
3

N waveK 
=


M

M . (3.13) 

The force due to the relative motion between each elemental segment of the flagellum 

(referred to as tail for ease of expression) and the fluid is  

 ( ) ( )( )F v e e v v e etailmotion T rel T T N rel rel T Td K K ds = + −   , (3.14) 

which in non-dimensionalised form is 

 ( ) 1F v e e vT
tailmotion rel T T rel

N

K
d ds

K

  
= − +  

  
. (3.15) 

In the following section, DEP force due to the presence of a non-uniform electric field 

will be added to the model. 
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3.2 Adding dielectrophoresis force 

 

The DEP force is this model is postulated to act solely in the x-direction and that   

varies linearly with x and y. The constants medium  and Re ( )CMf  are merged into the 

coefficient of 2
E , such that 

 2
0 1 2Re( )medium CMf E D D x D y  = + + . (3.16) 

The use of a dipole approximation to represent the DEP force is justified in Section 

2.3.8. This is consistent with how the hydrodynamics analysis is treated using RFT, in 

which body-to-body interactions are neglected as they are typically insignificant for 

small cell bodies (Johnson and Brokaw 1979). Since DEP force, which also depends on 

the particle’s volume, is non-dimensionalised with respect to 2
N waveK  , equation 

(3.16) should be non-dimensionalised with respect to N waveK   : 

 
2

0 1 2
0 1 2

Re( )

/ /
medium CM

N wave N wave

f E D D x D y
D D x D y

K K


 

 + +
= = + +

 
, (3.17) 

such that  

 0
0

N wave

D
D

K 


= ,   
2

1
1

N wave

D
D

K 


= ,   
2

2
2

N wave

D
D

K 


= . (3.18) 

The real part of the Clausius-Mossotti factor has a maximum magnitude of 1, 

while medium  typically has an order of 10-9 F/m. The AC frequency as well as relative 

complex permittivities between the body and suspending fluid will affect the Clausius-

Mossotti factor, but these will not be independently considered given that they are 

already absorbed within D0, D1 and D1. Variations which lead to a smaller Re(f CM) can 

be balanced out by using a larger field gradient. Using the relation given in equation 

(2.13), the DEP force acting on an elemental segment of the flagellum, and the DEP 

force on the head, can be expressed in terms of non-dimensionalised constants 0D , 1D  

and 2D , as follows: 

 ( )2
0 1 26 sin(2 )   F etailDEP xd p D D s D b s t ds   = + + −  , (3.19) 

 3
02  F eheadDEP xa D= . (3.20) 
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The spermatozoa’s velocity is not influenced by 2D  in this model, as will be 

shown later in this chapter. The total force acting on the flagellum is the sum of the force 

due to relative fluid motion and the force due to dielectrophoresis, integrated over the 

length of the flagellum. The moment, which is the cross product of the position vector 

and force, can also be expressed as a function of the spermatozoon’s linear and angular 

velocity: 

 ( )F F Ftail tailmotion tailDEPd d= + , (3.21) 

 ( )M r Ftail taild=  . (3.22) 

 

3.3 Solving for linear and angular velocity 

 

The drag force and the moment experienced by a sphere of radius a due to motion 

in a viscous fluid (Happel and Brenner 2012) are 

 ( )6   F e eheadmotion x x y ya u u= − + , (3.23) 

 38   M eheadmotion za = − . (3.24) 

After non-dimensionalisation, the above two equations become 

 ( )( )( )1.5 ln 0.18 0.5    F e eheadmotion x x y ya p u u= − + + , (3.25) 

 ( )( )32 ln 0.18 0.5  M eheadmotion za p = − + . (3.26) 

The force acting on the spermatozoa head has two components; one due to drag 

experienced when the spermatozoa is in motion, and the other due to the DEP force. The 

moment experienced by the spermatozoon head is simply the moment due to motion, 

since there is no moment resulting from the DEP force acting on the head. Therefore, 

total force and total moment experienced by the whole spermatozoon is 

 ( )F F F Ftail headmotion headDEP= + + , (3.27) 

 M M Mtail headmotion= + . (3.28) 
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The spermatozoon in this model moves only in the x-y plane and therefore, 

 , , 0F   x yF F=  and  0, 0,M   zM= . xF , yF  and zM  can be expressed in matrix 

form as functions of xu , y
u  and  :  

 
11 12 13 1

21 22 23 2

31 32 33 3

x x

y y

z

F u

F u

M

   
   
   

            = +      
             

. (3.29) 

where 11  to 33  and 1  to 3  are functions of constants 0D , 1D  and 2D . In low 

Reynolds number regime, inertia forces are negligible as compared to viscous forces, 

the total forces and moments equate to zero. Thus, xu , y
u  and   can be obtained as 

functions of 0D , 1D  and 2D  as well as time t : 

 

1

11 12 13 1

21 22 23 2

31 32 33 3

x

y

u

u

   
   
   

−          = −     
          

. (3.30) 

Taking the integral over a time period, the dimensionless time-averaged linear and 

angular velocities can be found as 

  

2

0

1
 

2

x x

y y

u u

u u dt



 

    
   
  =   
   
       

 . (3.31) 

The waveform of the flagellum is defined to follow a small amplitude deflection 

such that b  is small, allowing the denominator in equation (3.10) to be simplified by 

approximating ( )2cos 2 0.5waves t −  . The small amplitude model also enables the 

relation between x and the curvilinear coordinate s along the flagellum to be 

approximated as a constant α rather than a function of space and time. 

The human sperm is very directional (Gillies et al. 2009) and its y
u   and 

   are almost zero. To study the effect of DEP force on y
u   and   , the 

flagellum is set to be stationary, and the force yF   and moment zM   due solely to 

DEP force is considered. yF   is found to be zero for a sinusoidal flagellum, while 
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zM   is proportional to 2 2
b p , which is negligible. Therefore, it is justified to assume 

that the DEP force will only have an effect on xu   while y
u   and    will 

remain approximately zero. As such, xF  is taken to be a function of only xu , and 

equation (3.29) becomes 

( )
( )
( ) ( )

( )
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(3.32) 

Equating 
xF  to be zero, the time-dependent velocity xu  can be obtained: 

( )
( )
( ) ( )

( )
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(3.33) 

Taking an integration over the dimensionless time period of the flagellum beat 

cycle gives the time-averaged velocity xu  . Finally, the time-averaged velocity can 

be converted back into dimensional form 

  

2

02
wave

x xu u dt





=  . (3.34) 

The resulting velocity becomes a linear function of 0D  and 1D , which are non-

dimensionalised parameters dependent not only on the gradient of the electric field 

squared, but also on other variables used in the non-dimensionalisation. For the 

avoidance of doubt, the variables 0D  and 1D  in the analytical solution of Koh and 

Marcos (2014) are actually non-dimensionalised parameters, as represented by 0D  and 

1D  in this thesis. The extent to which the time-averaged velocity xu   is altered by 

each unit change in 0D  and 1D  can be determined by taking the partial derivative of 

equation (3.33). The effect of DEP may thus be expressed as a function of 0D  and 1D  

using equation (3.18), such that 
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. (3.36) 

The first term in equation (3.33) arises from flagellum propulsion while the 

second and third terms represent the contibution of DEP force towards velocity. Since 

force is linearly related to velocity, the magnitude of DEP relative to viscous force can 

be estimated from the ratio of the resultant velocity relative to free-swimming velocity. 

 

3.4 Difference in velocity of X- and Y-spermatozoa 

 

The sperm velocity can be significantly altered by subjecting it to DEP force. 

Furthermore, DEP may be used to sort spermatozoa containing different sex-

chromosomes, by virtue of inherent difference in their physical dimensions (Cui 1997) 

as shown in Table 3-1. The human sperm head has a ‘flattened shape’ with a height of 

1.1 µm (Smith et al. 2009), with no reported statistical distribution to the best of the 

author’s knowledge. Modelling the head as a sphere, the equivalent head radius for the 

X- and Y-spermatozoa is (1.33 ± 0.08) µm and (1.32 ± 0.07) µm, respectively. The 

flagellum beating frequency for a human sperm varies depending on the medium, with 

typical values ranging from 14 to 17 Hz in Tyrode’s solution containing serum 

(Dresdner and Katz 1981), and 23 to 26 Hz in human cervical mucus at body 

temperature (Katz et al. 1982). The flagellum beating frequency and amplitude of 

human sperm is experimentally measured to relatively consistent in cervical mucus, with 

a standard deviation in frequency of 1 Hz (Katz et al. 1982). 

Table 3-1 – Parameters of measurement for X- and Y-spermatozoa (mean ± SD) from Cui (1997). 

 X Y 

Head length (μm) 5.38 ± 0.43 5.23 ± 0.40 

Head width (μm) 3.53 ± 0.33 3.53 ± 0.30 

Neck and tail length (μm) 42.22 ± 4.37 41.18 ± 3.47 

Head perimeter (μm) 15.26 ± 1.17 14.73 ± 1.07 

Head area (μm2) 14.74 ± 2.09 13.93 ± 1.79 
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Using a flagellum beating frequency 
wave  of 23 Hz, the X-spermatozoon is expected to 

have an average linear velocity (Koh and Marcos 2014) of 

 ( )   
–1

1 0X
 –59.6 0.0559 1.43 μmsxu D D = + +  . (3.37) 

The linear velocity of a ‘small’ and ‘large’ X-spermatozoon, corresponding to 

dimensions of one standard deviation below and above the mean, respectively, is 

 ( )   
–1

1 0X_small
 –52.9 0.0495 1.45 μmsxu D D = + +  , (3.38) 

 ( )   
–1

1 0X_large
 –66.3 0.0621 1.42 μmsxu D D = + +  . (3.39) 

For a Y-spermatozoon, the expected average linear velocity is 

 ( )   
–1

1 0Y
 –57.6 0.0570 1.46 μmsxu D D = + +  . (3.40) 

Meanwhile, the linear velocity of a ‘small’ and ‘large’ Y-spermatozoon, corresponding 

to dimensions of one standard deviation below and above the mean, respectively, is 

 ( )   
–1

1 0Y_small
 –52.4 0.0518 1.46 μmsxu D D = + +  , (3.41) 

 ( )   
–1

1 0Y_large
 –62.9 0.0622 1.44 μmsxu D D = + +   . (3.42) 

In the absence of DEP force, the velocity of spermatozoa within one standard 

deviation from the mean is computed to range between 51 and 65 μm/s. This is in 

agreement with experimentally measured straight line velocity of the human 

spermatozoa, which is reported to have values ranging from 40 μm/s in Hanks’ solution 

(Ishijima et al. 1986) to 74 ± 18 μm/s in BWW (Biggers-Whitten-Whittingham) medium 

(Mortimer et al. 1998).  

When subjected to a non-uniform electric field, the effect of DEP is greater on 

the larger spermatozoa, which does not come as a surprise. Since the head of a sperm 

has a volume one order of magnitude greater than its flagellum, the DEP force acting on 

the head contributes more significantly to its velocity as compared to that on the 

flagellum. Although a larger sperm experiences more drag force, the effect of 

dielectrophoresis is more than enough to compensate for the drag. DEP force scales 

proportionately to the volume of the head, and hence to its radius raised to the third 
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power. On the other hand, drag force in low Reynolds number is linearly related to the 

length scale. Therefore, DEP enhances the velocity of a larger sperm to a greater extent. 

Figure 3-2 and Figure 3-3 show the linear velocities of sperm, within one 

standard deviation from the mean, as a function of 0D  and 1D , respectively. The solid 

red and dotted blue lines represent the X- and Y-sperm, respectively. For each 

combination of 0D  and 1D , 68% of the sperm population have velocities between the 

upper and lower lines demarcating the values at one standard deviation from the mean. 

 

    

Figure 3-2 – Time-averaged velocity < ux > in μm/s against �̃�𝟎, for �̃�𝟏 = 1000, �̃�𝟏 = 0, and �̃�𝟏 = -1000, for 

spermatozoa of above and below one standard deviation of the average morphology. Solid red and dotted blue 

lines represent X- and Y- spermatozoon, respectively. The bold lines denote the velocity corresponding to the 

average spermatozoa dimension, while the fine lines denote the velocity corresponding to one standard 

deviation. 

 

   

Figure 3-3 – Time-averaged velocity < ux > in μm/s against �̃�𝟏 , for �̃�𝟎  = 100, �̃�𝟎  = 0, and �̃�𝟎  = -100, for 

spermatozoa of above and below one standard deviation of the average morphology. Solid red and dotted blue 

lines represent X- and Y- spermatozoon, respectively. The bold lines denote the velocity corresponding to the 

average spermatozoa dimension, while the fine lines denote the velocity corresponding to one standard 

deviation. 
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DEP force alters the velocity of the X- and Y-spermatozoa to different extent. 

Therefore, by applying a non-uniform electric field to a sperm population, the 

probability distribution of X- and Y-spermatozoa will vary spatially, leading to skewed 

populations. Despite the controversies of gender selection (Hesketh and Zhu 2006), 

selecting the sex of one’s offspring may be authorized (Dahl 2004) for avoiding gender-

linked genetic diseases such as Duchenne muscular dystrophy (Hussey et al. 1999). 

 

3.5 Feasibility of sorting 

 

Under some conditions such as 0 100D =  with 1 0D = , there exists velocities of 

the X-sperm outside a one-standard-deviation range of the Y-sperm, where the chances 

of a Y-sperm being present is less than 16%. On the other hand, the velocities of the Y-

sperm within one standard-deviation from its mean overlap with those of its X-

chromosome-bearing counterparts. Using a simple approximation, it is estimated that 

there exists a possibility of obtaining sperm sorted by their chromosomes, with a 84% 

success rate in choosing a female, and a success rate of between 50% and 84% in 

choosing a male. 

The desired values of 0D  and 1D  can be obtained by varying the separation 

distance between the electrodes. Suppose 2( )E , after non-dimensionalisation, is to be 

proportional to 0 1D D x+ . If the square of the electric field is designed to vary only in 

the x-direction, the gradient is 2
0 1( )E x M M x  = + , where 0M  and 1M  are 

parameters to be adjusted. In this way, the electric field can be expressed as  

 2
0 1

20 1
2 2

1
0.5

0.5
E M x M x V

M M
x x

V V

 
 
 = + =
 

+ 
 

, (3.43) 

where V is the voltage across the electrodes. The electrode separation will follow the 

equation: 

 
20 1

2 2

1

0.5
sepd

M M
x x

V V

=
+

. (3.44) 
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Since 2Re( )medium cmf E   is non-dimensionalised with /NK   ,  

 
 2

0 1
0 1

Re( )Re( )
  

/ /
medium cmmedium cm

N N

f M M xf E
D D x

K K


 

+
= = +

 
. (3.45) 

It can be observed from Figure 3-2 that setting 0 100D =  and 1 1D = −  will allow the X-

spermatozoa to have a velocity beyond one standard deviation from the Y-spermatozoa. 

The choice of 1D  is made in the interest of reducing the maximum electric field. This 

corresponds to 15
0 10M  and 17

1 10M − . For V = 300 V, the spacing will be: 

 
10 12 2

1

10 10
sepd

x x
=

−
. (3.46) 

A pari of electrodes can be designed such that 

 
10 12 2

1
 
2 10 10

topy
x x

=
−

,   
10 12 2

1
 

2 10 10
bottomy

x x
= −

−
. (3.47) 

An electric field of 2100 V/mm at 2 MHz is needed for cells to lyse (Lee and Tai 1999), 

while the electric field according to the above setup is at most 1500 V/mm where the 

electrodes are 0.2 mm apart. Since microelectrodes can be made as small as having a 

gap of 40 μm (Khoshmanesha et al. 2009), it is technically feasible to carry out the 

sorting as discussed. 

 

3.6 Chapter Summary 

 

In this chapter, RFT is applied to solve for the swimming velocity of a single 

sperm subjected to a linearly-varying DEP force. Modelling the flagellum beating 

pattern as a sinusoidal waveform with a small displacement, it is concluded that the 

swimming sperm is highly directional. The velocity along the x-axis is expressed 

analytically as a function of the sperm parameters as well as 0D  and 1D  which depends 

on the gradient of the electric field squared. As DEP influences the velocity of each 

sperm to a different extent depending on its morphology, the velocity distribution of the 

X- and Y-spermatozoa differs. This opens the possibility using a non-uniform electric 

field to obtain a skewed population of spermatozoa containing the desired type of 

chromosomes for artificial fertilisation.  
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Chapter 4  

Sperm in Viscoelastic Fluid with Active Flagellum4 
 

Having obtained interesting preliminary results in the previous chapter, a more 

detailed analysis will now be done. In this chapter, the sperm is considered to have an 

active flagellum with internal sliding force, and the beating pattern will be determined 

by considering the force balance on each infinitesimal segment of the flagellum. The 

straight-line velocity in the inertia frame will be compared with the time-averaged 

velocity, to assess whether it is justified to approximate the former using the latter. 

Given that many biological fluids are non-Newtonian, the effect of dielectrophoresis on 

the flagellum shape and velocity of spermatozoa in a Newtonian fluid medium is 

compared with that in a viscoelastic fluid medium (Koh and Marcos 2015b). 

 

4.1 Flagellum shape 

 

Many phenomena, ranging from physical processes (Hirsch et al. 2012) to events 

in financial markets (El Karoui et al. 1997), can be modelled by differential equations. 

In this chapter, the beating pattern of a microswimmer is likewise formulated to obey a 

partial differential equation (PDE) as a function of both space and time. A partial 

differential equation can be reduced to an ordinary differential equation (ODE) by 

symmetry reduction (Bluman and Kumei 2013) such as separation of variables. 

The spermatozoon is modelled, similar to that in Chapter 3, as a perfect sphere 

of radius a, attached to a thin filament of length Λ with uniform radius p (Figure 4-1). 

For an infinitesimal segment of the flagellum of length ds as depicted in the inset, the 

position vector is r. Acting on each segment are the shear force Q, tension T, bending 

moment 
bendM , internal sliding force 

mf ds , hydrodynamic force ( )N Oldroyd
dF  in the 

normal direction and ( )T Oldroyd
dF  in the tangential direction, as well as DEP force .FDEPd  

The flagellum is modelled to have microtubules exerting a sliding force on one another 

(Fu et al. 2008), such that the equivalent moment acting on each infinitesimal segment 

                                                           
4
 Published in Koh JBY, Marcos (2015b). Dielectrophoresis of spermatozoa in viscoelastic medium.  

   Electrophoresis 36:1514-1521 



61 

 

is due to a force per unit length 
mf  acting on the top in the positive tangential direction 

eT  as well as on the bottom in the negative tangential direction. The spermatozoon is 

defined to move only in the x-y plane and has three degrees of freedom. 

 

Figure 4-1 – Schematic of a spermatozoon with the origin located at the centre of its head. Inset: Normal and 

tangential hydrodynamic forces, internal shear and axial forces, and bending moment acting on an elemental 

segment of length ds of the flagellum. Modified from Koh and Marcos (2015) 

 
In this chapter, the flagellum wave pattern will be determined by solving y as a 

function of s. The position vector of an infinitesimal segment along the flagellum is 

   r e e
x y

x y= + . (4.1) 

where x is related to the curvilinear position s by the dimensionless constant α as defined 

in Chapter 3. Resistive force theory shall again be applied here. The force on an 

elemental segment of the flagellum, without dielectrophoresis or internal sliding force 

of the active flagellum, is 

 ( ) ( )( )F v e e v v e eviscous T rel T T N rel rel T Td K K ds = + −  , (4.2) 

as defined in equation (3.14), where the relative fluid velocity follows the definition in 

equation (3.6): 

 ( )     

r
v e e e rrel x x y y z

d
u u

dt
= − + +  − . (4.3) 
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The unit tangential vector is expressed as: 

 
2 2

   

r
e e

e
r

x y

T

d x y

ds s s

d x y
ds s s

 
+

 = =
    +       

. (4.4) 

 Cervical mucus has viscosities in the range of a few thousand cP (Ishijima et al. 

1986) and differs in its viscoelastic properties according to a woman’s fertility cycle. 

The variations in a fluid’s stress-strain relation can be substantial; for example, sperm 

cells are unable to traverse the cervical mucus during non-ovulatory period due to 

heightened viscoelasticity (Lai et al. 2009). The Oldroyd-B model is one of the 

constitutive relation used to study the behaviour of swimmers in a viscoelastic fluid 

medium, because it describes the elastic and memory effects displayed by “most 

polymer and biological liquids” (Zhao and Yang 2009). Here, the spermatozoon is 

modelled to be in an Oldroyd-B viscoelastic fluid, which displays a fading memory 

model (Fu et al. 2008): 

 ( )  f f f foldroyd oldroyd viscous s viscous   + = + . (4.5) 

where   is the fluid relaxation time, s   is the ratio of solvent viscosity to total 

viscosity, while fviscous  and f
oldroyd  are the hydrodynamic forces in a Newtonian fluid and 

Oldroyd-B fluid, respectively.  

The hydrodynamic forces are assumed to follow the time dependency of flagella 

beating: 

  f f i t

viscous viscous e
−= , (4.6) 

  f f i t

oldroyd oldroyd e
−= .  (4.7) 

with fviscous  and foldroyd  being the respective hydrodynamic forces as a function of space 

only, ω being the angular frequency at which the flagellum wiggles, and t as time. As 

such, the Oldroyd force can be expressed as a function of viscous force and Deborah 

number (Fu et al. 2008): 

 2
oldroyd vis us

1 De
1 De

f f co

i

i

− =  − 
, (4.8) 
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where the Deborah number De =  represents 2π times the ratio between the 

relaxation time and the flagella beating period, and ( )2De De s =  is the product of 

the Deborah number and viscosity ratio. A Deborah number of zero indicates that the 

fluid medium is Newtonian, while a non-zero De indicates otherwise. Since the 

flagellum is assumed to wiggle in the y-direction only, x is time-independent and only a 

function of space. The flagellum is approximated to have small beating amplitude and a 

small deflection gradient, such that 

 1
x

s




, 0
y

s




. (4.9) 

Apart from the viscoelastic force, another external force acting on the 

spermatozoon is the DEP force due to a non-uniform electric field. The DEP force acting 

on an elemental segment of the flagellum, and on the head, is prescribed to act solely in 

the x-direction: 

 2 21
Re( )

6
  F ε etailDEP medium CM xd p f E ds =    , (4.10) 

 3 22 Re( )  F eheadDEP medium CM xa f E  =   . (4.11) 

where medium  is the medium permittivity, Re( )CMf  is the real part of the Clausius-

Mossotti factor, and E is the electric field. The DEP force is defined to be a linear 

function of x, so that the equation of motion obtained will be linear and can be solved 

conveniently. The constants medium  and Re( )CMf  are merged into the coefficient of 2
E  

such that 2Re( )medium CMf E   can be written as 0 1D D x+ . Since the DEP force acts only 

in the x-direction, the DEP force on each infinitesimal segment of the flagellum is 

  2
0 1

1
( )

6
  F etailDEP xd p D D a s ds = + + . (4.12) 

As the Reynolds number is negligible for the swimming of spermatozoa, the net 

force and moment equate to zero. The net force acting in the normal direction is 

 ( ) ( ) 0F eN Oldroyd DEP flagellum N

Q
Q ds Q dF d

s

 + − + +  =  
. (4.13) 
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By approximation of small beating amplitude and a small deflection gradient, the above 

equation becomes 

    

22
0 1

1 De 1
( ) 0

1 De 6N

iQ y y
ds K ds p D D a s ds

s t i s
  −      + − − + + =      −    

. (4.14) 

Considering the net moment on an elemental segment about its centre, to the first order 

of ds, 

 
2

2
2 0bend mM fQ

p
s s s

 
+ − =

  
. (4.15) 

The bending moment can be expressed by (Landau and Lifshitz 1970) 

 
2

2bend

y
M EI

s


=


. (4.16) 

where E is the Young’s modulus and I is the cross-sectional moment of inertia. The 

same dimensionless parameters as defined in Chapter 3 shall be used, with Λ being the 

characteristic length and 1   as the characteristic time,   as the characteristic 

velocity, 2
NK    as the characteristic force, and 3

NK   as the characteristic moment. 

The equation of motion governing the shape of an active flagellum in an 

Oldroyd-B fluid, as given in equation (4.14), can be non-dimensionalised as 

 
4

4 2 42
0 14

1 De 1
Sp + Sp ( ) 0

1 De 6
mfiy y y

p D D a s
s i t s s

  −     + + + − =    −    
, (4.17) 

where m
f  is the non-dimensional form of 

mf  

 ( )22
m

m

f
f

EI p
=


, (4.18) 

and non-dimensional constants 0D  and 1D  are related to dimensional constants 0D  and 

1D  as defined in equation (3.18), and the Sperm number is inversely related to the 

flexural rigidity of the flagellum 

 
1 44

Sp NK

EI

 
=  
 

. (4.19) 
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To solve the equation of motion, four boundary conditions will be required. At 

free end, corresponding to 1s = , there is no net moment or shear force. Therefore, 

 
2

2
1

0
s

y

s
=


=


, (4.20) 

 
3

3
1

 0m

s

y
f

s
=


− =


. (4.21) 

Since the flagellum is hinged at the head and total moment is zero at equilibrium: 

 
0

0
s

y
=
= , (4.22) 

 
2 1 1 2 4 

 0 12 0 0
0

1
Sp ( ) 0

6m

s

y
f ds p y D D a s ds

s
 

=

  − − − + + =    . (4.23) 

The deflection y  and internal sliding force  m
f  can be separated into a space-

dependent function and time-dependent exponential function: 

 ( )  , ( ) ity s t h s e−= , (4.24) 

 ( )   , iks it

m mf s t f e e−= . (4.25) 

where h  is the non-dimensional position along the y-axis as a function of s  only, k  is 

the non-dimensional constant in which the spatial distribution of internal force is related 

to, and mf  is a non-dimensional constant independent of space and time. The rational 

for using separation of variables with a complex exponential governing the time-

dependence is discussed in Appendix B. The equation of motion can hence be reduced 

into an ordinary differential equation as follows: 

 4 2 42
 0 1  

1 De 1
Sp  + Sp ( ) 0

1 De 6
iks

m

i
h i h p D D a s h f e

i s
 −     − + + − =   −  

. (4.26) 

Assume that a particular solution to the non-homogeneous differential equation is 

 ( )  
iks

p ph s C e= , (4.27) 

where p
C  is a constant which can be determined by substituting equation (4.27) into 

(4.26). The particular solution can hence be written as 
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4 4 4 22
0 1

 
1 De

Sp Sp ( )
1 De 6

iks

m
p

ik f e
h s

i
k i ik p D D a s

i

 
=

−   − + + +   −   

. (4.28) 

The homogeneous solution to a fourth order equation has four roots, which can 

be obtained by substituting  rs
h e=  into the homogeneous part of equation (4.26) and 

solving the fourth order polynomial: 

  

   
4 2 4 4 2

0 1

1 De1
Sp ( ) Sp 0

6 1 De
i

r p D D a s r i
i

  −  + + + − =   − 
, (4.29) 

where the four roots, which shall be denoted 1r  to 4r , to the above equation gives the 

homogeneous time-independent solution: 

 ( ) 31 2 4
1 2 3 4

r sr s r s r s

hh s C e C e C e C e= + + + . (4.30) 

The coefficients 1C  to 4C  can be determined using the four boundary conditions 

in equations (4.20) to (4.23), where the time-dependence can be separated using 

equation (4.24). Thereafter, the flagellum deflection can be obtained by adding the 

homogeneous and particular solution of the space-dependent ordinary differential 

equation, and substituting into equation (4.24) to give the full time-dependent solution 

 ( )
( )

 

   

31 2 4

 
 

1 2 3 4

 
 

4 4 4 22
0 1

...

, Re
1 De

Sp Sp
1 De 6

r sr s r s r s

iks
it

m

C e C e C e C e

ik f ey s t e
i

k i ik p D D x
i


−

  + + + +
  
  =   −    − + +     −     

. (4.31) 

In the absence of DEP, the plots in Figure 4-2 are identical to those presented by 

Fu et al. (2008), therefore validating the accuracy of the mathematical procedures as 

well as numerical code used. A value of 0k =  corresponds to the internal force being 

uniformly distributed and varying only with time, while higher values of k  correspond 

to the internal force having a larger spatial variation. A modification of the code to the 

‘hinged with prescribed angle’ boundary condition also gives consistent results with the 

beating patterns and velocities presented by Marcos et al. (2014) for the scenario of zero 

shear flow. 
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Figure 4-2 – Flagellum shape for Sp = 7, corresponding to different internal force and De. The solid blue line 

corresponds to a dimensionless time of �̃� = 𝟎 while the dashed green, dashed red, dash-dotted black and dash-

dotted pink lines corresponds to �̃� = π/4, �̃� = π/2, �̃� = 3π/4 and �̃� = π, respectively. 

 

The influence of a non-uniform internal force for different Sp is considered in 

Figure 4-3. The x-axis and y-axis corresponds to x  and y , respectively, not labeled in 

the plots due to space constraints. Following equation (4.19), a sperm with Sp = 7 has 

flexural rigidity which is four times that of a sperm with Sp = 10, and a quarter that of 

a sperm with Sp = 5. mf , which governs the internal sliding force, has been adjusted 

such that each flagellum has a beat amplitude of 10%. The higher the Sperm number, 

the greater the internal force needed to create the same beat amplitude of 10%. It can be 

observed that for the case of the non-uniformly distributed internal force, the end of the 

flagellum has a larger deflection in general. With the flagellum shape having been 

obtained, the derivatives of x and y are known, and the velocity of the spermatozoa in 

the body-fixed frame can henceforth be computed. 
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Figure 4-3 – Flagellum shape for De = 0, corresponding to different Sp and k. The solid blue line corresponds 

to a dimensionless time of �̃� = 𝟎 while the dashed green, dashed red, dash-dotted black and dash-dotted pink 

lines corresponds to �̃� = π/4, �̃� = π/2, �̃� = 3π/4 and �̃� = π, respectively. 

 

4.2 Velocity and trajectory 

 

Having obtained the flagellum shape, the non-dimensional linear and angular 

velocity can be computed by solving the relation presented in equation (3.30), reprinted 

here for the reader’s convenience: 
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As numerical procedures will be used, a compromise has to be made between 

computational time and precision. A convergence test is carried out to determine the 

optimal ds  and dt  for the tolerable level of discretization error, which is chosen to be 

less than 0.5%. Table 4-1 shows the magnitude of the x-velocity in body lengths per 

second, for various combinations of ds  and dt , corresponding to the case of Sp = 7 in 

Newtonian fluid with uniform spatial distribution of the internal sliding force. The 

dimensionless arclength will hence be divided into 100 infinitesimal segments of length

ds , and the period of each beat cycle divided into 256 temporal-steps of duration dt . 
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Table 4-1 - Convergence test using swimming velocity in body lengths per second, corresponding to various 

combinations space- and time-discretization. 

       ds  

dt       . 

1
20

  
1
50

 
1

100
 

1
200

 
1

500
   

1
1000

 

2 32   0.5024 0.5005 0.5002 0.5002 0.5002 0.5002 

2 64   0.4970 0.4951 0.4948 0.4948 0.4948 0.4948 

2 128   0.4943 0.4924 0.4921 0.4921 0.4920 0.4920 

2 256   0.4939 0.4910 0.4907 0.4907 0.4907 0.4907 

2 512   0.4923 0.4903 0.4901 0.4900 0.4900 0.4900 

2 1024  0.4919 0.4900 0.4897 0.4896 0.4896 0.4896 

2 2048  0.4917 0.4898 0.4895 0.4895 0.4895 0.4895 

 

The actual velocity in the inertial frame is not identical to the time-averaged 

value over a cycle, because the heading of the spermatozoon is constantly changing. 

Therefore, the study shall be extended to consider the orientation of the spermatozoon 

at each time-step, and the body-fixed velocity is translated motion in the inertial frame. 

As shown in Figure 4-4, the position vector from the origin of the inertial frame to an 

element point can be expressed as a sum of two vectors, 

 R o r= + . (4.45) 

 

 

Figure 4-4 – Sperm with body-fixed frame centred at o in the inertial frame. The position vector r represents 

a vector in the body-fixed frame, while R represents a vector in the inertial frame. 
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The co-ordinates in the inertial frame can be transformed to co-ordinates in the body-

fixed frame and vice versa by the following relation: 

 
cos sin

sin cos
X

Y

oX x

oY y

 
 

−     
= +     

     
   (4.46) 

 
cos sin

sin cos
X

Y

ox X

oy Y

 
 

     
= −     −      

  (4.47) 

where 
Xo  and Yo  denote the origin of the body-fixed frame, and ϕ is the angular 

orientation of the body-fixed-frame with respect to the inertial frame, The velocity in 

the inertial frame can be computed by considering the instantaneous velocity in the 

body-fixed frame, and then transforming the coordinates into inertial frame, followed 

by updating the new position and orientation for each time step dt. 

Figure 4-5 shows the trajectory of the spermatozoon in its first two seconds of 

motion, corresponding to over 40 beat cycles. The Newtonian medium is represented 

by De = 0 while the viscoelastic medium is represented by De = 5, which corresponds 

to cervical mucus having a relaxation time of 0.033 s (Smith et al. 2009).  

Figure 4-6 shows the spermatozoon trajectory for De = 0, compared against 

different values of Sperm number Sp and spatial variation k  of the internal force. The 

vertical axis corresponds to Y , and the horizontal axis corresponds to X , not labelled 

in the interest of space. The path taken by the spermatozoon is marked by a red line, and 

the flagellum has a waveform corresponding to ( , ) ( )y s t h s=  since it
e
− = 0 when t  

takes the value of 0 or multiples of 2π.  

By observing how the flagellum wiggle for each case, a trend can be noticed 

between the beat patterns and the corresponding linear velocity. The more the flagellum 

is wiggled like a transverse wave, the higher the linear velocity in the X-direction. On 

the other hand, the more the flagellum moves like a stationary wave, the lower the linear 

velocity. This can be substantiated qualitatively, because a transverse wave ‘pushes’ 

against the fluid to propel the spermatozoon forward, whereas a stationary wave is 

incapable of pushing the spermatozoa in the transverse direction. 
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Sp De = 0                                                 De = 5 
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Figure 4-5 – Trajectory of spermatozoon for �̃� = 0, corresponding to Sp and De. The path history is marked 

by the red line. The vertical axis corresponds to �̃�, and the horizontal axis corresponds to �̃�. 

 

Sp k  = 0                                                 k  = π 
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Figure 4-6 – Trajectory of spermatozoon for 𝑫𝒆 = 0, corresponding to Sp and �̃�. The path history is marked 

by the red line. The vertical axis corresponds to �̃�, and the horizontal axis corresponds to �̃�.  
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The results obtained shows that a sperm is able to achieve greater net motion a 

Newtonian fluid, and when the internal force has little variations with respect to space. 

The variable Sp affects the wiggling pattern, while the variable De affects the wiggling 

pattern as well as the hydrodynamic force, and their relation to the velocity cannot be 

expressed analytically. If the flagellum is too rigid, as in the case for Sp = 5, the 

spermatozoon will be ‘flapping’ its flagellum up and down in a nearly reciprocating 

motion, resulting in a very low net velocity. It can also be seen the sperm is highly 

directional in a time period greater than the flagella beat cycle, despite instantaneous 

fluctuations in the angular direction, which is in agreement with experimental 

observations (David et al. 1981, Katz et al. 1978). This substantiates the earlier 

analytical study in Chapter 3, where the time-averaged angular velocity as well as 

velocity in the y-direction is deemed negligible. 

The straight-line velocities of the sperm computed in the inertial frame are 

actually similar to the time-averaged velocity in the body-fixed frame. This is because 

despite the continuous fluctuations in the instantaneous linear and angular velocity, the 

heading angle of the sperm remains close to zero. Henceforth, the straight-line velocity 

will be approximated using the time-averaged body-fixed velocity in the x-direction. 

 

4.3 Shape of flagellum in presence of DEP 

 

Due to the finite rigidity of the sperm flagellum, its shape will inevitably be 

modified in the presence of DEP force. The DEP force is a distributed force but is 

approximated to act on the centre of each infinitesimal segment. Having established the 

governing equation in (4.17), the waveform can be obtained by solving for the solution. 

 Figure 4-7 shows the flagellum pattern, for Sp = 7 and k  = π, under different 

0D , 1D  and De. The spatial distribution of internal sliding force, k , is taken to be   

because the flagellum wiggling pattern corresponding to this value appears realistic 

(Ishijima et al. 1986). In the interest of space, the y-axis corresponding to y  and the x-

axis corresponding x  to are not labelled in the plots. The flagellum shape is shown to 

be uninfluenced by 0D , which is the constant component of the DEP force. This is to be 

expected, because each infinitesimal segment of the flagellum experiences the same 

force.  
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De = 0 De = 5 

0 1100,  1000D D= =   

 

0 1100,  1000D D= =  

 

0 1100,  0D D= =  

 

0 1100,  0D D= =  

 

0 10,  0D D= =   

 

0 10,  0D D= =

 
 

0 1100,  0D D= − =  

 

0 1100,  0D D= − =  

 

0 1100,  1000D D= − = −   

 

0 1100,  1000D D= − = −  

 
 

Figure 4-7 – Shape of flagellum under different DEP force, for Sp = 7 and �̃� = π. The solid blue line corresponds 
to a dimensionless time of t ̃= 0 while the dashed green, dashed red, dash-dotted black and dash-dotted pink 

lines corresponds to t ̃= π/4, t ̃= π/2, t =̃ 3π/4 and t ̃= π, respectively. The x-axis and y-axis represent the positions 

x and y, non-dimensionalised with respect to the flagellum wavelength. 
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The flagellum beating pattern in Oldroyd-B medium appears to be sensitive to 

DEP force, while it remains similar in a Newtonian fluid medium. This suggests that a 

non-uniform electric field could potentially influence the behaviour of spermatozoa in 

a viscoelastic fluid to a greater extent than in a Newtonian fluid, and hence it is 

meaningful to explore the sorting of spermatozoa in the viscoelastic fluid. 

 

4.4 Velocity in presence of DEP 

 

The theoretical analysis as presented in Chapter 3 have shown that the velocity 

of spermatozoa in a Newtonian fluid can be altered significantly by DEP, and that the 

extent of influence varies between the X- and Y-spermatozoa, hence allowing sorting. 

The study shall now be extended to explore the effect of DEP on spermatozoa with 

active flagellar, in Newtonian as well as viscoelastic fluid medium. 

Figure 4-8 shows how the time-averaged linear velocity xu   relates to 0D  and 

1D  in a Newtonian fluid as well as viscoelastic fluid, for a range of X- and Y-

spermatozoa within one standard deviation from the mean. It should be noted that 

different internal forces are required as adjustments have been made to keep the beating 

amplitude at 10%. As discussed earlier, the spermatozoa trajectory is highly directional 

and only the time-averaged linear velocity in the x-direction xu   will be considered. 

In the absence of DEP force, the velocity is significantly dependent on the 

flagellum wiggling pattern. However, in the presence of DEP force, the velocity is 

influenced primarily by the gradient of the electric field, and the flagellum pattern 

affects the drag force but has only a small effect on the velocity. On average, 

0 1.84xu D  = µm s-1 and 1 0.0790xu D  = µm s-1 for an X-spermatozoa while 

0 1.88xu D  = µm s-1 and for 1 0.0808xu D  = µm s-1 for a Y-spermatozoa in a 

Newtonian fluid. The results suggest that the Y-spermatozoa is more sensitive to DEP 

as compared to the X-spermatozoa. There exist values of 0D  and 1D  which correspond 

to some velocity where the X-spermatozoa is more than one standard deviation away 

from the Y-spermatozoa. As discussed in Chapter 3.5, this suggests the possibility of 

using dielectrophoresis to attain a skewed population of spermatozoa containing the 

desired type of sex chromosomes. 
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Figure 4-8 – Velocity of spermatozoa (in µm s-1) one standard deviation away from the mean value, where the 

solid red lines and dotted blue lines denotes the X- and Y-spermatozoa, respectively. The plots on the top 

corresponds to a Newtonian fluid of De = 0, for (a) �̃�𝟏 = 0 and (b) �̃�𝟎 = 0, while the plots on bottom corresponds 

to a viscoelastic fluid of De = 5, for (c) �̃�𝟏 = 0 and (d) �̃�𝟎 = 0. 

 

In Chapter 3 where the flagellum was assumed to follow a moving sinusoidal 

wave in a Newtonian fluid, 0 1.43xu D  = µm s-1 and 1 0.0559xu D  = µm s-1 for 

the average X-sperm, and 0 1.46xu D  = µm s-1 and 1 0.0570xu D  = µm s-1 for 

the average Y-sperm (Koh and Marcos 2014). Therefore, it can be seen that the effect 

of dielectrophoresis on the velocity of spermatozoa in a Newtonian fluid are 

qualitatively consistent in these two studies. In Chapter 4, the effect of dielectrophoresis 

is slightly enhanced compared to results obtained in Chapter 3, likely because the 

beating pattern of the flagellum is a ‘pulsating’ moving wave rather than a moving 

sinusoidal wave, and hence less dragged is experienced.  

In an Oldroyd-B fluid, 0 48.5xu D  = µm s-1 and 1 2.15xu D  = µm s-1 

for an X-sperm while 0 49.6xu D  = µm s-1 and 1 2.20xu D  = µm s-1 for a Y-

sperm with mean parameters. Since each unit change in 0D  and 1D  results in a 
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substantially larger change in swimming velocity of the spermatozoon, the difference in 

velocity distribution is also amplified, suggesting that sorting in a viscoelastic fluid 

could be more effective than in a Newtonian fluid. From a mathematical perspective, 

the hydrodynamic force in an Oldroyd-B fluid influences the force balance and hence 

alters the partial differential equation governing the flagellum waveform, resulting in a 

different velocity. From a physical perspective, this may be attributed (Koh and Marcos 

2015b) to the ‘memory effect’ of the Oldroyd-B fluid. In the reference frame of a 

spermatozoon swimming from right to left, the fluid particles are moving from left to 

right. Since each infinitesimal segment of the fluid attempts to undo the deformation, 

the fluid will have the tendency to revert back to the position where they started, and in 

this process carrying the spermatozoon along, thereby increasing its velocity along its 

heading direction. 

 

4.5 Chapter Summary 

 

In this chapter, the flagellum was modelled with an internal sliding force, and 

the beating pattern was determined by solving the 4th order differential equation derived 

from force and moment balance. The velocity in the body-fixed frame and inertia frame 

is then computed, and it is shown that the straight-line velocity resembles the time-

averaged velocity in the x-direction of the body-frame. The effect of dielectrophoresis 

on a sperm in a Newtonian fluid is compared with that in a viscoelastic Oldroyd-B 

medium. DEP alters the sperm velocity substantially more in an Oldroyd-B medium, 

allowing the X- and Y-sperm to be sorted under a weaker electric field gradient. The 

results obtained for the Newtonian case are in agreement with the moving sinusoidal 

waveform model of the preceding chapter. 
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Chapter 5  

Slender Body Theory for Sperm Locomotion 
 

Progressing from Resistive Force Theory, this chapter utilises Slender Body 

Theory which incorporates hydrodynamic interactions and has superior accuracy (Huber 

et al. 2011, Koh et al. 2016) over the former. First, the mathematical framework 

associated with SBT will be presented. The differences between RFT and SBT will be 

explored by considering a simple horizontal filament, followed by a segmented 

flagellum to provide a fair basis for comparison. SBT will then be applied to model a 

sperm swimming with a prescribed beating pattern. The hydrodynamic force 

distribution on the flagellum will be shown to remain similar regardless of whether RFT 

or SBT is used. Numerical methods will be used to compute the flagellum waveform 

resulting from the associated force. This chapter is concluded by the rational for using 

a prescribed flagellum waveform in the subsequent analysis on the feasibility of sorting 

to be carried out within the scope of this thesis. 

 

5.1 Mathematical model 

 

In Slender Body Theory (Higdon 1979), the flagellum is represented by a series 

of Stokeslets and dipoles. By the no-slip boundary condition, fluid particles adjacent to 

the flagellum surface of a swimmer attains the same velocity as the flagellum. This fluid 

velocity can also be attained if the flagellum had been replaced with a series of 

concentrated force along the flagellum centreline. SBT actually relates the force acting 

on the fluid to the velocity of the fluid, but the same force-velocity relation can be 

applied to study the force acting on the flagellum. Consider a rod translating towards 

the left, which could be achieved using an external field given that inertia is negligible 

in a low Reynolds number environment. This translating rod exerts a leftward force on 

the fluid. By Newton’s third law, the fluid exerts a rightward force of equal magnitude 

on the rod, which can be interpreted as the drag force. Moreover, in the reference frame 

of the rod, the fluid appears to have a velocity towards the right. Therefore, the same 

coefficients in SBT can be applied to relate the force acting on the body to the relative 

fluid velocity. 
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The flagellum is assumed to have a small curvature and is divided into N 

segments of length 2q each, where p q   . Each segment has a local coordinate 

system ( ),L LX Y  whose origin is at the centre of the section of length 2q, with the L
X  

axis tangential to the flagellum centreline. Within each interval from ( ), 0q−  to ( ), 0q+  

the force per unit length f L  is assumed to be constant. The location of the origin of each 

segment has a curvilinear coordinate ns  measured from the point of contact between the 

spherical head and the flagellum, such that a point in the local frame is 

  ( ) ( )L

j jk n k k nx s x X s= − , (5.1) 

where the transformation matrix that maps general coordinates into local coordinates is 

 
cos sin

sin cos
Θ

 
 

 
=  − 

. (5.2) 

such that θ is the angle of the local L
X  axis of the segment with respect to the general 

x-axis of the body-fixed frame (Figure 5-1). 

 

Figure 5-1 – Flagellum comprising N discrete straight segments, each represented by a dotted rectangle. Inset: 

The local coordinate system XL and YL of a segment at an angle θ with respect to the general x-axis of the body-

fixed frame. 

 
The induced velocity at point x due to the collective Stokeslets and dipoles in 

the interval is given by Higdon (1979): 

 ( ) ( )
( )

( ),0

,0

X

X

x x X

L

L

q
L L L L L L

j k jk
q

u f K
=

= −
 = −  , (5.3) 
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where 
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with all variables in local coordinates. It is necessary to make a conversion from the 

local coordinate system for each segment, where the force-velocity relation is governed 

by equation (5.3), to the general coordinates in the body frame. The velocity induced at 

point x due to the singularities in the nth segment is 

 ( ) ( ), ) ( )x x X(j jk n k nu K s f s= , (5.8) 

where 

 ( ) ( )
( )
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,0
, ( ) ( ) 

X

X

x X( ) x X

L

L

q
L L L

jk n ij n lk n il
q

K s s s K
=

= −
 =   −  . (5.9) 

Before proceeding further, readers should be cautious to note that L

jkK  represents a 

definite integral in the body-fixed frame. In vector form, equation (5.9) is 

    
( )

( )
 

,0

,0
K Θ K Θ

qT L

q−
 =   . (5.10) 

When the point of interest corresponds to the same segment as the location of 

the Stokeslets and dipole, equations (5.4) and (5.7) will result in taking the logarithm of 

zero, given that r = (𝑥 − 𝑋) at the limits of integration. To circumvent this, equation 

(5.3) can replaced by the following with an accuracy to the order 2 2
p q  (Higdon 

1979): 
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+  
u . (5.11) 
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Using the above equation for an expression in terms of L

jkK , the following 

relation is used in place of equations (5.4) to (5.7), in order to determine the contribution 

from singularities at the same segment as the point of interest. 
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11 12

21 22 ,0
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0 ln 2 0.5 4

L

L

q
L L

L L

q

q pK K

K K q p





=

= −

 − 
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X

X

. (5.12) 

The induced velocity at each segment is a result of hydrodynamic interactions 

from all N segments of the flagellum, which expressed in indicial notation is 

 ( ) ( ) 
1

, ) ( )x x X(
N

j jk n k n

n

u K s f s
=

= . (5.13) 

Hydrodynamic interactions between the flagellum and cell body have an insignificant 

influence (Guasto et al. 2012, Chattopadhyay and Wu 2009) and hence will be ignored 

in this model. In vector form, the above equation allows the induced velocity at segment 

n to be computed as follows: 
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= + + +            

                   
  . 

(5.14) 

where the superscript in ( , )n m

ijK  indicates the contribution by the Stokeslets and dipoles 

at segment m toward the induced velocity at segment n. The induced velocity due to all 

Stokeslets and dipoles across the entire flagellum is therefore  
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By simple algebraic manipulation, the force per unit length acting on each segment of 

the flagellum is 

 

(1,1) (1,1) (1,2) (1,2) (1, ) (1, )(1)
11 12 11 12 11 12
(1,1) (1,1) (1,2) (1,2) (1, ) (1, )(1)
21 22 21 22 21 22

(2) (2,1) (2,1)
11 12

(2) (2,1
21

( )

( )

N N

x
N N

y

x

y

N

x

N

y

K K K K K Kf

K K K K K Kf

f K K

f K

f

f

      
             

 
 
  = 
 
 
 
 
  

  

1
(1)

(1)

(2)(2,2) (2,2)
11 12

(2)) (2,1) (2,2) (2,2)
22 21 22

( )
( ,1) ( ,1) ( , ) ( , )
11 12 11 12

( )
( ,1) ( ,1) ( , ) ( , )
21 22 21 22

x

y

x

y

N
N N N N N N

x

N
N N N N N N

y

u

u

uK K

uK K K

uK K K K

uK K K K

−
  
  
  
              
 
 
 
    
          






 
 
 
 
 
 
 
 

.  

(5.16) 

where ( )n

xu  and ( )n

yu  are the relative fluid velocity with respect to the flagellum segment 

n. This velocity is dependent on the swimming velocity   v e e
swim x x y y

u u= +  of the 

sperm, its angular velocity  ez  as well as the wiggling of the flagellum: 

 ( )
( ) ( )

( )
( )      

r
e e e r

n n
x n

x x y y zn

y

u d
u u

u dt


 
= − + +  − 

  
. (5.17) 

Thereafter, the total force and moment acting on the sperm can be computed by adding 

the drag force experienced by the head to the sum of forces acting on all the segment of 

length N  each: 

 ( )

1

N
n head

x x x

n

F f F
N=

 = + 
 

 , (5.18) 

 ( )

1

N
n head

y y y

n

F f F
N=

 = + 
 

 , (5.19) 

 ( )1 ( ) ( ) ( ) ( )

0
1

r dF
N

head n n n n head

z z y x z

n

M M x f y f M
N=

 =  + = − +  
 . (5.20) 

where ( )n
x  and ( )n

y  are the coordinates of the midpoint of segment n in the body-fixed 

frame. The force per unit length and the moment can be non-dimensionalised as follows 

 
( )8

f
f

wave 
=


,   

( ) 38
M

M
wave 

=


, (5.21) 
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while the coefficients relating force to velocity can be non-dimensionalised by 

 ( )8K K= . (5.22) 

Given that the total force and moment are linear functions of the sperm’s linear and 

angular velocity, 
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      = +      
            

. (5.23) 

Since inertial is negligible relative to viscous forces, the total force and moment acting 

on the sperm is negligible. Therefore, the instantaneous linear and angular velocity can 

be calculated using 

 

1

11 12 13 1

21 22 23 2

31 32 33 3

x

y

u
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−  −   
     = −     
     −    

. (5.24) 

 

5.2 Difference between RFT and SBT 

 

In the preceding section, the procedures for applying SBT had been presented. 

Before using SBT to compute the hydrodynamic force in the model, the differences in 

results predicted by SBT and RFT shall be explored in a rudimentary model – a 

horizontal rod. 

Both RFT and SBT stem from the use of Stokeslets and dipoles to model the 

induced velocity of a swimmer, and require the body to be slender. However, there are 

subtle differences within the derivation process, thereby resulting in two different 

models. To begin with the similarity, consider the flagellum of a swimming cell. By the 

no-slip boundary condition, the fluid particles immediately adjacent to the flagellum 

must necessarily have the same velocity as that of the local flagellum surface. The 

velocity of these fluid particles, which are induced by the moving flagellum, can also be 

achieved had the flagellum been replaced by a series of Stokeslets along its centreline. 

In turn, the body of a swimmer experiences a viscous force related to the relative fluid 

velocity, which can be computed using SBT as discussed in the previous section. 



85 

 

 In SBT, the force per unit length acting on the flagellum is uniform across each 

discretized segment and follows a step function which is piecewise constant but changes 

abruptly across each segment, although hydrodynamic interactions from all segments of 

the flagellum are taken into account. On the other hand, RFT ignores interactions and 

gives a localised force-velocity relation. As seen in equation (A.37) and (A.43) of 

Appendix A, RFT computes the velocity at a point on the flagellum surface using only 

Stokeslets within a distance of ±q away, where q is small relative to the flagellum length 

and taken to be 0.09Λ (Lighthill 1976), while Stokeslets further away beyond the 

distance of q are ignored and assumed to have zero contribution. 

Straightforward algebra allows for the force per unit length at a point on the 

flagellum surface to be related to the local velocity. Instead of taking this value to be 

constant within ±q, the force at any other point is computed by the same virtue, thus 

giving a localised force-velocity relation in RFT. A subtle difference to be mindful of is 

that in SBT, the length of each of the N segments over which the force per unit length 

is modelled to be constant is 2q, where q = Λ/2N instead of 0.09Λ. Another difference 

between SBT and RFT is the scope of the model. As seen in equation (5.3), the fluid 

velocity at an arbitrary point away from the flagellum can be computed by SBT, 

allowing us to determine the flow field, while the use of RFT limits us to study only the 

points on the flagellum surface. 

Consider a rigid horizontal rod 50 μm in length, subjected to a relative velocity 

at an angle β with respect to its longitudinal axis (Figure 5-2). Given that the rod has no 

rotational motion, the relative fluid velocity at all points on the rod is identical. The 

coefficient relating the force, in the x- and y-direction, to the viscosity and magnitude of 

the relative fluid velocity is computed as presented in the following two tables below. 

Given that the unit tangential and normal vectors are aligned with the x- and y-axis 

respectively, the coefficients correspond to TK   and NK  . 

 

Figure 5-2 – Passive horizontal cylindrical rod subjected to a relative fluid velocity of magnitude Vrel at an 

angle β with respect to the x-axis. 
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In RFT, these coefficients are solely dependent on the ratio between the length 

and radius of the body. Since the coefficients are uniform across the entire rod, the force 

per unit length are constant as well. In SBT, the force per unit length is influenced by 

interactions and hence varies across different segments of the rod. However, by taking 

the sum of forces acting on the body as a whole, an equivalent coefficient can be 

computed from the SBT model. It cannot be used in a similar fashion to TK  and 
NK  in 

RFT, where the local force can be found once the relative local velocity at that point is 

known. However, this equivalent coefficient can be used to give a simple linear relation 

between the overall force acting on the entire rod and the relative fluid velocity, which 

is constant at all points on the horizontal rod. The coefficients presented in Table 5-1 

and Table 5-2, which gives the relation in the x- and y-direction respectively, provides 

a convenient basis for comparison between RFT and SBT. 

 
Table 5-1 – Force per unit length in the x-direction, normalised with viscosity μ and relative fluid velocity at 

angles of between 0 and 0.25π rad, computed using RFT or SBT of varying number of discretized segments. 

x

rel

f

V
  0 =  

10
180
 =   

20
180
 =  

30
180
 =  

45
180
 =  

RFT 1.753 1.727 1.648 1.519 1.240 

SBT (N = 1) 1.310 1.290 1.231 1.134 0.926 

SBT (N = 3) 1.367 1.346 1.285 1.184 0.967 

SBT (N = 5) 1.384 1.363 1.300 1.198 0.978 

SBT (N = 7) 1.392 1.371 1.308 1.206 0.985 

SBT (N = 10) 1.401 1.379 1.316 1.213 0.990 

SBT (N = 15) 1.409 1.388 1.324 1.220 0.997 

SBT (N = 20) 1.416 1.395 1.331 1.226 1.001 

SBT (N = 30) 1.429 1.407 1.343 1.238 1.011 

 

The computed values of ( )x relf V  and ( )y relf V  gives a prediction on the 

force acting on the rod per unit relative fluid velocity. It is not surprising that as the 

angle β increases, the tangential force acting on the rod decreases while the normal force 

increases, following the change in the tangential and normal relative fluid velocity. 

When β = π/4, the tangential and normal relative velocity are equal in magnitude, while 

y
f  is greater than xf  due to drag anisotropy. Therefore, there is a clear agreement in the 

trend predicted by RFT and SBT. 
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Table 5-2 – Force per unit length in the y-direction, normalised with viscosity μ and relative fluid velocity at 

angles of between 0 and 0.25π rad, computed using RFT or SBT of varying number of discretized segments. 

y

rel

f

V
  0 =  

10
180
 =  

20
180
 =  

30
180
 =  

45
180
 =  

RFT 0 0.534 1.053 1.539 2.176 

SBT (N = 1) 0 0.376 0.741 1.084 1.533 

SBT (N = 3) 0 0.390 0.768 1.122 1.587 

SBT (N = 5) 0 0.393 0.775 1.133 1.602 

SBT (N = 7) 0 0.395 0.778 1.138 1.609 

SBT (N = 10) 0 0.396 0.781 1.141 1.614 

SBT (N = 15) 0 0.397 0.783 1.144 1.618 

SBT (N = 20) 0 0.398 0.783 1.145 1.619 

SBT (N = 30) 0 0.397 0.782 1.143 1.617 

 

It can be seen that regardless of the number of segments which the flagellum is 

discretized into, the SBT model predicts that for a given fluid viscosity and relative 

velocity, the tangential as well as normal force is over 20% smaller than that predicted 

by RFT. Such a difference is glaring and deserves further attention. However, before 

making any hasty conclusions, it will be beneficial to recall that the net hydrodynamic 

force acting on a free swimmer is zero in low Reynolds number. Qualitatively, a larger 

force per unit length per unit velocity will result in not just greater drag but also greater 

propulsion. In order to understand the extent to which the swimming velocity computed 

by RFT and SBT differs, there are two issues that should be looked into. The first is to 

understand the source of deviation between SBT and RFT mathematically, so as to 

supplement the qualitative discussions made at the beginning of this section regarding 

the difference in assumptions of the two models. The second is to determine the relation 

between the predicted velocities and the resistive coefficients. 

To start off, it is interesting to note that even in the limit of N = 1, in which there 

are no interactions taken into account for both models, the deviation in results does not 

diminish. Despite the qualitative similarities in this scenario, SBT and RFT do not use 

the same relation for q, and consequently this affects the length 2q of the interval over 

which the strength of each Stokeslets are assumed to be uniform. When considering the 

entire flagellum as a single segment in SBT, such that N = 1, q takes the value 0.5Λ, 

whereas in RFT, q takes a constant value of 0.09Λ. 
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It might then appear that when N is adjusted until q is approximately 0.09Λ, the 

coefficients relating force and velocity would be similar. However, this will not happen, 

because when N is greater than one, interactions in the SBT model would make the 

force-velocity relation different from RFT. Even if the effects of interactions were to be 

ignored, the diagonal entries of the resistance matrix will be consistent between RFT 

and SBT if and only if ( , )
, ,

n n

x RFT x SBTf f=   and ( , )
, ,

n n

y RFT y SBTf f= . To satisfy the equation along 

the x-direction, the denominator of TK  in equation (2.3) has to be equal to the 

denominator of 11
L

K   in equation (5.12) and are to be equivalent, that is 

 ( ) ( )2 0.09 2 2
ln ln 0.5

N

p p

    
= −   

   
, (5.25) 

To satisfy the equation along the y-direction, the denominator of 
NK  in equation (2.2) 

has to be equal to the denominator of 22
L

K  in equation (5.12), that is 

 ( ) ( )2 0.09 2 2
ln ln

N

p p

    
=   

   
, (5.26) 

N takes the value of 3.37 in equation (5.25), but has to take the value 5.56 to satisfy 

equation (5.26). This indicates that there is no solution to satisfy f fRFT SBT= , regardless 

of whether interactions are considered. In the x-direction, the difference between the 

local resistance coefficient in the two theories is 

 
( )
( )

( , )
, ,

( , )
,

ln 2 0.5
1

ln 2

n n

x RFT x SBT SB

n n

x SBT RF

f f q p

f q p


 − −
= = − 

 
 . (5.27) 

The ratio between the two forces, and consequently the error, depends on the flagellum 

radius as well as the choice of number of discrete segments used in the SBT model. 

 
( )
( ) ( )

,
( , )
,

ln 1 ln 0.5

ln 1 ln 0.18
x RFT

n n

x SBT

f p N

f p

− −
=

+
. (5.28) 

If the above ratio is to converge regardless of the choice of N, both the following 

equations has to be satisfied: 

 ( )ln 1 ln 0.5p N + ,  (5.29) 

 ( ) ( )ln 1 ln 0.18p .  (5.30) 
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To satisfy equations (5.29) and (5.30) by at least an order of magnitude, with N being in 

the order of 10, p  needs to be as small as 1010− . For a typical sperm flagellum of length 

50 μm, it would imply that the flagellum radius has to be smaller than 1 Å, which is 

unphysical and hence equation (5.28) can never approach unity. Therefore, the choice 

of N has two implications; it influences the number of discrete segments and hence the 

extent of interactions in SBT, as well as the local resistance coefficient even before 

interactions are taken into account. 

Recall that the objective of this section is to explore the source of deviation 

between SBT and RFT, as well as the degree of agreement between the swimming 

velocities predicted by the two models. Now, it would be beneficial to take a step back 

and recall that the non-dimensionalised swimming velocity is a function of the ratio 

N TK K  rather than the absolute value of either coefficients. Moreover, the characteristic 

velocity is the product of the flagellum length and beat frequency. The next logical step 

will hence be to look into how N TK K  differs for RFT and SBT with different choice of 

the number of discrete segments N (Table 5-3). 

 
Table 5-3 – Resistive coefficients KN and KT and their ratios, where the superscript RFT and SBT denote values 

computed using RFT and SBT models, respectively, for different number of discrete segments N. 

N 
SBT

NK  SBT

TK  
SBT

N

SBT

T

K

K

 
 
 

 
RFT SBT

N N

SBT

N

K K

K

−
 

RFT SBT

T T

SBT

T

K K

K

−
 

RFT SBT

N N

RFT SBT

T T

K K

K K

   
   
   

 

1 2.167μ 1.310μ 1.65 42% 34% 1.06 

3 2.245μ 1.367μ 1.64 37% 28% 1.07 

5 2.265μ 1.384μ 1.64 36% 27% 1.08 

7 2.275μ 1.392μ 1.63 35% 26% 1.08 

10 2.283μ 1.401μ 1.63 35% 25% 1.08 

15 2.288μ 1.409μ 1.62 34% 24% 1.08 

20 2.289μ 1.416μ 1.62 34% 24% 1.09 

30 2.286μ 1.429μ 1.60 35% 23% 1.10 

 

The rightmost column of the preceeding table shows that the ratio between the 

normal and tangential resistive coefficient are similar for both models. This suggests 

that the predicted velocity will be in reasonably good agreement. Before moving on to 

validate the swimming velocity of a model sperm with a sinusoidal beating waveform, 
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one more fundamental knowledge remains to be verified with the simple passive 

horizontal rod. 

In the case of modelling a typical human sperm, where the flagellum length is 

approximately 200 times larger than the flagellum radius, the constraint of p q  for 

the SBT assumptions to be satisfied restricts our choice in the number of segments N for 

which the flagellum can be discretized into. This is the reason for the upper limit of N 

being 30 in the table above; any larger value of N would severely violate the SBT model. 

However, it would be interesting to observe how the model would behave if the 

flagellum can legitimately be discretized into extremely small segments, for the purpose 

of understanding the dependent factors in SBT. As such, straight slender rods of various 

thickness will be considered here, regardless of whether such dimensions correspond to 

any organism which exists in reality. In this spirit, a flagellum 50 μm in length with a 

range of radius, subjected to a relative fluid velocity directed along its longitudinal axis 

such that β = 0, is studied. At the same time, the number of segments which the flagellum 

is discretized into will be adjusted, such that the length 2q of each segment remains as 

a fixed multiple of the flagellum radius. The corresponding 
N TK K  ratio for the two 

theories are compared and presented in Table 5-4.  

The table shows that as the flagellum becomes more slender, with decreasing 

flagellum radius p while length is kept constant, both the 
N TK K  ratio from RFT as 

well as SBT gradually approach the theoretical limit of two. Moreover, there exists a 

clear trend that the coefficient relating the force and velocity converges as the flagellum 

radius decreases, suggesting that the effect of hydrodynamic interactions diminishes, 

leading to better agreement between RFT and SBT. The approximate analytical relation 

in equation (3.33) gives a straightforward and convenient way to predict how the ratio 

between the resistive coefficients influences the swimming velocity. The first term in 

the equation shows that with all else being equal, the velocity is directly proportional to 

( ) 1T NK K − . Since that the sperm is heading in the negative direction (Figure 3-1), a 

larger value for 
N TK K  results in a more negative factor and hence faster speed. Given 

that the ratio is consistently greater in RFT, than the ratio of equivalent coefficients in 

SBT, this suggests that RFT will tend to overestimate the swimming speed. This is 

supported by the conclusion made by Higdon (1979). 
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Table 5-4 – Force per unit length fx, resistive coefficients KN and KT and their ratios, for different number of 

discrete segments N and radius p of a rod 50 μm in length. 

N 10 20 50 100 250 1000 

p / μm 0.25 0.125 0.05 0.025 0.01 0.0025 
RFT

x

rel

f

V
  1.753 1.470 1.210 1.068 0.924 0.767 

SBT

x

rel

f

V
 1.401 1.219 1.037 0.930 0.819 0.693 

RFT SBT

x x

SBT

x

f f

f

−
 25% 21% 17% 15% 13% 11% 

RFT

N

RFT

T

K

K

 
 
 

 1.76 1.79 1.82 1.84 1.86 1.88 

SBT

N

SBT

T

K

K

 
 
 

 1.63 1.67 1.71 1.74 1.77 1.80 

RFT SBT

N N

RFT SBT

T T

K K

K K

   
   
   

 1.08 1.07 1.06 1.06 1.05 1.04 

 

From Table 5-4, it can also be observed that the ratio 
N TK K  of resistive 

coefficients from RFT and SBT approaches each other as the flagellum radius p 

becomes smaller. In order to check that the convergence is a result of decreasing 

flagellum radius rather than an increase in the number of segments considered in the 

SBT model, the flagellum radius shall be kept constant while the number of 

discretization N varies. The flagellum radius shall be set as an extremely small value of 

0.0025 μm, so as to satisfy the condition for p q  when N gets large. The 

corresponding results, where the slenderness of the flagellum is kept constant unlike the 

preceding table where the flagellum thickness changes across each column, is presented 

in Table 5-5. 
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Table 5-5 – Force per unit length fx, resistive coefficients KN and KT and their ratios, for different number of 

discrete segments N of a rod 50 μm in length and 0.0025 μm in radius. 

N 10 20 50 100 250 1000 

p (μm) 0.0025 
RFT

x

rel

f

V
 0.7673 

SBT

x

rel

f

V
 0.6891 0.6907 0.6919 0.6923 0.6927 0.6933 

RFT SBT

x x

SBT

x

f f

f

−
 11.3% 11.1% 10.9% 10.8% 10.8% 10.7% 

RFT

N

RFT

T

K

K

 
 
 

 1.885 

SBT

N

SBT

T

K

K

 
 
 

 1.802 1.802 1.801 1.801 1.801 1.799 

RFT SBT

N N

RFT SBT

T T

K K

K K

   
   
   

 1.046 1.046 1.047 1.047 1.047 1.048 

 

The table shows that the ratio between RFT RFT

N TK K  and SBT SBT

N TK K  is nearly 

identical for N in the range of 10 to 1000 segments, and gives three learning points. 

First, the converging results between RFT and SBT in the previous table can be 

attributed to the decreasing flagellum radius rather than the increase in the number of 

segments. Second, discretizing the flagellum of a human sperm into 10 segments when 

using the SBT model is sufficient for the scope of this thesis. As can be inferred from 

equation (5.15), the computational time is quadratic with respect to the number of 

segments N. In the context of this project, using a value of 10 gives results which have 

reasonably converged, while keeping computational costs low at the same time. Third, 

the force-velocity coefficient in RFT and SBT will inevitable differ slightly, even in 

extreme hypothetical scenarios where the flagellum radius is 20,000 times smaller than 

its length. This deviation cannot be avoided by adjusting the number of discretization in 

the SBT model, as it is due to the inherent difference in the assumptions leading to the 

two models as discussed at the beginning of this section. 

Before proceeding further in applying SBT to solve for the flagellum shape, a 

verification will be carried out to pick out potential errors which may be introduced in 
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the process of formulating the equations or writing the program code. A necessary, 

though not a sufficient, condition for any hydrodynamic model to be valid is the accurate 

prediction of a swimmer’s behaviour in the simplest case scenario – which is motion 

with a single degree of freedom. The famous ‘Scallop Theorem’ by Purcell (1977) is an 

interesting example of how anything that has only one degree of freedom will exhibit 

time-reversibility, resulting in reciprocal motion. 

To model such a swimmer, a hypothetical sperm with a flagellum of infinite 

flexural rigidity will be considered here, as illustrated in Figure 5-3 which shows the 

position of the flagellum corresponding to different phases of its beating cycle. The rigid 

flagellum will essentially behave as a rod hinged at the spherical head, with the 

maximum deflection set to be 10% of the flagellum length. The instantaneous linear and 

angular velocities, according to RFT and SBT respectively, is plotted in Figure 5-4. 

 

Figure 5-3 – Flagellum shape when flexural rigidity is infinite. The solid black line corresponds to a non-

dimensional time of �̃� = 0, while the dashed blue, green, magenta, and red lines correspond to �̃� = π/4, �̃� = π/2, �̃� = 3π/4 and �̃� = π, respectively. 

 

 

Figure 5-4 – Instantaneous non-dimensionalised linear and angular velocities for a sperm with a flagellum of 

infinite flexural rigidity, over a non-dimensionalised time from 0 to 2π, where hydrodynamic force is computed 
using (Left) RFT and (Right) SBT. The solid blue, green, and red line corresponds to �̃�𝒙 , �̃�𝒚  and ø̃̇ , 

respectively. 



94 

 

The results obtained by RFT and SBT strongly agree with one another, for all 

instance over the entire beat cycle. The non-dimensionalised time averaged velocity of 

the swimmer exhibiting such a reciprocal motion is 10-5 in the x-direction, while the 

linear velocity in the y-direction and the angular velocity over a beat cycle are many 

orders of magnitude smaller than 10-5. In dimensional term, the hypothetical sperm with 

infinite rigidity achieves a net translation in the order of 10-3 times its body length per 

second in the x-direction. This time-averaged velocity is practically negligible but not 

perfectly zero because SBT approximates the force per unit length across each segment 

to be constant. The same approximation is also applied to the RFT model to allow for a 

fair comparison. Each segment translates with no rotational motion from one time-step 

to another, such that the force and velocity acting on each segment are uniform, resulting 

in a motion which is nearly, but not absolutely, time-reversible. Nonetheless, it is 

justified to conclude that the numerical models utilised in this thesis obeys the ‘Scallop 

Theorem’. Moving forward, a more realistic sperm model shall be analysed using both 

RFT and SBT. 

 

5.3 Discretized flagellum under SBT model 

 

In this section, a sperm, comprising a spherical head and a flagellum formed by 

N discrete horizontal segments of equal length (Figure 5-5), will be analysed. The mid-

point of each segment, as marked by the black dots, will follow the path of a moving 

sinusoidal wave, with the local L
X  axis of each segment parallel to the tangent of the 

centre-line represented by the imaginary sinusoidal curve. 

 

Figure 5-5 – Schematic of a sperm comprising a spherical head and N discrete straight segments of equal 

length. 

 
Figure 5-6 shows the position of the sperm flagellum corresponding to different 

phases of its beating cycle, plotted with respect to its curvilinear coordinate s. Given the 

local axis of each segment is defined to be tangential to the centre-line in accordance 
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with SBT (Higdon 1979), the ends of each discrete segment will not have the exact same 

position as the adjacent segments, resulting in slight discontinuities which are no more 

than 0.01 times the wavelength. There is little cause for concern over such 

discontinuities inherent in SBT, given that it has been proven to give highly accurate 

predictions (Autrusson et al. 2011; Jabbarzadeh et al. 2014; Rodenborn et al. 2013). The 

extent of discontinuities can be reduced by discretizing the flagellum into more 

segments. However, the constraints of p  q such that each segment is slender, or 

equivalently 1
2N p , limits the choice of N. Here, the sperm flagellum is 

discretized into N = 15 segments, so that the length of each segment is over 10 times the 

flagellum radius, and less than a tenth of the flagellum length. 

 

 

Figure 5-6 – Flagellum discretized into 15 straight segments., where the mid-point of each segment follows a 

moving sinusoidal wave, with the local axis of each segment parallel to the tangent of the imaginary sinusoidal 

curve. The solid black line corresponds to a dimensionless time of �̃� = 𝟎, while the dash-dotted blue, green, 

magenta, and red line corresponds to �̃� = π/4, �̃� = π/2, �̃� = 3π/4 and �̃� = π, respectively. 

 

To compute the hydrodynamic force on the flagellum, consider an infinitesimal 

element of a segment n of the flagellum. During a small time-step from t to (t + dt), each 

segment is modelled to move laterally in the y-direction. The relative fluid velocity 

acting at a point on segment n is 

 ( )

( ) ( ) ( )

( )
( )

( )

( ) ( ) ,

v v v

r
      e e e r

      

n n n

rel swim wiggling

n

n

x x y y z

n

x

n n

y

d
u u

dt

u y

u x dy dt






= − −

= + +  −

 − +
=  − − −  

 (5.31) 

where the unit tangent and normal vector for each segment is 
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 ( ) ( ) ( )cos sin   e e en n n

T x y = + , (5.32) 

 ( ) ( ) ( )sin cos  e e en n n

N x y = − + . (5.33) 

The tangential and normal component of the relative fluid velocity at each segment is 

 ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

cos cos

sin sin
    v e e

n n n
xn n n

rel T T n n n n
y

u y

u x dy dt

  
  

  − +    
=        − − −       

, (5.34) 

 ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

sin sin

cos cos
    v e e

n n n
xn n n

rel N N n n n n
y

u y

u x dy dt

  
  

  − +    − −
=        − − −       

. (5.35) 

The relative velocity within each segment is taken to be uniform within the 

interval, following the value determined from the centre point of the segment. Given 

that each segment is translating linearly in the body-fixed frame, dy/dt remains 

unchanged across the interval. Although the local velocity away from the centre of each 

segment will vary due to the rotational motion of the body-frame, the variations are 

linear, such that differences in the left and right of each segment cancels out and results 

in the same force computed over the interval. Using resistive force theory, the force and 

moment acting on the infinitesimal element of length ds is 

 ( ) ( )( )( )
    dF v e e v v e en

RFT T rel T T N rel rel T TK K ds = + −  ,  (5.36) 

 ( ) ( ) ( )dM r dFn n n
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Summing the force and moment over the entire sperm, 
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In SBT, the force-velocity relation is determined not only by the local conditions, 

but also influenced by interactions from the Stokeslets and dipoles across the entire 

flagellum. As discussed earlier, the force per unit length acting on each segment of the 

flagellum is given by equation (5.16). These are summed over the entire sperm to give 
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The force and moment are linear functions of xu , 
y

u  and  , and can be expressed as 
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When RFT is used to predict the velocity, the force per unit length acting on 

each segment will be determined solely by the local resistive coefficient and the local 

relative velocity, which is equivalent to setting all off-diagonal terms in the resistance 

matrix in equation (5.16) to zero. The coefficients 11  to 33  and 1  to 3  are: 
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On the other hand, if SBT is used to predict the swimming velocity, the coefficients are: 
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The resulting non-dimensionalised instantaneous velocity in the x-direction, as 

computed by RFT as well as SBT, is presented in Figure 5-7. Converted back to 

dimensional form, the time-averaged swimming velocity of a sperm with typical 

physical parameters as listed in Table 3-1 is -58 μm/s according to RFT, and -46 μm/s 

according to SBT. This is consistent with Higdon’s findings (1979) that Lighthill’s 

(1976) RFT overestimates the swimming speed. The predictions made by both theories 

are also well within the range observed experimentally (Ishijima et al. 1986; Mortimer 

et al. 1998). Moving forward, the model shall be refined by solving for the flagellum 

beating pattern rather than using a prescribed sinusoidal waveform.  

 

 

Figure 5-7 – Instantaneous velocity in the x-direction of the body-fixed frame, computed using RFT (solid red 

line) and SBT (solid blue line) from a non-dimensionalised time of 0 to 2π. 

 

5.4 Numerical solution for flagellum waveform 

 

In Chapter 4, the PDE which governs the flagellum waveform is reduced to a 

linear ODE as shown in equation (4.26), where an analytical solution is subsequently 

derived. For the avoidance of doubt, readers are reminded that  ( , ) ( ) ity s t h s e−= , where 

the justification of such as time dependence is discussed in Appendix B1. The 

contribution from the hydrodynamic force acting on the flagellum towards the 

governing PDE is, according to RFT, directly proportional to the local relative fluid 

velocity. When reduced to the ODE, the hydrodynamic force under the small amplitude 

approximation can be expressed analytically as a linear function of the dependant 
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variable y. However, if the hydrodynamic force is determined by SBT to account for 

non-linear contributions resulting from body-to-body interactions, the force distribution 

does not allow the flagellum waveform to be described by a straightforward analytical 

equation. Hence, a numerical approach will be used. The governing equation can be 

converted into a finite difference equation (Ames 2014), in which the solution depends 

on the initial or boundary conditions. When discretized, the derivatives in these 

conditions are replaced by a linear combination of discrete values in the neighbourhood 

of the point of interest. A family of numerical methods (Butcher 2016) exist to solve 

such equations. These numerical methods are well documented in the literature, but for 

completeness, the fundamental idea of some techniques is discussed in Appendix B2 to 

give an appreciation of the approach taken to solve differential equations numerically. 

Using MATLAB’s built-in solver for a boundary value problem (BVP), a 

numerical solution satisfying all boundary conditions as well as the governing equation 

in accordance with the SBT model cannot be obtained. To maintain focus on the main 

objectives of this thesis, the challenges encountered as well as the corresponding actions 

taken are discussed in Appendix B3. As it is beyond the scope of this thesis to code a 

more robust algorithm, an alternative approach shall be taken. Moving forward, the BVP 

shall be framed as an initial value problem (IVP) to assess whether a plausible flagellum 

waveform may be obtained using the SBT model. The procedures for solving the IVP 

have been documented in the appendix as well. 

Using the force distribution obtained from RFT, the numerical solution obtained 

using a 4th order Runge-Kutta method is practically identical to the analytical solution 

obtained from the small amplitude approximation. It is necessary to note that the 

differential equation is complex, and even though the flagellum shape is determined 

only by the real part of the solution, the imaginary components of the intial conditions 

must be taken into account. Having validated this approach of solving for the flagellum 

shape, the force distribution based on SBT will be applied. As there is no known 

analytical approach corresponding to the SBT model, the numerical results will be 

compared with the RFT flagellum pattern as a reference. 

Before moving further, it is prudent to be clear about the underlying difference 

which would eventually lead to a different force distribution between the RFT model 

and the SBT model. Other than the difference in mathematical procedures used to 
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compute the hydrodynamic forces, which arises from the effects of body-to-body 

interactions, the flagellum beating pattern associated with SBT is also different. As 

discussed in Chapter 5, the flagellum will be modelled as a number of discrete straight 

segments, and the force acting on each segment is uniform within that segment. Since 

the number of discretization is confined to the requirement that each segment is slender, 

a convergence towards a smooth continuous flagellum is not possible. On the other 

hand, the flagellum under the RFT model is discretized into a large number of 

infinitesimal elements, thus allowing a convergence test to be done. 

The RFT model with small amplitude approximation has led to a plausible 

flagellum waveform, while no solution is found when the SBT model is approached as 

a BVP. In order to gain insight on what was the final nail in the coffin, modifications 

will be made one at a time and the corresponding results will be analysed. The motion 

of the flagellum will be guided by the analytical solution as given in equation (4.31), 

making the appropriate adjustments where necessary for a flagellum comprising discrete 

straight segments. This reference is required because the flagellum beating pattern is 

needed to compute the force distribution, while the force distribution is in turn needed 

to compute the beating pattern. Given that the analytical solution of y is complex, the 

relative fluid velocity and hydrodynamic force will also be complex quantities.  

The first modification will be the removal of the following approximation 

relating the normal force per unit length to the time-derivative of y: 

 ( ) ( )    v e v eRFT

n N rel N N rel y N

y
f K K K

t


=  =


. (5.65) 

In a Newtonian fluid where the Deborah number is zero, the above approximation leads 

to the normal force per unit length on the flagellum being represented by 4
 Spi h  in 

equation (4.26), reprinted here for the reader’s convenience: 

  

  
 

4 2 4
 0 1

1
Sp + Sp ( ) 0

6
iks

mh i h p D D a s h f e
s

    − + + − =  
. (5.66) 

A more accurate representation of the normal force per unit length should have been 

( )  v eRFT

n N rel Nf K= , such that 4
 Spi h  gets replaced with 4Sp RFT

nf . To further improve 

the generality of the governing equation, it should be expressed without restricting the 

use of RFT to compute the hydrodynamic force on the flagellum. 
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Figure 5-8 shows that 4
 Spi h , 4Sp RFT

nf  and 4Sp RFT

yf  are very similar to one another. 

 

Figure 5-8 – Non-dimensionalised force per unit length, multiplied by the relevant coefficients in the 

differential equations, along the curvilinear coordinate �̃�. The blue, green, and red lines represent i Sp4h, 𝒇𝒚𝑹𝑭𝑻 

and 𝒇𝒏𝑹𝑭𝑻, respectively. The real and imaginary parts are represented independently by the solid and dashed 

lines, respectively. 

 
Despite the seemingly insignificant difference between 4Sp RFT

nf  and its 

approximated form, 4
 Spi h , the numerical solution of the non-approximated model 

diverges slightly from the analytical solution of the approximated model near the end of 

the flagellum. This is shown in Figure 5-9, where the green line (obtained when the 

hydrodynamic force contribution is represented by 4Sp RFT

nf ) deviates from the black 

line (the analytical solution when the hydrodynamic force contribution is represented 

4
 Spi h ). However, by making small adjustments of no more than 0.8% in the initial 

conditions, the numerical solution becomes in agreement with the analytical solution, 

and satisfies the boundary conditions as defined in equations (4.20) to (4.23). As 

discussed earlier, the initial conditions y  and y  have to be guessed to give zero net 

force and moment at the free end of the flagellum where 1s = .  

It is useful to keep in mind that the analytical solution referred to is equation 

(4.31). This is the exact solution to the ordinary differential equation (4.26), multiplied 

by a time dependence according to the relation in equation (4.24), and perfectly satisfies 

all four boundary conditions. However, equation (4.26) itself is obtained from the 

assumptions of small amplitude and RFT, and therefore does not capture the full essence 

of the physics of the swimming sperm. 
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Figure 5-9 – Numerical solution of flagellum waveform, obtained using the analytically-obtained exact initial 

conditions (green line), and modifying the initial conditions of  �̃�′′′ by a factor 1.005 (red line), 1.007 (blue line) 

and 1.008 (magenta line), plotted against analytical solution (black line) in equation (4.31).   

 

Moving forward towards the SBT model, the flagellum shall now be modelled 

as a number of discrete straight segments as discussed in Chapter 5, rather than a 

continuous smooth filament. However, the hydrodynamic force per unit length will still 

be computed using RFT, which is dependent only on the local fluid velocity multiplied 

by the resistive coefficient. This would be the only difference between this ‘intermediate 

model’ and the actual SBT model, giving a fair basis of comparison as any difference in 

the results can be attributed directly to the way the hydrodynamic force was computed. 

The left column of Figure 5-10 shows the distribution of the non-

dimensionalised force per unit length, multiplied by the relevant coefficients, for a 

segmented flagellum varying from N = 10 to N = 20 discrete segments. This is compared 

against the force distribution for a continuous smooth flagellum and an analytical 

approximation used in equation (4.26), with all else being equal on the same plot. The 

solid lines represent the real component of the force, while the dotted lines represent the 

imaginary component which arises because the waveform solution y and its derivatives 

are complex. Apart from being used to predict the flagellum waveform, knowledge of 

the force distribution allows us to compute the swimming velocity based on the total 

force acting on the entire sperm. The right column of Figure 5-10 shows the numerical 

solution for the corresponding step-wise RFT force distribution, plotted against the 

segmented flagellum derived from the analytical solution in Chapter 4. Discretization 

beyond 20 segments is not considered as it clearly violates the framework of SBT which 

requires the flagellum radius to be much smaller than the segment length.  
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Figure 5-10 – (Left) Non-dimensionalised force per unit length, multiplied by the relevant coefficients in the 

differential equations, along the curvilinear coordinate �̃� of the flagellum. The blue line represents i Sp4h, while 

the green and black lines represent 𝒇𝒏𝑹𝑭𝑻 for a continuous and discretized flagellum, respectively, varying from 

N = 10 to N = 20 discrete segments. The real and imaginary parts are represented independently by the solid 

and dashed lines, respectively. (Right) Numerical solution (blue line), representing the flagellum waveform, 

plotted against the segmented flagellum obtained from the analytical solution (black line). 

 

When the flagellum is discretized into 18 to 20 segments, the force distribution 

on the flagellum leads to a numerical solution which is in good agreement with the 

analytical solution. With the confidence that modelling the flagellum as a finite number 

of straight discrete segments in accordance with the SBT framework does not 

significantly alter the force distribution or flagellum waveform given by RFT, the force 

distribution for the actual SBT model will be investigated in the following section. 

 

5.5 Causality dilemma in solving flagellum waveform 

 
The complex RFT

nf  is calculated directly using the complex values of y. On the 

other hand, the imaginary part of SBT

nf  is computed by multiplying i to the result 

obtained from the value of the imaginary part of y, and adding the real part of SBT

nf  

computed from the real part of y. That is, ( ) ( ) ( )   
SBT SBT SBT

n n nf a bi f a f b i+ = + . 

Figure 5-11 shows that within the reasonable range of number of discretization, 

SBT

nf  is consistently less negative, or more positive, as compared to RFT

nf  throughout 

the entire flagellum. Therefore, the numerical solution diverges upwards in the positive 

y-direction. Similar to the case in the normal direction, the force acting on the flagellum 

in the x- and y-direction are also of smaller when computed using SBT instead of RFT. 

As such, the swimming velocity computed by SBT would be lower, as confirmed by 

Higdon (1979) that Lighthill’s resistive coefficients overestimates the swimming speed. 
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Figure 5-11 – Non-dimensionalised force per unit length, multiplied by the relevant coefficients in the 

differential equations, along the curvilinear coordinate �̃� of the flagellum. The blue line represents i Sp4h, the 

green line represents 𝒇𝒏𝑹𝑭𝑻 for a continuous flagellum, while the black and red lines represent 𝒇𝒏𝑹𝑭𝑻 and 𝒇𝒏𝑺𝑩𝑻, 

respectively, for a discretized flagellum varying from N = 10 to N = 20 discrete segments. 

 

Given that the result is sensitive to both the real and imaginary parts of the 

complex initial conditions, of which 
0s

y
=

  and 
0s

y
=

  have to be guessed, the 

integration often diverges before the end of the interval, resulting in unphysical 

amplitudes greater than the flagellum arclength itself. Small adjustments in the initial 

conditions results in different flagellum pattern, making the solution highly dependent 

on the initial guess. Figure 5-12 shows the numerical solutions obtained from a 

flagellum with SBT force distribution, with the guessed initial conditions being 

multiplied by adjustment factors of various combinations such that the resulting 

waveform has an amplitude of approximately 0.10. 

 

 

Figure 5-12 – Numerical solutions corresponding to initial conditions 

   guess FDA
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s s
y y y y y y y y
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   guess FDA
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    1.02*   0.91

s s
y y y y y y y y

= =
     =  (red line), plotted against the analytical solution discretized into 15 

straight segments (black line). 
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Although quite different from the analytical solution to the approximate RFT 

model, the alternative waveforms as shown above appears plausible. However, a 

necessary, though not sufficient, condition for the flagellum waveform to be accepted is 

for all four boundary conditions to be satisfied. The boundary conditions of zero net 

moment or shear force at the free end and zero displacement or moment at 0s = , as 

presented in equations (4.20) to (4.23), is expressed here using the finite difference 

approximation (Fornberg 1988). 

 
0
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The error in the boundary conditions of the analytical solution are in the order 

of 10-5 or less. However, the error corresponding to the visually-plausible numerical 

solutions of the SBT model are of order 100 to 101. Given that 
0s

y
=

  and 
0s

y
=

  have to 

be guessed when solving the IVP, there are four components in the initial conditions 

which influence the flagellum waveform, namely, the real and imaginary parts of those 

two derivatives. What we have is essentially an optimisation problem, as the objective 

is to find a set of initial conditions which minimizes the error in the four boundary 

conditions. The local minimum can be found via the steepest descent which is an 

iterative optimization algorithm that is applicable to both linear as well as many non-

linear problems (Fletcher 2013, Kelley 1999). However, the force and moment at the 

ends of the flagellum are obtained from a finite difference approximation of the 

numerical solution to the governing differential equation, of which an input is the 

hydrodynamic force acting on the flagellum that is itself non-linear in the SBT model. 

There is no straightforward way to express the gradient of the function to be minimized 

in terms of the initial conditions, and attempts to write an algorithm for this problem 

will be beyond the scope of this project. In addition to satisfying the boundary 
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conditions, there is an added requirement of the solution needing to have a physically 

realistic waveform with an amplitude in the order of 10-1 times the flagellum length.  

Another approach taken to solve for the waveform by trial coupled with 

interpolation have also proved futile. Changing only a single component of the initial 

conditions each time while holding all else constant, it is found that even small 

systematic variations to the initial conditions, which lead to only a slight observable 

difference in the flagellum waveform, resulted in erratic changes in 
1s

y
=

  where the 

local minimum error in the boundary conditions are of magnitude 1. 

With the SBT force being a function of the governing equation, no solution is 

found to perfectly satisfy all boundary conditions simultaneously. This might be 

attributable to the fact that we are seeking a solution to only the first round of an 

iteration, given that the hydrodynamic force is computed on the basis of an assumed 

flagellum waveform, namely, that which follows the analytical solution in the RFT 

model. A causality dilemma, more commonly known in layman terms as the ‘chicken 

and egg problem’, is encountered because FSBT  is required to compute ( , )y s t  but is 

itself a function of ( , )y s t  and ( , )y s t  at the same time. 

There are two cycles in this inherent causality dilemma (Figure 5-13). The 

framework of SBT requires the relative position of each segment of the filament to be 

known before the hydrodynamic force can be computed. Furthermore, the relative fluid 

velocity, and hence the time-rate of change of each segment of the flagellum, is required 

in order to compute the new hydrodynamic force for the numerically-determined 

flagellum shape. This would involve solving for the shape at the next time step, and 

taking a finite difference approximation between the flagellum position at time t and (t 

+ dt). However, the shape at (t + dt) is itself an estimated solution just like the waveform 

at time t, and the hydrodynamic force acting on the flagellum at this instance is 

unknown. To obtain an accurate force distribution in the differential equation, the time-

derivative at each point of the flagellum is required, which in turn requires knowledge 

of the flagellum shape at (t + 2dt), as illustrated in Figure 5-14. Repeating this process 

over the entire flagellum wiggling period completes the first round of iteration, after 

which the hydrodynamic force corresponding to the numerically-solved shape at time t 

can be determined. As this force distribution will not be identical to the approximated 
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force distribution derived from the analytical solution, it in turn leads to a new 

numerically-determined flagellum shape, and hence a new force distribution. 

 
 

 

Figure 5-13 – Causality dilemma encountered in solving for the flagellum shape using Slender Body Theory. 

 

  

Figure 5-14 – Illustration of how the flagellum waveform at different phases of a beating period are related. 
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The demanding requirements associated with using SBT to solve for the shape 

of a sperm flagellum might explain why, to the best of the author’s knowledge, there 

have yet to be publications on this research gap. Before investing resources to solving 

this unknown, we should recall that the governing equation established to describe the 

flagellum waveform is itself an approximation, whereby the wiggling motion is 

modelled to be driven by microtubles with an internal sliding force of a prescribed 

direction and distribution (Figure 4-1). 

Revisting the objectives of this thesis, the purpose of determining the flagellum 

waveform is to compute the swimming velocity of sperm cells subjected to DEP force, 

to find out if the variation in morphology translatates to a substantially different velocity 

distribution that allows for sorting. Using the RFT model, it has been found (Koh and 

Marcos 2015b) that moderate magnitudes of DEP force can alter the kinematics of a 

sperm cell by a few times its free-swimming velocity, without any significant influence 

on its flagellum waveform. While the waveform does affect the free-swimming velocity 

as well as drag, the force from an external field, which is a function of the cell 

morphology, dominates. The objective of this thesis is not to compute the swimming 

velocity of a sperm precisely, but to incorporate variations between individual sperm 

cells and investigate their relative velocities in an overall distribution. Therefore, a 

prescribed sinusoidal waveform will be utilised in the subsequent simulations for 

statistical analysis on the feasibility of sorting by morphology. 

 

5.6 Chapter Summary 

 
The mathematical procedures for applying SBT to compute the force and hence 

swimming velocity of a sperm is presented. The qualitative and quantitative differences 

between RFT and SBT are then discussed. Modelling the sperm flagellum as discrete 

straight segments with a constant force within each segment, the resulting instantaneous 

velocity computed from RFT and SBT show a similar trend albeit with a one-fifth 

difference in magnitude. The complexity associated with solving for the waveform was 

illustrated. Keeping to the scope of this thesis, the conclusion reached was that 

prescribing a sinusoidal waveform is appropriate for predicting the velocity distributions 

in the following chapter.  
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Chapter 6  

Statistical Analysis5 and Machine Learning6 
 

Considering ethical concerns involved in carrying out experiments with human 

sperm, it is beneficial for researchers to first carry out theoretical studies to assess the 

feasibility of sorting using various techniques under different experimental set-ups. 

Mathematical models of increasing complexity and accuracy have been developed to 

understand the kinematics of micro-swimmers such as sperm cells (Gaffney et al. 2011). 

These theoretical computations are often taken from the deterministic approach. 

However, as sperm cells differ in their morphology, more insights can be gained by 

studying their behaviour from a statistical approach. In spite of technological advances, 

precise theoretical models are still computationally expensive, and running numerical 

simulations for a large number of samples to obtain statistically reliable results may be 

time-consuming. 

In this chapter, statistical analysis will be carried out to study the sorting of 

spermatozoa via magnetophoresis. Thereafter, the feasibility of using machine learning 

to save computational or laboratory costs will be investigated (Koh et al. 2018). The 

findings can be generalised to other theoretical simulations utilising a different 

mathematical model, as well as to experimentalists obtaining actual data. 

 

6.1 The model 

 

As discussed in Chapter 2, sperm cells may be doped with paramagnetic 

nanoparticles or manipulated in its natural form by diamagnetic force in the presence of 

a magnetic field. Given that sperm cells subjected to magnetic fields have been reported 

to maintain its fertilisation potential (Rawe et al. 2010) and even lead to a healthy baby 

borned from ICSI (Ben-David Makhluf et al. 2006), the feasibility of sorting will now 

be explored with a magnetic rather than electric field. SBT, which has been 

experimentally verified to produce accurate computation results (Autrusson et al. 2011),  

                                                           
5 Published in Koh JBY, Marcos (2017) Sorting spermatozoa by morphology using magnetophoresis.  
   Microfluidics and Nanofluidics 21:75 
6 Published in Koh JBY, Shen X, Marcos (2018) Supervised learning to predict sperm sorting by  
   magnetophoresis. Magnetochemistry 4:31 



112 

 

will be utilised according to the framework presented in Chapter 5.1. 

Since the motion of a human sperm is highly directional (Gillies et al. 2009), we 

consider the sperm to be in a two-dimensional plane for computational efficiency. The 

flagellum is modelled to follow a sinusoidal waveform (Fulford et al. 1998), modified 

with an exponential factor to ensure that the prescribed flagellum is attached to the 

sperm head with no deflection at the fixed end: 

 ( ) ( )
2

, sin 2 1 expwave

E

x
y x t b x t

k
 

   =  − − −    
  (6.1) 

where the variables and subsequent non-dimensionalisation follow the same definitions 

presented in Chapter 3. kE controls the tapering (David et al. 1981) of the flagellum and 

is chosen to be 1/4 which gives a fair depiction of the actual sperm beating pattern 

(Ishijima et al. 1986). At each time frame, the axial length xf is computed to satisfy 

( )2

0
1

fx

y x dx+   =  . In accordance with the SBT framework, the flagellum is 

discretized into 15 discrete segments (Figure 6-1), each of length 2q where p << q << 

Λ, with a constant force per unit length f on each segment. Each segment has a local 

coordinate system ( ),L LX Y  where its origin at the centre, with the L
X  axis tangential 

to the flagellum centreline and at an angle θ with respect to the x-axis of the body-frame. 

 

 

Figure 6-1 – Flagellum comprising N discrete straight segments, each represented by a dotted rectangle. Inset: 

The local coordinate system xL and yL of a segment at an angle θ with respect to the general x-axis of the body-

fixed frame x-y. 

 

A diluted sperm sample shall be considered, such that the effects of cell-to-cell 

interactions are negligible (Drescher et al. 2011; Keaveny and Maxey 2008). For a 
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sufficiently large channel, the swimming velocity is also largely uninfluenced by wall 

effects (Koh et al. 2016) for most locations and will be ignored here, as the focus is on 

statistical analysis and machine learning. 

Since the magnetic field can be designed to give a magnetic force perpendicular 

(Moore et al. 2001) or parallel (Watarai and Namba 2002) to the flow direction, the 

magnetic field will be modelled as ( )1 2B iC C x= + , resulting in ( )B B  being 

approximately constant when C2 is small (Koh and Marcos 2017). Consequently, the 

magnetic force 

 ( )
0

( )
  F B B

p m

B V
 

−

=   (6.2) 

is simplified to 

 0    F iB C V= , (6.3) 

where C0 is a function of the magnetic field as well as relative magnetic susceptibility. 

A positive C0 indicates either positive magnetophoresis with an increasing magnetic 

field density along the positive i direction, or negative magnetophoresis with a 

decreasing magnetic field density. The converse is true for a negative C0. 

The magnetic force acting on the sperm head and each segment of the flagellum 

is ( ) 3
, 04 3  F iB head a C=  and ( )2

, 0  F iB segment p N C=  . The total hydrodynamic and 

magnetic force and moment is then summed over the entire sperm, expressed as a 

function of its linear and angular velocity as presented in Chapter 5.3. Given that the net 

force and moment acting over the entire sperm is zero under low Reynolds number, the 

time-dependent velocity can be obtained by matrix arithmetic. The trajectory of the 

swimming sperm can subsequently be obtained by transforming between the body-

frame and inertia frame, as described in Chapter 4.2. 

The sperm magnetic susceptibility is absorbed into the variable C0 instead of 

being considered independently. The combined effect of the magnetic field and its 

gradient, as well as the relative magnetic susceptibility can be adjusted collectively to 

obtain the desired force per unit volume. In addition, the magnetic properties of the 

sperm head and flagellum are assumed to be similar. As discussed in Chapter 1, the 

objective of this thesis is not to provide a precise calculation of velocity under an 
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external electric or magnetic field, but rather to assess the feasibility of sorting to 

improve the proportion of morphologicaly normal sperm cells. The actual velocity might 

differ slightly from the theoretical model, but it is postulated that any difference applies 

to all sperms, normal or abnormal, such that the relative velocity distribution of the 

population remains similar. While the sperm cells may be in a different region of the 

microchannel, those which are computed to swim faster will still be ahead of others, 

while the slower ones will still lag behind. The premise of sorting in this thesis is that 

spermatozoa respond differently in accordance to their physical morphology, and that 

any approximations made or effects not accounted for by the theoretical model will 

influence all cells to the same extent and hence cancel out. Similarly, any 

synchronisation between sperm, or modifications to the external field due to the 

presence of neighbouring cells, are treated in the same light. Given that the application 

is for sorting in a controlled laboratory environment, biological sperm response such as 

hyperactivation are taken to be irrelevant. 

The introduction of an external force results in a stabilising effect (Koh et al. 

2018), such that the x-axis of the body-frame tends to be aligned with the magnetic force. 

This is because there are two dominant forces on the sperm; the external magnetic force 

acting on the head and the drag force acting in the opposite direction on the flagellum. 

Consider a sperm swimming towards the negative x-direction under an external force 

acting in the same direction. If it is perturbed clockwise, there will be a net anti-

clockwise restoring moment, and vice-versa if perturbed in another direction. Even if 

the sperm is initially heading in the opposite direction, a C0 value of 0.1 mN/mm3 will 

cause the sperm to be aligned with the direction of the applied force within 20 seconds 

and continue swimming in that direction thereafter (Figure 6-2). As such, the initial 

orientation is not assumed to be random; instead, all sperm cells are defined to be 

heading in the same direction as the magnetic force. Since the cells are swimming in the 

negative x-direction by definition of the flagellum waveform, only negative values of 

C0 are considered. This is because a positive C0 will cause the sperm to turn around to 

the positive x-direction, leading to a similar scenario as considered here. 
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Figure 6-2 – (a) Trajectory of spermatozoa, initially heading in the negative x-direction, subjected to C0 = - 0.1 

mN/mm3 (orange line), - 0.05 mN/mm3 (green line), and 0 (blue line) over 10 seconds. (b) Trajectory of 

spermatozoa, initially heading in the negative (orange) or positive (red line) x-direction, subjected to C0 = - 0.1 

mN/mm3 for 20 seconds. In both plots, the upward-pointing triangles denote the starting position of the sperm 

while the inverted triangles denote the ending position. The horizontal and vertical axes are the X- and Y-

position of the inertial frame, normalised with respect to the flagellum arclength. 

 

6.2 Sperm morphology and sorting assessment 

 

Assessment of sperm which satisfies the strict (Tygerberg) condition gives a 

good indication of the expected fertilisation rates (Menkveld and Kruger 1995). 

Quantitatively, the sperm should have a head length of 3 to 5 µm and width of 2 to 3 

µm, as well as a head width to length ratio of between three-fifths and two-thirds, with 

a tail measuring about 45 µm in length (Menkveld et al. 1990). As the biological aspects 

of spermatozoa are not considered here, a cell which fulfils these physical dimensions 

will be deemed as conditionally satisfactory and termed as ‘normal’, while a cell which 

fails at least one condition will be classified as ‘abnormal’. 

The physical parameters and flagellar beat frequency vary in a normal 

distribution. A human sperm head has a length of 4.81 ± 0.43 µm and width of 3.32 ± 

0.38 µm (Katz et al. 1986), and a flagellum length of 42 ± 4 µm (Cui 1997). Using 
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MATLAB® 2016b and setting the seed number as i for the ith sperm, a pseudo-random 

value is generated for each parameter, independently of one another. The beat frequency 

and amplitude are then generated using the relevant mean and standard deviation based 

on the category (Table 6-1) which the sperm belongs to (Katz et al. 1982). The 

proportion of cells classified as ‘normal’ by this approach is around 11%. This is 

reasonable, given that the proportion of normal cells is reported to be 6.5 ± 3.9% 

(Menkveld et al. 2001). 

 
Table 6-1 – Categories of sperm according to their head morphology, and the corresponding flagellum beat 

frequency and amplitude given with their respective standard deviations. Data from Katz et al. (1982). 

Types of head Normal 

 

Amorphous Elongated 

tapering 

Piriform 

tapering 

Megalo-

cephalic 

length / µm 3 – 5 3 – 5 > 5 3 – 5 > 5 

width / µm 2 – 3 > 3 < 3 < 2 > 3 

f  / Hz 15.2 ± 0.7 13.3 ± 1.0 13.0 ± 0.9 12.2 ± 1.3 11.2 ± 1.4 

b / µm 4.76 ± 0.27 4.73 ± 0.43 4.98 ± 0.33 5.36 ± 0.45 4.96 ± 0.70 

 

 

Figure 6-3 – Frequency in Hz (plotted red, with respect to left vertical axis) and amplitude in μm (plotted blue, 

with respect to right vertical axis) of the different categories of sperm. Mean values are represented with a 

square marker (for normal sperm) or diamond marker (for amorphous, elongated tapering, piriform tapering 

and megalocephalic sperm), with error bars extending to two standard deviations. 

 

Due to differences in the sperm parameters, the velocity distribution differs 

between normal and abnormal sperm. One possibility of sorting the cells is to introduce 

an opposing flow equal in magnitude to the chosen cut-off velocity. In low shear rates 

where the non-dimensionalised shear ( )2Z f =  is in the order of 0.1, the effect of 

shear has insignificant influence on the flagellum waveform or sperm velocity (Marcos 
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et al. 2014). Considering the channel dimensions to be much greater than the sperm 

characteristic length, the flow far from the walls acts as a bulk advection (Koh and 

Marcos 2017). Cells with velocities less negative than the cut-off will acquire a net 

positive velocity due to advection in the positive x-direction and be eventually flushed 

out of the right end of the channel (Figure 6-4). Meanwhile, those which overcome the 

advection will have a net negative velocity and head towards the left end of the channel. 

The proportion of normal cells can be increased by modifying the cut-off velocity, but 

will have to come at the expense of discarding some normal cells as well. 

 
 

 

Figure 6-4 – Sperm in 2D channel heading in the negative X-direction, subjected to magnetic force and a flow 

in the positive X-direction. 

 

For sorting to be effective, the percentage of conditionally satisfactory 

spermatozoa in the sorted sample should be meaningfully higher, so as to improve the 

odds of a morphologically normal sperm fertilising the oocyte. At the same time, the 

absolute number of satisfactory spermatozoa should remain high after sorting. 

Therefore, the effectiveness of sorting will be accessed according to the purity χ and 

yield η as defined here: 

 
number of conditionally satisfactory sperm collected

total number of sperm collected 
 = , (6.4) 

 
number of conditionally satisfactory sperm collected
initial number of conditionally satisfactory sperm 

 = . (6.5) 

To illustrate how χ and η changes, consider a initial sample comprising 100 sperm cells, 

of which 11 are conditionally satisfactory. Suppose we collect 50 of those from sorting, 

of which 10 sperm cells satisfy the criteria for being conditionally satisfactory. The 

sorted sample will thus have an improved CS  of 20%, while 
CS  will be 91% since 10 

out of the 11 desired cells are collected. 
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6.3 Statistical analysis 

 

Before proceeding, it is necessary to determine the quantity of data required to 

obtain convergence in the results, so that a benchmark is available for subsequent 

comparisons. The cumulative mean flagellum length, head length, and computed 

velocity are presented in Figure 6-5, normalised with their respective mean values 

obtained from 100,000 samples. For the avoidance of doubt, this sample size is chosen 

a posteriori, after convergence is obtained. The normalised value   is 

 1

1

final

n

i

i

n

i final

i

n

n






=

=

 
 
 =

 
  
 




, (6.6) 

where n is the sample size considered, final
n  is 105, and   is the sperm parameter of 

interest. The proportion of morphologically normal cells, which is the purity before 

sorting, is presented in its absolute percentage points as a function of the sample size. 

 

 

Figure 6-5 – (a) Cumulative mean flagellum length (red line), head length (green line), and computed velocity 

(blue line) normalised with respect to mean values obtained from 100,000 samples. (b) Proportion of 

morphologically normal cells in percentage points. The x-axis, in logarithmic scale, of each plot denotes the 

number of samples used in the computation. 

 

Given that there are little fluctuations in all parameters when the sample size is 

increased from 104 to 105, results computed using 100,000 samples will be deemed to 

have converged. The achievable purity corresponding to a target yield of 50% to 90% is 
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computed for 21 different values of C0 ranging from 0 to -1 mN/mm3 in intervals of 

0.05 mN/mm3. Each marker in Figure 6-6 denotes the resulting purity obtained by 

running the full computation on 100,000 samples and ranking all cells by their velocity. 

Based on the target yield, a cut-off velocity necessary to keep the required number of 

normal sperm cells is determined, and all cells having at least this minimum velocity are 

deemed to be collected. A best-fit polynomial is then added to the plot. 

 

 

Figure 6-6 – Purity as a function of C0. The red circles, green squares and blue triangles denote the computed 

purity corresponding to a yield of 50%, 70% and 90%, respectively. The dotted lines in matching color are the 

best-fit polynomials. 

 

It can be observed that when the magnitude of C0 increases, the achievable purity 

initially decreases. This is because the normal cells generally have a higher speed than 

abnormal ones. Since the abnormal sperm are generally larger than the normal ones, 

they are more strongly influenced when subjected to the external force. As C0 is in the 

swimming direction of the sperm cells, it increases the speed of the abnormal cells to a 

greater extent than their normal counterparts, hence causing the abnormal cells to catch-

up. Under weak magnetophoresis, the relative shift in velocity distribution causes the 

two categories to become less distinct, because the abnormal sperm will be moving 

amongst the normal ones. However, increasing the strength of magnetophoresis further 

will increase the extent of the relative shift and eventually amplify the differences. When 

the magnitude of C0 increases beyond 0.9 mN/mm3, sorting can further improve the 

proportion of normal cells. 
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To assess the feasibility of sorting sperm with a magnetic force in the order of 1 

mN/mm3, consider ( )0 1 2 0p mC C C  = −  as derived from equations (6.2) and (6.3). 

Given that the magnetic susceptibility of sperm cells is similar to that of water (Senftle 

and Hambright 1969), ( ) 0p m  −  is in the order of 10-1 for sperm in non-magnetic 

medium, for which a very large magnetic field gradient is required to achieve 0 1C =  

mN/mm3. Hence, it may be more appropriate to dope the sperm with paramagnetic 

particles or use a magnetic fluid medium. For small values of p  and m  where 

demagnetization effects (Aharoni 2000) can be neglected, the doping has to be limited 

such that p m −  is of order 10-1 or smaller. For 0 1C =  mN/mm3, the minimum value 

of 1 2C C  has to be 10, which can be attained using BX = 5 + 2X so that O(C2 X) ≪ O(C1) 

in the scale of a microchannel. This corresponds to a magnetic field of 5 T, which is 

technically achievable (Singleton et al. 2004) but its effects on the viability of sperm 

cells has not been reported to the best of the author’s knowledge and remains to be 

verified. To use a weaker magnetic field with a ceiling of 1.5 T (Said et al. 2005),  which 

human sperm cells have been reported to remain viable in, the value of p m −  has to 

be of order unity. In this case, demagnetization effects will have to be considered and 

accounted for, which is beyond the scope of this thesis. The focus of this chapter is on 

the analysis procedure utilising supervised learning. The use of magnetism for biological 

applications is an exciting field which warrants many follow-up experimental work as 

well as detailed theoretical analysis, and hopefully this chapter can provide insights and 

serve as a framework for future studies. 

 

6.4 Supervised learning to predict sperm sorting 

 

In spite of technological advances, precise theoretical models are still 

computationally expensive, and running numerical simulations for a large number of 

samples to obtain statistically reliable results may be time-consuming. The use of 

machine learning (Michalski et al. 2013) has been proven to provide accurate 

predictions and is gaining popularity, but its use in microfluidics research is still not 

widespread despite the great potential. Moving forward, the feasibility of running the 
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simulation on a smaller number of samples and making use of supervised learning to 

predict the expected purity will be looked into. 

Using supervised learning algorithms from Python’s sklearn package (Pedregosa 

et al. 2011), we build four models using the input variables of the training set. Namely, 

the models used are k-nearest neighbour regression (Burba et al. 2009), ridge regression 

(Khalaf and Shukur 2005), random forest regression (Liaw and Wiener 2002), and 

artificial neural network (Krogh 2008). In k-nearest neighbor regression, the predictor 

and target variables of all known samples are stored. For each new data to be predicted, 

only the k samples having the least ‘distance’ will be considered, with the simple or 

weighted-average value taken. Ridge regression is linear regression with L2 

regularization, where a penalty term is added to the sum of square errors to be 

minimized, thus avoiding overly-large coefficients in the linear model. In a random 

forest model, a large number of decision trees is built, each using a subset of predictor 

variables so as to avoid overfitting. For each decision tree, the population is split based 

on one variable at a time, where the chosen variable as well as threshold determining 

the split minimizes the sum of square errors (in the case of regression). In artificial 

neural networks, the first layer or nodes receives input from the predictor variables, adds 

a bias to the weighted sum and passes it through a non-linear function, and feeds the 

output to the subsequent layer of nodes. This continues until an output is obtained from 

the final single node after the hidden layer. The weights and bias are ‘learnt’ by 

minimizing the cost function via optimization. Each model has its own hyperparameters 

to be tuned, and there are also other well-established supervised learning algorithms, but 

the four mentioned above will suffice for the scope of this thesis. 

It takes 3.0 seconds on a Windows® 64bit PC (CPU E5–1650 v4, 64Gb RAM) 

to prescribe the flagellum shape, perform the steps listed in equations (5.1) to (5.24) for 

each instance in time and repeat over a complete beating cycle. This adds up to over 

three days per 100,000 computations. On the other hand, the above-mentioned 

algorithms can ‘learn’ from a known training set of 10,000 samples and make 

predictions on the remaining samples in less than five minutes. The suitability of using 

supervised learning to predict sperm velocity will be put to test here. 

First, supervised learning will be implemented using each of the above-

mentioned four algorithms to train a model using a prescribed number of sample data. 
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The sperm velocity is predicted using only the following six variables as inputs; the 

flagellum length, the head length and width, the beating frequency and amplitude, and 

the applied field strength. Each sperm will be classified as collected or excluded 

depending on its velocity relative to the overall distribution. The purity predicted by 

each algorithm trained on a tenth of the total samples is compared (Figure 6-7) with the 

purity obtained by computing the velocities of all 100,000 samples for each case, where 

statistics obtained from a sample size of 100,000 are deemed to have converged (Figure 

6-5). A slight offset in the horizontal position is deliberately added for better 

visualisation of overlapping points. 

 

 

Figure 6-7 – (a) Sperm subjected to no external field, versus (b) sperm subjected to C0 of -1 mN/mm3. Purity χ 
computed using 100,000 samples (blue star) for different yield η, compared with purity obtained from 

supervised learning algorithms trained on 10,000 samples to predict remaining 90,000 samples (hollow red 

markers) using k-nearest neighbor (circle), ridge regression (square), random forest (triangle) and artificial 

neural network (inverted triangle). 

 

There are minor variations in the predictions of each algorithm, regardless of 

whether an external field was applied. However, given that none of them are outliers, 

the four algorithms will remain in the ensemble. Without the benefit of hindsight, it can 

not be known which algorithm gives a closer prediction to the ‘true’ result. This is 

consistent with the fact that ensembles often out-perform (Dietterich 2000) their 

individual components, because there is no single best learning algorithm (Kotsiantis et 

al. 2007). Moving forward, the mean prediction obtained from k-nearest neighbour, 

ridge regression, random forest regression, and artificial neural network will be used. 
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The velocity of 105 sperm cells under no external field and subjected to C0 = -1 

mN/mm3 are first obtained by randomly generating parameters of each individual cell 

and computing its velocity. 10% of the data are placed in the training set, while the other 

90% are placed in the test set. Data in the test set is unseen in the training process, so as 

to give a fair validation of the model and avoid overfitting (Krogh and Vedelsby 1995). 

The velocity distributions of samples in the test set are presented (Figure 6-8a and Figure 

6-9a) as histograms of normal cells super-imposed with that of abnormal cells. The 

machine learning model is then trained to learn a relationship between input parameters 

and the computed velocity in the training set. Thereafter, the velocity distribution of the 

unseen 90,000 cells is predicted as shown in Figure 6-8b and Figure 6-9b. 

 

Figure 6-8 – Velocity of spermatozoa in the test set of 90,000 samples (a) computed using SBT computation 

and (b) obtained from predictions made using an ensemble of supervised learning trained on 10,000 samples. 

The blue and green region represents the number of morphologically normal and abnormal cells, respectively. 

The sperm cells are not subjected to any applied field (C0 = 0). 

 

 

Figure 6-9 – Velocity of spermatozoa in the test set of 90,000 samples (a) computed using SBT computation 

and (b) obtained from predictions made using an ensemble of supervised learning trained on 10,000 samples. 

The blue and green region represents the number of morphologically normal and abnormal cells, respectively. 

The sperm cells are subjected to C0 = -1 mN/mm3. 
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In both scenarios, where C0 is zero or -1 mN/mm3, the normal cells have a 

narrower range of velocity than the abnormal cells. This illustrates the possibility of 

sorting, as discussed in Chapter 6.2, to obtain a subpopulation with an increased 

proportion of normal cells. 

Despite the computed and predicted velocity distributions being qualitatively 

similar, the predicted velocities have a lower variance, with outliers predicted to have 

less extreme values than what is computed. This is not surprising, due to the nature of 

regression trees in the random forest as well as the k-nearest neighbor regressor in which 

substantial variations are averaged out with other samples of similar characteristics 

having less extreme velocities. Since the normal and abnormal cells are predicted to 

have velocities that are less spreaded, the distinction between normal and abnormal 

sperm cells become more pronounced, leading to an optimistic estimate of the 

achievable purity. This effect is more substantial (Figure 6-10 and Figure 6-11) when a 

small training set comprising 0.1% of the total sample size is chosen. Nonetheless, the 

qualitative conclusions from both the computed and predicted velocity distributions 

remain the same, that the normal sperm cells can be segregated. The quantitative 

differences will be explored in what follows. 

 

 

Figure 6-10 – Velocity of spermatozoa in the test set of 99,900 samples (a) computed using SBT computation 

and (b) obtained from predictions made using an ensemble of supervised learning trained on 100 samples. The 

blue and green region represents the number of morphologically normal and abnormal cells, respectively. The 

sperm cells are not subjected to any applied field (C0 = 0). 
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Figure 6-11 – Velocity of spermatozoa in the test set of 99,900 samples (a) computed using SBT computation 

and (b) obtained from predictions made using an ensemble of supervised learning trained on 100 samples. The 

blue and green region represents the number of morphologically normal and abnormal cells, respectively. The 

sperm cells are subjected to C0 = -1 mN/mm3. 

 

Non-deterministic processes such as sperm sorting can be studied from different 

approaches, as illustrated in Figure 6-12. We can either perform a large number of 

computations or experiments to obtain reliable results that converge, perform a small 

number of computations at the possible expense of unreliable results, or perform a small 

number of computations followed by the application of machine learning. 

 

 

Figure 6-12 – Flowchart illustrating possible approaches to investigate the non-deterministic process of sperm 

sorting. 
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The computed and predicted purity for a target yield of 50% will be compared, 

presented in box-plots, super-imposed over the best-fit polynomial for results computed 

using 105 samples for C0 = -1 mN/mm3 (Figure 6-13) and C0 = 0 (Figure 6-14). As a 

sample size of 105 has shown convergence in the sperm parameters and purity (Figure 

6-5), the results as indicated by the circle markers will be used as a benchmark. Subsets 

of size 100, 1,000 and 10,000 are considered, by resampling with replacement (Wu 

1986) from the population of 100,000. Larger sample sizes are deemed redundant for 

consideration. Given that the variance in purity is inversely proportional to the sample 

size, we set the number of repetitions to be 105 divided by the size of each training set. 

Using the first row of Figure 6-13 as an illustration, a set of 100 samples is drawn to 

train the machine learning models. The purity using these data are computed using the 

SBT model. This process is repeated 10,000 times to obtain the boxplots in Figure 6-13a. 

Predictions are then made on the remaining 90,000 unseen samples, with a new machine 

learning model retrained for each repetition, and the results are presented in Figure 

6-13b. 

Instead of running the full computation for 105 samples, one can draw the same 

conclusion on how sorting purity depends on yield as well as C0 by using the results 

predicted from one-tenth of the sample and using machine learning to make predictions 

on the rest. This is more reliable than solely making a conclusion from the same subset 

without machine learning, as evident from the shorter whiskers of each plot in the right 

column of Figure 6-13 and Figure 6-14 as compared to their counterparts on the left 

column. By computing the purity from the velocity histogram obtained from a subset of 

1,000 computed velocities followed by predictions on the remaining 99,000 sperm, the 

uncertainty in results is substantially lower than if the purity had been computed without 

the additional predictions. However, the improved precision obtained by machine 

learning comes at a cost of some reduction in accuracy, as the purity are consistently 

over-predicted. This can be mitigated by adding a correction factor obtained from 

observations, or by introducing Gaussian noise to the predicted velocity to spread out 

the distribution. Depending on the objectives of their study, researchers can substantially 

reduce computational costs by using an ensemble of supervised machine learning model 

trained on a subset of the data. This allows more cases to be considered for a given 

amount of resources, as indicated by the path following the green arrows in Figure 6-15. 



127 

 

 

Figure 6-13 – Boxplots representing results computed (left column) and predicted (right column) from training 

sets of size 100, 1,000, and 10,000 samples in the first row (a, b), second row (c, d) and third row (e, f), 

respectively. The circle markers are results computed from 105 samples, while the dashed-line is the best fit 

polynomial. The sperm cells are subjected to C0 = -1 mN/mm3. The machine learning model makes predictions 

on the remaining of the 100,000 samples less those used for training. 
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Figure 6-14 – Boxplots representing results computed (left column) and predicted (right column) from training 

sets of size 100, 1,000, and 10,000 samples in the first row (a, b), second row (c, d) and third row (e, f), 

respectively. The circle markers are results computed from 105 samples, while the dashed-line is the best fit 

polynomial. The sperm cells are not subjected to any applied field. The machine learning model makes 

predictions on the remaining of the 100,000 samples less those used for training. 
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Figure 6-15 – Flowchart illustrating approach taken for performing statistical analysis in Chapter 6. The 

green and grey arrows indicate the path taken with and without utilising machine learnining, respectively. 

 

6.5 Chapter Summary 

 

In this chapter, the use of magnetic activated cell sorting to increase the 

proportion of normal cells for use in IUI is investigated theoretically. The sperm velocity 

is computed with SBT. Since magnetophoresis influence each cell to a different extent, 

the prospect of sorting is assessed based on the relative velocity distributions of normal 

and abnormal cells. An ensemble of supervised learning algorithms is successfully 

deployed to establish a relation between the given sperm characteristics and its resulting 

velocity. The predictions from machine learning allows the achievable purity to be 

estimated, providing similar results with substantially lower computational costs. 
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Chapter 7  

Conclusions. 
 

7.1 Summary of research done 

 

In this thesis, the principles and associated benefits as well as limitations of 

common assisted reproduction techniques are summarised. Sperm motility and 

morphology is understood to be a significant indicator influencing the outcome of 

reproduction, be it in vivo or in vitro. Hence, attention is turned to understanding the 

kinematics of a sperm cell and its properties. A literature review is done to gain 

awareness of the microfluidic sorting techniques which have successfully manipulated 

microscale particles or cells. The author sees untapped potential in the study of sorting 

human sperm, and seeks to fill the research gap by providing a theoretical framework 

for modelling sperm subjected to an external field, taking statistical variations into 

account. 

As a preliminary study, the sperm is modelled as a sphere attached to a slender 

filament with a prescribed sinusoidal waveform. Using Resistive Force Theory, the 

hydrodynamic force acting on the flagellum is represented as a linear function of the 

relative fluid velocity due to the translational and rotational motion of the sperm together 

with the wiggling of its flagellum. Using a dipole approximation where higher-order 

poles are neglected, the DEP force due to a non-uniform electric field is added to the 

model. The total force and moment acting on the entire sperm is summed and expressed 

as a function of the linear and angular velocity. With the assumption of small amplitude, 

the x-velocity in the body-frame is solved, leading to an analytical solution being a 

function of the sperm morphological parameters and two DEP parameters which 

encompasses the medium permitivitty, Clausius-Mossotti factor and gradient of the 

electric field squared. It is reasoned qualitatively, and shown in a subsequent chapter, 

that the time-avearaged y-velocity as well as angular velocity are negligible here. 

Substituing the parameters of an X- and Y-sperm above and below one standard 

deviation of their respective mean, it is found that DEP can be used to alter their 

velocities to different extent, allowing a skewed population of spermatozoa containing 

the desired type of chromosomes to be selected. 



131 

 

An active flagellum driven by internal sliding force is then modelled, and the 

flagellum shape is determined by solving a partial differential equation. Having 

considered motion in a Newtonian fluid earlier, the kinematic behaviour of the sperm 

subjected to DEP force is now investigated in a viscoelastic fluid medium of different 

Deborah number. Variations in the internal sliding force within the flagellum are also 

considered. The flagellum waveform, in the absence of an external field, is validated 

against published work in the literature. After solving for the body-fixed velocity, the 

sperm trajectory is plotted in the inertial frame and is shown to exhibit high 

directionality. As the flagellum has a more streamlined beating pattern in this model as 

compared to a sinusoidal waveform, each unit of DEP force resulted in a slightly larger 

change in sperm velocity. More notably, the effect of DEP is enhanced in a viscoelastic 

fluid. The velocity difference between the X- and Y-sperm also indicate the possibility 

of sorting, in both Newtonian or viscoelastic fluid, to skew the odds of having a female 

or male offspring. 

Slender Body Theory, which takes into account body-to-body interactions and 

provides better accuracy than Resistive Force Theory, is subsequently used to compute 

the hydrodynamic force. The qualitative and quantitative difference between the two 

theories are compared, and the velocity of a microswimmer with a discretized flagellum 

comprising 15 straight segments is computed. The instantaneous velocity obtained from 

RFT and SBT follows a similar trend, although RFT consistently over-estimates the 

speed in the order of 10% to 20%. The force distribution along a flagellum is shown to 

be similar, albeit consistently more positive, when SBT is used in place of RFT. 

However, due to the numerical complexity involved in seeking a solution, the waveform 

corresponding to SBT is not obtained. Instead, a prescribed sinusoidal waveform 

multiplied by an exponential factor will be used in the subsequent statical analysis in the 

interest of computational costs. 

Finally, the sorting of sperm is studied using the overall velocity distribution of 

a large population in which statistical convergence is displayed. Using an external 

magnetic field, the achievable purity and yield are computed. The purity is the 

proportion of conditionally satisfactory sperm cells which at least partially fulfils the 

criteria of being strictly normal, given that biological aspects are not considered in this 

thesis. The application of a magnetic field allows the purity to be over twice that of an 

unsorted population, and points to the prospect of being utilised in IUI for better odds 
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of success. Additionally, the trajectory of a swimming sperm shows that its heading is 

strongly aligned to the direction of the external force. An ensemble of supervised 

learning algorithms is deployed to predict the velocity of each sperm according to its 

parameters, significantly reducing computational costs. By training the ensemble on a 

tenth of the total samples, the histogram of predicted velocity shows little distinction 

from the histogram of computed velocity. Their corresponding purity are also similar, 

varying by no more than a handful of percentage points. The machine learning is 

repeated multiple times, and the conclusions are consistent. 

 
 
7.2 A closer look 

 
7.2.1 Original contributions 

 
This thesis is built upon the meticulous research work of many others, and have 

resulted in a number of original contributions by the author. In chapter 3, an analytical 

equation was established for the sperm velocity as a function of its morphology as well 

as properties which encompass the effective polarizability and external electric field 

strength and gradient. From equation (3.33), 0xu D   and 1xu D   allows 

experimentalist to estimate the requirements to alter the sperm velocity to the extent 

desired. Once the experiment set-up is determined, the DEP force which each sperm is 

subjected to and the effect of dielectrophoresis can be computed according to the 

individual morphology of each sperm. Moreover, the maximum electric field can be 

determined following the framework in Section 3.5. 

In chapter 4, the PDE describing the waveform of an active flagellum is 

modified, beginning from force and moment balance, to account for an external DEP 

force. The author demonstrated that DEP induces little change in the waveform of a 

sperm in a Newtonian fluid, but led to a noticeable alteration of the flagellum waveform 

in a viscoelastic Oldroyd-B fluid. It was also found that the velocity change due to an 

external field is enhanced in an Oldroyd-B medium, as substantiated by quantitative 

computation as well as qualitative discussion, indicating that sorting may be more 

effective here. 

In chapter 5, the procedure adopted to solve for the flagellum waveform using 

SBT instead of RFT is presented. The results are non-conclusive due to the causality 
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dilemma arising from how force is computed by SBT. Nonetheless, the attempt is an 

original work which has not been published to the best of the author’s knowledge, and 

serves as a reference and starting point for future researchers who wish to probe deeper. 

In chapter 6, the author made the proposal of using data science in the research 

of sperm sorting for assisted reproduction. By repeating the velocity calculation for 

sperm of different morphology, the proportion of morphologically normal cells 

attainable as a function of acceptable yield and magnetic force is presented. In addition, 

supervised learning is introduced as a tool for reducing numerical computational time. 

The boxplots in Section 6.4 illustrate that machine learning can be used to predict the 

purity achievable from sperm sorting with decent accuracy and confidence. 

 

7.2.2 Validations of results 

 
Given that the theoretical results presented in this thesis are largely original 

work, there is no basis to validate everything as a whole with the available published 

literature. While it will be ideal to have experiments support the theoretical results in 

Chapters 3 to 6, this is beyond of scope of the author’s doctoral thesis. Nonetheless, 

validations have been done on various base cases to ensure that progress is made in the 

correct track. The relevant citations have been provided in the earlier chapters when 

each point was first discussed, but will be summarised here for a comprehensive support 

of the thesis. 

With regard to the reliability of theoretical calculations made by RFT and SBT, 

the free-swimming speed of a sperm with average parameters is found to be 58 μm/s 

and 46 μm/s, respectively. These values are within the range of experimental 

measurements (Mortimer et al. 1998), and also in agreement with one another given that 

RFT tend to give a larger speed than SBT. In addition, kinematic reversibility is 

observed for a rod with a single degree of freedom. The flagellum waveform computed 

from RFT is also validated against the theoretical work by Fu et al. (2008) for the 

different Sperm number, internal force distribution as well as Deborah number. These 

plots are qualitatively similar to experimental observations by Ishijima et al. (1986). 

The feasibility of sperm sorting by an external field for ART has been considered 

from both the technical as well as biological aspects. From a solely technical 

perspective, there is evidence to suggest that current technology allows us to generate 



134 

 

the required electric or magnetic field for sorting and to fabricate the microfluidic 

device. Chapter 3 proposes sorting via DEP where 2Re( )medium cmf E   is 100 times the 

value of /NK   . A possible set-up corresponds to a potential of 300 V with a minimum 

electrode separation of 200 μm and a maximum electric field of 1500 V/mm. 

Meanwhile, chapter 6 proposes that sorting via magnetophoresis with a force density of 

1 mN/mm3 for C0 can increase the proportion of morphologically normal cells 

substantially. By doping the sperm with paramagnetic particles such that the relative 

magnetic susceptibility is in the order of unity, the required magnetic field can be under 

1 T. From a biological perspective, human sperm cells have been reported to remain 

viable in electric field of up to 260 V/mm arising from 1,000 V (Rosales-Cruzaley et al. 

2013) and in magnetic field of 1.5 T (Said et al. 2015). In addition, sperm can be loaded 

with paramagnetic particles (Schulze et al. 2005), and its fertilisation capability is 

maintained (Ben-David Makhluf et al. 2006). The use of MACS followed by ICSI has 

also led to the birth of a healthy human baby (Rawe et al. 2010). Nonetheless, one should 

be aware that the baby was not conceived from sperm doped with paramagnetic 

particles. The viability of human sperm subjected to larger electric fields remain to be 

assessed in the laboratory, and the subsequent step would be to assess the fertilisation 

potential of the sorted sperm using a sperm penetration assay (Oehninger et al. 2014).  

 

7.2.3 DEP or magnetophoresis 

 
The manipulation of spermatozoa in this thesis is considered using an external 

electric or magnetic field. There are two benefits to sorting sperm by magnetophoresis 

instead of dielectrophoresis. First, there is experimental evidence that spermatozoa 

exposed to magnetic field maintains its fertilisation capability and led to the birth of a 

healthy human, while no publications on sorting human sperm by electric field for 

assisted reproduction are found. Second, the possibility of doping spermatozoa with 

paramagnetic nanoparticles to increase their magnetic susceptibility enables a weaker 

magnetic field to be used for sorting.  

Nonetheless, sorting sperm by dielectrophoresis has its advantages over 

magnetophoresis. DEP force scales according to shape factor Γ, while magnetic force 

scales proportionately to volume. The ratio between the DEP force acting on the head 

and flagellum of a sperm is around 10 times greater than the ratio due to a magnetic 
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force. Since most conditions for a morphologically normal sperm depend on the head 

parameters, sorting by DEP can be more effective than magnetophoresis. This is because 

for the same total external force, the effect due to differences in head morphology will 

be magnified when DEP is used, enabling the proportion of morphologically normal 

cells to be further increased. 

 

7.3 Closing remarks 
 

 The author has thus demonstrated a systematic framework in which the 

feasibility of sperm sorting is analysed with progessive complexity. The research path 

begins with seeking a simplified analytical relation of the body-fixed velocity for a 

sperm prescribed with a sinusoidal waveform in Newtonian fluid. This is extended to 

solving for the trajectory of a sperm with an active flexible flagellum governed by a 

partial differential equation, in a viscoelastic fluid. Thereafter, SBT is used in place of 

RFT to account for interactions. Statistical variations are duly considered to evaluate the 

sorting, and machine learning is implemented to assess the feasibility of replacing SBT 

computations with predictions. 

 In view of the promising theoretical results, it will be exciting to build upon this 

work in future studies. The theoretical model can be strengthened by considering cell-

to-cell interactions, so that sorting need not be confined to dilute samples, and studied 

in three-dimensional space. The hydrodynamic force can also be represented using the 

method of regularized Stokeslets, which works well even for a non-slender flagellum, if 

higher accuracy in the velocity distribution is wanted. 

Even with the most ideal theoretical results, experiments are certainly needed to 

validate the mathematical predictions. After acquiring the practical expertise to obtain a 

sorted sample comprising a higher proportion of normal sperm, it is preferable to 

establish an accurate relation between the distribution of parameters of sperm cells 

collected and the combination of external field and microfluidic set-up used. This will 

allow the target output or design of the device to be adjusted according to the demands. 

If experimental observations do not match theory computations, an empirically obtained 

correction factor might be useful. Attention also has to be given to the biological aspects 

of the sperm cells, such as modelling the effects of hyperactivation and capacitation, and 

diagnosing the sperm viability after sorting. Apart from verifying whether fertilisation 
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occurs normally, the health of the feutus as well as its subsequent development until 

adulthood is also important. These may first be tested on animals such as chimpanzees 

and bonobos which has close resemblance to humans in terms of both DNA and 

gestation period. 

The use of Artificial Intelligence has vast potential, and the supervised learning 

adopted here merely scratches the surface of this field. The benefits it brings is not only 

in computational cost savings, for there are cases where it is not feasible to carry out 

experiments or the full computation on a large scale. For a start, the supervised learning 

model can be improved in numerous ways. Apart from amending the predictor variables, 

a refined hyperparameter tuning can improve the machine learning performance, 

provided the data in the training set is appropriate. Other algorithms may also be 

included in the ensemble, with the weights from each constituent optimized to suit the 

problem at hand. Convolutional neural networks may even be utilised for image analysis 

as a follow-up to experimental observations. 

 Given the interdisciplinary nature of this research, as well as the decades of 

experimental observations which would be associated with clinical trials, substantial 

progress will require a concerted team effort. While the vast amount of manpower and 

time called for may seem daunting, we should keep in mind that assisted reproduction 

currently leads to the birth of over one in every hundred infants in developed countries, 

despite its rather low success rate. Improving the odds will lead to substantial cost 

savings as well as non-monetary benefits which cannot be labelled with a price tag.  
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Appendices 

Appendix A – Derivations 

 

A.1 Derivation of the force-velocity relation in Resistive Force Theory 

 
This section shows the mathematical procedures leading to the coefficients used 

in Resistive Force Theory (Lighthill 1976). The preceeding steps leading to the Stokes 

equation, as well as intermediate steps which Lighthill have omitted, likely to provide a 

concise paper targeted at experts in the field, are worked out and presented here. 

First, the continuity equation will be derived. By the principle of mass 

conservation, the time rate of change of mass of a material region Ω is zero: 

 
( )

0
t

dM d
dV

dt dt



= =  . (A.1) 

By Leibnitz’s Theorem, 

 i i
V S

dM
dV n u dS

dt t

  
= +

     
 

, (A.2) 

where the last term represents the mass flux out of the surface, ρ is density and ni is the 

unit surface vector. By Gauss’ Theorem, the volume integral of the divergence of a 

tensor is equal to the surface integral of the out flux of that tensor: 

 ( )i i i i
S V
n u dS u dV =    

 

 . (A.3) 

Therefore, equation (A.1) becomes 

 ( ) 0i i
V V

dV u dV
t

 
+  =

   .  (A.4) 

Since the integral holds for any arbitrary volume V,  

 ( ) 0i iu
t

 
+  =


.  (A.5) 

Applying chain rule, 

 0i i i i i i

D
u u u

t Dt

   
+  +  = +  =


    

 

  .  (A.6) 
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Rearranging the equation and expressing in vector notation, 

 
1

0i i

D
u

Dt




+  = .  (A.7) 

For an incompressible fluid, 
𝐷𝜌𝐷𝑡  = 0 and hence the continuity equation is expressed, in 

tensor notation and vector form respectively, as 

 0i iu = ,  (A.8) 

 0 u = .  (A.9) 

Having derived the continuity equation, the Navier-Stokes equation shall be 

derived starting from momentum balance. On a material region, the time rate of change 

of momentum is equal to the sum of body and surface forces on that region: 

 
( ) ( )i i i
t t S

u dV f dV R dS
t

 
 


= +

         ,  (A.10) 

where if   is the body force per unit mass, and iR  is the surface force per unit area. The 

left-hand side of equation (A.10) can be expressed as 

 ( ) ( )
( ) ( )i i j i j
t t

u dV u u u dV
t t

  
 

  = +           .  (A.11) 

This leads to 

 ( ) ( )
( ) ( )i j i j i ij j
t t S

u u u dV f dV n dS
t
   

 

 +  = +        
 

  ,  (A.12) 

where ij  is the stress tensor. Rearranging the equation, and using Gauss’ theorem, 

 ( ) ( )
( )

0i j i j i j ij
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u u u f dV
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 +  − − =      
 

 .  (A.13) 

Since the integral holds for any arbitrary volume V, 

 ( ) ( ) 0i j i j i j iju u u f
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+  − − =


   
 

.  (A.14) 

Applying chain rule, 

 ( ) 0i
i i j j j j i i j ij

u
u u u u u f
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 .  (A.15) 
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Since 

 ( ) 0i j ju u
t

  +  =  
  ,  (A.16) 

equation (A.15) becomes 

 0i
j j i i j ij

u
u u f

t
   +  − − =  

 

 ,  (A.17) 

which is 

 i
i j ij

Du
f

Dt
  = +  .  (A.18) 

For an incompressible Newtonian fluid, the stress tensor is 

 ( )ij ij j i i jp u u  = − +  +  , (A.19) 

where 
ij

  is the Kronecker delta and μ is the dynamic viscosity. Substituting the above 

relation back into (A.19), 

 
( )i

i j ij j i i j

i j j j i j i j

Du
f p u u

Dt

f p u u

   

  

 = +  − +  +  

= −  +   +  

 

 

 

            

.  (A.20) 

Therefore, the Navier-Stokes equation, in tensor notation and vector form respectively, 

is 

 i
i j j j i

Du
f p u

Dt
  = −  +    ,  (A.21) 

 2
 

u
f u

D
p

Dt
  = − +  .  (A.22) 

In the regime of low Reynolds number, the Navier-Stokes equation can be 

simplified into the Stokes equation, by applying dimensional analysis from the Navier-

Stokes equation: 

 2
  

u
u u f up

t
   +  = − +   

.  (A.23) 
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The pressure, force per unit mass, velocity, time and space terms shall be non-

dimensionalised as follows: 

 
( )

p
p

U L
= , 

( )3

f
f

UL L 
= , 

u
u

U
= , 

t
t

T
= , 

x
x

L
= . (A.24) 

The dimensionless gradient operator, Reynolds number and Strouhal number are 

 L =  , Re
UL


= , 
( )1

St
T L

U
= . (A.25) 

Multiplying equation (A.23) by 2
L U , 
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(A.26) 

which can be expressed in dimensionless form as 

 2Re St   

u
u u f up

t

 +  = − +  
. (A.27) 

In the limit where Re approaches zero, 

 20 f up= − + .  (A.28) 

Hence, the dimensional form of Stokes equation, in vector form and tensor notation, is 

 2 0  f up − +  = ,  (A.29)  

 0
i j j j i

f p u −  +   =  .  (A.30) 

RFT stems from the Stokes equation. Lighthill (1976) begins his derivation of 

RFT by considering the presence of a Stokeslet, which is a concentrated point force F 

acting on the fluid that introduces a delta function into the governing equation. In low 

Reynolds number, equation (A.29) becomes 

 2 ( ) 0 u F rp  − +  + = .  (A.31) 

The velocity field due to a Stokeslet in a fluid can be written as 
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The above vector equation, in indicial notation, is 
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Since 2 2 2
1 2 3 i ir x x x x x= + + = , the equation can be expressed as 
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Applying product rule to the second term above, 
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Converting the indicial notation back into vector notation, we get another expression for 

describing the velocity field due to a Stokeslet: 



158 

 

 
( )2

38

  F F r r
u

r

r
+

= .  (A.36) 

The fluid velocity field due to the motion of a flagellum of a small radius, a, can 

be represented by a distribution of Stokeslets, each of strength f (s) being the force per 

unit length, along the centreline (Lighthill 1976). Using equation (A.36), the velocity 

field due to the tangential Stokeslet distribution xf  is 
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1

8
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x X y r dX
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−

 + − −
 − 
 − 

   
 

,  (A.37) 

where q is a large multiple of the flagellum radius but a small fraction of the flagellum 

wavelength (Lighthill 1976), and r is the distance from a Stokeslet at (X, 0, 0) to a point 

(x, y, z) of interest: 

 ( )2 2 2r x X y z= − + + . (A.38) 

At the surface of the cross-section at x = 0, 

 ( )2 2 2 2 20r X y z X a= − + + = + . (A.39) 

Therefore, equation (A.37) becomes 
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.  (A.40) 

Applying the mathematical procedures as presented in Appendix A.2, the 

velocity field due to the tangential Stokeslet distribution xf  can be computed to be 
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8
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− 
 
 
  

 .  (A.41) 

The velocity field generated by the Stokeslet distribution y
f  is 
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.  (A.42) 

This would result in a velocity that varies along the circumference of a cross-section, 

which is unphysical. Therefore, a distribution of dipole of strength 2 4ya f −  is added, 

such that the velocity field due to the Stokeslet and dipole distribution is 
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. (A.43) 

At x = 0, the above integral is 
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. (A.44) 

Solving for the integrals as presented in Appendix A.2, the velocity field due to the 

normal Stokeslet distribution y
f  and the accompanying dipole distribution can be 

computed to be 

 ( )
0

2ln 2 1
8

0

yf
q a



 
 + 
  

 .  (A.45) 

Taking a vector addition of equations (A.41) and (A.45), the velocity field as generated 

by a flagellum modelled using a distribution of Stokeslets and dipoles become 
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Consequently, we see that the force per unit length xf  relates to the tangential 

component of the velocity field as 
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ln 2 1 2x xf u

q a


=

−
 .  (A.47) 

This leads to the tangential resistive force coefficient 
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ln 2 1 2TK

q a
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−
.  (A.48) 

Similarly, the force per unit length 
y

f  relates to the normal component of the velocity 

field as 
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4
ln 2 1 2y yf u

q a


=

+
 .  (A.49) 

This leads to the normal resistive force coefficient 

 
( )

4
ln 2 1 2NK

q a


=

+
.  (A.50) 

The resistive force coefficients given by equations (A.48) and (A.50) depends 

on the choice of q. Considering the hydrodynamics of spiral flagellar motions, we shall 

see that q = 0.09Λ gives an accurate approximation of (A.50), while (A.48) needs to be 

modified if the same value of q is to be selected. For cells which exhibit spiral flagellar 

motion with a constant pitch and radius, the flagellar centreline, given an inextensible 

flagellum and no translation or rotation, follows the geometry of a helix: 

 x s= , ( ) cosy b k s ct= −   , ( ) sinz b k s ct= −   . (A.51) 

where s is the distance measured along the flagellum. Since 

 
2 2 2
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s s s

       + + =            
,  (A.52) 



161 

 

it leads to the relation 

 2 2 2 1b k + = .  (A.53) 

At an instance, say t = 0, a point on the centreline of the flagellum has a position vector 

 cos

sin

 

 

r

s
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b ks

 
 =  
  

.  (A.54) 

The unit tangential vector of the flagellum is therefore 

 sin
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 = − 
  

.  (A.55) 

Each point on the flagellum has a velocity equal to the time-derivative of each respective 

component: 
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.  (A.56) 

The velocity can also be written as a function of the cell swimming velocity as well as 

velocity  Eω r  due to the spiral undulation: 
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.  (A.57) 

with 

 
E kc = −  = −       ,  (A.58) 

where Ω is the opposing rotation about the x-axis due to hydrodynamic force acting on 

the flagellum. Relative to the wave propagation velocity V = V i, each point on the 

flagellar has a tangential motion of constant speed c: 
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.  (A.59) 
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An invariant force f (s) per unit length which the flagellum induces on the fluid is 

introduced: 
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 − 

.  (A.60) 

This force distribution has a tangential component of 
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 = − − 
  

,  (A.61) 

as well as a normal component of 

 

( )
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2 2

2 2

( ) ( ) ( )

0

sin sin

cos cos

1 sin sin

cos1 cos

 

 

 

 

 

 

 

 

n tf f f

        

         

s s s
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h b k ks h ks

ksh b k ks





 


= −

   
   = + −   
   −   
 

  
  = − =   
 −  − − 

.  (A.62) 

According to Lighthill (1976), the fluid velocity field u can be represented by a 

distribution of Stokeslets with a force per unit length of f (s) and dipoles of strength 

( ) 42

na f s −  along the flagellum centreline. At s = s0, the flagellum has a similar 

velocity to that of the fluid field: 

 
 

0

2
0 0 0

0 3
0

( ) ( )( )
( )

4 8

  

   

n
f f r rf

w
r

r s ss
s ds

r 

+
= +  ,  (A.63) 

where δ = 0.5a√𝑒, in which e is the base of the natural logarithm, and r0 is the position 

vector of the point s = 0 on the flagellum centreline with respect to s as determined by 

equation (A.54): 
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 0 cos

sin

r

s

b b ks

b ks

− 
 = − 
 − 

. (A.64) 

Substituting equations (A.57) and (A.62) into (A.63), with U = U0 and s0 = 0, 

 

( )
( )

( )
( )

0

2
03

0

sin 0 sin 0
4

cos 0 cos 0

0
1

sin
8

cos

 

 

  
 

 

                                                                                                          

E
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r
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−   
   =   
   − −   

 
+ 
−

0
0 0

0

sin

cos

   

 

r r
r

h ks ds
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    +    
    −    



  (A.65) 

which is 

 

0

0

2 2
03

0 2 2 2
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0 0
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1

sin sin (1 cos )
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E
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− 
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 − − 



 

 

 

 

 

   

 

 

                

. (A.66) 

Taking the dot product of the unit vector in the x-direction with equation (A.66), 

 

( )

0

0

0 3
0

3/22 2 2

sin
4 8

sin
4 4 2 2 1 cos

r

r
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r
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−
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.  (A.67) 

Using the substitution θ = ks, 
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( ) ( )( )( )

( )( )
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0 3/222 2 2
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2 2 2

1
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4 4 2 2 1 1 cos
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k
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h bk h bk
d
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=



=
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= − +
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 = − − + 



      

    

.  (A.68) 

Taking the dot product of the unit vector in the z-direction with equation (A.66), 
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.  (A.69) 

Using the substitution θ = ks, 
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E
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.  (A.70) 

The integrals in (A.70) can be expressed as a function of A1 (α) and A2 (α) whose values 

with respect to α2 are plotted by Lighthill (1976). Therefore, 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2
1 2

2
2

2 2 2 2
1 2

ln 1 1

4 1 ln

1 2 ln 2 1
4

E

A Ah

b A

h
A A

b

     


   

      


  + − + + − −  =  
 + − − +   

 = − − − + + −     

.  (A.71) 

The resistive force coefficients linearly relate the force per unit length to the 

velocity in the respective normal and tangential directions: 

 
 n N normalf K V= ,  (A.72) 

 
 t T tangential

f K V= .  (A.73) 

The normal and tangential velocity on an element of a flagellum undergoing spiral 

undulation is 

 
0

0sin sin

cos cos

  normal E E

E

U bk

V b ks ks U bk b

b ks ks

   
 

−   
   = = − +   
   − −   

, (A.74) 

 
0

2
0sin sin

cos cos

  tangential E E

E

U

V b ks bk ks U b k

b ks bk ks


  


−   
   = − = − −   
   −   

. (A.75) 
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From equation (A.62), the magnitude of the force per unit length in the normal direction 

is h α, and therefore the normal resistive force coefficient can be expressed as 

 
0

N

E

h
K

U bk b


 

=
− +

.  (A.76) 

Substituting equations (A.68) and (A.71) into the above, the denominator of 
NK  is 

( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )
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2 2 2 2
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2
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4
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b
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A
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 − − − − + 
=
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( ) ( )

( ) ( ) ( ) ( )
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2 2
1 2ln 2 1 2 1

4

A

h
A A

 

     


  
 
  

 = − + − + −                        

. (A.77) 

Therefore, the normal resistive force coefficient is 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
1 2

2 2
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ln 2 1 2 1
4

4

ln 2 1 2 1

N
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=
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=
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.  (A.78) 

In a similar manner, using equation (A.61), the tangential resistive force coefficient is 

 
2

0
T

E

hbk
K

U b k 
−

=
− −

.  (A.79) 

Substituting equations (A.68) and (A.71) into the above, the denominator of TK  is 
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( ) ( ) ( ) ( ) ( )
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E
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b
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              ( ) ( ) ( )2 2
1 21 2ln 2 2 1

4
hbk
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.  (A.80) 
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Therefore, the tangential resistive force coefficient is 

 
( ) ( ) ( )

( ) ( ) ( )

2 2
1 2

2 2
1 2

1 2ln 2 2 1
4

2

ln 1 2 1

T

hbk
K
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−
=
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=
− − + + −

     

.  (A.81) 

 Equations (A.78) and (A.81) allow the resistive coefficients to be computed as a 

function of α, which is dependent on the flagellum amplitude. Equations (A.48) and 

(A.50), on the other hand, allows the resistive coefficients to be computed as a function 

of q, which is approximately 0.09 times (Lighthill 1976) the flagellum length. Setting 

equations (A.50) and (A.78), both of which gives an approximate value for the normal 

resistive force coefficient, to be equal, 

 
( ) ( ) ( ) ( ) ( )2 2

1 2

4 4
ln 2 1 2 ln 2 1 2 1q a A A

 
    

=
+ − + − + −

. (A.82) 

Comparing the denominator on both sides, 

 ( ) ( ) ( ) ( ) ( )2 2
1 2ln 2 1 2 ln 2 1 2 1q a A A    + = − + − + − .  (A.83) 

With ε = k δ as introduced during the integration by substitution in equation (A.68), and 

δ = 0.5a√𝑒 as introduced in equation (A.63), this leads to 

 ( ) ( ) ( ) ( ) ( ) ( )2 2
1 2ln 2 ln 2 1 2 2 1 2 1q a ka e A A   + = − + − + − ,  (A.84) 

 ( ) ( ) ( ) ( )2 2
1 2

2
ln 2 1 2 1 1

q
A A

      = − + − −  
.  (A.85) 

Therefore, to satisfy the equality in equation (A.82), 

 ( ) ( ) ( ) ( )2 2
1 2

1
exp 2 1 2 1 1

2
q

A A   


 = − + − − 
.  (A.86) 

For α   [0.5, 1], q ≈ 0.09Λ which concludes that 
( )

4
ln 2 1 2NK

q a


=

+
 with q = 0.09Λ 

gives a ‘suboptimal representation’ of the flagellar dynamics in the normal direction. 

Moving on to the tangential component, it is found that equations (A.48) and (A.81), 

both of which gives an approximate value for the tangential resistive force coefficient, 
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will not be consistent if q is chosen to take the value of 0.09Λ. Instead, good agreement 

is obtained if the −1/2 term in (A.48) is removed, such that  

 
( ) ( ) ( ) ( )2 2

1 2

2 2
ln 2 ln 1 2 1q a A A

 
    

=
− − + + −

.  (A.87) 

Comparing the denominator on both sides, 

 ( ) ( ) ( ) ( )2 2
1 2ln 2 ln 1 2 1q a A A    = − − + + − ,  (A.88) 

which leads to 

 ( ) ( ) ( ) ( ) ( )2 2
1 2ln 2 ln 2 1 2 1q a ka e A A   + = − + + − ,  (A.89) 

 ( ) ( ) ( )2 2
1 2

2
ln 1 1

q
A A

      = + − −  
.  (A.90) 

Therefore, to satisfy the equality in equation (A.87), 

 ( ) ( ) ( )2 2
1 2

1
exp 1 1

2
q

A A   


 = + − − 
.  (A.91) 

For α   [0.5, 1], q ≈ 0.09Λ which concludes that 
( )
2

ln 2TK
q a


=  with q = 0.09Λ gives 

a ‘suboptimal representation’ of the flagellar dynamics in the tangential direction. This 

leads to the conclusion of Lighthill (1976) that the tangential and normal resistive force 

coefficients are 
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2

ln 2 0.09TK
a


=


, 

( )( )
4

ln 2 0.09 0.5NK
a


=

 +
. (A.92) 
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A.2 Mathematical procedures used to derive equations in Appendix A.1 

 

A.2.1 Procedure to solve  
1q

q
dX

r−  
 

, 
3

1q

q
dX

r−  
 

 and 
5

1q

q
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 in (A.40) and (A.43) 

 
The first integral can be solved by introducing a substitution variable u such that 
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.  (A.95) 

Adding a common factor to both the numerator and denominator, 
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.  (A.96) 

After replacing the substitution variable u with the original variables, 
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.  (A.97) 
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For (a/q)2 = ε → 0, with Binomial expansion, the integral becomes 
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Using the same substitution as defined in (A.93), the integral 
3
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 is 
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. (A.99) 

After replacing the substitution variable u with the original variables: 
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. (A.100) 

For (a/q)2 = ε → 0, 
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. (A.101) 
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Moving on, the integral 
5

1q

q
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r−  
 

 is solved using the same substitution in (A.93): 
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.  (A.102) 

Using trigonometric identities, 
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.  (A.103) 

After replacing the substitution variable u with the original variables, 
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 . (A.104) 

With (a/q)2 = ε → 0, 
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.  (A.105) 
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A.2.2 Procedure to solve 
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q

q
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 in (A.40) 

 

Since 2 2
r X a= + , the integral above can be solved using integration by parts. 
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For (a/q)2 = ε → 0, solving 
1q

q
dX

r−  

  
 by the approach presented in equation (A.98), 
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.  (A.107) 

 

A.2.3 Procedure to solve 
3

q

q

X
dX

r−  
 

 and 
5

q

q

X
dX

r−  
 

 in (A.43) 

 
Both integrals can be solved using integration by substitution. Introduce a substitution 

variable u such that 

 2 2 2
u X a X u a= + ⎯→ = −  ,    (A.108) 

 2du X dX=  .  (A.109) 

Using the substitution defined above, the integral 
3

q

q

X
dX
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 is 
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Using the same substitution in (A.108), the integral 
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Appendix B – Solving Differential Equations 
 

B.1 Time dependence of flagellum waveform 

 
This section provides the rationale for modelling the time dependency of the 

flagellum waveform using a complex exponential. The method of separation of variables 

is used to convert a partial differential equation into an ordinary differential equation. 

Consider the following fourth order partial differential equation, where the dependent 

variable y is a function of space s and time t, and C is a constant: 

 
4

4
0

y y
C

s t

 
+ =

 
. (B.1) 

Assuming separation of variables lead to a solution, y can be expressed as a product of 

a space-dependent function F (s) and a time-dependent function G (t). 

 ( ) ( )y F s G t=  .  (B.2) 

Substituting equation (B.2) into equation (B.1),  

 0F G CFG + = ,  (B.3) 

where F  is the fourth-order space derivative of F, and G  is the first order time 

derivative of G. Rearranging the equation such that all space-dependent terms are on the 

opposite side of the equation as the time-dependent terms, 

 
F G

C
F G


= − .  (B.4) 

Since the left and right side of equation (B.4) are independent of time and space, 

respectively, they can be equated to a constant 4 . The space-dependent part of the 

above equation can hence be expressed as 

 4 0F F − = ,  (B.5) 

which has a solution of the form 

 31 2 4
1 2 3 4

ss s s
F e e e e

     = + + + .  (B.6) 

For the time-dependent part of equation (B.4), we have 
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4

0G G
C


+ = ,  (B.7) 

which has a solution of the form 

 
4

expG t
C


 

= − 
 

.  (B.8) 

If the above exponential is raised to a real power, the solution y will either decay 

exponentially to zero or increase exponentially as time progresses. Therefore, the 

argument of the exponential function in equation (B.8) must be complex: 

 

( )

( )cos sin

a ib t

a ibt

G e

e e

bt i bt






−

−

=

= 

= −

   

   

.  (B.9) 

Next, we know that b governs the period of y, and hence it must necessarily be related 

to the flagellum wiggling frequency. The above equation can be expressed as 

 
( )   cos sin

   i t

G t i t

e


  

 −

= −

=
.  (B.10) 

This shows that the solution y (s, t) to the partial differential equation in (B.1) can be 

expressed as h (s) 𝑒−𝑖𝜔𝑡, where h (s) = ξ F (s) can be found by solving the corresponding 

ordinary differential equation. 

 

B.2 Methods for solving ordinary differential equations 

 
B.2.1 Explicit First-Order (Forward Euler) Runge-Kutta method 
 

The Runge-Kutta method allows the solution to a first-order ordinary differential 

equation (ODE) to be solved, using initial conditions (if the independent variable is 

time) or boundary conditions (if the independent variable is space) at the start of the 

solution domain. While only applicable to a first-order ODE, the method can be used to 

solve higher orders linear ODE, since the problem can be reframed to reduce the order 

of the ODE (Hydon 2000). Consider a general third-order ODE of the form: 

 
3 2

3 2
( ) ( ) ( ) ( )

d y d y dy
a s b s c s y f s

ds ds ds
+ + + = ,  (B.11) 
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where all coefficient can be normalised with respect to the coefficient of the highest-

order derivative. By introducing a new vector variable z with as many elements as the 

order of the ODE, 

 
1

2

3

'

''

z

z y

z y

z y
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,  (B.12) 

the original ODE can be re-expressed as a system of first-order ODE relating z to its 

derivative z′: 
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.  (B.13) 

Having seen how a first-order ODE may be obtained from any linear ODE in general, 

consider the following differential equation with s as the independent variable: 

 
( )

( ( ), ) 0
dy s

f y s s
ds

− = .  (B.14) 

If the initial condition y (s0) is known, where the solution domain is s   [s0, send], an 

approximate value y*(s0 + ds) at the next step ds from the starting point s0 is 

 0 0 1( ) ( )y s ds y s k ds
 + = +  ,  (B.15) 

where k1 is the derivative as obtained from the governing ODE and is a function of the 

independent variable s. In equation (B.15), this derivative at s = s0 is 

 0
1 0 0

( )
( ( ), )

dy s
k f y s s

ds
= =  . (B.16) 

However, except at s = s0, the solution y (s) and its derivative is unknown everywhere 

else. Therefore, the derivative at each new step has to be approximated, using the 

estimated solution y*(s) obtained in the previous step: 

 1 ( ( ), )k f y s s
  .  (B.17) 
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The general solution for a first-order Runge-Kutta method (Butcher 1987) will therefore 

begin with equation (B.15) and proceed stepwise, from s = sa  to s = (sa + ds) 

sequentially, as follows: 

 ( ) ( ) ( ( ), )a a a ay s ds y s f y s s ds
  + = +   .  (B.18) 

In this first order Runge-Kutta method, the error involved in each step is of the order ds, 

because Taylor expansion of the exact and approximate solution gives 
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a a

ds
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y s y s ds O ds

 + = + + +

= + +

  

                  

  (B.19) 

and 

 ( )2
1( ) ( )a ay s ds y s k ds O ds + = + +

 
,  (B.20) 

respectively. The error builds up with each step taken, and the total number of steps over 

the whole interval is of the order 1/ds. Therefore, the solution of this first-order method 

has an overall error of O (ds2)∙O (1/ds) = O (ds). 

 

B.2.2 Explicit Higher-order Runge-Kutta method 
 

In the first-order Runge-Kutta method, when moving from y (sa) to y (sa + ds) the 

slope is calculated at the beginning of each step and held constant until the end of the 

step. The error in this approximation increases as the distance from sa increases. 

Therefore, with a given step ds, a more accurate approach, as apparent in Figure B-1, is 

to use a slope parallel to the tangent at the mid-point of the interval. 

 

 

Figure B-1 – Solution y(s) to some ODE, as represented by the solid black curve. The blue dot denotes the value 

y(sa) at the beginning of the step, while the green dot denotes the actual solution y(sa+ds) after the independent 

variable s is incremented by a step of ds. The red dot denotes the estimated solution y*(sa+ds), using (Left) 

first-order RK method with a slope k1(sa) and (Right) second-order RK method with a slope k2(sa+ds/2) as 

denoted by the dotted straight line.  
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The above illustration is one of many possible second-order Runge-Kutta 

methods (Butcher 1987). Given that the solution y (sa + ds/2) at half a step away is 

unknown, the derivative at that point is unknown as well. However, the first-order RK 

method can be used to estimate y* (sa + ds/2) and correspondingly, the ODE can be used 

to relate the slope k2 to y*. Given known initial conditions, the second-order Runge-

Kutta method begins with 

 0 0 1( 2) ( ) 2y s ds y s k ds
 + = +  .  (B.21) 

For a linear first-order ODE of the form given in equation (B.14), the tangent at the mid-

point of the step interval, which will be used as the slope to increment y (s0) to y (s0 + ds), 

is 

 ( )*
2 0 0( 2), ( 2)k f y s ds s ds= + + .  (B.22) 

Going back to the beginning of the step, this second-order RK method then moves from 

y (s0) to y*(s0 + ds) using k2 as the slope for the step interval: 

 0 0 2( ) ( )y s ds y s k ds
 + = + .  (B.23) 

Although likely to be an intuitive choice for many, computing the slope using 

the tangent at the mid-point of the step interval is not the only possibility. In general, 

the slope m across a single step can be a weighted average of two derivatives, that is, 

 1 1 2 2m b k b k= + .  (B.24) 

The derivative k1 is taken at s = sa,  

 ( )1 ( ),a ak f y s s=  . (B.25) 

while the other derivative k2 is taken at s = sa + α ds and the estimated value at that 

second point 1( ) ( )a ay s ds y s k ds  + = + : 

 ( )2 1( ) ,a ak f y s k ds s ds = + + .  (B.26) 

This means that moving α ds into the step, the estimated y* at that point is 

obtained by adding the product of k1 and β ds, leaving open the flexibility of adjusting 

the steepness of k1 by a factor of β/α. However, it shall be mathematically demonstrated 

that α and β has to be equal to minimize the error. In the example given in equations 
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(B.21) to (B.23), b1 = 0, b2 = 1 and α = β = 1/2. One may also choose to compute the 

first-order derivative at the beginning of the step, estimate the derivative at the end of 

the step, and then set the slope as the mean of these two computed values. In this case, 

b1 = b2 = 1/2 and α = β = 1. 

To determine the order of accuracy, consider the Taylor expansion of the exact 

solution, where the first- and second-order derivatives can be determined from the 

governing ODE as given in equation (B.14): 
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  (B.27) 

Meanwhile, the Taylor expansion of the approximate solution gives 
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  (B.28) 

Comparing equations (B.27) and (B.28), the exact and approximate solutions are 

consistent to an error of O (ds3) when the following three constraints are satisfied: 

 1 2 1b b+ = , 2 1 2b  = , 2 1 2b  = . (B.29) 

Since this indicates that α = β, equations (B.24) and (B.26) can be re-expressed as  

 1 2

1 1
1

2 2
m k k

 
   = − +   
   

,  (B.30) 

 ( )2 1( ) ,a ak f y s k ds s ds = + + .  (B.31) 

In this second order Runge-Kutta method, the error involved in computing y*(sa + ds) 

for each step is O (ds3), and the solution across the entire interval has an overall error of 

O (ds3)∙O (1/ds) = O (ds2). 
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Numerical solutions to linear ODEs often utilise the fourth-order Runge-Kutta 

method (Butcher 2016), in which the solution has an overall error of O (ds4). Similar to 

the second-order RK method, there is an infinite number of approach in which the 

weights of the derivatives contributing towards the slope can be adjusted. A popular 

fourth-order RK method utilises four derivatives evenly-spaced across the step interval 

with the following weights, with the complete mathematical derivation given by Musa 

et al. (2010): 

 1 2 3 4

1 3 3 1
8 8 8 8

m k k k k= + + + ,  (B.32) 

where the weights k1 to k4 are 

 ( )*
1 ( ),a ak f y s s=  , (B.33) 

 *
2 1( ) ,

3 3a a

ds ds
k f y s k s

 = + + 
 

 , (B.34) 

 *
3 1 2

2
( ) ,

3 3a a

ds ds
k f y s k k ds s

 = − + + 
 

 , (B.35) 

 ( )*
4 1 2 3( ) ,a ak f y s k ds k ds k ds s ds= + − + + . (B.36) 

 

B.2.3 Implicit method 
 

In dealing with differential equations which are stiff (Iserles 2009), that is 

requiring a very small step size otherwise the problem becomes numerically unstable, it 

is beneficial to use implicit rather than explicit methods. Implicit methods involve 

solving a system of algebraic equations at each new step, as the solution appears on both 

sides of the equation. For example, consider the same differential equation in (B.14): 

 
( )

( ( ), ) 0
dy s

f y s s
ds

− = .  (B.37) 

Moving a step from sn to sn+1, the exact change in y depends on the derivative 

continuously across the step interval: 
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Using the trapezoidal rule, the integral is approximately equal to the average of the 

integrand at the two ends, multiplied by the size of the interval: 

  1

1 1

1
( ( ), ) ( ( ), ) ( ( ), )

2
n

n

s

n n n n
s

f y s s ds f y s s f y s s ds
+

+ + +      .  (B.39) 

Therefore, using the solution y (sn) at the beginning of the step, the estimate solution 

y*(sn+1) at the end of the step have to be obtained implicitly: 

 ( ) ( ) ( )( ) ( )( )* *
1 1 1

1
, ,

2n n n n n ny s y s f y s s f y s s ds+ + +
 = + +  .  (B.40) 

This is actually a simple case of the Lobatto IIIA method (Pinto et al. 1997), which is a 

category of implicit Runge-Kutta methods, used to solve boundary value problems. 

 

B.3 Using MATLAB for numerical solution 

 

In Chapter 6, the flagellum shape of a sperm subjected to hydrodynamic force 

computed using different models is investigated. MATLAB’s solvers are utilised to seek 

a numerical solution to ordinary differential equations which implicitly relates the 

position y to the corresponding force distribution as well as its flexural rigidity. The 

challenges encountered in the process of seeking a numerical solution, as well as the 

procedures adopted in response to those challenges and the approach taken to assess the 

results are presented here. 

Given that the physics of a swimming sperm imposes boundary conditions on 

both ends of the flagellum, the model is naturally approached as a BVP, using 

MATLAB’s bvp4c solver (Shampine et al. 2000, 2003) which uses an implicit Runge-

Kutta method that makes use of collocation. It computes a spline on every subinterval 

of the domain and solves the finite difference equation implicitly at each step, taking 

into account all prescribed boundary conditions defined in the input function (Kierzenka 

and Shampine 2001). This algorithm is applied to the simplified RFT model in Koh and 

Marcos (2015b), where the normal force on the continuous flagellum is expressed 

analytically as a function of y in accordance with the small amplitude approximation. 

The resulting numerical solution is consistent with the analytical solution, thus verifying 

the validity of the written code. However, using the force distribution computed from 

the SBT model, no solution was found. It is possible that the approximations made, such 
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as discretizing the flagellum into a finite number of straight segments, resulted in a force 

distribution that does not capture the entire physics of a swimming sperm. 

Without making any hasty conclusions, changes are introduced one at a time to 

validate the numerical algorithm and assess the feasibility of using SBT to solve for the 

flagellum waveform. Given that the force distribution computed by SBT is a stepwise-

constant function with an undefined force derivative at each interface between adjacent 

segments, the discontinuity is recognised as a potential source of error in the 

computation process. To investigate this possibility, the force in the ODE governing the 

waveform is expressed as a matrix comprising numerical values, while still adhering to 

the same small amplitude approximation. The flagellum is discretized into over 1,000 

infinitesimal elements, clearly satisfying the earlier convergence test in Chapter 4, and 

the force distribution expressed numerically as a matrix is nearly identical to a 

continuous force distribution defined analytically in the RFT model. However, no 

solution was found, even though there were no abrupt discontinuities across the 

flagellum, except for the inevitable effects of numerical discretization. 

To assess the robustness of the solver, a fourth order ODE, �̃� '''' −16π 

4
 �̃� = 0, 

using a known function �̃� = sin (2πs) for �̃�   [0, 1] is considered. There are eight known 

boundaries for this equation, namely, the zeroth to third order derivative of �̃� at �̃� = 0 

and �̃� = 1, of which any four will allow the equation to be solved. When the boundary 

conditions were set to comprise 
0s

y
=

, 
0s

y
=

 , 
1s

y
=

 , and 
1s

y
=

 , as was the case in the 

RFT or SBT model, the solver was unable to obtain a solution. This was despite the fact 

that the initial ‘guess’ of �̃� to �̃� '''  used to initialise the solver was the exact expression, 

and that the flagellum was discretized into 10,000 elements. However, when the 

boundary conditions were set using lower-order derivatives, a perfect numerical solution 

was obtained, even under a coarse discretization of 100 elements and an initial guess of 

the contant 0 vector used to initialise the solver. Different combinations of boundary 

conditions were tested, and an interesting pattern was observed. When the sum of the 

derivatives of the four boundary conditions add up to six or less, an accurate numerical 

solution can be obtained. However, the converse is true when the sum of the derivaties 

add up to seven or more. The same findings were recorded using MATLAB’s bvp5c 

solver. As it is beyond the scope of this thesis to code a new algorithm or modify the 

existing solvers, a different approach shall be taken. 
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To circumvent the above-mentioned limitation, one of the four boundary 

conditions shall be changed to a lower order derivative. Specifically, the moment-free 

condition at the start of the flagellum is changed to a prescribed slope while all else 

remains unchanged, that is, the conditions 
0 0 1 1
; ; ;   m ms s s s

y y f y y f
= = = =

   + −   is 

modified to 
0 0 1 1
; ; ;   ms s s s

y y y y f
= = = =

   − −  . Doing so, the RFT model comprising a 

matrix of numerical values of normal force resulted in a flagellum waveform closely 

similar to the analytical solution under the small amplitude approximation. However, 

under the SBT and RFT model comprising N = 15 segments (chosen to satisfy 

2p N  ), the modified boundary conditions led to numerical solutions which 

diverge to an unrealistic amplitude and fails to satisfy 
0

0 ms
y f

=
 + = , even thought the 

slope is prescribed to take a value following the analytical solution. In both cases, 

adjustments of varying degree are introduced to the prescribed slope, but none of the 

numerical solutions result in a reasonable amplitude and satisfy the boundary conditions 

at the same time. 

Recognising this limitation, the differential equation will be approached as an 

IVP. For an nth order differential equation, there has to be n boundary conditions defined. 

When framed as an IVP, the boundary conditions at the end of the interval will not be 

incorporated, and instead, all undefined derivatives at the start of the interval have to be 

guessed. The resulting solution at the end of the interval will then be compared with the 

known boundary conditions from the original BVP, and the guesses are thereafter 

refined using the ‘shooting algorithm’ (Stoer and Bulirsch 2013). An IVP can be 

conveniently solved by built-in functions such as MATLAB’s ode45 solver, which 

utilises the Dormand-Prince method (Dormand and Prince 1980; Shampine and Reichelt 

1997) – an explicit Runge-Kutta method of fourth-order accuracy. 

In order to validate the accuracy of the flagellum shape obtained from this 

approach, equation (4.26), which is an ODE from the RFT model with approximations, 

will be used. Thereafter, the numerical results will be compared with known analytical 

solutions (Koh and Marcos 2015b), plotted as the flagellum waveform in Figure 4-2. 

The boundary conditions are established from zero displacement and net moment at the 

start of the flagellum where it is attached to the cell head, as well as zero net force and 

moment at the free end of the flagellum. Since the initial conditions for only y and y ''  
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are known exactly at the start of the flagellum, y '  and y '''  have to be guessed in order 

to apply the Runge-Kutta method and solve the equation as an IVP. However, instead 

of making wild guesses, the finite difference approximation for y '  and y '''  at �̃� = 0 can 

be taken from the discretized analytical solution to equation (4.26). Defining z to be a 

vector variable comprising the zeroth to third order derivative of y as a function of s, 

 z

y

y

y

y

 
  =
 
  

, (B.41) 

the following linear vector equation can be formed: 
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The initial conditions for Sp = 7 and k = 0, obtained from the exact analytical equation 

versus finite difference approximations of fourth-order accuracy (Fornberg 1988), with 

the imaginary parts ignored, are  
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. (B.43) 

The percentage difference in the initial conditions, where each step is spatially 

discretized into a hundredth of the flagellum, is 
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 −  =
 
 − 
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The numerical solutions obtained, using the exact and approximate initial conditions, 

are plotted in Figure B-2 below. Even though the initial conditions differ by no more 

than 10-5, the error in the solution is in excess of 1,000%. 
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Figure B-2 –Flagellum waveform using real initial conditions obtained from finite difference approximation 

(dotted red line), with the exact analytical solution (solid blue line). 

 

There is no improvement in the solution even when the flagellum is discretized 

into finer elements. The reason for this stark inaccuracy, despite what appears to be 

negligible errors in the initial conditions, stems from the fact that the analytical solution 

to equation (4.26) is complex, but the imaginary terms in the solution are dropped and 

only the real part of the solution is retained when plotting the waveform. Given that the 

governing differential equation is complex, it is inaccurate to obtain the initial boundary 

conditions from the finite difference approximation of the physical waveform which 

comprises only the real part of y. 

Moving forward, the Runge-Kutta method is once again applied to solve the 

ODE as an IVP, where the initial conditions are defined by the finite difference 

approximation of the complex analytical solution. The force distribution in the 

governing equation is expressed as a matrix of numerical values, thereby validating the 

robustness of the model with regard to discretization. The numerical solutions, using 

initial conditions obtained from the finite difference approximation with varying degrees 

of accuracy, are presented in Figure B-3. There is negligible error with respect to the 

analytical solution when the initial conditions are obtained from the fourth-order finite 

difference approximation, even when a coarse discretization is used. If the discretization 

is refined, initial boundary conditions of second-order finite difference approximation 

are sufficient to give numerical results which are nearly identical to the analytical 

solution. 
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Figure B-3 – Flagellum waveform obtained using initial conditions obtained from finite difference 

approximation with first-order (dotted blue line), second-order (dotted red line), third-order (dotted pink line) 

and fourth-order (dotted black line) accuracy, plotted against the exact analytical solution (bold green line), 

for a discretization of (Left) 100 steps and (Right) 10,000 steps. [Note: For a discretization of 10,000 steps, 

there is no discernible difference between the exact solution and the initial conditions obtained from finite 

difference approximation of second-order accuracy or better.] 

 

The numerical results are significantly dependent on the prescribed initial 

conditions. Moreover, using the derivatives of each new solution as initial conditions 

for each subsequent round of iteration causes the results to deviate further from the 

analytical solution. Without knowing the ‘true’ solution beforehand, the legitimacy of 

the computed flagellum waveform will have to be ascertained by computing the force 

and moment as well as comparing with experimental observations. 


