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Theoretical study of the properties of X-ray
diffraction moiré fringes. II. Illustration of angularly
integrated moiré images

Jun-ichi Yoshimura*
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Using a theory of X-ray diffraction moiré fringes developed in a previous paper,

labelled Part I [Yoshimura (2015). Acta Cryst. A71, 368–381], the X-ray moiré

images of a silicon bicrystal having a weak curvature strain and an interspacing

gap, assumed to be integrated for an incident-wave angular width, are

simulation-computed over a wide range of crystal thicknesses and incident-

wave angular width, likely under practical experimental conditions. Along with

the simulated moiré images, the graphs of characteristic quantities on the moiré

images are presented for a full understanding of them. The treated moiré images

are all of rotation moiré. Mo K�1 radiation and the 220 reflection were assumed

in the simulation. The results of this simulation show that fringe patterns, which

are significantly modified from simple straight fringes of rotation moiré, appear

in some ranges of crystal thicknesses and incident-wave angular width, due to a

combined effect of Pendellösung oscillation and an added phase difference from

the interspacing gap, under the presence of a curvature strain. The moiré fringes

which slope to the perpendicular direction to the diffraction vector in spite of

the assumed condition of rotation moiré, and fringe patterns where low-contrast

bands are produced with a sharp bend of fringes arising along the bands are

examples of the modified fringe pattern. This simulation study provides a wide

theoretical survey of the type of bicrystal moiré image produced under a

particular condition.

1. Introduction

In a previous paper (Yoshimura, 2015), hereafter referred to

as Paper I, a theory of X-ray diffraction moiré fringes from a

bicrystal specimen was given, and the properties of the moiré

image derived by this theory were explained by showing

examples of plane-wave moiré images computed by the

theory. However, the practically observed moiré images are

integrated images for the angular spread of the incident X-ray

wave. Therefore, the illustration of plane-wave images alone is

incomplete for the study of moiré images, although they are

important as the basics in moiré-fringe study. By showing the

simulation of integrated images, the theory would become

better understood, thus making it useful for practical

problems. Therefore, in this paper, similar to the previous

presentation of plane-wave moiré images, a series of inte-

grated moiré images from a bicrystal specimen having a weak

curvature strain and an interspacing air gap are simulation-

computed and surveyed according to this moiré-fringe theory.

A newly occurring problem in treating integrated images is

the effect of gap phase difference (hereafter gap phase) which

is involved in the total interference phase of the wavefield [see

equations (8) and (9b) shown later]. When we treat plane-

wave images, the gap phase does not become a significant

problem, except when the front component crystal of the
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bicrystal (hereafter front crystal) is strained (see Fig. I-12;

equations and figures in Paper I are indicated by the Roman

numeral I attached to the equation or figure numbers).

However, in integrated images the gap phase plays an essen-

tial role in the formation of the interference fringe pattern. As

explained in Paper I (see Fig. I-2 and the succeeding equa-

tions), the gap phase is produced when the diffracted waves

from the front crystal are propagated through the interspacing

gap, and is added to the total phase difference of the wave-

field. This gap phase varies with the glancing angle of the

incident wave [see equation (9b) later], thereby causing a

variation in the fringe position through a variation in the total

phase difference of interference. By the integration of such

small fringe-position variations, the resulting moiré-fringe

pattern is significantly modified and the fringe contrast is

decreased. To expand on the gap phase, its effect was first

studied as gap interference fringes in X-ray topographs in

theory and experiment (Authier et al., 1968; Hart & Milne,

1970). The expression of the gap phase in plane-wave X-ray

diffraction and a rocking-curve measurement from a gapped

bicrystal of silicon have been reported by Yoshimura (1991).

2. Theoretical

The integrated moiré images observed and discussed in this

paper were computed as an integral of the plane-wave image

intensity (diffracted-wave image) [see equation (I-20)] as

follows:

Rgðrb0 Þ ¼ ð1=��incÞ
R

��f

��i

�

Iog0ðrb0 ; uÞ þ Igg0ðrb0 ; uÞ

þ Agðrb0 ; uÞ cos�gðrb0 ; uÞ

þ Bgðrb0 ; uÞ sin�gðrb0 ; uÞ
�

d��: ð1Þ

This integration may be understood to be a convolution

integral of the plane-wave intensity function and a rectangular

function of the peak height Iinc ¼ 1 and angular width ��inc

of the incident wave. The variable of integration�� represents

the deviation angle from the exact Bragg position when the

X-ray wave is incident on the front crystal of the bicrystal.

When we denote the upper and lower limit of integration by

��f and��i, respectively, the angular width of the integration,

��inc, and the mid position of the integration width,��m, are

given, respectively, as follows:

��inc ¼ ��f ���i ð2Þ

��m ¼ ð��i þ��f Þ=2: ð3Þ

For the meaning and expressions of Iog0ðrb0 ; uÞ, Igg0ðrb0 ; uÞ,

Agðrb0 ; uÞ and Bgðrb0 ; uÞ in the integrand in equation (1), see

equations (I-22a,b) and (I-23a,b). [However, it must be stated

here that the present expression of equation (I-22a) has an

error: ‘coshð2K�21;rt1Þ’ in the expression must be corrected to

‘cosð2K�21;rt1Þ’. Although the error is present in the text, the

computations in the paper were all made correctly using the

correct expression.] In the calculation of the functions

Iog0ðrb0 ; uÞ etc. above, the following three deviation parameters

are relevant [see equations (I-45), (I-46a,b)]:

u ¼ K�� sin 2�B þ 1
2K�oð1� �g=�oÞ � 2�ð�g1 � K̂KgÞ; ð4Þ

uo ¼ u� 2�ð�g � K̂KgÞ ð5aÞ

ug ¼ u� 2�ð�g=�oÞð�g � K̂KoÞ: ð5bÞ

Here, u is the deviation parameter corresponding to the

deviation angle �� above; uo and ug are the deviation para-

meters when the transmitted and diffracted waves (O and G

waves, respectively) emerging from the front crystal are inci-

dent on the rear component crystal (hereafter rear crystal) to

excite the transmitted and diffracted waves once more; K is

the wavenumber in vacuum, and �B is the Bragg angle; �o is

the 0th Fourier component of the dielectric susceptibility of

the crystal; �o and �g are the direction cosines of the trans-

mitted and diffracted beams, respectively, with respect to

the normal to the entrance surface of the front crystal; �g1
is a local change in the reciprocal-lattice vector from the

g vector for the perfect region in the front crystal; K̂Kg =

ðsin �B; 0; cos �BÞ and K̂Ko = ð� sin �B; 0; cos �BÞ denote unit

vectors along the direction of the diffracted and transmitted

waves, respectively. The argument rb0 in the functions

Iog0ðrb0 ; uÞ etc. is a vector referring to a position on the exit

surface of the rear crystal.�g in equations (5a), (5b) is defined

as

�g ¼ �g2 ��g1: ð6Þ

�g2 is a change in the reciprocal-lattice vector in the rear

crystal, relative to the reciprocal-lattice vector g in the front

crystal. This �g is the reciprocal-vector difference between

the front and rear crystals, which is relevant in the production

of moiré-fringe patterns. It is expressed as

�g ¼ ð1=dÞ ��d=d;��;�!ð Þ ð7Þ

in the orthogonal coordinate system with the yz plane placed

on the diffracting lattice plane (see Figs. I-2, I-3); ð�d=dÞ =

ð�d=dÞ2 � ð�d=dÞ1, �� = ��2 ���1, �! = �!2 ��!1;

ð�d=dÞi, ��i and �!i (i = 1, 2) denote, respectively, the

lattice-spacing difference, and the rotation of the lattice plane

about the z and y axes in the front crystal (i = 1) and rear

crystal (i = 2), relative to an unstrained region in the front

crystal; d is the lattice spacing.

When we assume symmetric Laue geometry where the

diffracting lattice plane is perpendicular to the crystal surfaces,

the term representing the phase difference of the interference

in the integrand function in equation (1) is expressed as

�gðrb0 ; uÞ ¼ ð2�=dÞ½�ð�d=dÞxþ��y� � �gap

� �

ð8Þ

[see equations (I-34)–(I-37) for details]. Here,�ð�d=dÞ=d and

��=d in the first term on the right side are the x and y

components, respectively, of �g, as shown in equation (7); the

moiré-fringe pattern is intrinsically drawn by these two

quantities. The second term represents the gap phase as

mentioned in Section 1, and is given by [see equations (I-11),

(I-21) and (I-34)]:
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�gap ¼ tgap u� 1
2K�oð1� �g=�oÞ

� �

=�g ð9aÞ

¼ tgap K�� sin 2�B � 2�ð�g1 � K̂KgÞ
� �

=�g: ð9bÞ

Here, tgap is the width of the gap. If the gap is filled with

some high-density material such as silicon oxide, instead of air,

an added phase owing to the passage through it should be

taken into account. Then, the gap phase above is modified to

�gap ¼ tgap K�� sin 2�B � 2�ð�g1 � K̂KgÞ
� �

=�g

� ð1þ 1
2�s;oÞ: ð10Þ

Here, �s;o is the Fourier component of the dielectric suscept-

ibility of the filled material. However, while �� remains a

minute quantity, this correction is an even more minute

quantity. Therefore, the correction is considered to be prac-

tically unnecessary.

The preparations for computing moiré images are ready

now. However, to discuss the characteristics of the inter-

ference patterns of the computed moiré images, we also need

the wavefield expression in which the two phase terms in

equation (1) are arranged to form one term. For this reason,

we prepare the following expression by expanding and rear-

ranging equations (1) and (8):

Rgðrb0Þ ¼ Rog0ðrb0Þ þ Rgg0ðrb0Þ

þ ½RAAgðrb0Þ�
2 þ ½RBBgðrB0Þ�

2
� �1=2

� cos ð2�=dÞ �ð�d=dÞxþ��y½ � ��P;gðrb0Þ
� �

ð11Þ

with

Rog0ðrb0Þ ¼ ð1=��incÞ
R

��f

��i

Iog0ðrb0 ; uÞ d�� ð12aÞ

Rgg0ðrb0Þ ¼ ð1=��incÞ
R

��f

��i

Igg0ðrb0 ; uÞ d�� ð12bÞ

�P;gðrb0Þ ¼ atan RBBgðrb0Þ=RAAgðrb0 Þ
� �

ð13Þ

RAAgðrb0Þ ¼ ð1=��incÞ
R

��f

��i

h

Agðrb0 ; uÞ cosð�gapÞ

� Bgðrb0 ; uÞ sinð�gapÞ
i

d�� ð14aÞ

RBBgðrb0 Þ ¼ ð1=��incÞ
R

��f

��i

h

Agðrb0 ; uÞ sinð�gapÞ

þ Bgðrb0 ; uÞ cosð�gapÞ
i

d��: ð14bÞ

As shown in the expression in equation (11), �P;gðrb0Þ in

equation (13) represents the contribution of Pendellösung

oscillation (hereafter PL oscillation) to the total interference

phase of the wavefield. In this sense it may be called the

Pendellösung-connected term (hereafter the PL phase),

although it is also connected with the gap phase as seen from

equations (13) and (14a), (14b). In combination with the effect

of the gap phase, the phase �P;gðrb0Þ becomes a source of

oscillations that are more complicated than the simple PL

oscillation. From the expression in equation (11), the fringe

contrast in moiré images is given as follows:

Vgðrb0Þ ¼ Rg;maxðrb0Þ � Rg;minðrb0Þ
� �

= Rg;maxðrb0 Þ þ Rg;minðrb0 Þ
� �

¼ ½RAAgðrb0 Þ�
2 þ ½RBBgðrb0Þ�

2
� �1=2

= Rog0 ðrb0 Þ þ Rgg0 ðrb0 Þ
� �

: ð15Þ

As to the numerical conditions for computation, the Si 220

reflection with Mo K�1 radiation (0.70926 Å) was assumed

throughout this paper; �B = 10.64�. The linear absorption

coefficient is 	 = 1.462 mm�1. [All these values are taken from

Pinsker (1978).] As already mentioned above, the diffracting

(220) lattice plane was assumed to lie perpendicular to the

crystal surfaces in the symmetric Laue geometry (�o = �g). The

crystal surfaces in the bicrystal specimen are all parallel to one

another (see Fig. I-2). Except for the case of Fig. 7, the

differences in the spacing and orientation of the lattice plane

from the reference region were assumed as follows: the front

crystal is strain free, namely �g1 = 0 [ð�d=dÞ1 = ��1 = �!1 =

0] and s1 = 0 [si (i = 1, 2) denotes the strength of the curvature

deformation of the crystals around the y axis]; the rear crystal,

on the other hand, has a non-zero reciprocal-vector difference

�g2 6¼ 0, i.e. ð�d=dÞ2 = 0, but ��2 = d/0.045 (rad); in addition,

the crystal has a curvature deformation of s2 = 0.04500 mm�1

(radius of curvature r = 4600 m) and thereby a rotation of the

lattice plane around the y axis �!2 = s2 � ðx� xoÞ is induced

over the whole crystal. Here, xo denotes a position on the

crystal surface corresponding to the centre of curvature, and

was assumed to be xo = 9.0 (mm). The deviation parameters in

equations (4) and (5a), (5b) become

u ¼ K�� sin 2�B ð16Þ

uo ¼ ug ¼ u� ð2�=dÞ�!2 cos �B ð17Þ

based on the assumptions above. All these conditions are the

same as those in the computation of the plane-wave moiré

images in Paper I. A rotation-moiré pattern should appear in

the diffracted images, similar to the case of the previous plane-

wave images. Hereafter, the thicknesses of the component

crystals, the gap width, and the x position in the crystals and

moiré images are given in units of mm (the y position is not

referred to in this paper). The computation of moiré images

was made with Visual Basic.NET version 2003, and the

intensity and contrast in the output images were adjusted in

image processing so as to be best suited for observation.

Computation of the graphs of the characteristic quantities

Rog0ðrb0Þ þ Rgg0 ðrb0Þ, Vgðrb0 Þ etc. was made using SigmaPlot

version 11.0.

3. Results and discussion

The commonly assumed numerical conditions for the

computation were as stated above. In the following we observe

and discuss the moiré images obtained by changing the

thicknesses of the component crystals t1 and t2 of the front and

rear crystals, respectively, and the incident-wave angular width
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��inc. The gap width tgap was also set at different values in the

computation.

3.1. Moiré images of bicrystals of t1 = t2 = 0.8 (lt1,2 = 1.170)

3.1.1. Images with tgap = 0. First, we show some integrated

moiré images when tgap ¼ 0 in Figs. 1(a)–1(c). These are

representative of images obtained when ��inc is increased

gradually, starting from a minute value. To compare unam-

biguously with previous plane-wave images, the mid deviation

angle in the integration was set to be ��m ¼ 0:3200 for which

angle the plane-wave images Fig. I-8 etc. were computed; it is

slightly off the peak position of the diffracted-intensity curve.

In accordance with the assumption of ð�d=dÞ ¼ 0 and

�� ¼ d=0:045, moiré fringes with a fringe spacing � =

0.45 mm in the y direction are produced. Needless to say, these

images are topographs of the diffracted wave (G image). The

images are shown in the way that they are viewed from the

emerging-beam side, and the x- and y-coordinate axes are

taken as shown in Fig. 1(c). The image contrast is reproduced

in such a way that white contrast indicates higher intensity,

which is the opposite to convention. The diffraction vector g,
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Figure 1
Computer-simulated integrated moiré images of X-ray diffraction for a
silicon bicrystal specimen with component-crystal thicknesses of t1 = t2 =
0.8 mm and gap width of tgap = 0. The 220 reflection with Mo K�1
radiation was assumed. Angular widths of the incident X-rays were set to
be��inc = 0.040 0, 0.500 0 and 10.00 0 for images (a), (b) and (c), respectively.
The mid deviation angle was set to be��m = 0.320 0. The graduations at the
bottom of the image (c) are given in mm. For further information see text.

Figure 2
Curves of characteristic quantities of the moiré images in Fig. 1, showing
local variations of the mean image intensity [Rog0 ðxÞ þ Rgg0 ðxÞ], fringe
contrast VgðxÞ, amplitude intensities RAAgðxÞ and RBBgðxÞ, and PL phase
�P;gðxÞ. Graphs (a), (b) and (c) are related to the moiré images (a), (b)
and (c), respectively, in Fig. 1. For further information see text.



which is not shown in the images, is directed from the left to

the right along the x axis (see e.g. Figs. I-1 and I-3).

Fig. 1(a) shows the image computed with angular width

��inc ¼ 0:0400, which is very close to the plane-wave condi-

tion. In fact, this moiré image is very similar to the plane-wave

image in Fig. I-8(a). When��inc was increased, the integrated

image remained nearly the same as the plane-wave image up

to about ��inc ¼ 0:1200, and a somewhat clear difference

between the integrated and plane-wave images began to be

found from about ��inc ¼ 0:1600. When ��inc was increased

further, an oscillation in the fringe lines and a change in the

image intensity distribution with ��inc continued to be

observed up to about��inc ’ 200, although the oscillation was

of very small amplitude and the intensity distribution change

was very gentle. Fig. 1(b) shows an example of a moiré image

in such a middle region of ��inc before reaching ��inc ’ 200.

The fringe lines still show a slight oscillation in this image [see

Fig. 2(b) later]. With the angular width of ��inc � 200, the

fringe pattern had almost settled to the one shown in Fig. 1(c).

Even when��inc was increased further, the fringe pattern did

not change significantly from the pattern in Fig. 1(c), although

the image intensity and fringe contrast changed to some

extent. It was confirmed by the present computation that such

almost-settled fringe patterns continue to be observed up to

��inc ’ 6000, which may be referred to as the condition in

Lang topography.

Fig. 2 shows the curves of the mean image intensity

½Ro;g0 ðxÞ þ Rg;g0 ðxÞ� unrelated to the moiré interference, fringe

contrast VgðxÞ, amplitude intensities RAAgðxÞ and RBBgðxÞ in

the interference terms [in equation (1)], and of the PL phase

�P;gðxÞ for the moiré images in Figs. 1(a)–1(c). These char-

acteristic quantities were computed separately from the

computation of moiré images. (From here on, the position

variable in these functions is denoted by x instead of rb0 as in

Section 2.) The results of the computation of the moiré images

and characteristic curves agree well with each other. We can

understand the characteristics of the moiré images clearly and

in detail from these characteristic curves. Firstly, it can be

pointed out that the phase curve �P;gðxÞ in Fig. 2(a) is very

similar to the phase curve [�p;gðr; uÞ] of the plane-wave image

shown in Fig. I-9(b); it is seen that the wave forms of oscilla-

tion in these phase curves are both slightly asymmetric and

lean to the left side. This similarity between the two phase

curves confirms the correctness of the similarity mentioned

above for the integrated and plane-wave moiré images [Fig.

1(a) and Fig. I-8(a)]. The fringe-line equation obtained by

setting the argument of the cosine function in equation (11) to

be equal to 2�N is given in this case (�d=d ¼ 0) by

ð2���=dÞy ¼ �P;gðxÞ þ 2�N: ð18Þ

As seen from this equation, the shape of the fringe lines is

governed by the phase curve �P;gðxÞ.

It can be seen in Figs. 2(a)–2(c) that the oscillation of moiré-

fringe lines is damped rapidly with an increase in the angular

width ��inc, and the shape of the fringe lines approaches that

of a horizontal straight line. This damping is caused by the

convergence of RBBgðxÞ to the zero value, which is set as the

numerator in the expression of �P;gðxÞ [equation (13)], while

the denominator RAAgðxÞ remains at a finite value. Although

the curve of �P;gðxÞ in the lower graph in Fig. 2(c) is drawn on

an enlarged scale in the vertical direction, to show that an

infinitesimal oscillation still exists, it is practically a horizontal

straight line in the scale of Fig. 2(a) or 2(b). It must be added

that the property jRBBgðxÞj ! 0 with increase in��inc is true

only when tgap ’ 0; in the case of tgap 6¼ 0, RBBgðxÞ does not

show such convergence. As seen from equations (14a), (14b),

when tgap ’ 0,

RAAgðxÞ ¼ ð1=��incÞ
R

��f

��i

Agðx; uÞ d��; ð19aÞ

RBBgðxÞ ¼ ð1=��incÞ
R

��f

��i

Bgðx; uÞ d��: ð19bÞ

In addition to the fringe lines, the fringe contrast VgðxÞ also

shows an oscillatory variation, and its minimum value

becomes zero in some cases. Such oscillatory variations in

VgðxÞ can generally be understood to be governed by the

oscillations in RAAgðxÞ and RBBgðxÞ. As seen from equation

(15), the variation in VgðxÞ is approximately estimated by

VgðxÞ1 ½RAAgðxÞ�
2 þ ½RBBgðxÞ�

2
� �1=2

:

A shallow drop in the curves of the mean image intensity

½Ro;g0 ðxÞ þ Rg;g0 ðxÞ� around x ’ 9, seen in the upper graphs in

Figs. 2(b), 2(c), is considered to show a secondary extinction

effect in the crystal diffraction. In the images [Figs. 1(b), 1(c)]

this reduction in intensity appears as a black, diffuse band

image. The rear crystal becomes !2ðxÞ ¼ 0 in this position
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Figure 3
Moiré images simulation-computed under similar conditions to those for
Fig. 1, except for the gap width of tgap = 0.05. t1 = t2 = 0.8. (a) Moiré image
with ��inc = 0.500 0, (b) moiré image with ��inc = 10.00 0. For further
information see text.



x ’ 9, and the front and rear crystals become locally parallel

to each other. Similar reductions in intensity are also observed

with the crystal thicknesses of t1 ¼ t2 ¼ 1:5 and t1 ’ t2 ’ 2:0

(see Figs. 5 and 8, respectively), but disappear with t1; t2 � 2:5

(see Fig. 9). When both the front and rear crystals were

unbent, i.e. s1 ¼ s2 ¼ 0, and tgap ¼ 0, but �d=d ¼ 0 and

�� ¼ d=0:045 as in the other cases described above, the moiré

images were properly of horizontal straight fringes (hereafter

HS fringes) with any value of ��inc, since all the quantities

concerned become independent of the x coordinate. Then,

while the mean image intensity ½Ro;g0ðxÞ þ Rg;g0ðxÞ� is consid-

erably decreased compared with the images in Fig. 1, fringe

contrast VgðxÞ is greatly increased (see Figs. 11 and 12 shown

later).

3.1.2. Images with tgap = 0.05. When the supposed bicrystal

specimen comes to have a gap of finite width, some change

from images with tgap ¼ 0 is expected to appear. However, up

to about tgap ¼ 0:01, the obtained moiré images were almost

unchanged from the ones with tgap ¼ 0, by comparison of the

images (not the characteristic curves). Even when the gap

width became tgap ¼ 0:02, there was almost no change from

the image with tgap ¼ 0, although a small difference came to be

found with a large value of ��inc. Though not clearly recog-

nized in the images, the oscillation in the curve of �P;gðxÞ

appeared to increase compared with the level when tgap ¼ 0,

and the fringes sloped slightly upwards to the right. The

previous moiré images by Brádler & Lang (1968) and by Lang

(1968) are considered to be taken under such a condition, but

with no curvature strain in the specimens.

When the gap width was increased further, the difference

from images with tgap ¼ 0 gradually became clear. Moiré

images with tgap ¼ 0:05 and graphs of the characteristic curves

concerned are shown in Figs. 3 and 4, respectively. Figs. 3(a),

3(b) are to be compared with Figs. 1(b), 1(c), respectively.

When the angular width ��inc remains small (��inc 	 0:200),

images with tgap ¼ 0:05 are nearly the same as those with

tgap ¼ 0. However, when the angular width was increased

further, the difference in images began to be noticeable.

Though not clear in the images, the graphs in Fig. 4 show that

the fringe contrast VgðxÞ is lowered considerably with

tgap ¼ 0:05, compared with the case with tgap ¼ 0. When the

angular width was increased up to ��inc ’ 400, the fringe

pattern had almost settled to the one shown in Fig. 3(c), and

remained almost unchanged with further increase in ��inc.

3.2. Moiré images of bicrystals with t1 = t2 = 0.8 (lt1,2 =

1.170) and tgap = 0.24

3.2.1. General survey of resulting images. Figs. 5(a)–5(d)

show some representative moiré images when the crystal

thicknesses were t1 ¼ t2 ¼ 0:8, but the gap width was set to be

tgap ¼ 0:24. Here, computation was performed with the mid

deviation angle ��m ¼ �0:1200, which was changed from

��m ¼ 0:3200 for the images in Figs. 1 and 3. In Paper I, the

plane-wave image in Fig. I-10(a) was computed under this

condition, namely ��m ¼ �0:1200. When the angular width

��inc was increased gradually, the integrated images did not

show any obvious difference from the plane-wave images up

to about ��inc ’ 0:0800; however, sharp differences became

visible from about ��inc ’ 0:1200. Fig. 5(a) shows an example

of such an integrated image with a relatively small ��inc. For

the increased gap width of tgap ¼ 0:24, the fringe patterns

became considerably modified from the simple HS fringes.

Representative examples of such moiré images when

tgap ¼ 0:24 and ��inc is of middle magnitudes are shown in

Figs. 5(b) and 5(c); they will be explained in detail later. In the

case of tgap ¼ 0:24 also, a large change in the fringe pattern was

not observed with angular width larger than ��inc ’ 400, and

the fringe pattern had almost settled to the one shown in Fig.

5(d). This image is roughly similar to the one in Fig. 3(b), but

the slope of the fringes becomes larger than in Fig. 3(b) and

vertical streaks or bands appear more strongly. The slope

angle of the fringes was 3.5� in the image shown in Fig. 5(d),

which was measured directly on the image, while it was 1.3� in

the image shown in Fig. 3(b). While the slope angle appears to

be related to the magnitude of tgap, it is also thought to be
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Figure 4
Characteristic curves of the moiré images in Fig. 3. Graphs (a) and (b) are
related to the moiré images (a) and (b), respectively, in Fig. 3.



related to the curvature strain in the crystal. To confirm this

thought, computations of moiré images were made to confirm

that the slope angle of the fringes is zero with s2 ¼ 0, and

increases with the value of s2.

3.2.2. Effect of gap phase on the formation of fringe

pattern. In the following we discuss the images in Figs. 5(b)

and 5(c) in detail. In the moiré image in Fig. 5(b) fringes slope

by about 8� from the x axis, in the direct measurement on the

image. Such a fringe pattern appears to be extraordinary for

that of rotation-moiré fringes with �d=d ¼ 0. Although it is

difficult to give a satisfactory explanation for this strange

fringe pattern at present, the following is a partial explanation

based on an incomplete study. As mentioned in Section 1,

when the deviation angle �� changes, the position of the

fringe lines also changes due to the change in the gap phase

�gap [see equations (8) and (9b)]. For a change of �� in the

deviation angle, the gap phase changes by

�gap ¼ tgapK�� sin 2�B ¼ 38:1��;

with tgap ¼ 0:24 (here, �� is given in arcsec). The fringe

positions move upwards or downwards due to this phase

change. Therefore, the effective width of the Nth fringe is

expanded by such fringe-position movements, and it becomes

2� due to the �� change in the overall width of


ð��Þ ¼ 0:16500, and 4� for 
ð��Þ ¼ 0:3300 with its expansion

forefronts reaching the central positions of the neighbouring

(N 
 1)-th fringes. With the incident-wave angular width of

��inc ¼ 1:0800 for the image under consideration, the range of

one fringe extends to the distance of 3.3 times the fringe

spacing to each side of its central position. Each fringe is thus

expanded, and overlaps with neighbouring fringes. The

patterns of obliquely extending fringes (hereafter OE fringes

or OE fringe pattern) and of broadly horizontal fringes (BH

fringes or BH fringe pattern), which are shown, respectively, in

Figs. 5(b) and 5(c), are considered to be produced in

connection with such a complicated fringe arrangement.

While simulating the formation process of the OE and BH

fringe patterns, it was seen that the resulting fringe-line

configuration in the integrated image is formed by connecting

the regions where plane-wave fringe lines are most densely

overlapped. Then, due to a slight difference in the overlap of

plane-wave fringe lines and/or a slight change in the shape of

the fringe lines, the resulting fringe pattern seems to be

divided into OE and BH fringe patterns. While some fringes

(in integrated images) continue to lie in their initial y posi-

tions, though making an oscillation with the x position, the

other fringes switch their initial vertical positions so that they

are connected to a neighbouring fringe at a site that is one

spacing higher or lower, in the way of the continuation along

the x axis. The fringes repeat such switching of the vertical

position, thereby extending obliquely to a higher or lower

position. Such a difference in the continuation behaviour of

fringes seems to cause the difference of the OE and BH fringe

patterns. However, further investigation of these fringe

patterns is not an easy task, because it requires precise

simulation of complicated fringe arrangements.

3.2.3. OE and BH fringe patterns viewed in the related

UP,g(x) phase curves. The formation of the OE and BH fringe

patterns discussed above can be understood to a fair extent

from the observation of �P;gðxÞ phase curves shown in Figs.

6(a), 6(b). In each of these figures, the ‘as-output �P;gðxÞ’

phase curve is additionally given in the middle-column graph

to provide a good understanding of the ‘corrected �P;gðxÞ’

phase curve shown in the lowest graph. The as-output �P;gðxÞ

curves are phase curves computed using equation (13). They

have discontinuous jumps of � or ��, wherever RAAgðxÞ in
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Figure 5
Moiré images computed under similar conditions to those in Fig. 1, except
for the gap width of tgap = 0.24 and the mid deviation angle of ��m =
�0.120 0. t1 = t2 = 0.8. The incident-wave angular widths for the computed
moiré images were assumed to be: for the image (a) ��inc = 0.400 0, (b)
��inc = 1.080 0, (c) ��inc = 1.200 0 and (d) ��inc = 10.00 0. For further
information see text.



the denominator in equation (13) crosses the zero line. These

discontinuities were all corrected so that the as-output �P;gðxÞ

curves are changed to continuous curves of the corrected

�P;gðxÞ phase, as described in Fig. I-7. The corrected �P;gðxÞ

curve is the true phase curve, and it gives the shape of the

fringe lines in the moiré image, as shown in equation (18). The

moiré images are computed using equation (1), so that they

conform with the corrected �P;gðxÞ phase curve from the

beginning.

It is seen in Fig. 6(a) for the OE fringes that the discon-

tinuous phase change is �� (seen from left to right) at all

phase jumps in the as-output �P;gðxÞ curve, and the curve

position is raised by þ� at every correction site. In more

detail, there occur two types of phase jumps,A and B. While in

the type-A jump the curves on both sides of the jumping site

are connected to each other smoothly after the correction, in

the type-B jump an upward bend remains in the corrected

curve, to enhance the rise of the curve position. Such a rise in

the vertical position of the phase curve is presumed to agree

with the fringe-position rise of OE fringes described qualita-

tively in Section 3.2.2. In contrast to the case shown in Fig.

6(a), discontinuous phase changes of þ� and �� occur

alternately in the as-output �P;gðxÞ curve shown in Fig. 6(b)

for the BH fringes. Although an upward slope of the phase

curve is also seen in this case [see the corrected �P;gðxÞ curve

in the lowest graph], gradual rises in the curve position are

cancelled by sharp downward bends at the type-B correction

sites, to keep the phase curve broadly horizontal. If we want to

inquire further into the behaviours of �P;gðxÞ phase curves in

these two cases, the study of the curves of RAAgðxÞ and

RBBgðxÞ is necessary. However, it is omitted. So far, we have

described the OE and BH fringe patterns of moiré images as

representatives in the middle-magnitude domain of ��inc.

Roughly speaking, these two types of fringe patterns appear

alternately with an increase in ��inc in the range from about

0.400 to about 400. The type of fringe patterns produced changes

with ��inc. The frequency of occurrence of the two types

seems to depend on the crystal thicknesses t1 and t2. Images

where the two types of fringe patterns co-appear in such a way

that one type of fringe pattern is connected smoothly to

another type also appeared fairly frequently.

3.2.4. Low-contrast bands in the BH fringe pattern. Further

comments are made below on the BH fringe pattern in Figs.

5(c) and 6(b). At the positions of the type-B phase jumps in

Fig. 6(b), x ffi 2:2; 4:7; 8:3, the fringe contrast VgðxÞ locally falls

to produce a streak or band pattern, accompanying a sharp

bend in the fringe lines. Although similar low-contrast bands

can be seen in Figs. 5(b) and 6(a) for the OE fringe pattern, the

fringe bends are not so sharp in that case. As seen in the graph

in Fig. 6(b), sharp fringe bends occur where RAAgðxÞ ¼ 0 and

RBBgðxÞ approaches its maximum. Then, jRBBgðxÞj ’ 0, and

the fringe contrast VgðxÞ is minimized according to equation

(15). The graphs of the as-output and corrected �P;gðxÞ curves

are similar to those of the phase curves in Fig. I-9(a) for the

plane-wave image with which ‘abrupt fringe jump’ is

explained, although the wave form in the phase-curve oscil-

lation leans to the opposite side to the lean of the wave form in

the present phase curve in Fig. 6(b). The curves of RAAgðxÞ,

RBBgðxÞ and �P;gðxÞ in Fig. 6(b) correspond to the curves of

Agðr; uÞ, Bgðr; uÞ and �P;gðrÞ in Figs. I-9(a), respectively. On the

basis of this similarity, it is evident that the ‘low-contrast

bands’ in this paper are of the same origin as the ‘vertical
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Figure 6
Characteristic curves of the moiré images in Fig. 5. Graph (a) is related to
the moiré image (b) in Fig. 5, and graph (b) is related to the moiré image
(c) in Fig. 5. For further information see text.



bands of abrupt fringe jump’ for the plane-wave image in

Paper I.

The band patterns mentioned above are produced as a

result of oscillation with intensities RAAgðxÞ and RBBgðxÞ,

which were originally caused by the PL oscillation in the

crystals. The contour or fringe patterns caused by the PL

oscillation in the diffracted image of a curved crystal are called

bend-extinction or equal-inclination fringes (Hirsch et al.,

1965; Sugii et al., 1971). It is certain that the band pattern in

the present moiré images is of the same kind as this PL

oscillation-connected fringe pattern. From the computations

made so far, it is confirmed that the number of bands produced

is increased or decreased depending on the curvature strength

js1j or js2j. However, in the study for the case of tgap ¼ 0, which

is described in Section 1, it is observed that band patterns

disappear in moiré images with ��inc � 100, certainly due to

smoothing of the intensity oscillation. Nevertheless, the band

pattern in the moiré image in Fig. 5(c) is clearly observed even

with an angular width of ��inc ¼ 1:200. This disagreement is

considered to indicate that the band pattern in the integrated

moiré images with tgap 6¼ 0 is produced not only by the PL

oscillation, but also by a collaboration of the PL oscillation

and gap phase effect. In this respect the band pattern under

discussion is not entirely similar to the intrinsic equal-

inclination fringes. It is tentatively referred to as the low-

contrast band (LC band).

3.2.5. Other remarks. One more comment that should be

made on Figs. 5(c) and 6(b) is regarding the direction of lean

of the oscillation wave form in the fringe lines or the �P;gðxÞ

phase curve. In the phase curve in the plane-wave moiré

image, the oscillation wave form always leans to the left side,

as seen in Figs. I-8(a), (b) and Figs. I-9(a), (b). In the inte-

grated images the oscillation wave form in question also leans

to the left side as long as the angular width��inc remains very

small. An example of such a phase-curve oscillation wave form

is seen in Fig. 2(a), in the case of tgap = 0. This characteristic of

the leaning direction also holds in the case of tgap 6¼ 0.

However, as the value of ��inc increases, the oscillation wave

form leans to the right side, as seen in Fig. 4(a) and Fig. 6(b),

via a neutral symmetric form in a narrow range of ��inc. As

studied by the computation of moiré images and characteristic

phase curves, the oscillation wave form in the integrated

images when s2 > 0 seems to generally lean to the right side

except when ��inc is very small. The reason for this char-

acteristic is yet unknown.

With reference to the images in Figs. 5(b), 5(c), the moiré

images computed by changing the curvature value from s2 =

0.04500 mm�1 to s2 = �0.04500 mm�1 are shown in Figs. 7(a),

7(b); the other numerical conditions for this computation were

kept the same as in the case of Figs. 5(b), 5(c), though the

image in Fig. 7(a) was obtained with a slightly smaller value of

��inc than that for Fig. 5(b), in order to obtain the best image

(see figure captions of Figs. 5 and 7). In the OE fringes in Fig.

7(a) the fringe slope is observed to occur in the opposite

direction to that in Fig. 5(b) for s2 = 0.04500 mm�1. The slope

angle was �7.3� from the x axis in the direct measurement on

the image. In the BH fringes in Fig. 7(b) the wave form of the

fringe-line oscillation is observed to lean to the left side, unlike

that in the case of Fig. 5(c). From the study in some detail by

computation, the lean of the oscillation wave form was always

to this direction in the case of s2 < 0, except when ��inc was

very small.

3.3. Moiré images of bicrystals of t1 = t2 = 1.5 (lt1,2 = 2.193)

and t1 = t2 = 1.6 (lt1,2 = 2.339)

Examples of moiré images with t1 = t2 = 1.5 and t1 = t2 = 1.6

(tgap = 0.24) are shown in Figs. 8(a)–8(d). Similar to the case of

t1 = t2 = 0.8 and tgap = 0.24 in Section 3.2, the appearance of

images in this case when ��inc is small (��inc 	 0.1200) was

similar to that of the plane-wave image in Fig. I-10(a) where

fringe lines show a gentle oscillation. However, the oscillation

amplitude of the fringe lines was much smaller in this case

than those in the plane-wave image and in the integrated

image of t1 = t2 = 0.8, and therefore the fringes practically

looked like HS fringes. When the angular width ��inc was

increased to��inc � 0.1600, fringe lines came to show a clearly

discernible oscillation, with LC bands appearing in the image.

As described in Section 3.2, OE and BH fringe patterns

appeared roughly alternately with the increase in ��inc,

though in this case (t1 = t2 = 1.5) the BH fringe pattern seemed

to occur more predominantly than the OE fringe pattern. Fig.

8(a) shows a moiré image of the BH fringe pattern when��inc

= 0.3600, as an example in this domain of��inc. Compared with

the image with t1 = t2 = 0.8 in Fig. 5(c), the step-down (or step-

up) of fringe lines at LC band sites (x ’ 3.0, 8.6) becomes
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Figure 7
Moiré images computed under similar conditions to those of the two
images in Figs. 5(b) and 5(c), but with the curvature deformation of the
rear crystal reversed in sign, i.e. with s2 = �0.0450 0 mm�1. The image (a)
computed with ��inc = 1.040 0 in this figure is compared with the image in
Fig. 5(b), and the image (b) with ��inc = 1.200 0 is compared with the
image in Fig. 5(c).



smaller, owing to the increase in the crystal thicknesses. Of the

images presented in this paper, this image was computed

under the nearest condition to the previous experimental

moiré images [see Fig. I-1 in Paper I; further see Yoshimura

(1996, 1997)]. Two LC bands are observed in this image, while

three LC bands appeared in the experimental image with

nearly the same width in the x direction. This disagreement is

considered to be due to the fact that the employed values of t1,

t2 and s2 do not exactly agree with the values of the experi-

mental images. When a further moiré image was computed by

assuming that t1 = t2 = 1.6 and s2 = 0.0500 mm�1 (s1 = 0), the

number of LC bands in the resulting image agreed approxi-

mately with that in the experimental image.

When ��inc was increased to ��inc ’ 0.900, the resulting

moiré image was the one shown in Fig. 8(b). The moiré image

again became very close to the HS fringe pattern, with a

fringe-line oscillation of a very small amplitude and an almost

disappearing LC band pattern. The fringe pattern did not

change significantly from the one in Fig. 8(b) with further

increase in ��inc, though some exceptional images of low

contrast were produced at exceptional values of��inc such as

��inc = 1.000, 1.500 etc. With the gap width of tgap = 0.24 and the

crystal thicknesses of t1 = t2 = 1.5, the fringe contrast decreased

rapidly with increase in ��inc, and almost disappeared with

��inc ’ 1.500 (see fringe contrast diagram in Fig. 12).

As has been shown so far, the fringe contrast VgðxÞ varies in

an oscillating way with the x coordinate in the image, and also

varies in an oscillating way with the angular width ��inc; the

fringe pattern also varies with ��inc in an oscillating way

when��inc is in the middle-magnitude domain. In addition to

such dependences on x and ��inc, the fringe contrast and the

fringe pattern seem to vary in an oscillating way with the

crystal thicknesses t1 and t2, as seen from the results of this

trial simulation research. The variations in RAAgðxÞ, RBBgðxÞ

and �P;gðxÞ with t1 = t2 = 1.5 seem to be more gentle than with

t1 = t2 = 1.4 and t1 = t2 = 1.6. Figs. 8(c) and 8(d) show moiré

images with t1 = t2 = 1.6 as an example of the case where a clear

variation of fringe pattern continues up to a larger value of

��inc than in the case of t1 = t2 = 1.5. In Fig. 8(c), which is

compared with Fig. 8(b) with t1 = t2 = 1.5, an OE fringe pattern

is produced even with ��inc ’ 0.900. The fringe pattern

continued to vary with further increase in ��inc, and almost

settled to the pattern shown in Fig. 8(d) with ��inc � 1.500. It

may be noted that this fringe pattern is similar to that in Fig.

5(d) with t1 = t2 = 0.8, apart from the differences in the position

where LC bands occur and in the fringe contrast. The slope

angle of the fringes is about 3.5� in this case also.

3.4. Moiré images of bicrystals of t1 = t2 � 2.5 (lt1,2 � 3.655)

When the crystal thicknesses were increased from t1 = t2 =

1.5 and t1 = t2 = 1.6, the fringe patterns that were produced and

their variations with ��inc were basically analogous to the

results for t1 = t2 = 0.8, t1 = t2 = 1.5 and t1 = t2 = 1.6, until the

thickness was increased to t1 = t2 ’ 2.5. Figs. 9 and 10 show

examples of moiré images with t1 = t2 � 2.5 and graphs of the

characteristic curves concerned. Figs. 9(a) and 10(a) show,

respectively, a moiré image and the characteristic curves with

t1 = t2 = 2.0, to be compared with those with t1 = t2 � 2.5. The

LC bands and the fringe-line bends are still observed at the

positions x’ 1.8, 5.4, 9.0 (indicated by arrows), though the fall

in fringe contrast is considerably moderated. When the crystal

thicknesses were increased further, a similar aspect of the

produced fringe patterns continued up to t1 = t2 = 2.4.

However, with t1 = t2 ’ 2.5, the OE fringe patterns and BH

fringe patterns with LC bands disappeared almost completely,

and all the fringe patterns became of HS fringes as shown in
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Figure 8
Moiré images computed for bicrystal models of t1 = t2 = 1.5 and t1 = t2 =
1.6. The thicknesses of the component crystals and the incident-wave
angular widths for the computed images are as follows: (a) t1 = t2 = 1.5,
��inc = 0.360 0; (b) t1 = t2 = 1.5, ��inc = 0.900 0; (c) t1 = t2 = 1.6, ��inc =
0.900 0; (d) t1 = t2 = 1.6, ��inc = 1.500 0. Other numerical conditions for the
computation are the same as for Fig. 5.



Fig. 9(b), except for some exceptional cases. From the graph of

the characteristic curves in Fig. 10(b), it is seen that this

transition to HS fringes results from the convergence of

RAAgðxÞ and RBBgðxÞ to their respective finite values, unlike

the case of Figs. 1(c) and 2(c) with t1 = t2 = 0.8 and tgap = 0.

When the crystal thicknesses became t1 = t2 = 2.6, OE and

BH fringe patterns appeared again, though with weak LC

bands, for the reverse tendency in the dependence on the

crystal thicknesses as shown in Figs. 8(c) and 8(d). However,
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Figure 10
Characteristic curves of the moiré images in Fig. 9. Graphs (a), (b) and (c)
are related to the moiré images (a), (b) and (c), respectively, in Fig. 9. For
further information see text.

Figure 9
Moiré images computed for bicrystal models of t1 = t2 � 2. The
thicknesses of the component crystals and the incident-wave angular
width for the computed images are as follows: (a) t1 = t2 = 2.0, ��inc =
1.080 0; (b) t1 = t2 = 2.5,��inc = 0.900 0; (c) t1 = t2 = 3.0,��inc = 0.900 0; (d) t1 =
t2 = 3.0,��inc = 1.00 0. Other numerical conditions for the computation are
the same as for Fig. 5.



when the crystal thicknesses were further increased, the fringe

patterns produced again became of HS fringes as seen when t1
= t2 = 2.5. For the crystal thicknesses approximately t1 = t2 � 3,

the fringe patterns produced were always nearly of HS fringe

type, in spite of the increase in t1 and t2. This result indicates

that the minimum specimen thickness for obtaining a good

moiré image without disturbance from PL oscillation and

crystal strain is t1 = t2 ’ 3 (	t1 = 	t2 ’ 4.4). Figs. 9(c) and 10(c)

show, respectively, a moiré image with t1 = t2 ’ 3 and a graph

of the characteristic curves concerned. The values of the

angular width ��inc, with which the produced fringe patterns

were not of HS fringes, were ��inc = 0.500, 1.00 0, 1.500 etc. with

any value of t1 or t2. With these values of ��inc, the image

intensity and fringe contrast momentarily fell markedly, and

OE or BH fringe patterns appeared in a disordered manner in

a low-intensity image. Fig. 9(d) shows an example of such a

specific moiré image with t1 = t2 = 3.0 and ��inc = 1.000. The

reason for this specificity is as yet unknown.

3.5. Diffraction intensity curves for the presented moiré

images and wide-view diagram of the fringe contrast

variation

3.5.1. Curves of mean image intensity versus Dhm. Fig. 11

gives diffraction intensity curves that show the dependence of

the mean image intensity of moiré images on the mid devia-

tion angle ��m, for the moiré images presented in this paper

so far. The mean image intensity ½Ro;g0ðxÞ þ Rg;g0 ðxÞ� averaged

over the represented range of moiré images 0:3 	 x 	 11:5 is

plotted. The value of intensity is represented as the ratio of the

integrated image intensity to the total incident intensity

Iinc ���inc [see equations (12a), (12b)]. These intensity

curves would approximate well real rocking curves measured

experimentally. The curves (B)–(H) are related to the

presented moiré images as follows: (B) Figs. 1(b) and 3(a), (C)

Fig. 5(c), (E) Fig. 8(a), (F) Fig. 8(b) and (H) Fig. 9(b). These

intensity curves are the same for all values of tgap, including the

case of tgap = 0. This is because the factor tgap is not involved in

the functions Io;g0ðx; uÞ and Ig;g0 ðx; uÞ which are the integrands

in Ro;g0ðxÞ and Rg;g0 ðxÞ [see equations (I-22a,b)]. Furthermore,

the intensity curves do not depend on the value of ��, which

gives the spacing of moiré fringes (in the case of rotation

moiré), and are the same for all values of ��. The reason for

this is also that the factor �� is not involved in Io;g0ðx; uÞ and

Ig;g0 ðx; uÞ.

The curve (A) is the intensity curve when the curvature

deformation is not induced, i.e. s1 = s2 = 0, with t1 = t2 = 0.8.

Unlike the other curves (B)–(J), this curve has a symmetric

shape with respect to the coordinate origin ��m = 0. This

characteristic is understood as follows: though the integrand

functions Io;g0ðx; uÞ and Ig;g0 ðx; uÞ in Ro;g0ðxÞ and Rg;g0ðxÞ are

both asymmetric functions, the function ½Io;g0ðx; uÞ þ Ig;g0 ðx; uÞ�

becomes symmetric with respect to u, i.e. �� (u =

K�� sin 2�B), since the relationship Io;g0ðx; uÞ = Ig;g0 ðx;�uÞ

holds when ð�g1 � K̂KgÞ = ð�g � K̂KgÞ = ð�g � K̂KoÞ = 0 [i.e. ð�d=dÞ1
= ð�d=dÞ = 0, �!1 = �! = 0 (s1 = s = 0)] and �o = �g, t1 = t2.

When these conditions do not hold, even in part, the function

½Io;g0ðx; uÞ þ Ig;g0ðx; uÞ� becomes asymmetric. Based on this

understanding, it is considered to be due to the failure of the

condition s = 0 that the curves (B), (C) etc. are asymmetric as a

whole, with their peak positions slightly shifted to the low-

angle side. In fact, when the computation was performed on

the assumption that s< 0, or when the x position corre-

sponding to the centre of curvature was moved to the left side

with s> 0, the peak position of the intensity curves was

displaced to the high-angle side.

As to the half width (FWHM) of the intensity curves, that of

the curve (A) was ��hw = 2.1800, while the half width of the

intrinsic diffraction curve with no absorption is ��hw = 2.290 0.

The half widths of the other curves were as described in the

figure caption. The image intensity decreases fairly rapidly

with increase in the crystal thicknesses, due to the increased

absorption of X-rays. When the angular width ��inc is

increased, the peak of the intensity curves is lowered under

the present definition of diffracted intensity, while their half

widths increase. When��inc becomes larger than circa 200, the

increase in the half width with ��inc proceeds relatively

rapidly. The curve (J) (t1 = t2 = 2.5) is an example of a curve of

a large half width (��hw = 4.0100) with ��inc = 400. When t1
and t2 took values other than those in this case, intensity

curves with ��inc = 400 were also of a similar wide flat-top

shape but with a slight difference in the top height; this was

also the case when s1 = s2 = 0. Such shapes with a wide flat top

are rarely seen for X-ray rocking curves. The intensity curve
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Figure 11
Plots of the mean intensity of moiré images [Rog0 ðxÞ þ Rgg0 ðxÞ] versus the
mid deviation angle ��m. Numerical conditions for the computation are
as follows: curve (A) t1 = t2 = 0.8, ��inc = 0.50 0, s2 = 0; (B) t1 = t2 = 0.8,
��inc = 0.50 0; (C) t1 = t2 = 0.8,��inc = 1.20 0; (D) t1 = t2 = 0.8,��inc = 2.00 0;
(E) t1 = t2 = 1.5, ��inc = 0.360 0; (F) t1 = t2 = 1.5, ��inc = 0.90 0; (G) t1 = t2 =
1.5, ��inc = 2.00 0; (H) t1 = t2 = 2.5, ��inc = 0.90 0; (I) t1 = t2 = 2.5, ��inc =
2.00 0; (J) t1 = t2 = 2.5, ��inc = 4.00 0. The curvature strength of the rear
crystal was s2 = 0.0450 0 mm�1 for all the curves from (B) to (J). The half
widths (FWHM) of these intensity curves are: 2.180 0, 2.150 0, 2.550 0 and
2.790 0 in curves (A), (B), (C) and (D), respectively; 1.420 0, 1.570 0, 2.270 0 in
curves (E), (F) and (G), respectively; 1.060 0, 2.090 0, 4.010 0 in curves (H), (I)
and (J), respectively.



with ��inc = 1000, which is related to the moiré images in Figs.

1(c), 3(b) and 5(d), would be like a low-height horizontal line

if it is plotted in the same graph of Fig. 11.

3.5.2. Curves of mean fringe contrast versus DHinc. Fig. 12

shows the characteristic curves of the fringe contrast variation

with the angular width ��inc. Similar to the image intensity

curves in Fig. 11, fringe contrasts VgðxÞ averaged over the

represented range of moiré images 0:3 	 x 	 11:5 are plotted.

The curve (A) in the inset shows the variation of the fringe

contrast related to the moiré image when s1 = s2 = 0 with t1 = t2
= 0.8 and tgap = 0. The other curves (B), (D) etc. are related to

the moiré images presented so far as follows: (B) Fig. 1, (D)

Fig. 3, (F) Fig. 5, (G) Figs. 8(a), 8(b) and (H) Fig. 9(b) [s2 =

0.04500 mm�1 in all the curves of (B) to (J)]. These fringe

contrast curves change with the curvature values s1 and s2, but

do not change with the value of ��. The reason is that �� is

not involved in the expression of VgðxÞ in equation (15). While

it has been observed in Figs. 2, 4, 6 etc. that the fringe contrast

oscillates with the x coordinate in the image, the oscillation

with the ��inc value in the mean fringe contrast Vg is seen

understandably in this graph. The Vg oscillation occurs in the

domain of relatively small ��inc, and nearly converges in the

domain of ��inc � 200 (though a very weak oscillation

continues further). The curves of Vg variation gradually

descend with��inc, and almost settle to the given values. Like

the VgðxÞ oscillation with the x coordinate, the oscillation with

��inc in the mean fringe contrast Vg would also be related to

the oscillations in RAAgðxÞ and RBBgðxÞ, which arise from

the combined effect of the PL oscillation and gap phase

difference.

With the increase in the crystal thicknesses t1, t2 and the gap

width tgap, the curves of Vg variation descend rapidly with

increase in ��inc [curves (D)–(H)]. In the domain of small

��inc, the Vg curves oscillate with a large amplitude for a

small change in ��inc. In the case of t1 = t2 = 2.5 [curve (H)],

changes in the fringe contrast corresponding to the minima

and maxima of the Vg curve were recognized clearly among

the moiré images, although it was not so clear in the case of t1
= t2 = 1.5 [curve (G)]. It must be added that no other co-

occurring change was found in these moiré images, in spite of

the large, rapid change in the fringe contrast. By adjusting the

magnitude of ��inc, it would be possible to adjust the fringe

contrast in the obtained moiré images to a fair extent. This

would be useful knowledge when planning future moiré

experiments.

To expand on the case of low fringe contrast, the moiré

fringe pattern can be fairly well observed with the contrast

Vg � 0:01, so far as this computer-simulation study (256

graduations) is concerned, aside from the answer given by the

experiment. However, with Vg 	 0:005 [at ��inc ’ 1.000, 1.500

on the curves (G) and (H)] the fringe pattern became almost

invisible even in this simulation study. In the following we

assume that Vg = 0.01 is the visibility limit of the fringe pattern.

According to this graph in Fig. 12, the fringe contrast becomes

practically zero with ��inc � 200 in the integrated images with

t1 = t2 = 1.5 and t1 = t2 = 2.5 (tgap = 0.24). This gives an accurate

theoretical explanation for the known experimental fact that

the moiré image from a bicrystal specimen (tgap ’ 0.25) which

appears for the quasi-plane-wave incidence (��inc � 200)

becomes invisible in Lang traverse topography (��inc � 6000)

(though visible in section topography). Furthermore, the

graph in Fig. 12 suggests that the moiré image could be

observed with some fringe contrast even by Lang topography,

if the sample crystal was somewhat thinner than that

mentioned. In the results of the computation, the fringe

contrast was Vg = 0.015 with��inc = 600 0, when t1 = t2 = 0.8 and

tgap = 0.24 [curve (F)]. Additionally, when the gap width was

increased with the crystal thicknesses kept at t1 = t2 = 1.5, the

fringe contrasts obtained by the computation were Vg = 0.042

for tgap = 0.5, ��inc = 0.500, Vg = 0.026 for tgap = 0.5, ��inc =

1.000, and Vg = 0.021 for tgap = 1.0,��inc = 0.500. These estimates

suggest that moiré fringes can be observed even with large gap

widths if the angular width of the incident wave is suitably

narrowed.

Curves (I) and (J) (in the inset) show the Vg variation

curves with t1 = t2 = 1.5, tgap = 0 and with t1 = t2 = 2.5, tgap = 0 for

reference. The curves (G) and (H), which give a low fringe

contrast with tgap = 0.24, change to such curves as above, giving

a high fringe contrast with tgap = 0. In these cases, while the

image intensity [Ro;g0ðxÞ þ Rg;g0 ðxÞ] is decreased considerably,

the fringe contrast Vg is increased greatly.

4. Concluding remarks

(i) As described above, in connection with the question of

what type of moiré images are given by the X-ray moiré-fringe

theory in Paper I when practical experimental conditions are
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Figure 12
Plots of the mean fringe contrast of computed moiré images versus the
incident-wave angular width ��inc. Numerical conditions for the
computation are as follows: curve (A) t1 = t2 = 0.8, tgap = 0.0, s2 = 0; (B)
t1 = t2 = 0.8, tgap = 0.0; (C) t1 = t2 = 0.8, tgap = 0.02; (D) t1 = t2 = 0.8, tgap =
0.05; (E) t1 = t2 = 0.8, tgap = 0.2; (F) t1 = t2 = 0.8, tgap = 0.24; (G) t1 = t2 = 1.5,
tgap = 0.24; (H) t1 = t2 = 2.5, tgap = 0.24; (I) t1 = t2 = 1.5, tgap = 0.0; (J) t1 = t2 =
2.5, tgap = 0.0. The curvature strength of the rear crystal was s2 =
0.0450 0 mm�1 for all the curves from (B) to (J).



applied, we have simulation-computed and observed many

integrated moiré images for an assumed bicrystal specimen;

this was done by changing the crystal thicknesses and incident-

wave angular width over a wide range, and by setting the width

of the interspacing gap to different values. It was shown that

the interference pattern of intrinsic moiré images is consid-

erably modified by the combined effect of PL oscillation and

gap phase difference, related to the effect of strain in the

specimen. As examples of such modified and peculiar fringe

patterns in the integrated images, the OE fringe pattern and

BH fringe pattern were observed. While the BH fringe pattern

has been observed in previous experiments, occurrence of the

OE fringe pattern in this study is quite a new finding. The

experimental verification of it is hoped to be performed in the

near future. Furthermore, not only the images of this newly

found fringe pattern, but also all the moiré images shown by

the present computations are hoped to be really observed and

verified in future experiments, although there is no particular

question on the correctness of the computed images..

(ii) This theory of moiré fringes was developed by assuming

a gapped bicrystal as the specimen for moiré images. It is

related to previous experimental studies by the author (e.g.

Yoshimura, 1996, 1997), where gapped bicrystals were used as

the specimen. However, studies of X-ray moiré fringes are

made mainly using an X-ray interferometer at present, and

therefore this theory of moiré fringes should be extended so as

to be applicable for interferometer moiré fringes. Never-

theless, the description in this paper has been made with the

intention of understanding fully the properties of bicrystal

moiré fringes. As a result of such moiré-fringe study, the

relationship of fringe contrast versus angular width of the

incident wave was extensively studied as shown in the graph in

Fig. 12. As a discussion of this graph, the lower limits of the

visibility of bicrystal moiré fringes were described, and it was

suggested that if the angular width of the incident wave is

narrowed sufficiently, moiré fringes could be observed even

with a gap width of 0.5, 1.0 or more (mm). This result would be

worthy of attention although its validity must be further

studied by experiment. To the best of the author’s knowledge,

this theory of moiré fringes would be the first theory applic-

able to the exact and detailed theoretical understanding of

moiré images observed in experiments. Though the topic of

X-ray moiré fringes does not attract much interest at present,

the theory could be useful for future studies of diffraction

moiré fringes, and for the development of related techniques.
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