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Abstract: A theoretical algorithm by united Lagrangian-Eulerian method for the problem in dealing with viscous fluid 

and a circular cylindrical shell is presented. In this approach, each material is described in its preferred reference frame. 

Fluid flows are given in Eulerian coordinates whereas the elastic circular cylindrical shell is treated in a Lagrangian 

framework. The fluid velocity in a two-dimensional uniform elastic circular cylindrical shell filled with viscous fluid is 

studied under the assumption of low Reynolds number. The coupling between the viscous fluid and the elastic circular 

cylindrical shell shows kinematic conditions at the shell surface. Also, the radial velocity and axial velocity of the fluid 

are discussed with the help of graphs. 
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1. INTRODUCTION 

 This paper deals with the mathematical analysis of 
problem for viscous fluid and a circular cylindrical shell by a 
new theoretical method. These phenomena are of major 
importance for aerospace, ocean engineering, mechanical or 
biomedical applications, etc. and thus have been studied by 
many authors over the past few years [1-4]. The situation has 
mainly been analysed by numerical methods [5, 6]. Our 
focus is the velocity of the fluid when the elastic circular 
cylindrical shell filled with viscous fluid vibrates. 

 Typically, the viscous fluid and a circular cylindrical 
shell are given in different coordinate systems making a 
common solution. Fluid flows are given in Eulerian 
coordinates whereas the circular cylindrical shell is treated in 
a Lagrangian framework. United Lagrangian-Eulerian 
method is used to present the flow velocity of a viscous and 
incompressible fluid in a circular cylindrical shell. It is a new 
method of where fluid and circular cylindrical shell 
equations are given in their preferred reference frames. 
Coupling between the fluid and the circular cylindrical shell 
domains represents kinematic conditions at the shell surface. 

The two-dimensional problem is that of an elastic circular 
cylindrical shell in which waves of lateral displacement are 
propagated. 

2. BASIC EQUATIONS FOR VISCOUS FLUID 

 In this study, the analysis of the fluid velocity of an 

incompressible viscous fluid in a complete circular 

cylindrical shell of radius R is conducted. The shell is 

horizontal. In order to describe the geometry of the shell, a  
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cylindrical coordinates system (O;r,! ,z)  is considered, 

where O  is the origin placed at the centre of the shell, r  is 

the radial and z  is the axial coordinate. The displacement 

field of the middle surface of the shell is given by the 

following components: u
r
, u

!
 and u

z
; in the radial, 

circumferential and axial directions, respectively. 

 In cylindrical coordinates system, the Navier-Stokes 

equations of incompressible viscous fluid can be expressed 

as 
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where µ  is the coefficient of viscosity, !  is the mass 

density of the fluid, p  is the pressure, v
r
, v

!
and v

z
 are the 

projections of the velocity vector, F
r

, F
!

 and F
z

 are the 

projections of the unit mass force vector, t  is time. In 

equations (1), the operators are defined as 
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 The Navier-Stokes equations of incompressible viscous 
fluid are almost equal to the Stokes equations under the 
assumption of low Reynolds number. The Stokes equations 
can be written as 
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 The continuity equation for the viscous fluid can be 
described as 

1
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3. UNITED LAGRANGIAN-EULERIAN METHOD 

 The fixed point m  on the shell surface coincides with the 

space point M at t = 0  whereas m  coincides with the space 

point M
!

 at t > 0 . Adhesion condition for viscous fluid can 

be simplified as [7] 

V =
!u

!t
  (4) 

where u is the displacement vector of the fixed point m , V  

is velocity vector of space point M
!

. 

 Dynamic condition is 

Z = p3 ! p3
'

  (5) 

where p3  and p3
'

 are the pressures in different directions at 

the space point M
!

, Z  is the force vector. In the cylindrical 

coordinate, V
m

 can be expressed as 
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where V
m
(m = r,! ,z)  are the projections of the velocity at 

the space point M
!

. v
m

 (m = r,! ,z)  are the projections of 

the velocity at the space point M . Taking into account the 

minor deformation of the shell, the third item of Taylor 

expansions will not be considered. 

 Expression (4) can be written as 
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where V
r

, V
!

 and V
z

 can be obtained from equation (6). 

4. VELOCITY OF FLUID 

 In order to simplify the analysis,  only an infinite length 
circular cylindrical shell was considered. The waving surface 
of the circular cylindrical shell is is represented by: 

u
r
= bsin !z "#t( ) , u

z
= 0   (8) 

where ! = 2" / # , ! = c" , b  is the amplitude of the 

traveling wave, !  is the wavelength, c  is the velocity of the 

wave. 

 Considering the Reynolds number Re <<1, the Stokes 

equations in two dimensions can be written as 
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 The continuity equation of the incompressible viscous 
fluid can be described as 
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 The stream function !  satisfies the conditions 
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 The kinematic conditions can be written as 
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 Thus the following expressions for !  can be written 
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 Making use of equations (9), (10) and (11), expression 

for stream function !  can be written as 
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 The solution of the equation (13) is 
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where I
0
n!r( ) , I

1
n!r( )  are the Bessel functions of the 

first kind [8]. 

 The solutions of the Bessel equation x
2
y
"
+ xy

'
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x
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2( )y = 0  v ! 0( )  is v  order Bessel function. A special 

solution of Bessel function can be written as 
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 This is v  order Bessel function of the first kind. We get 
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 Substituting the equations (8) and (14) into (12), the 
following expressions can be written as 
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 Because of z  arbitrary, the following expressions can be 

written 
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 The following expressions for r = R  and N = 2 can be 

written 
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 The solutions of the set of equations (15)-(18) are 
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 The following expressions for v
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 and v
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 can be written 

as 
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5. NUMERICAL RESULTS AND DISCUSSIONS 

 In this section, numerical examples are presented. The 

test circular cylindrical shell and fluid flow have the 

following characteristics: c = 8.5 m/s, ! = 6" rad/s, 

R = 0.005m. The results are shown in Figs. (1-6). 

 Figs. (1-3) illustrate the fluid velocity V
z

from united 

Lagrangian-Eulerian method. Fig. (3) displays the variation 

of V
z

 for several sets of values of the parameters 

! , c, R, r and z (see also Table 1). Moreover, Fig. (3) shows 

that fluid velocity V
z

 increases with an increase in 

! , R and r . However, it decreases with an increase in c. 

 Figs. (4-6) illustrate the fluid velocity V
r

. Fig. (6) shows 

that the fluid velocity V
r

 and V
z

 have the same rules (see 

also Table 1). However, the positive and negative values of 

fluid velocity V
r

 are asymmetrical. 

 

Fig. (1). Fluid velocity V
z

 at z = 0m. 

 

Fig. (2). Fluid velocity V
z

 at r = 0.9R.  

 

Fig. (3). Fluid velocity V
z
.  

 

Fig. (4). Fluid velocity V
r

 at z = 0m. 
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Fig. (5). Fluid Velocity V
r

 at r = 0.9R.  

 

Fig. (6). Fluid Velocity V
r
.  

 It is seen that a stagnation point exists where V = 0   and 

the point r = 0  in the circular cylindrical shell. A maximum 

velocity would exist near the surface of the circular 

cylindrical shell and the fluid. The fluid velocity is 

independent of the coefficient of viscosity. This result 

qualitatively agrees with the conclusions of the reference [9]. 

 

 

Table 1. Sets of parametric values for Figs. (3, 6). 

 

 
ω  

(rad/s) 
c (m/s) R (m) r (m) z (m) 

I 6π 8.5 0.005 0.0045 0 

II 8π 8.5 0.005 0.0045 0 

III 6π 20 0.005 0.0045 0 

IV 6π 8.5 0.007 0.0045 0 

V 6π 8.5 0.005 0.0025 0 

VI 6π 8.5 0.005 0.0045 0.5 
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