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1 Introduction

A first-order phase transition in the early universe gives rise to a stochastic gravitational
wave background (SGWB) which may be observable today.1 As a consequence, upcoming
gravitational wave experiments open a new window into particle physics phenomenology
in the early universe. The frequency window of space-based interferometer experiments,
such as LISA, may probe the nature of the electroweak phase transition which typically
produce a gravitational wave background peaking in the mHz range [5, 6]. A first-order
electroweak phase transition is motivated in particular by the baryon asymmetry of the
universe (BAU), as it provides the necessary departure from equilibrium [7, 8]. Although
state of the art calculations of the Standard Model (SM) indicate a crossover transition [9–
13], it is straightforward to extend it by new scalar fields [14–24] or effective operators [25–
27] to catalyse a strong first-order electroweak phase transition (EWPT).2 Aside from
the electroweak transition, hidden sectors can have dark transitions [38–43], which could
provide a unique window on a dark sector, which only interacts gravitationally.

In order to accurately predict the SGWB in any of these models, one requires a ro-
bust mapping between the observables and Lagrangian parameters. This problem can
be partitioned in two [6, 39]: the mapping between Lagrangian parameters and thermal
parameters; and the mapping between thermal parameters and the SGWB, in particular
its peak frequency and amplitude. Only if both these mappings are well understood, can
the SGWB serve as complimentary to other probes, such as collider experiments [44–46]
and direct detection experiments [47, 48]. In some cases, the reach of a detector such as
LISA may even improve collider constraints on effective operators compared to collider
upgrades [27]. However, to reach such precision, the theoretical uncertainties associated
with the SGWB predictions need to be under control. With these motivations in mind,
this paper will study the theoretical uncertainties for different methods of calculating the
thermal parameters of a phase transition.

As has long been recognised, at high temperatures the long-wavelength modes of bosons
become strongly coupled [49]. This thwarts the usual perturbative expansion. (At least)
two different approaches to resumming perturbation theory have been developed to amelio-
rate this problem at high-T : daisy resummation and dimensional reduction. We compare
and contrast these two approaches, estimating the numerical magnitude of theoretical un-
certainties.

It was realised early on [50, 51] that the so called daisy diagrams cause the largest in-
frared contributions, and should be resummed. Concrete resummation methods were devel-
oped and utilised to two-loop order. Dubbed the Parwani [52] and the Arnold-Espinosa [53]
resummations, these approaches differ in details though are methodologically similar. The
Parwani resummation method allows for a smooth transition to the correct low-T be-
haviour, but generates unphysical linear terms in the potential which shifts the symmetric

1For recent reviews, see refs. [1–4].
2Some more exotic possibilities are a multistep transition [28–30], monopoles in the early universe [31],

modified couplings in the early universe [32, 33], utilising the QCD transition [34–36] and utilising vector-like

fermions [37].
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minimum away from the origin [54, 55]. The Arnold-Espinosa resummation method avoids
unphysical linear terms, though by only screening the IR bosonic modes, it fails at suffi-
ciently low temperatures. Various attempts to go beyond these leading contributions, and
to resum so called super-daisy diagrams were made (see for example ref. [56] and references
therein), though we do not consider these approaches here. Similarly, we defer comparisons
to hard thermal loop perturbation theory to future investigations [57].

The idea of dimensional reduction is clearest in the Matsubara formalism. Therein,
the equilibrium properties of 4-dimensional QFTs at nonzero temperature, T , are described
by fields living on R

3 × S1
β with the radius of the circle equal to β = 1/T . Phenomena on

length scales much longer than 1/T do not see the compact direction, and hence should
be describable by a purely 3-dimensional effective field theory. As a concrete method
for resummation of perturbation theory, this idea dates back to the 1980s [58–61]. The
1990s revived this approach [62–65], developed a simpler method to derive the effective
coupling constants of the 3d theory and laid down a generic recipe. An important further
development was the use of lattice Monte-Carlo simulations to study the 3d effective the-
ory [9, 11, 66], which led to the discovery that the electroweak transition in the Standard
Model is a crossover [10]. In this work we do not discuss lattice simulations in detail, being
mostly interested in theoretical uncertainties of perturbation theory.

A first-order EWPT requires physics beyond the SM (BSM), in particular new Higgs
interactions. If the particles responsible for these new interactions are significantly heavier
than the electroweak scale, it should be possible to integrate them out at T = 0. The re-
sulting effective theory contains all possible operators of the SM, with higher-dimensional
operators suppressed by the heavy scale of these new interactions. This is the SM effective
field theory (SMEFT) [67, 68]. When truncated at dimension-six and keeping to 3rd gener-
ation fermions, it contains an additional 60 independent operators. However, as we are only
interested in the electroweak phase transition, which takes place due to symmetry breaking
in the Higgs sector, we will restrict ourselves to considerations of the single effective operator

O6 =
1
M2

(
φ†φ

)3
, (1.1)

where φ is the SM Higgs doublet.3 Such a dimension-six operator may imply a potential
barrier between symmetric and broken phases even before considering loop corrections. In
particular, a first-order phase transition can be triggered by a relatively small dimension-six
coefficient and negative quartic coupling. However, the additional operator O6 is merely
one of many in a complete basis for the SMEFT. Derivative couplings with kinetic and
gauge covariant terms (cf. refs. [67, 68, 74, 75]) make themselves felt at higher energies and
can additionally affect the EWPT. Since O6 is arguably the dominant higher-dimensional
operator in composite Higgs scenarios [26], and expected to dominate in scenarios with
extended scalar sectors and large portal couplings, we refrain from considering the full
SMEFT basis. This does not change the qualitative scope of our analysis.

The phase transition in this effective field theory was studied previously, in refs. [25–
27, 76, 77] (see also ref. [78]). These works adopted the daisy-resummed approach with and

3Note that SMEFT is frequently used in this way in the literature [25–27, 33, 69–73].
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without a high-temperature approximation. It was found that as the cut-off scale M is low-
ered, the EWPT strengthens, and both the critical temperature and nucleation temperature
decrease. At sufficiently small M . 650 GeV, the transition is strong enough to be observ-
able at near-future gravitational wave experiments [27, 77]. For M . 550 GeV, the bubble
nucleation rate never exceeds the Hubble rate and the phase transition never completes.

The strength of the transition is dictated by the single tunable parameter, M . This
makes a convenient model to study theoretical uncertainties, the focus of this article. It is
also significant to note that as one varies M , the thermodynamics of the phase transition in
this SMEFT qualitatively reproduces that of single-step transitions in scalar extensions of
the SM, such as the two-Higgs doublet model (see e.g. figures (5) and (7) in ref. [6]). How-
ever, we will not be concerned with the validity of the SMEFT, or the minimal truncation
that we consider, for describing any particular extension of the SM.

To date, many studies have examined the reliability of perturbation theory for first-
order phase transitions, recent examples include refs. [4, 20, 24, 55, 56, 77, 79–87].
Previously the daisy-resummed and dimensionally-reduced approaches were compared in
refs. [24, 86, 88], which also include comparisons to lattice simulations. In this paper, we
go beyond such previous studies by carrying out a comprehensive study of a wide range
of different theoretical uncertainties relevant for these two approaches, focusing on the
implications for the gravitational wave spectrum.

By way of example, figure 1 shows results for the generated gravitational wave spectrum
calculated in the daisy-resummed approach with parameters matched at the Z-pole. The
calculations are performed for two different renormalisation scales, µ4 = T/2 and 2πT .4

Because any dependence on the renormalisation scale is unphysical, the width of the band
in figure 1 estimates a corresponding theoretical uncertainty. The theoretical uncertainty
is multiple orders of magnitude such that the sensitivity of LISA to this parameter point
is completely ambiguous.

Later, we will show that when one includes the running of such parameters in the daisy-
resummed approach, the scale dependence of the gravitational wave peak amplitude reduces
by about an order of magnitude. This compares well both analytically and numerically to
the same calculation performed using dimensional reduction at one-loop level. However,
there is a systematic difference due to the breakdown of the gradient expansion in the
daisy-resummed approach in the calculation of the nucleation rate.

In dimensional reduction, the inclusion of next-to-leading order terms is comparatively
amenable, and somewhat standard. These terms are essential for fractional uncertainties for
many thermodynamic observables to be perturbatively small [65]. Further, these terms are
precisely what is needed to cancel the leading renormalisation scale dependence. However,
the proof really is in the pudding: by explicit calculation, we find that, with the inclusion
of these next-to-leading order terms, the theoretical uncertainties in the dimensionally-
reduced approach are numerically much smaller than in the daisy-resummed approach.

4Here, unlike in later sections, we neglect the renormalisation group running of the MS-parameters, a

common shortcut taken in the literature.
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Figure 1. A common method of calculating the thermal parameters of a phase transitions is very
sensitive to the choice of renormalisation scale. Here we show this dependence in the popular daisy-
resummed “4d approach” for a benchmark point of our SMEFT defined by eq. (1.1), without the
renormalisation group (RG) running of couplings. The LISA signal-to-noise ratios are 6 and 210
for the renormalisation scales µ̄ = T/2 and 2πT respectively, for the calculation of which we have
used PTPlot [6] and assumed a three year mission profile.

The outline of this paper is as follows. Section 2 outlines and compares the daisy-
resummed and dimensionally-reduced approaches at a theoretical level. Daisy resummation
is introduced in section 2.1, and the recipe used to calculate thermodynamic quantities is
given in section 2.1.2. Following this, section 2.2 shows how higher order resummations
are incorporated by dimensional reduction, giving an explicit comparison of the effective
potentials as series expansions in the couplings. In section 2.2.2 we give the recipe used to
calculate thermodynamic quantities in the dimensionally-reduced approach, including an
overview of the ~-expansion.

In section 3, we show explicit numerical comparisons of different theoretical uncer-
tainties. In particular, we study the importance of scale dependence in section 3.1, gauge
dependence in section 3.2, the high-temperature approximation in section 3.3, higher loop
orders in section 3.4 and corrections to bubble nucleation in section 3.5. In section 3.6 we
also gather existing nonperturbative estimates of the effect of the breakdown of perturba-
tion theory.

Finally, section 4 summarises our findings and discusses their consequences for the pre-
dicted gravitational wave signal. We have endeavoured to make the main of the document
intellectually self-contained, though some topics and many detailed results have been trans-
ferred to the appendices. Appendix A presents the purely 4d parts of our calculations for
the SMEFT. Appendix B provides a hands-on introduction to dimensional reduction, fol-
lowed by the details of our calculation within the 3d approach for the SMEFT. Appendix C
discusses various approximations to the nucleation prefactor in-depth.
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2 Thermodynamics of the phase transition

In studying the thermodynamics of the phase transition, we calculate four thermodynamic
parameters that play an important role in the SGWB: the critical temperature Tc, the
percolation temperature, Tp, the inverse duration of the phase transition, β/Hp, and the
strength of the phase transition, α. In the following, they are defined independently of the
methods to calculate them.

The critical temperature for a first-order phase transition defines the temperature at
which the free energy of both phases are equal. For homogeneous phases, the free energy
density is equal to the effective potential.

To define the percolation temperature, requires first discussing the rate per-unit-
volume at which bubbles of the broken phase are nucleated. For first-order phase transitions
on cosmological timescales, the bubble nucleation rate takes an exponential, or semiclassi-
cal, form,

Γ = Ae−Sc . (2.1)

Here A is the nucleation prefactor and Sc is the Euclidean action of the critical bubble, or
bounce. For a thermal transition this is the Boltzmann suppression Sc = Ec/T [89, 90],
which we assume throughout. To calculate the nucleation rate from first principles, one
can start from the semiclassical result [91, 92],

Γ =
ωc

πV
ImZ[φc]
Z[0]

. (2.2)

Here Z[φc] is the contribution to the partition function from the region around the critical
bubble, φc, suitably analytically continued [91]. And Z[0] is the contribution from the
region around the high-temperature phase, or false vacuum. The factor V is the volume
of space and ωc is a real-time frequency which gives the inverse decay time of the critical
bubble.

The percolation temperature, Tp, is taken to be the temperature for which a fraction
1−1/e ≈ 0.63 of the universe has transitioned to the broken phase, following the conventions
of refs. [6, 93]. In terms of the action of the critical bubble, this condition can be written as

Sc ≈ 131 + ln

(

A

T 4
p

)

− 4 ln
(

Tp
100 GeV

)

− 4 ln
(
β/Hp

100

)

+ 3 ln(vw) , (2.3)

where β is the inverse time scale of the transition

β

Hp
= Tp

dSc

dT

∣
∣
∣
∣
Tp

. (2.4)

For strongly supercooled transitions, the second derivative of the tunnelling action can
modify the relation between the tunneling action and the inverse time scale of the transi-
tion [94, 95]. However, we wish to focus on the theoretical uncertainties arising from using
finite temperature quantum field theory perturbatively in estimating the gravitational
wave spectrum. The uncertainties arising from other steps in calculating the gravitational
wave observables, including an accurate calculation of the mean bubble separation and a
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precise treatment of the hydrodynamics we leave to future work. Note that we do not cal-
culate the wall velocity, vw, as it requires a real-time calculation which is beyond the scope
of this article. We discard the last term in eq. (2.3), noting that corrections due to the
wall velocity will have small numerical impact on our results as long as vw = O(1) which
becomes more likely for stronger phase transitions and even for moderately weak phase
transitions, especially if there are no BSM light particles to generate additional friction.

Finally, the appropriate measure of the strength of the transition, α, consistent with
the conventions of refs. [96, 97], is determined by the difference in the trace anomaly, Θ,
between the two phases,

α =
∆Θ
ρrad

∣
∣
∣
∣
Tp

, ∆Θ = −∆V +
1
4

d∆V
d lnT

, (2.5)

evaluated at the percolation temperature. Here V denotes the effective potential of the
theory and ∆ denotes the difference between the broken and symmetric phases. The
numerator, ρrad is the radiation density of the high-temperature phase, equal to 3/4 of the
enthalpy of that phase,

ρrad =
π2

30
g∗T

4 . (2.6)

We take the effective number of relativistic degrees of freedom g∗ = 106.75, equal to its
high-T Standard Model value throughout (without e.g. right-handed neutrinos). A recent
work [98] reappraised the correct definition of α, and proposed a generalisation of eq. (2.5).
In this article we adopt eq. (2.5) throughout, justified because we focus on quantum field
theoretical uncertainties which will be present regardless of the precise definition of α.

Concrete calculations will be carried out in the simplest SMEFT truncation. Its La-
grangian includes the gauge, fermion and Yukawa parts of the Standard Model, and extends
the Higgs sector by the single additional operator (1.1),

LSMEFT = Lgauge + Lfermion + LYukawa + LHiggs , (2.7)

LHiggs =
1
2

(Dµφ)† (Dµφ) − V0(φ) , (2.8)

Vtree(φ) = µ2
h φ

†φ+ λ (φ†φ)2 +
1
M2

(φ†φ)3 . (2.9)

These parts, the covariant derivatives Dµ, the gauge fields with corresponding field strength
tensors, the associated gauge couplings, and ghosts follow the conventions of ref. [99]. In
the following, we will also use c6 ≡ 1/M2 for the coefficient of the higher dimensional
operator, as it is more convenient to work with c6 when carrying out Feynman diagrammatic
calculations, but M , being related to the energy scale of new physics, aids intuition. For
experimentally measured physical parameters we will use the central values presented in
table 1 throughout the paper, taken from ref. [100]. Our perturbative calculations use the
MS-scheme for renormalisation, with the 4-dimensional renormalisation scale denoted by
µ̄. We match experimental results to MS-parameters at 1-loop order, matching pole masses
using the full 1-loop self-energies. This includes momentum-dependent terms additional to
those from evaluating the second derivative of the 1-loop effective potential at the minimum.

– 7 –
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MS-Parameter Observables Central Value

µ2
h Gf Gf = 1.1664 × 10−5 GeV−2

λ Mh Mh = 125.10 GeV

g MW MW = 80.379 GeV

g′ MZ MZ = 91.188 GeV

gs Various αs(MZ) = 0.1179

gY Mt Mt = 172.9 GeV

Table 1. Experimental values for observables from ref. [100]. Observables and MS-parameters
are matched at one-loop order, at the input scale µ̄ = MZ with details of the matching relations
collected in appendix A.1. Multiple observables are involved in calculating a global average of the
strong coupling constant gs.

2.1 The 4d approach: daisy-resummation

The effective potential (the free energy density) encodes the equilibrium properties of a
phase transition, such as its character (or order), critical temperature and latent heat.
While it is possible to compute the effective potential in perturbation theory, the pertur-
bative expansion at high temperatures suffers from problems at low energies. This is Linde’s
infamous Infrared Problem [49]. Namely, at high temperatures infrared bosonic modes be-
come highly occupied, enhancing the effective loop expansion parameter for modes with
energy E ≪ T ,

g2 → g2nB(E, T ) =
g2

eE/T − 1
≈ g2T

E
≥ g2T

m
, (2.10)

where nB is Bose-Einstein distribution and m is mass of the bosonic mode. At sufficiently
high temperatures comparable to m/g2, the infrared bosonic modes become strongly cou-
pled. Furthermore, infrared divergences appear at finite loop order: at four-loop order for
the effective potential [49]. This means that although the electroweak theory is weakly cou-
pled at zero temperature, massless bosonic modes are nonperturbative at high temperatures
and should be treated with appropriate (lattice) techniques. However, it is still possible —

and economical — to use perturbation theory as a first approximation in studies of phase

transitions.5 For this reason, this section pedagogically describes a recipe for the purely

perturbative analysis of cosmological phase transitions. In particular, it describes how to

consistently perform resummations to mitigate the Infrared Problem. We also comment on

how to find a nonperturbative solution, after resummations are performed perturbatively

in an infrared safe manner.

2.1.1 Resummation at leading order

We use dimensional regularisation inD = d+1 = 4−2ǫ dimensions and the MS-scheme with

renormalisation scale µ̄. We define the notation P ≡ (ωn,p) for Euclidean four-momenta

5Furthermore, in theories with chiral fermions, perturbation theory is required to integrate these out in

order to perform lattice simulations for the nonperturbative bosonic fields.
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where the bosonic Matsubara frequency is ωn = 2πnT and

∑
∫

P

≡ T
∑

ωn

∫

p
,

∫

p
≡
(
µ̄2eγE

4π

)ǫ ∫ ddp
(2π)d

, (2.11)

∑
∫ ′

P

≡ T
∑

ωn 6=0

∫

p
, nB/F(Ep, T ) ≡ 1

eEp/T ∓ 1
. (2.12)

This last definition is the Bose(Fermi)-distribution with Ep =
√

p2 +m2. In addition, we

parametrise the perturbative expansion in terms of the weak gauge coupling, g, and assume

the usual power counting for the other coupling constants [65]

g′2 ∼ g2
Y ∼ λ ∼ g2 ,

c6 ∼ g4/Λ2 , (2.13)

so that the loop expansion and the expansion in powers of g2 are equivalent at zero tem-

perature. Due to the nonrenormalisability of the c6 term, that relation contains an explicit

energy scale, denoted by Λ, which should be typical of the low energy SMEFT.

As an illustrative starting point, let us consider the one-loop correction to the two-

point correlator at high temperature. This contributes to the 1-loop thermal mass of the

Higgs field zero-mode. For a scalar field with MS-mass parameter m2, this correction is of

the form (dropping overall symmetry and coupling constant factors)

= I4b
1 (m) ≡ ∑

∫

P

1
P 2 +m2

=
(
µ̄2eγE

4π

)ǫ ∫ dDp
(2π)D

1
p2 +m2

︸ ︷︷ ︸

≡I4
1 (m)

+
∫

p

nB(Ep, T )
Ep

︸ ︷︷ ︸

IT
1 (m)

. (2.14)

Where I4
1 (m) is the UV divergent zero-temperature piece and IT

1 (m) is the UV finite but IR

sensitive finite-T piece. It is this last temperature-dependent term that leads to problems

in the infrared. In order to see this, it is more useful to write this integral in the form

I4b
1 (m) =

∫

p

T

p2 +m2

︸ ︷︷ ︸

≡Isoft(m)

+
∑
∫ ′

P

1
P 2 +m2

︸ ︷︷ ︸

Ihard(m)

, (2.15)

separating the soft zero-mode from the hard non-zero Matsubara modes. In fact, at high

temperature m/T ∼ g (note that this choice merely parametrises the high-T limit), the

mass of the zero-mode scales as ∼ gT while all non-zero modes exceed this, with masses of

∼ πT — this signals a scale hierarchy.

Therefore, in the high-T limit, non-zero mode excitations of the thermal plasma

effectively screen the zero mode. The zero mode acquires an effective thermal mass

m2
T = m2 + #g2T 2, where the numerical coefficients, denoted generically by #, depend on

the group structure and representation of the fields in question. Physically this thermal

mass arises as a screening mass due to the heat bath. Since m2 can be negative, thermal
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corrections can trigger a phase transition around where they cancel the zero-temperature

contribution, i.e. when the effective mass of the zero-mode becomes ultrasoft (we will ex-

pand upon this point later).

Similarly, the gauge field zero-mode is also screened by non-zero modes. Since it is

massless in the symmetric phase (or gauge eigenstate basis), its thermal mass is solely

dictated by the hard modes and reads mD = #gT . This thermally induced mass is called

the gauge field Debye mass, in analogy to Debye screening of the electric plasma. In

appendix B.1 we show the calculation of these thermal masses in detail.

The infrared problem manifests itself when considering higher loop contributions, the

so-called daisy diagrams

N

∝ g2N

[
∫

p

T

(p2 +m2
T )N

][

∑
∫ ′

Q

1
Q2

]N

∝ m3
TT

(
gT

mT

)2N

, (2.16)

where we have omitted an overall combinatorial factor and replaced λ by g2 according to

its assumed scaling. In these diagrams the hard mode contributions (double dashed lines)

screen soft zero-modes (single dashed lines). When the inner loop of eq. (2.16) is a zero-

mode, i.e. has a soft momenta P = (0,p) and allN outer loops or petals have hard momenta

Q with non-vanishing Matsubara frequencies, this contribution is of order O(g3) for any

N . Furthermore, it is IR-divergent for N ≥ 2 in the limit of vanishing mass. For scalar

fields and zero-components of gauge fields this IR-problem can be partially cured. The

recipe is called daisy resummation. One must first calculate the thermal corrections from

the non-zero modes to find the corrected mass of the zero-mode. Then, in computing the

contributions of the zero-mode, its mass is upgraded to the thermally corrected mass mT .

The following subsection describes this prescription in more detail.

Now, we turn to the effective potential, which at one-loop is of the following form, in

terms of the background field φ

Veff(φ, T, µ̄) = Vtree + V1-loop , (2.17)

where the one-loop piece is composed of the master sum-integral6

V1-loop ≃ J1-loop ≡ 1
2
∑
∫

P

ln
(
P 2 +m2) , (2.18)

where m2 is a φ-dependent mass eigenvalue, and for the full effective potential all mass

eigenvalues are summed over with proper coefficients for scalar, gauge and fermion fields.

Additionally, in renormalised perturbation theory, there is a term with counterterms that

we have omitted for simplicity. For the complete effective potential, see appendix A.4.

Customarily, the sum-integral (2.18) is split into a zero-temperature (Coleman-Weinberg)

piece and a temperature-dependent piece (thermal function)

J1-loop =
1
2

(
µ̄2eγE

4π

)ǫ ∫ dDp
(2π)D

ln(p2 +m2)
︸ ︷︷ ︸

≡JCW(m)

−
∫

p
T ln

(

1 ∓ nB/F(Ep, T )
)

︸ ︷︷ ︸

JT ,b/f

(
m2

T 2

)

, (2.19)

6For a brief review in a similar context, see appendix C of ref. [26].
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with minus (plus) for bosons (fermions) in the thermal functions JT ,b/f given in eqs. (A.63)

and (A.64), evaluated in d = 3 − 2ǫ. Alternatively, it is useful to separate the soft (zero)

mode and the hard (non-zero Matsubara) mode contributions in the master sum-integral

J1-loop =
T

2

∫

p
ln(p2 +m2)

︸ ︷︷ ︸

≡TJsoft(m)

+
1
2
∑
∫ ′

P/{P}

ln(P 2 +m2)

︸ ︷︷ ︸

≡Jhard(m)

. (2.20)

Next, daisy-resummation can be performed by replacing the masses of the zero-modes by

thermal screening masses7

TJsoft(m) = − T

12π
(m2)

3
2 → TJ resummed

soft (m) = − T

12π
(m2 + ΠT )

3
2 , (2.21)

where ΠT is the one-loop thermal contribution to the screening mass. By writing

Jdaisy(m) ≡ J resummed
soft (m) − Jsoft(m) = − T

12π

(

(m2 + ΠT )
3
2 − (m2)

3
2

)

, (2.22)

we end up with the Arnold-Espinosa type [53] — or ring-improved — resummed effective

potential

V A-E res.
eff (φ, T, µ̄) = Vtree + VCW + VT + Vdaisy . (2.23)

where VT ≃ JT ,b/f and Vdaisy ≃ Jdaisy. Note, in order to reach this familiar form where the

zero-temperature pieces are separated from thermal pieces, we had to subtract the original

soft contribution from the resummed one, in order to avoid double counting. Instead of

this form of resummation — that is encoded in the daisy term — we could simply write

the resummed effective potential as

V resummed
eff (φ, T, µ̄) = Vtree + V resummed

soft + Vhard , (2.24)

with Vhard ≃ Jhard. This form is equal to the Arnold-Espinosa form in the case where only

mass parameters have been resummed. However, in the special case of the SMEFT, the new

six-leg vertex introduces qualitatively new features to resummation. In fact, the leading

so-called flower contributions of the dimension-six coupling c6 in SMEFT (cf. eq. (2.14)

for notation)

≃ −36 c6 [I4b
1 (µh)]2 , (2.25)

≃ −24 c6 I
4b
1 (µh) , (2.26)

appear at 2-loop order for the mass parameter µ2
h and at 1-loop order for the scalar self-

coupling λ. Their effect incorporates thermal screening by resumming not only the mass

7Technically, this resummation can be achieved by adding and subtracting thermal masses for soft modes

in the Lagrangian, such that terms with plus sign contribute to the mass and terms with minus sign are

treated as counterterm-like interactions [101, 102]. This reorganises the perturbative expansion while the

original Lagrangian stays untouched.
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parameter but also the self-coupling. Appendix A.4 fully derives the one-loop effective

potential in the SMEFT with leading order daisy resummations.

Finally, let us comment on gauge invariance. As sections 2.2.2 and 3.2 explain in

detail, in perturbation theory a gauge-invariant treatment requires an ~-expansion, in which

the effective potential is expanded around its tree-level minimum. However, the Arnold-

Epinosa type resummed effective potential — with an inclusion of thermal corrections in

the soft parts — reorganises the perturbative expansion and departs from the strict ~-

expansion, since the thermal correction ΠT is of order O(~) [79]. In ref. [79], a prescription

to cure this problem to ensure gauge-invariance has been proposed, and we will comment

on this proposition in section 2.2.1. We therefore do not implement the ~-expansion in

our 4-dimensional approach for computing thermodynamic parameters. As such, our 4d

analysis retains an unphysical gauge-dependence which leads to a theoretical uncertainty we

calculate in section 3.2. For a recent introductory review of daisy resummation, see ref. [4].

2.1.2 Daisy-resummed recipe for thermodynamics

Here we outline the calculation of the thermodynamic parameters, which are calculated

from the effective potential in 4-dimensional perturbation theory to one loop, including both

its scale and gauge dependence. In way of summary, a brief recipe of the approach follows:

• Fix the zero-temperature MS-parameters by matching to physical observables at the

input scale, here mZ , and then run them to a scale characterising the phase transition,

e.g. µ̄ ∼ T . Optimise µ̄ according to the principle of minimal sensitivity [103].

• Calculate the effective potential of the 4d theory by summing the tree-level potential,

the zero-temperature Coleman-Weinberg piece and the finite-temperature piece, with

daisy resummation.

• Numerically find the minima of the real part of the effective potential to determine

the phase structure and pattern of phase transitions.

• Solve the bounce equation with the potential given by the real part of the effective

potential. From this, solve eq. (2.4) to find the percolation temperature Tp and the

inverse duration of the transition, or β/Hp.

The first step in the daisy-resummed recipe consists of zero-temperature physics, and

hence is the same as for the 3d approach. For the SMEFT, the details are given explicitly

in appendix A.1.

The phases, distinguished by different Higgs vacuum expectation values, are found by

numerically minimising the real part of the effective potential,

V (φ, T, µ̄) = Re(V A-E res.
eff (φ, T, µ̄)) , (2.27)

with respect to the background field φ. The imaginary part of the effective potential

can be related to the growth rate of long-wavelength modes about a constant background

field [104]. We treat the presence of this nonzero imaginary part as a source of systematic
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uncertainty in our daisy-resummed calculation. Following standard practice in the litera-

ture [26], we content ourselves with checking that the imaginary part is much smaller than

the real part of the effective potential at its minima.

The nonzero imaginary part of the effective potential, which has to be removed by

hand in eq. (2.27), gives a hint that something is not right. The interpretation of this

imaginary part as a decay rate [104] does little to allay this suggestion, as this decay

rate is not exponentially suppressed and hence is generically a much faster process than

bubble nucleation. Further, this decay rate may be nonzero at the broken minimum solved

numerically using eq. (2.27), suggesting that the broken phase itself will decay into another

phase with nonhomogeneous Higgs vacuum expectation value (vev). Both this problem and

the problem of gauge dependence are circumvented in the ~-expansion, which leads to a real

effective potential, but this method unfortunately is incompatible with daisy resummation.

To calculate the rate of bubble nucleation, and in particular, the effective tunneling

action, we assume O(3) symmetry and solve the bounce equation

d2φ

dρ2
+

2
ρ

dφ
dρ

=
dV (φ, µ̄, T )

dφ
, (2.28)

with boundary conditions,

φ(ρ → ∞) = 0 , (2.29)

dφ
dρ

∣
∣
∣
∣
ρ=0

= 0 . (2.30)

This approach essentially follows ref. [90]. Equation (2.28) is typically solved using the

shooting method, here we employ AnyBubble and BubbleProfiler [105, 106].8 Evaluating

the Euclidean action on this solution then yields Sc(T, µ̄), from which the thermal param-

eters can be found using eqs. (2.3)–(2.5). In the 4d approach, we take the prefactor to be

ln(A/T 4) ∼ −14, following ref. [6].9

2.2 The 3d approach: dimensional-reduction

Dimensional reduction is a general framework for studying the thermodynamic properties

of quantum field theories at high temperatures. It applies widely, and has been partic-

ularly fruitful in application to non-Abelian gauge theories. While its use in hot QCD

is standard and by now approaches impressive orders in perturbation theory [109, 110]

(cf. refs. [111, 112] for reviews), its success within electroweak theories and studies of

EWPT is far less exploited — even though it proved essential in understanding the phase

8Very small differences resulting from these different methods are at the percent level and as they are

not quantum field theoretic uncertainties. We do not present these differences here. Where inconsistent,

we take the geometric mean of results.
9Note that this expression for the nucleation prefactor is a rough guess based on the results of refs. [107,

108]. The expression, however, does not reproduce the temperature dependence of the prefactor derived

in refs. [107, 108], nor is applicable beyond the parameter point for the SM with light Higgs studied in

ref. [108]. Further, appendix C shows that refs. [107, 108] contain a significant error in their result for the

(statistical part of the) prefactor. Regardless, as we argue in section 3.5, even the definition of the prefactor

is problematic in the daisy-resummed approach, so we adopt this estimate nevertheless.
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Start: (d+ 1)-dimensional SMEFT

Scale Validity Dimension Lagrangian Fields Parameters

Hard πT d+ 1 LSMEFT (2.7) Aµ, Bµ, Cµ, φ, ψi µ2
h, λ, c6, g, g

′, gs, gY


y Integrate out n 6= 0 modes and fermions

Soft gT d L3d (B.26) Ar, Br, Cr, µ2
h,3, λ3, c6,3, g3,mD,

A0, B0, C0, φ g′
3,m

′
D, gs,3,m

′′
D



y Integrate out temporal adjoint scalars A0, B0, C0

Ultrasoft g2T/π d L̄3d (B.29) Ar, Br, Cr, φ µ̄2
h,3, λ̄3, c̄6,3, ḡ3, ḡ

′
3, ḡs,3

End: d-dimensional Pure Gauge

Table 2. Dimensional reduction of (d+1)-dimensional SMEFT into effective d-dimensional theories
based on the scale hierarchy at high temperature. The effective couplings are functions of the
couplings of their parent theories and temperature and are determined by a matching procedure.
The first step integrates out all hard non-zero modes. The second step integrates out the temporal
adjoint scalars A0, B0, C0 with soft Debye masses mD,m

′
D,m

′′
D. At the ultrasoft scale, only ultrasoft

spatial gauge fields Ar, Br, Cr (with corresponding field-strength tensorsGrs, Frs,Hrs) remain along
with a light Higgs that undergoes the phase transition.

transition of the Standard Model [10, 13, 65] and various bulk thermodynamic properties

therein [113, 114]. Despite featuring in early studies of supersymmetric extensions of the

SM [115–118] and of the two-Higgs doublet model (2HDM) [119], only more recently has

the use of dimensional reduction in cosmology been reinvigorated, in studies of the SM

with extended scalar sectors, such as the real singlet extension (xSM) [86, 99], the real

triplet extension (ΣSM) [120, 121], and the 2HDM [24, 122, 123].

High-temperature dimensional reduction (DR) is based on a hierarchical separation of

energy scales. In accordance with the effective expansion parameter (2.10), the underlying

scales

g2T/π ≪ gT ≪ πT , (2.31)

render the theory perturbative at the hard scale (p ∼ πT ), barely perturbative at the

soft scale (p ∼ gT ), and non-perturbative at the ultrasoft scale (p ∼ g2T ). Here p = |p|
denotes a momentum scale of particles in the heat bath. Note, that related literature [65]

interchangeably refers to the hard scale as superheavy, the soft scale as heavy, and the

ultrasoft scale as light.

This hierarchy classifies degrees of freedom when constructing an effective field theory

(EFT) for its ultrasoft sector; see table 2. In the Matsubara formalism of thermal field

theory the hard scale screens the purely spatial (static) zero-modes which live at the soft

scale. At sufficiently high temperature the infinite tower of non-zero modes is integrated

out in a conventional EFT sense. This includes all bosonic non-zero modes and all fermionic
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modes. Their effect and temperature dependence is encoded solely in the parameters of

the resulting EFT of lower dimension. Due to the heat bath breaking Lorentz invariance

for temporal gauge fields, the 3-dimensional EFT contains temporal remnants of gauge

fields that are adjoint Lorentz scalars (A0, B0, C0). They get screened at the scale of

their respective Debye masses mD,m
′
D,m

′′
D ∼ O(gT ). Furthermore, since the spatial gauge

bosons are only Debye screened at the next natural order O(g2T ), an additional scale

separation emerges between the soft scale of adjoint temporal scalars and the ultrasoft scale.

The effective theory of the ultrasoft scale is then non-perturbative, since g2nB ∼ O(1).
Note that, massive bosonic scalar fields may assume all three scales depending on their

zero-temperature mass.

The separation of scales defines the high-temperature regime and generically holds

for phase transitions involving scalars in weakly coupled theories. With decreasing tem-

perature the zero Matsubara modes of the scalars signal the absolute instability of the

high-temperature phase, below some temperature T0. A scalar thermal mass, of the gen-

eral form m2
T = m2 + #g2T 2, goes through zero at the temperature

m2
T = 0 ⇒ T0 ∼

√
−m2

g
. (2.32)

This is generically in the high-temperature regime, at least regarding the scalar field under-

going the transition, because the temperature is larger than the vacuum mass parameter by

a factor of 1/g. Note also that T0 < Tp < Tc, as the thermal mass is necessarily positive at

both Tp and Tc, so implying that Tp and Tc are generically in the high-temperature regime.

This further suggests that bubble nucleation will almost always take place via a purely

spatial, O(3) and not O(4) symmetric, instanton [90, 124, 125]. In contrast to the scalar

undergoing the phase transition, for the temporal gauge bosons the lack of a (negative)

vacuum mass implies that they are always of the soft scale, and hence are integrated out

in constructing the EFT of the ultrasoft scale.

The Higgs zero Matsubara mode is treated as ultrasoft throughout our analysis of the

SMEFT. At temperatures relevant for the dynamics of the phase transition, between the

percolation and critical temperatures, the thermal mass of the scalar zero mode is positive.

But following eq. (2.32) it is at most of order gT , and hence is either of the soft or ultrasoft

scale. An ultrasoft Higgs mass is certainly correct in the vicinity of T0 where the vacuum

and thermal mass contributions exactly cancel, but should also hold near Tp and Tc due to

a remaining partial cancellation of vacuum and thermal mass contributions. Regardless,

we do not expect any significant discrepancies between treating the Higgs as soft versus

ultrasoft due to the small numerical effects of the temporal gauge fields.

The philosophy of dimensional reduction is to treat perturbative modes perturbatively

and nonperturbative modes nonperturbatively. Fermions and bosonic non-zero Matsub-

ara modes are perturbative, and are treated perturbatively when integrated out in the

construction of the EFTs. The bosons of the soft scale are also perturbative, and are

treated similarly. Since only the ultrasoft scale is nonperturbative this scale is then nor-

mally treated with non-perturbative lattice studies. Existing lattice studies utilise the

super-renormalisability of the EFT to perform an exact mapping between bare lattice pa-
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rameters and MS-parameters [126, 127]. However, in the EFT we consider for the SMEFT,

the presence of the marginal, sextic Higgs field operator O6 means that the EFT is merely

renormalisable and not super-renormalisable, aggravating the matching of lattice parame-

ters to known physics. Nevertheless, recent lattice computations in scalar-extended BSM

models [24, 121] have indicated that, for relatively strong transitions in weakly coupled the-

ories, two-loop perturbation theory within the ultrasoft EFT describes the phase transition

with reasonable accuracy; see also section 3.6. There are a few reasons for this perhaps

surprisingly good agreement between lattice and perturbation theory. On the one hand,

by constructing this effective theory for the ultrasoft modes, dimensional reduction makes

it easier to hone in on these important modes and to treat them to higher loop order than

is otherwise possible. On the other hand, at least in the case of a strong transition, the

transition depends most strongly on the scalar sector, which is, in a concrete sense, less

nonperturbative than the spatial gauge bosons, for which there are true IR divergences

in the symmetric phase at finite loop order. Further, the IR divergences of the spatial

gauge bosons only arise at higher loop order, for example, at four-loop order for the free-

energy. So when the first few terms of the loop expansion converge well, one can expect

the nonperturbative effects to be relatively small.

In practice dimensional reduction is performed along the modern EFT recipe. One first

identifies the most general Lagrangian that respects the symmetries of the full theory, and

then matches static Green’s functions to determine the parameters of the EFT in terms of

temperature and parameters of the parent theory. For a fuller explanation of dimensional

reduction, we refer to our appendix B, which accounts step-by-step of how to construct such

effective theories in phenomenologically relevant models. Therein, appendix B.1 present a

breakdown of the calculation of the SU(2) Debye mass, which we hope suitably introduces

the nitty-gritty of dimensional reduction. Appendix B.2 presents our explicit results for

the dimensional reduction of the SMEFT at full NLO.

2.2.1 Resummations at higher orders and gauge invariance

In dimensional reduction, higher order resummations are systematically incorporated order-

by-order in powers of the couplings. This is achieved by careful power counting, necessary

because thermal screening breaks the alignment between the loop and coupling expan-

sions.10 By contrast, in the 4d approach, resummation is carried out in a more ad hoc way,

by identifying and resumming infrared sensitive parts at the level of Feynman diagrams.

As has long been recognised [53], at higher orders it is necessary to resum new classes of

diagrams beyond just the daisy diagrams.

One-loop daisy resummation, as presented above, generates the effective potential

accurately up to O(g3). However — as argued in section 2.2 in ref. [65] — one must go

beyond this and achieve O(g4) accuracy in order to obtain perturbatively small fractional

uncertainties for many infrared observables. Further, the RG running of the leading order

effective potential starts at O(g4), so one must reach this order to control the RG scale

dependence. This requires two-loop contributions, both to the effective potential and to

10We replace all couplings by appropriate powers of the gauge coupling g according to eq. (2.13).
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the resummed thermal masses. It also requires additional resummations at one-loop order:

both to the couplings and to the field itself, the latter due to the momentum dependence

of thermal screening at O(g4). Dimensional reduction provides a systematic means to keep

track of these disparate resummations, and is extendable to still higher orders.

The effective potential provides a convenient means to show how the differences be-

tween the 3d and 4d approaches manifest in concrete calculations. Schematically there is

a relation of the form

T V 3d
eff ≃ V 4d

eff , (2.33)

which holds up to O(g3). Note that at leading order in powers of g2, the 3d and 4d fields

are related as φ3d = φ4d/
√
T . At higher orders, momentum dependent thermal screening

modifies this relation, as captured in the 3d matching relations. Here, for simplicity, we

compare the 3d effective potential at the soft scale, leaving discussion of the effects of

integrating out the soft scale to later in this section.

To understand in more detail where the two approaches differ, we break down eq. (2.33),

giving

T
(
V 3d

tree + V 3d
loops

)
≃ V 4d

tree + V 4d
hard + V 4d

soft, resummed . (2.34)

From the construction of the dimensionally-reduced EFT, one can deduce the following

approximate equality for the hard contributions

T V 3d
tree ≃ V 4d

tree + V 4d
hard . (2.35)

This follows since the effective potential is the generator of one-particle irreducible (1PI)

correlation functions and 3d parameters are defined by matching the 1PI correlation func-

tions to the 4d theory.

Utilising φ ∼ T for the dimensionful background field we arrive at the following

schematic power counting,

T V 3d
tree ≈ T 4(#g2 + #g4 + . . . ) . (2.36)

As we indicate, this equation is free from nonanalytic dependence on g2 because it involves

only hard modes. Our 4d approach correctly captures only the leading order term in this

expansion, that first discussed in ref. [50]. Both this leading term and the O(g4) term are

captured in the NLO matching relations of the 3d approach. Appendix B.2 presents the

NLO matching relations for the SMEFT.

Daisy resummation is engineered to correctly describe the leading effects of the soft

scale. This results in the following approximate equality for the remaining soft parts

T V 3d
loops ≃ V 4d

soft, resummed . (2.37)

In the soft sector, the presence of infrared modes leads to a nonanalytic dependence on g2,

T V 3d
loops ≈ T 4(#g3 + #g4 + . . . ) . (2.38)

As we have explicitly verified in the SMEFT, the 4d approach correctly reproduces the

O(g3) term. In the 3d approach, by including two-loop corrections to the effective potential,
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we capture also the O(g4) term. Appendix B.4 yields an expression for the 3d two-loop

effective potential in the SMEFT. To compute the full O(g5) term requires a three-loop

computation [112, 128], whereas the O(g6) term is nonperturbative [49].

The comparisons made in this section utilise the 3d effective potential of the soft sector.

However, to simplify the thermodynamic calculations in our 3d approach we integrate out

the soft temporal bosons and instead utilise the 3d effective potential of the ultrasoft sector;

see the end of appendix B.2.2. This additional step incorporates both the O(g3) and O(g4)
effects of thermal fluctuations of the soft sector into the parameters of the ultrasoft theory.

A difference does arise, though, regarding the dependence on the Higgs vev of the masses

of the temporal gauge bosons. For the SMEFT with the 3d EFT truncated at (φ†φ)3
3d, this

difference arises at O(g3(φ†φ)4
3d/T ) for the 3d potential. Although formally of O(g3) for a

transition with φ ∼ T , this discrepancy is accompanied by a sizable numerical suppression,

O(10−6), due to combinatorial and loop factors. Thus it is expected to have only a very

small numerical effect, though it could become more significant for very strong transitions.

Beyond aiding higher order computations, an additional benefit of the 3d approach,

is that one can achieve exact order-by-order gauge invariance by applying the ~-expansion

inside the 3d effective theory, cf. section 2.2.2. In this expansion, the value of the effective

potential is computed as an expansion around the minimum of V 3d
tree. This possibility

depends upon the gauge invariance of the 3d matching relations. In appendix B.2 we show

this explicitly for the dimensional reduction of the SMEFT: choosing a general covariant

gauge, the ξi-dependencies cancel duly in the matching relations up to O(g4) (and higher

order terms can be discarded).

Reference [79] — in order to maintain gauge invariance — proposed an alternative

resummation approach. In this the soft part of the l.h.s. of eq. (2.34) is evaluated at the

(temperature dependent) minimum of V 3d
tree,

11 but the remaining tree-level and hard parts

are evaluated in an expansion around the (temperature independent) minimum of V 4d
tree.

This approach differs from the approaches presented here already at leading O(g2) order,

since the minima of the 4d and 3d tree-level potentials differ at leading O(g0) order. Had

the authors used the 3d minimum also in V 4d
tree + V 4d

hard in addition to the soft, resummed

part, their potential would have matched those presented here up to O(g3).

2.2.2 Dimensionally-reduced recipe for thermodynamics

Here we outline the calculation of the thermodynamic parameters in the dimensionally-

reduced approach. In way of summary, a brief recipe of the approach follows:

• Fix the zero-temperature MS-parameters by matching to physical observables at the

input scale, here mZ , and then run them to a thermal, matching scale µ̄ ∼ πT .

Optimise µ̄ according to the principle of minimal sensitivity [103].

• Carry out dimensional reduction at this thermal scale, by matching the static, infrared

correlators of the 4d theory to an effective 3d theory. Further match to a reduced

11Note that ref. [79] essentially performs a leading order dimensional reduction for resummation, i.e. just

one-loop for mass parameters and tree-level for couplings.
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effective theory at the infrared energy scale g2T/π. This amounts to integrating out

all modes with energies ∼ πT and ∼ gT .

• Calculate the effective potential of the effective 3d theory, and find its minima. If

possible, maintain a strict ~-expansion.

• By taking derivatives of the 3d effective potential with respect to the parameters of

the theory, calculate the gauge-invariant condensates, such as 〈φ†φ〉. From this one

can find the critical temperature Tc, as well as the strength of the transition.

• Calculate the bubble nucleation rate in the 3d effective theory. If possible, maintain

a strict ~-expansion. From this, solve eq. (2.4) to find the percolation temperature

Tp and the inverse duration of the transition, or β/Hp.

The first step in the dimensionally-resummed recipe is the same as for the daisy-

resummed approach. For the SMEFT, the details are given explicitly in appendix A.1.

In the second step of our recipe, the hard and soft modes are integrated out and

the 3d effective theory for the ultrasoft modes is constructed. An explanation of this

procedure at a synoptic level has been given above, at the beginning of section 2.2. An

example application is worked through in appendices B.1 and B.2. In application to

the SMEFT, we utilise the high-temperature approximation, partially for simplicity and

partially because we expect this approximation to be valid, following the argument given

around eq. (2.32). Note, however, that this approximation is not an inherent limitation of

dimensional reduction [55, 99, 129].

Once we have arrived at the ultrasoft 3d effective theory, the advantages of dimensional

reduction manifest themselves. The 3d effective theory is simpler than the full 4d theory.

Not only has the theory a reduced field content: all fermions, plus any bosons with masses

of order or greater that ∼ gT have been integrated out. More importantly, all sum-

integrals have been evaluated and one is effectively studying the zero-temperature vacua of

a 2 + 1 dimensional theory. The temperature merely enters the parameters of the effective

theory. As a consequence, perturbative calculations within 3d can be performed as a

vanilla loop expansion, so 3d loop orders are not mixed. This allows one to perform strict

~-expansions, thereby maintaining order-by-order gauge invariance (see section 3.2), as well

as avoiding double-counting in computing the bubble nucleation rate (see section 3.5). It

also makes it more feasible to go to higher loop orders than would otherwise be practical.

The third step of the dimensionally-reduced recipe calculates the effective potential

in the 3d effective theory. For our calculations in the SMEFT, we carry this out to 2-

loop accuracy. The calculation utilises previous work of refs. [62, 130, 131], and is given

explicitly in appendix B.4.

For the SMEFT, due to the presence of the c6,3(φ†φ)3 term in the Lagrangian of the

3d EFT, there is a first-order phase transition at tree-level.12 From the perspective of

the 3d effective theory, the transition takes place as the effective parameters change with

12Note that this is contrary to the full 4d theory, for which the tree-level potential is temperature-

independent.

– 19 –



J
H
E
P
0
4
(
2
0
2
1
)
0
5
5

temperature. At least for transitions that are not too weakly first-order,13 higher loop

orders will not change the order of the transition, so a strict ~-expansion should converge

well. On the other hand, without the c6,3 term some one-loop contributions must compete

with tree-level contributions to give a first-order phase transition, signalling a breakdown

of the ~-expansion [130, 131]. In this case, spurious imaginary parts arise and “little

constructive information” can be gained from the ~-expansion [130] (see also ref. [131]).

The difference is the presence or absence of a tree-level barrier. In the case of a strong

first-order transition, one can instead recover a consistent expansion parameter in terms of

ratios of couplings (see for example refs. [53, 132–137]) such as λ3/g
2
3 for the SM. However,

for very weak first-order, second-order or crossover transitions, even this option is no longer

possible and one must resort to lattice simulations [9, 11, 24, 121, 134–136].

To perform the ~-expansion in the 3d effective theory, one expands all quantities in

powers of ~, the loop-counting parameter of the 3d EFT. In particular, the 3d effective

potential and scalar vev are expanded as

V3(v3) =
N∑

n=0

~
nV3(n)(v3) , v3 =

N∑

n=0

~
nv3(n) . (2.39)

Equations, such as V ′
3(v3) = 0 for finding the loop-corrected vev, are then solved order-by-

order in ~. Note that, following the notation in vacuum, we denote by ~ the loop counting

parameter, though Planck’s constant scales out of the 3d effective theory.

In calculating thermodynamic quantities in the ~-expansion, one first carries out all the

necessary computations at tree-level. Once completed, including higher-order contributions

is a simple algebraic exercise in matching powers of ~ and solving corresponding linear

equations. The tree-level vev solves,

V ′
3(0)

(

v3(0)

)

= 0 , V ′′
3(0)

(

v3(0)

)

> 0 , (2.40)

where multiple solutions signify a coexistence of phases. Expanding the effective potential

around the tree-level vev, one finds

V3(v3) = V3(0) + ~

(

V3(1) + V ′
3(0)v3(1)

)

+ ~
2
(

V3(2) + V3(0)v3(2) + V ′
3(1)v3(1) +

1
2
V ′′

3(0)v
2
3(1)

)

+ O(~3) , (2.41)

where all the potential terms on the right hand side are evaluated on v3(0). Solving for the

broken minimum order-by-order in ~, the solution to O(~2) is,

v3(1) = −
V ′

3(1)

V ′′
3(0)

, v3(2) = −
V ′

3(2)

V ′′
3(0)

+
V ′′

3(1)V
′

3(1)

V ′′
3(0)

2
−
V ′

3(1)
2V ′′′

3(0)

2V ′′
3(0)

3
. (2.42)

The two-loop expression for the broken minimum, eq. (2.42), contains infrared (IR) diver-

gences in V ′′
3(1)(v3(0)) and V ′

3(2)(v3(0)) due to the vanishing Goldstone mass in the tree-level

13Such that the 3d loop-expansion parameter is perturbative (see appendix B.3), and loop corrections

are small compared with the distance to the second-order point in the phase diagram.
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broken minimum. These Goldstone IR divergences are a feature of the Landau gauge,

and do not occur for positive gauge fixing parameters. However, if we regularise the

loop integrals by taking the Goldstone mass to zero from above, the IR divergences in

eq. (2.42) precisely cancel. This is equivalent to taking the gauge parameters to zero from

above in taking the Landau gauge limit. For a more detailed discussion of this point see

refs. [130, 138], and, for an alternative approach see ref. [139].

At the critical temperature two phases coexist with equal free energy density, which

for homogeneous phases equals the effective potential. Thus, to solve for the critical tem-

perature, we have the additional equation to solve,

∆V3 ≡ V3(v3) − V3(0) = 0 . (2.43)

Here, in light of our intention to apply this formalism to the SMEFT, we have assumed

that one of the two phases lies at the origin. Following eq. (2.5), we use ∆ generally to

refer to the broken phase value minus the symmetric phase value of some quantity.

As before, eq. (2.43), is solved order-by-order in ~. As the 3d EFT does not directly

see the parameter T , it makes sense to solve this equation instead for the mass of the scalar

undergoing the transition, which is what we do for the SMEFT. For now, let us denote

by m3,c the value of the scalar mass at which eq. (2.43) holds. The equation determining

criticality then takes the form,

m2
3 = m2

3,c(0) + ~m2
3,c(1) + ~

2m2
3,c(2) + . . . , (2.44)

where the terms on the right hand side are functions of the other parameters in the 3d

EFT. Hence this equation defines a surface in this space of the parameters of the 3d EFT.

As the temperature changes, a line is traced out in the space of parameters of the EFT, a

line which pierces the critical surface at Tc. Written more explicitly, the O(~) and O(~2)
corrections to the critical mass take the form,

m2
3,c(1) = −

∆V3(1)

∆V ′
3(0)

, m2
3,c(2) = −

∆V3(2)

∆V ′
3(0)

+
∆V ′

3(1)∆V3(1)

∆V ′
3(0)

2
−

∆V3(1)
2∆V ′′

3(0)

2∆V ′
3(0)

3
. (2.45)

Here the ∆V3(i) are evaluated at the tree-level minima, and at the tree-level critical mass.

One question then arises: do we also expand Tc in powers of ~? This has been discussed

in refs. [79, 138]. Given that here ~ is the loop counting parameter of the 3d EFT, we have

chosen not to expand Tc in ~, instead solving eq. (2.44) for Tc numerically. Both options

yield gauge invariant results. Due to the presence of a tree-level barrier between phases in

the SMEFT, we expect any difference between these two approaches to be small, as the

difference is formally of higher order in the EFT loop expansion.

The measure of the strength of the transition, α, defined in eq. (2.5), is calculated via

the trace anomaly. Once we have determined ∆V3 to some order in ~, following eq. (2.41)

above, the trace anomaly follows from differentiation with respect to temperature. The 3d

EFT does not depend explicitly on temperature, so all temperature dependence must arise

through the effective couplings. Thus, we find that,

∆Θ
T

= −3
4

∆V3 +
1
4

∑

{κi}

dκi
d lnT

∂∆V3

∂κi
, (2.46)
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where the sum over {κi} runs over the parameters of the EFT, and the factor of 1/T on the

left hand side follows from the basic, dimensional relation between 3d and 4d physics. Note

that as ∆V3 is calculated order-by-order in ~, this expression is completely independent of

the gauge fixing in the EFT [140, 141], and, if the effective couplings are themselves gauge

invariant, then the whole expression is gauge invariant. Furthermore, the ~-expansion also

ensures that ∆V3 is manifestly real, so there is no need to ad hoc take the real part, as

in the daisy-resummed approach, eq. (2.27). However imaginary parts can arise in the

~-expansion in the absence of a tree-level barrier in V3, at least when Tc is also expanded

in powers of ~ [138].

We note that at 2-loop order, a dependence on the 3d renormalisation scale µ̄3 arises.

This dependence can be diminished by solving the appropriate renormalisation group equa-

tion (RGE) (see e.g. ref. [62]), though the choice µ̄3 = O(g3v(0)) is sufficient to avoid large

logarithms. In section 3.1 we treat this µ̄3 dependence as a source of theoretical uncertainty,

and vary it over some appropriate range, to estimate its magnitude. As the dependence on

µ̄3 only arises at two-loop order, its effect is expected to be small.

The remaining thermodynamic quantities, Tp and β/Hp, can be determined in terms

of the bubble nucleation rate. Just as for the other quantities, this can be calculated

in an ~-expansion within the 3d EFT, and there are significant benefits from doing so.

The calculation begins with the semiclassical expression for the bubble nucleation rate,

eq. (2.2), written in terms of the partition function in 4d. The relation between the partition

functions of the full theory and the 3d EFT is

Z ≈ e−f1V Z3 , (2.47)

where f1 is the coefficient of the unity operator in the dimensional reduction, and (the

logarithm of) the equation holds up to some order in powers of the coupling constant (see

e.g. refs. [63, 64]). A semiclassical evaluation of the partition function expands around a

background configuration. For a background configuration that varies, at most, on the

long length scales of the ultrasoft theory, eq. (2.47) follows directly from the matching

of correlation functions carried out in DR. As the coefficient of the unit operator, f1, is

independent of the field configuration, eq. (2.2) takes the same form in the 3d EFT as in

the full 4d theory,

Γ ≈ ωc

πV

ImZ3[φc]
Z3[0]

, (2.48)

where Z3[φc] contributes to the partition function of the EFT from the region around the

critical bubble, or bounce, and Z3[0] contributes from the region around the symmetric

phase, or false vacuum. The only factor which cannot be computed purely within the 3d

EFT is ωc. In principle it requires a real-time calculation, though it has been estimated in

the literature (see appendix C.1). Since the bubble nucleation rate is an intrinsically real-

time quantity, it is quite surprising that all but ωc can be calculated within a timeless EFT.

Starting from eq. (2.48), the calculation of the bubble nucleation rate is now an unam-

biguous application of the original, vacuum bounce formalism [142, 143], except in three

Euclidean dimensions. The temperature only enters the couplings of the EFT, so that one

only needs to calculate the vacuum tunnelling rate as a function of the couplings. Thus,
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one can derive from first principles the following tree-level bounce equation for the critical

bubble, φc, of the 3d EFT,

d2φ

dρ2
+

2
ρ

dφ
dρ

=
dV3(0)(φ)

dφ
, (2.49)

with the usual boundary conditions (see eq. (2.29)). As discussed in greater depth in

section 3.5, the apparently innocuous difference between eq. (2.49) and eq. (2.28) makes

all the difference, as only eq. (2.49) avoids the common pitfalls of thermal bubble nucle-

ation calculations: double-counting, stray imaginary parts and an uncontrolled derivative

expansion. In the following we solve this bounce equation by implementing the recently

proposed “Fresh Look” method of refs. [144, 145],14 which we have crosschecked against

the numerical package CosmoTransitions [146].

Solving eq. (2.49) gives precisely the O(~0) contribution to the nucleation rate. This

follows because eq. (2.49) contains the tree-level potential in the 3d EFT, and should be

contrasted with the 4d approach, in which tree-level and one-loop contributions are mixed

in the calculation of the tunnelling action. In the 3d approach, the ~-expansion of the

nucleation rate reads

ln (Γ) = −Sc + ~ ln (A) + O(~2) . (2.50)

One-loop fluctuations around the critical bubble make up the nucleation prefactor, A, and

do not enter Sc.

The calculation of the nucleation prefactor, the O(~) contribution to the nucleation

rate, is, in general, a significantly more difficult task than calculating the tunnelling action,

Sc. Nevertheless, in the 3d approach, this difficult task is significantly easier than in the

4d approach. This is mostly because loop orders are not mixed in the calculation, and hence

a vanilla semiclassical analysis applies out-of-the-box [142, 147–149]. The difficult task

simplifies further because the temperature has already been eliminated from the calculation,

and because the field content is reduced. As a consequence, we are able to reasonably

estimate the nucleation prefactor, which we carry out in appendix C.

Once the rate of bubble nucleation has been calculated, one can solve eq. (2.3) for the

percolation temperature, and evaluate eq. (2.4) at this temperature to find β/H. Finally,

one also evaluates eqs. (2.46) and (2.5) at the percolation temperature to find α.

3 Sources of theoretical uncertainty

To determine the relative merits of the two approaches outlined in the previous section, in

this section we critically examine a range of sources of theoretical uncertainty. Concrete

numerical comparisons are made for the four thermodynamic parameters which are most

important for determining the SGWB spectrum: Tc, Tp, α and β/Hp.
15 Further, in order to

compare the various sources of uncertainty, we combine these thermodynamic parameters

14We thank J.R. Espinosa and T. Konstandin for their help with this.
15In studies of the dynamics of gravitational wave spectrum, it is customary to use the subscript ∗ to refer

to the time of peak gravitational wave production. We will assume throughout that this can be replaced

by the percolation time, and hence T∗ ≈ Tp and β/H∗ ≈ β/Hp.
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∆ΩGW/ΩGW 4d approach 3d approach Demonstrated in

RG scale dependence O(102 − 103) O(100 − 101) Figure 2

Gauge dependence O(101) O(10−3) Figure 4

High-T approximation O(10−1 − 100) O(100 − 102) Figures 5–6

Higher loop orders unknown O(100 − 101) Figures 7–8

Nucleation corrections unknown O(10−1 − 100) Figure 9

Nonperturbative corrections unknown unknown Section 3.6

Table 3. Sources of theoretical uncertainty and relative importance quantified by the parameter
∆ΩGW/ΩGW defined in eq. (3.1) over the range M = {580−700} GeV in the SMEFT. Although we
do not have reliable estimates for the uncertainties of the 4d approach due to higher loop orders and
nucleation corrections, they are expected to be much larger than the corresponding uncertainties
of the 3d approach (see the relevant subsections).

into a single parameter,

∆Ω/Ωmin =
Ωmax − Ωmin

Ωmin
, (3.1)

where Ωmax,min are the maximum and minimum peak of the SGWB spectrum due to sound

waves (sw) [1, 97, 150]. These are predicted by varying the thermodynamic parameters

across the theoretical uncertainty band and utilising the following,

h2Ωsw(f) = 8.5 × 10−6
(

100
g∗

)1/3

κ2
f

α2

(1 + α)2

(
H∗

β

)

Ssw(f)
(

1 − 1√
1 + 2H∗tsw

)

, (3.2)

κf =
α

α+ 0.083
√
α+ 0.73

, (3.3)

where Ssw(f) encodes the frequency dependence; at the peak, Ssw(f) = 1. We estimate the

outstanding factor in eq. (3.2), the timescale on which acoustic waves are active, from [150,

151]

H∗tsw =
2(8π)1/3

√
1 + α

√
3ακf β/H∗

. (3.4)

Since we are interested in the variation of the theoretical predictions and not in the mag-

nitude of the spectrum, the latter is of minor importance here.

For those theoretical uncertainties which can be assessed numerically, eq. (3.1) gives a

relatively good measure of the corresponding uncertainty in predictions for upcoming GW

experiments, such as LISA. We apply this measure in estimating the following theoretical

uncertainties: renormalisation scale dependence in section 3.1, gauge dependence in sec-

tion 3.2, high-T approximation with truncation of the 3d EFT in section 3.3, higher loop

orders in section 3.4, and for some corrections to the bubble nucleation rate in section 3.5.

The construction of the dimensionally-reduced theory naturally entangles three dif-

ferent sources of errors: (i) higher-dimensional operators, (ii) loop expansions, and (iii)
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high-temperature expansion. Concretely, the information from integrating out the hard

scale fermionic and bosonic modes is distributed over all three of the above.

Not all the uncertainties that we consider can be reliably quantified. In particular,

internal inconsistencies in the 4d approach cannot be estimated by simply varying a pa-

rameter. These stem from the relatively ad hoc implementation of thermal resummation

in the 4d approach. The most notable of these internal inconsistencies arises in the bub-

ble nucleation calculation. Section 3.5 discusses these, in particular: (i) double-counted

degrees of freedom, and (ii) an uncontrolled derivative expansion. Therefore, at the level

of principle, the 3d approach should always be preferred over the 4d approach, as it does

not suffer from the same internal inconsistencies of the bubble nucleation calculation. A

similar point could be made regarding gauge independence, which in principle should be

maintained order-by-order in perturbation theory, as is only possible in the 3d approach.

Finally, we should note that any purely perturbative calculation suffers from an irre-

ducible uncertainty due to the nonperturbativity of the IR modes of magnetic gauge bosons

in the symmetric phase. We discuss this nonperturbativity in section 3.6, and collect some

estimates of its expected magnitude present in the literature.

Table 3 summarises all the assessed sources of uncertainty and refers to the relevant

sections and figures.

3.1 Renormalisation scale dependence

Perturbative approximations to physical results generally depend on the renormalisation

scale, signalling a source of theoretical uncertainty in the approximation. Thus, a strong

dependence on renormalisation scale, as in figure 1, reflects the inadequacy of the approx-

imation.16 Dependence on the renormalisation scale can be ameliorated by performing

renormalisation group improvement, but it also can be exploited to probe the magnitude

of higher order perturbative corrections. Without large hierarchies of scale in the problem,

all logarithms can be made small by an appropriate choice of µ̄, of the same order as the en-

ergy scale of the process under consideration. In that case, a variation of µ̄ by an O(1) factor

will induce a correction which is formally of higher order in the perturbative expansion.

When studying a thermal first-order phase transition, it seems natural to choose a

4d renormalisation scale µ̄ which depends on temperature. A question arises though, as

to determine the precise numerical coefficient, µ̄ = #T . In the Matsubara formalism

the temperature enters via the thermal frequencies ωn = nπT , with n an odd integer for

fermions and an even integer for bosons. As a consequence, one might consider any of the

16Not to mention its incorrectness. As figure 1 neglects the running of MS-couplings, the scale dependence

only arises explicitly from the Coleman-Weinberg potential.
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Figure 2. A comparison of the dependence on the renormalisation scale, µ̄, in the daisy-resummed
(black) and dimensionally-reduced (blue) approaches. The thermodynamic quantities are calculated
for different choices of µ̄, with uncertainty bands indicating the envelope spanned by these choices.
The optimal µ̄ = 2.2T is established in eq. (3.6).

following energy scales as possible choices for µ̄,

T for the n = 0 modes, no factor of π is present,

πe−γET ≈ 1.76T the weighted sum of fermionic ωn,

πT ≈ 3.14T the lowest fermionic ωn,

2πT ≈ 6.28T the lowest nonzero bosonic ωn,

4πe−γET ≈ 7.05T the weighted sum of nonzero bosonic ωn.

The “weighted sums” here are those that arise within logarithms at one-loop order in

a range of quantities, such as the free-energy. In a theory such as the SMEFT with a

large and varied particle content, any of these choices for the renormalisation scale can

be equally motivated. To estimate the magnitude of higher order corrections, we vary the

renormalisation scale over an order of magnitude in the range µ̄ = (0.5 . . . 2π)T . Figure 2

shows the result of this calculation for both the 4d and 3d approaches.

An optimal choice of scale, µ̄opt can be found according to the “principle of minimal

sensitivity” [103]. This principle demands that at µ̄ = µ̄opt some approximation to a
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5 6

Figure 3. The remormalisation scale dependence of the critical temperature, Tc(µ̄), in the 4d
(black) and 3d (blue) approaches at the benchmark point M = 640 GeV. As discussed in the text,
in the 3d approach the other thermodynamic parameters show a similar µ̄ dependence to Tc.

physical quantity, O, is independent of the renormalisation scale,

dO
dµ̄

∣
∣
∣
∣
µ̄opt

= 0 . (3.5)

In the 4d approach, choosing O = Tc, this equation finds no solution for µ̄opt, Tc(µ̄) being

a monotonic function over the range of µ̄ considered. In contrast, in the 3d approach,

solutions to eq. (3.5) exist for the SMEFT for the whole range of M that we consider.

In general, at finite order in a perturbative expansion, different physical quantities may

satisfy eq. (3.5) at different scales. In the 3d approach we find that for O = Tc, eq. (3.5)

is satisfied around µ̄opt ≈ (2.0 − 2.1)T , whereas for O = Tp eq. (3.5) is satisfied around

µ̄opt ≈ (2.2−2.3)T . In both cases the dependence on M is mild. For O = α and O = β/H,

the solution to eq. (3.5) depends more strongly on M , but is still centred around

µ̄opt ≈ 2.2T , (3.6)

which we choose as the default renormalisation scale in the 3d approach. Figure 3 shows

the scale dependence of Tc at the benchmark point M = 640 GeV.

As seen in figure 2, the scale dependence in the 4d approach (shown as the grey

bands) is very significant: about 20-30% for Tc, 20-75% for Tp, 200-800% for α and 40-

200% for β/H. For the gravitational wave peak amplitude, the corresponding uncertainty

is ∆Ω/Ωmin = O(102 − 103). This shows that higher order perturbative corrections to

the 4d approach are large, and the calculation is not well under control at this order. In

notable contrast, the scale dependence of the 3d approach (shown as the blue bands) is much

smaller: 2-5% for Tc, 2-20% for Tp, 10-70% for α and 10-60% for β/H. For the gravitational

wave peak amplitude, the corresponding uncertainty is ∆Ω/Ωmin = O(100 − 101). Thus,

at the order that we work to, the 3d approach appears much better under control. The

uncertainty in the 4d approach becomes more dramatic when ignoring the scale dependence
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of the couplings. This is a corner often cut in the literature, and was discussed in this

context in ref. [77]. An example of the resulting scale uncertainty is shown in figure 1 in

the introduction.

The 3d effective theory depends on its own additional renormalisation scale, µ̄3. Just as

with the 4d renormalisation scale, dependence on µ̄3 is unphysical. As the effective theory

is applicable to energy scales of order g2T ≈ g2
3 and below, we choose simply µ̄3,opt = g2

3

as our default scale. Taking this default scale as the geometric midpoint, we vary the 3d

renormalisation scale over the range g2
3/

√
10 to g2

3

√
10. The dependence on µ̄3 is in all

cases much weaker than that on µ̄ shown in figure 2, so we do not plot the µ̄3-dependence

explicitly. The uncertainty related to the µ̄3 dependence amounts to ∆Ω/Ωmin = O(10−2 −
10−1), and increases monotonically with M . Note that, due to its numerical insignificance,

we do not solve the renormalisation group equations for µ̄3, and neither do we use the more

optimal choice µ̄3,opt = g3v3(0). For more discussion of this, see ref. [62].

3.2 Gauge dependence

At the leading O(g2) order the effective potential is gauge invariant [50], motivating some

researchers to truncate their calculations at this order, and thereby compromising accuracy.

Gauge dependence enters the effective potential at O(g3), through the one-loop contribu-

tions of (soft) Goldstone bosons. We demonstrate this for the SMEFT in appendix A.3,

adopting the class of general covariant (or Fermi) gauges, with gauge parameters ξi. As

a consequence, if one numerically evaluates the one-loop effective potential at its minima,

there is a residual gauge dependence.

In perturbation theory a gauge-invariant treatment requires a suitable power expan-

sion, such as the ~-expansion.17 Therein the Nielsen identities ensure gauge invariance

order-by-order [79, 131, 138, 140, 141]. By contrast, without performing such an expan-

sion, perturbative results in general bear a residual gauge dependence. Daisy resummation

conflicts with a strict ~-expansion. This is because the tree-level minima are not perturba-

tively close to the one-loop minima. The tree-level minima are temperature independent,

and differ at leading order from the temperature-dependent minima which are relevant for

the phase transition. Thus, it is not clear how to arrange for the cancellation of gauge

dependence in the 4d approach while keeping consistent to perturbation theory.

The 3d approach exhibits two sets of gauge-fixing parameters: one within the 4d theory

itself and another within the dimensionally-reduced 3d EFT. As shown in appendix B.2.2,

gauge dependence from the hard scale cancels in the matching relations at the order that

we work, O(g4), thus implying that one can consistently truncate the relations at this

order. However, we choose to include a subset of the O(g6) corrections, in particular the

O(g6) corrections to c6,3, as these are expected to be relatively numerically important given

that c6,3 is O(g4) at LO (in fact we find this amounts to an O(10%) correction to c6,3).

These O(g6) corrections show an explicit dependence on the 4d gauge parameters, though

this gauge dependence is numerically very small — even for very large gauge parameters,

as is shown in figure 4. To remove this gauge dependence would require matching to a

17We postpone discussion of the gauge dependence of the bubble nucleation rate to section 3.5.
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complete operator basis in the 3d EFT, and perhaps even a complete matching at O(g6).
However, we choose not to, given the difficulty of such a calculation, as well as its numerical

insignificance (cf. end of section 2.2.1). Gauge dependence from the soft scale is expected

to cancel in the same way as that for the hard scale, though we have not demonstrated this

explicitly. Regarding the gauge parameters of the ultrasoft-scale EFT, since the thermal

nature of the 4d theory manifests itself only in the matching parameters, computations

within the 3d EFT are carried out in its vacuum, simplifying matters greatly. This allows

a strict ~-expansion, as long as the tree-level potential of the 3d EFT qualitatively agrees

with the full effective potential. For the specific 3d EFT we study this is indeed the case,

since there is a (temperature-dependent) tree-level barrier between the phases. Therefore,

Nielsen identities are recycled in the ~-expansion, as outlined in section 2.2.2, ensuring

independence of the gauge fixing parameters ξi,3 of the EFT, order-by-order.

In a gauge-invariant analysis, the gauge parameters can take any value, as dependence

on them cancels exactly. However, in a gauge-dependent analysis this is no longer true.

Sufficiently large values of |ξi| scale as inverse powers of the coupling constants and violate

perturbativity [130, 131, 137]. Since generic gauge-dependent loop corrections take the form

∼ g2ξi at zero temperature, this reduces to ∼ gξi at high temperature (cf. eq. (2.31)), where

g is some dimensionless coupling.18 Thus, perturbativity at high temperature constrains

the gauge parameters by,

|ξi| ≪ 1
g
, (3.7)

dropping numerical factors. Hence, by varying the gauge parameter in a range around O(1),
we can estimate the magnitude of the uncertainty in our results due to gauge dependence.

A calculation of when perturbativity breaks down in general covariant gauges in the SU(2)-
Higgs theory indeed demonstrated that it does so for ξi ∼ O(1) [130]. The focus on small

gauge parameters is also supported by various observations in specific models, in which

gauge-invariant analyses appear to agree well with the Landau gauge [80, 134, 138].

Ideally, we would like to compare the relative magnitudes of the uncertainty due

to gauge dependence and renormalisation scale dependence, considered in section 3.1.

Both arise in perturbative calculations multiplied by coupling constants in essentially the

same way, though the latter in logarithms. So for a relatively fair comparison, we vary

the gauge parameters over the range ξi = {0, 3}, which corresponds approximately with

ln(µ̄max/µ̄min) = ln(4π) ≈ 2.53.

Finally, for values of ξi as large as 10, the imaginary part of the 4d effective poten-

tial exceeds the real part at temperatures close to the critical temperature. Consequently,

the 4d approach breaks down completely there due to the argument of the square root

in the Goldstone modes (eqs. (A.38)–(A.39)) which grows with ξi. Our calculation of the

critical temperature may therefore underestimate the theoretical error, accounting for the

behaviour in the top left panel of figure 4. Specifically, for large values of ξi an extra mini-

mum forms in the real part of the potential, and the interplay of the two minima accounts

18Extending this argument to the ultrasoft modes of the magnetic SU(2) gauge bosons might be seen to

impose a stronger constraint, |ξi| ≪ 1, though imposing this does not make sense as the nonperturbativity

of these modes means that perturbativity is already violated in all gauges.
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Figure 4. Gauge dependence of thermal parameters for the 4d approach at µ̄ = T (black) and the
3d approach at µ̄ = 2.2T (blue). In both cases the continuous lines denote ξ1 = ξ2 = 0 and the
dot-dashed lines denote ξ1 = ξ2 = 3. At ξ1 = ξ2 = 10 the 4d approach breaks down, whereas in the
3d approach the artificial gauge dependence is largely indiscernible, even to very large values of ξi.
A dashed blue line demonstrates this at ξ1 = ξ2 = 100 for the 3d approach. Note that the residual
gauge dependence in the 3d approach is an artifact of an incomplete operator basis in this EFT,
and as such is not morally equivalent to the inherent gauge dependence in the 4d approach.

for the behaviour of Tc. Fortunately, the imaginary part of the effective potential decreases

with temperature and tends to be relatively small near the percolation temperature.

In summary, in the 4d approach the gauge dependence which arises at O(g3) remains

uncancelled in the thermal parameters. By contrast, in the 3d approach the gauge de-

pendence at this order cancels due to the use of the ~-expansion at O(~). In addition,

in the 3d approach all gauge dependence at O(g4) cancels: the gauge dependence of the

hard and soft scales cancels in the matching relations, while the gauge dependence of the

ultrasoft scale cancels due to the use of the ~-expansion at O(~2). The calculation in the

3d approach may be truncated at O(g4) yielding exact gauge invariance. Thus we may

conclude that while in the 4d approach gauge dependence represents a limiting theoretical

uncertainty in the gravitational wave spectrum of the phase transition, it is conceptually

absent in the 3d approach.
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3.3 High temperature approximation

Both daisy resummation — à la Arnold-Espinosa — and dimensional reduction at least im-

plicitly rely on the high-temperature approximation, as they are predicated upon a hierar-

chy of energy scales. The hard thermal scale ∼ πT is assumed much larger than the masses

of bosonic zero modes. This assumption generically holds for thermally driven phase tran-

sitions near the critical temperature. This is ensured by the structure of the loop expansion

near the critical temperature; see eq. (2.32). However, for transitions dominated by vacuum

(rather than thermal) physics, in which there is a tree-level barrier between phases at T = 0,

a lot of supercooling can occur between the critical temperature Tc and the percolation

temperature Tp. In this case the high-temperature approximation can break down at Tp.

In the 4d approach, the high-temperature approximation enters explicitly in the ther-

mal (Debye) masses, section A.3, but also implicitly through the singling out of the bosonic

n = 0 Matsubara modes for resummation. Hence our daisy resummation relies on the high-

temperature approximation even though we numerically evaluate the full m/T dependence

of the thermal functions in the effective potential, eqs. (A.67) and (A.68). Alternative

approaches which do not rely on the high-temperature approximation have been developed

in e.g. refs. [52, 55, 101].

While it is not straightforward to quantify the accuracy of the high-temperature ap-

proximation in the 4d approach, we can estimate its effect by the size of the error introduced

by approximating the bosonic thermal functions by the first few terms of their expansion

in m/T (up to and including the logarithm); see eq. (A.63). The results of this calculation

— with a choice µ̄ = T for the RG-scale — are plotted in figure 5 as the dotted line.

The discrepancy with the full line in that figure indicates our estimate for the size of the

uncertainty in the 4d approach which stems from the high-temperature approximation. In

this estimate, we do not also expand the fermionic thermal functions, as only the bosonic

degrees of freedom are resummed, so the high-temperature approximation does not enter

the fermionic sector. We find a difference in the overall gravitational wave spectrum of

order ∆Ω/Ω = O(10−1 − 100) with the larger uncertainties at smaller M .

Within the 3d approach of dimensional reduction, the high-temperature approxima-

tion is closely related to the truncation of the 3d effective theory. The coefficients of

higher dimensional operators in the 3d effective theory are related to the coefficients in

the high-temperature expansion of the hard mode parts of thermal functions. Thus, large

contributions from the addition of higher dimensional operators to the 3d effective theory

signals the breakdown of the high-temperature approximation.

To estimate the leading corrections to our truncation of the high-temperature expan-

sion, we match the scalar dimension-8 and -10 operators,

O8 = c8,3(φ†φ)4 , O10 = c10,3(φ†φ)5 . (3.8)

These operators enter the Higgs potential directly, and hence we can estimate the order of

magnitude of their effects by analysing the tree-level potential in 3d with these operators.

By a direct extension of the tree-level analysis in section 2.2.2 and appendix B.5, we calcu-

late Tc, Tp, α, and β/Hp including the operators in eq. (3.8). The difference between this
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Figure 5. α, β/Hp, each with two lines: (i) full thermal functions at µ̄ = T (your existing results)
and (ii) high-T approximation (up to and including logarithms) for all thermal functions (both
fermions and bosons), again at µ̄ = T . Thermodynamic parameters in the 4d approach, with and
without high-T expansion of thermal functions, with a choice µ̄ = T for the RG-scale.

and the tree-level result without operators O8 and O10 estimates our uncertainty. Figure 6

shows this uncertainty estimate for the four thermodynamic parameters. The effect of c8,3

is relatively small, and the additional effect of c10,3 even smaller, suggesting good conver-

gence of the expansion. Note that the effect of these higher dimensional operators is seen

to be larger for stronger transitions. Since the discontinuities of the scalar condensates are

larger for stronger transitions, in general (φ†φ)n-operators give larger effects.

Higher dimensional operators in the 3d EFT do not just arise from the high-T ex-

pansion, but also arise necessarily at higher loop orders. Powers of m/T from the high-T

expansion compete with powers of the coupling constants which arise from the loop ex-

pansion [152]. Thus, in a rigorous power-counting scheme, as one increases the accuracy of

the calculation, and includes more loop orders, one will also need to match to correspond-

ingly higher dimensional operators [61]. This is also necessary in order to render soft and

ultrasoft observables finite [110].

While the high-T expansion of thermal integrals is utilised in our matching relations

for the 3d approach and simplifies the matching significantly, it can be avoided at the cost

of tougher master integrals; see refs. [129, 153]. Rather than attempting this, we utilise the
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Figure 6. Estimate of the uncertainty in our 3d approach due to truncating the effective theory at
(φ†φ)3. The cyan lines are the LO results in this truncation, the red lines include also the (φ†φ)4

operator and the orange lines include both the (φ†φ)4 and (φ†φ)5 operators.

4d approach to estimate the error introduced in the 3d approach from the use of the expan-

sion of thermal integrals in the matching relations. To do this we calculate the change in

thermal parameters as calculated in the 4d approach when all bosonic and fermionic ther-

mal functions are expanded (up to and including the logarithm); see eqs. (A.63) and (A.64).

The results of this are show as the dashed lines in figure 5. For weaker transitions, at larger

M , the resulting changes of the thermal parameters are relatively small; for M & 590 GeV

this results in ∆Ω/Ω = O(10−1 − 100). However, for strong transitions with significant

supercooling, this becomes the dominant theoretical uncertainty of the 3d approach, with

∆Ω/Ω growing to O(100 − 102) at M . 590 GeV.

3.4 Higher loop orders

At zero temperature, the convergence of the loop expansion is dictated by the smallness

of the dimensionless coupling constants. Large zero-temperature couplings will correspond

to large theoretical uncertainties. Being interested in studying finite temperatures, the

convergence of the loop expansion is more delicate due to the Infrared Problem.

In the 4d approach, our calculations reach one-loop level. There is unfortunately no

tree-level result to compare with our one-loop calculations, as the phase transition takes

place due to thermal fluctuations, which appear first at one-loop. Already refs. [52, 53]
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extended the daisy-resummed approach to two-loops, though realistic Standard Model

extensions were only recently tackled for the two-Higgs doublet model [55] and the SM with

a lighter Higgs mass [79]. In the daisy-resummed approach, the extension to two-loops is

complicated due to massive two-loop sum-integrals, as well as the large number of different

particles contributing As such, we refrain from two-loop corrections in the 4d approach.

In the 3d approach, next-to-leading order (NLO) calculations become more amenable.

This is because, for NLO matching, the only two-loop corrections required are the thermal

mass corrections, and thermodynamic properties are analysed within the simpler 3d effec-

tive theory. This approach expands separately: (i) the matching relations in powers of g

and (ii) the 3d effective theory in powers of ~. In order to calculate some physical quantity

to a given order in g, both expansions should reach that same order. It is nevertheless in-

structive to test their convergence separately. Further, by not expanding the 3d couplings,

the results benefit from resummations of some higher order terms, as well as additional

cancellations of scale dependence [154, 155].

For the matching relations in the 3d approach, we compare three different approxima-

tions: LO matching, one-loop matching and NLO matching; see figure 7. The LO and NLO

approximations are both consistent truncations of the perturbative series in powers of g2,

and as such are gauge invariant.19 The LO approximation consists of one-loop matching

of masses, and tree-level matching of couplings. In this we include the LO effects of both

the hard O(g2) and the soft O(g3) scales, and hence the calculation is accurate to O(g3)
but contains nothing at O(g4). The NLO approximation is accurate to O(g4) and consists

of two-loop matching of masses, and one-loop matching of couplings, and this is what we

utilise elsewhere in the paper. As argued in ref. [65], the LO approximation is not expected

to be quantitatively accurate as fractional corrections to observables from NLO corrections

are O(1). One must carry out NLO matching for higher order corrections to observables

to be perturbatively suppressed. In between the LO and NLO approximations lies the

full one-loop approximation. This constitutes an incomplete calculation at any order in g,

and consequently is not gauge invariant (e.g. eq. (B.37)), just like the 4d approach. For

example, similarly to the 4d approach discussed in section 2.2.1, a full one-loop matching

includes some O(g4) corrections to the effective potential, but misses others. However it is

simpler than the full NLO matching and includes logarithms which cancel the running of

couplings (but not masses); see refs. [99, 118, 156, 157].

The results for the SMEFT shown in figure 7 inspire some confidence in the NLO

matching relations which we have utilised. For Tc and Tp, as one progresses from lower to

higher order approximations, from LO to 1-loop and then NLO, the scale dependence bands

shrink from ∼ 20 − 50% to ∼ 10% to ∼ 2%, while the centre of the bands, at the optimal

scale µ̄ = 2.2T , change relatively little. This suggests good convergence as one increases

the order of the approximation for the matching relations. It also shows the importance of

higher order corrections for reducing unphysical scale dependence. For α and β/H, while

the results at the optimal scale show good convergence, the LO approximation appears

19Excepting the caveat regarding the incomplete basis of operators in our truncation of the SMEFT,

discussed in section 3.2 and appendix B.2.2.
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Figure 7. Comparison of LO, 1-loop and NLO matching relations in dimensional reduction, show-
ing their µ̄ scale dependence. The LO matching relations, though gauge invariant, depend strongly
on the scale. The 1-loop matching relations significantly reduce the scale dependence with respect
to LO, and give an uncertainty band which is relatively constant with M . The NLO matching re-
lations significantly reduce scale dependence further with respect to 1-loop. It is heartening to see
that the NLO results lie entirely within the 1-loop scale uncertainty bands. The optimal µ̄ = 2.2T
is established in eq. (3.6).

to break down at small M and µ̄ = T/2. Nevertheless, that the NLO scale dependence

bands lie entirely within the 1-loop bands still suggests relatively good convergence. We

can naively estimate the size of the unknown NNLO corrections to Tc as (1−LO/NLO)2 ∼
(10%)2 ∼ 1%, with all quantities evaluated at the optimal scale. For Tp this estimate for

the NNLO corrections is ∼ 1 − 4%, for β/H it is ∼ 4 − 15% and for α it is ∼ 10 − 50%.

These values naively estimate NNLO corrections to the matching relations to result in

∆Ω/Ω = O(100 − 101), with the larger uncertainties at smaller M . This estimate is

supported by its agreement with the magnitude of the scale uncertainty of the NLO result.

In the 3d approach, we also assess the convergence of the ~-expansion within the 3d

EFT. For purely equilibrium quantities, such as the transition strength evaluated at the

critical temperature, αc, we can ~-expand up to O(~2), or NNLO. This utilises the two-loop

effective potential computed in appendix B.4. However, for the bubble nucleation rate, the

spatial dependence of the bubble profile severely complicates the computation of higher

loop orders, so we are only able to compute the LO in ~ and estimate the NLO in ~. Due

to this distinction, we defer the discussion of the nucleation rate to section 3.5.
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Figure 8. Convergence of the loop expansion in the 3d effective field theory at tree-level (dotted),
one-loop (dashed), and two-loop (solid) showing the purely equilibrium quantities Tc and αc =
α(Tc). The discussion of the nucleation rate is left to section 3.5.

The presence of the single higher dimensional operator in the truncation of the 3d

effective theory leads to an interesting structure of the perturbative series. Essentially, if

c6,3 is the smallest coupling in the EFT, it determines the convergence of the entire loop

expansion for the coupled 3d gauge-Higgs theory, due to it being the only interaction of

dimension 3. Appendix B.3 proves this. As c6,3 is naturally the smallest effective coupling

(with not too low cut off, M), the ~-expansion within the EFT is expected to converge well.

Computing the purely equilibrium thermodynamic quantities in the SMEFT, we find

that across the entire range M ∈ [575, 750] GeV, the tree-level contributions in the 3d

effective theory dominate, and the higher loop contributions converge well. Numerically

one-loop (NLO) contributions are ∼ 5 − 25% of the tree-level and two-loop (NNLO) con-

tributions are ∼ 0.5 − 2.5%. Demonstrating this explicitly, we take a closer look at the

benchmark point M = 600 GeV, for which

Tc = 86.2
(
1(tree-level) + 0.067(1-loop) + 0.011(2-loop) + . . .

)
GeV , (3.9)

α(Tc) = 0.00809
(
1(tree-level) + 0.228(1-loop) + 0.025(2-loop) + . . .

)
. (3.10)

Here the matching relations are fixed at NLO. The convergence of the loop expansion

within the 3d EFT is fairly consistent across the considered range of M (cf. figure 8).

From eqs. (3.9) and (3.10) we would naively expect three loop (N3LO) and higher

loop corrections in this expansion to give fractional corrections of order (1 − LO/NLO)3 ∼
(10%)3 ∼ 0.1%. However, it should be remembered that, in the symmetric phase the

ultrasoft spatial gauge bosons are nonperturbative. We discuss this issue in section 3.6.

Finally, we comment on what we can learn regarding the size of unknown higher

order corrections from studies in other models. In QCD the O(g5) corrections have been

calculated in refs. [64, 128], and were found to be rather large. At values of the coupling

similar to the electroweak gauge coupling at the electroweak scale, it was found that while

in general the perturbative expansion appeared convergent, the O(g5) corrections were

anomalously large, and comparable in magnitude to the O(g4) corrections. If this carries
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over to our case, then we would have to revise our estimates for the theoretical uncertainty

upwards by around an order of magnitude. However, while the convergence of perturbation

theory is slow in the high temperature symmetric phase, the screening of IR contributions

in the broken phase typically leads to better convergence. Only a full O(g5) calculation

can settle this question.

3.5 Nucleation corrections

The nucleation rate is by far the most technically challenging quantity for which to calculate

higher loop corrections. In fact, even calculating the leading order self-consistently is

nontrivial, something which is often unappreciated. It is the intersection of the following

two points which lead to this technical difficulty:

(i) The phase transition occurs due to thermal fluctuations. These appear first at one

loop, hence the critical bubble (or bounce) cannot be solved for at tree-level.20

(ii) The fields should be loop-expanded around the critical bubble, i.e. around an inho-

mogeneous classical background field, φ = φ(x).

These two points lead to a catch-22: the critical bubble only exists in the background of one-

loop corrections and yet the one-loop corrections should be made around the background of

the critical bubble. This, coupled with the inhomogeneity of the critical bubble, constitute

the main technical challenges in consistently calculating the nucleation rate.

An intuitive solution to (i) above is to use the perturbatively computed effective poten-

tial, rather than the tree-level potential, to compute the critical bubble [90, 124]. Starting

from the tree-level, vacuum bounce equation of Coleman [142], the suggested prescription

to modify it for the thermal case is the following:

∇2φ− dVtree

dφ
= 0 → ∇2φ− dRe(Veff)

dφ
= 0 . (3.11)

This prescription gives exactly eq. (2.28) once assuming O(3) symmetry and forms the

basis of our nucleation calculations in the 4d approach, as discussed in section 2.1. It is

also the most common approach taken in the literature.

While plausible, and clearly a step in the right direction, the naive replacement of

eq. (3.11) is not derived from first principles. It suffers from inconsistencies since, in

general, the bounce action thus calculated is not the correct result at leading order in any

expansion, as has have been discussed in refs. [132, 133, 158–166].21 The presence of the

extraneous nonzero imaginary part of the effective potential, which must be discarded by

hand, perhaps offers a clue that something has gone wrong. The nucleation rate calculated

this way is also gauge dependent.

In eq. (3.11), by using the effective potential in the bounce equation as an attempt

to solve (i), one evades the catch-22 by inconsistently integrating over the fields twice.

Integrating first in generating the effective potential and then second in solving the bounce

20In other words, the transition is radiatively induced.
21See also ref. [167] for the resolution of an analogous issue at zero temperature.
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equation and evaluating the nucleation prefactor. In computing the effective potential all

nonzero momentum modes of the fields are integrated out, including those of the scalar.

The remaining degree of freedom, the constant mode of the scalar field, cannot describe

a localised, inhomogeneous critical bubble (or bounce), hence the practical necessity for

ad hoc promoting the constant mode back up to a full spatially-dependent field, to be

integrated over a second time. Furthermore, in computing the effective potential, the

spatial dependence of the scalar field, the basis of (ii), is still wrongly ignored. One might

think that a derivative expansion could justify this, and that the effective action evaluated

on a background bounce solution might be approximated by the naive bounce action,

Γ[φ(x)] ?=
∫

d3x

[

Re (Veff (φ)) +
1
2

(∇φ)2

+
∑

i,n

Ci,nm
2
φ

(
mφ

mi

)2n

φ

(

∇
mφ

)2n

φ+ . . .

]

, (3.12)

where we have indicated the size of the simplest derivative corrections, denoting by . . .

all other possible terms. Here mφ is the mass of the φ particle, i runs over the modes

with masses mi which have been integrated out in deriving Veff , n runs over 2, 3, 4, . . . and

the Ci,n are O(1) constants. The solution to eq. (3.11), will exhibit a virial-type theorem

implying that the bubble wall has a width of order ∼ 1/mφ, so that ∇/mφ ∼ 1 when

evaluated on the bubble wall. By deriving the effective potential the φ field itself has

been integrated out, so that mφ ∈ {mi}. Therefore, even ignoring the inconsistencies of

double counting, the derivative expansion in this case is, at best, an expansion in powers

of ∼ mφ/mφ = 1, and even worse if there are any bosons lighter than φ.

A consistent resolution to these issues was given by Langer [92, 158] in the context

of classical statistical mechanics, which has been formulated in quantum field theoretic

terms in refs. [132, 133, 161–163, 165].22 The resolution depends upon the existence of

a certain hierarchy of scales, with UV and IR modes well separated in energy scales, i.e.

ΛIR ≪ ΛUV. In essence, one first integrates over UV modes, resulting in a temperature-

dependent, course-grained effective action, ΓIR, for the remaining IR modes. One can then

derive a bounce equation for the IR modes, which stationarises this course-grained effective

action.23 This resolves (i) without double counting. Further, as only the UV modes have

been integrated out, the course-grained effective action is only nonlocal on length scales

1/ΛUV ≪ 1/ΛIR. Hence a derivative expansion of ΓIR is applicable, and amounts to an

expansion in powers of ΛIR/ΛUV. This consistently resolves (ii). The action from which

one determines the bounce equation is

ΓIR[φIR(x)] =
∫

d3x

[

VIR (φIR) +
1
2
ZIR (∇φIR)2

+
∑

n

CnΛ2
IR

(
ΛIR

ΛUV

)2n

φIR

( ∇
ΛIR

)2n

φIR + . . .

]

, (3.13)

22For two alternative approaches, see refs. [136, 168] and [164, 166].
23A course-grained procedure for exact renormalization using the functional renormalization group equa-

tion only yields a non-convex potential if unstable (long-wavelength) states are disregarded, through the

introduction of an IR cutoff scale kIR [163, 165, 169].
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where φIR are the IR modes and VIR and ZIR are the potential and field renormalisation

for φIR, after having integrated out only the UV modes. Again we have indicated the size

of the simplest derivative corrections, with Cn being O(1) Wilson coefficients. In this case

the bubble wall width is of order 1/ΛIR and hence these higher order derivative corrections

are suppressed by powers of ΛIR/ΛUV. These terms, as well as those omitted as . . . in

eq. (3.13), can thus be neglected when there is a sufficiently large separation of scales.

Dimensional reduction is built around just such a separation of scales, summarised in

table 2. It therefore provides a natural framework for which to perform a self-consistent

calculation of the bubble nucleation rate. After integrating out the modes on length scales

ΛUV ∼ 1/πT and then ∼ 1/gT , we are left with an effective theory on length scales

ΛIR ∼ π/g2T , the ultrasoft theory. Note that the explicit ZIR factors are removed by a

redefinition of the infrared fields according to eq. (B.56). Thus, by identifying φIR with φ3d

of the 3d EFT and ΓIR with the tree-level action of the 3d EFT, we can self-consistently

calculate the tunnelling action using eq. (3.13), obtaining the correct result at LO in the

3d ~-expansion (see eq. (2.50)), and to NLO in powers of ΛIR/ΛUV ∼ g/π. Terms with

more powers of φIR or more derivatives are suppressed by powers of the coupling, as long

as the hierarchy of scales in table 2 holds.

The resulting tunnelling action is independent of the gauge fixing within the 3d EFT,

being the leading order in a consistent ~-expansion. This extends also to the nucleation

prefactor, which is gauge invariant when evaluated on a solution to the tree-level equations

of motion [140, 141].24 Therefore, if the matching relations are independent of the gauge

fixing within the 4d theory (as, for example, we have shown them to be up to O(g4) in

the SMEFT), the calculation is then gauge invariant from end to end. Conversely the

small gauge dependence introduced into the matching relations in the SMEFT due to the

incomplete basis of operators will carry through to the tunnelling calculation.

The picture formed is that the hard, UV modes cause the 3d effective parameters to

run with temperature, driving the light, IR modes through the transition. Note that it

would be incorrect to equate VIR with the effective potential in the 3d effective theory, after

having integrated out the ultrasoft fields, as that would amount to double-counting and

an uncontrolled derivative expansion akin to eq. (3.12). The correct identification for VIR

is the tree-level potential of the ultrasoft EFT.

Returning now to the naive recipe, eqs. (3.11) and (3.12): despite its inconsistencies,

in certain circumstances it approximates eq. (3.13). This is the case when the scalar under-

going nucleation is much lighter than all other particles in the theory and has much smaller

self-couplings than couplings to other fields. This occurs, for example, in the Standard

Model in the region of parameter space where the Higgs is much lighter than the W bosons.

In this case the derivative expansion of the effective action is justified for all diagrams

except those containing scalar loops, however scalar loops are subdominant by assumption.

Further, it is the scalar loops which lead to the erroneous imaginary part of the effective

potential, and this again will be subdominant. Nevertheless, refs. [132, 133, 136, 160, 162]

24At zero temperature, the gauge invariance of vacuum tunnelling rates has been discussed in refs. [170–

172].
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have pointed out that rather than accepting a subdominant inconsistency in the calculation,

one should instead omit the scalar loops in the potential used in the bounce calculation.

The NLO correction in ~ to the bubble nucleation rate is the nucleation prefactor, the

term A in eq. (2.1). Its most important contribution is essentially the entropy of the critical

bubble, given by integrations over all field fluctuations in the vicinity of the critical bubble.

At this point the inconsistency of eq. (3.11) becomes very clear, as all field fluctuations have

already been integrated over in computing Veff , mixing the LO and NLO terms in ~. Hence

it is not possible even to define the nucleation prefactor in our 4d approach, resulting in a

fundamental theoretical uncertainty beyond just the breakdown of the derivative expansion

implied by eq. (3.12). As a consequence, most of our analysis of the nucleation prefactor

is carried out in the 3d approach, though through this we are also able shed some light on

theoretical uncertainties in the 4d approach.

The nucleation prefactor can be split into a product of two terms, called the dynamical

and statistical prefactor respectively [173],

A = AdynAstat . (3.14)

Both of these terms are independently technically challenging to compute from first princi-

ples, and we refrain therefrom in this paper. The dynamical prefactor requires a real-time

computation in the presence of a thermal bath, while the statistical prefactor requires com-

puting functional determinants. To estimate the magnitude of corrections related to the

nucleation prefactor we compare various approximations present in the literature. This is

discussed at length in appendix C.

We consider two different approximations to the dynamical prefactor, Adyn. These are

(A) an approximation in which the ultrasoft gauge bosons are assumed to dominate the

dynamics and (B) a hydrodynamic approximation, which also assumes the bubbles are thin

walled. Our default choice in the 3d approach is (A), the infrared gauge boson dominance

approximation.

We also consider three different approximations to the statistical prefactor, Astat. For

the statistical prefactor, the approximations are (a) a thick wall approximation, correct

up to a multiplicative function of g′2
3 /g

2
3 and λ3/g

2
3, (b) a thin wall approximation, which

correctly gives the dominant terms in the thin wall limit and (c) LO in an uncontrolled

derivative expansion (comparable to eq. (3.12)) with ad hoc treatment of the zero modes.

This last approximation, (c), gives exponentially large errors in general but is expected to

become more reliable in the limit that the Higgs is much lighter and more weakly coupled

than the gauge bosons, and in the thin wall limit. Our default choice in the 3d approach

is (a), the thick wall approximation.

The tunnelling action at nucleation is plotted in figure 9, together with prefactor

corrections in our different approximations. These should be small corrections if the ~-

expansion is under control. Further, agreement between different approximations to the

dynamical and statistical parts of the prefactor respectively would suggest that theoretical

uncertainties in these quantities are relatively under control. We remind the reader that

the full prefactor is the product of the dynamical (orange) and statistical (cyan) parts.
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660 680 700

Figure 9. The tunnelling action at nucleation in the 3d (top panel) and 4d (bottom panel)
approach, shown in black at LO in the ~-expansion, S(0). Also shown are prefactor corrections
which, for each M , are all evaluated at the nucleation temperature calculated using our default
prefactor approximation. The full prefactor factorises into dynamical (orange) and statistical (cyan)
parts; see eq. (3.14). More details of these approximations can be found in appendix C. Note the
large deviations from the LO result for the derivative approximation to the statistical prefactor.
This aligns with the expected breakdown of this approximation, which underlies the 4d approach.

The most obvious anomaly in figure 9, is the statistical prefactor in the uncontrolled

derivative approximation, (c), which shows O(1) multiplicative deviations from the LO

tunnelling action. This uncontrolled derivative approximation underlies the 4d approach,

being essentially the same as that carried out in eq. (3.12). The numerical results shown

in figure 9 suggest the approximation breaks down badly, especially for larger M , where

the transitions are weaker. Although the 4d approach relies on this derivative expansion,

by incorporating these corrections directly in eq. (3.11), rather than in the prefactor, it

effectively resums the expansion, so mitigating (but not avoiding) the breakdown of the

expansion. The consequences of this uncontrolled error cannot easily be quantified in

∆Ω/Ωmin, so we denote them as unknown in table 3. However, the systematic difference

for β/H∗ with respect to the 3d approach may give some indication (see e.g. figure 2). Just

this amounts to a systematic error ∆Ω/Ωmin of around O(101).
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For the 4d approach, leaving aside the unknown effect due to the application of the

uncontrolled derivative expansion, the different approximations for the prefactor A result

in a modest change in the effective action compared to the value recommended in the

recent LISA review, log(A/T 4) ∼ −14 [6]. This in turn results in a modest change in the

peak gravitational wave amplitude between O(10−1 −100). However, since the true error is

dominated by the systematic error, we do not include this uncertainty in the final analysis.

On the other hand, for the 3d approach, we face no such difficulties and so can give

a reasonable estimate for the theoretical uncertainty related to the nucleation prefactor.

Figure 9 shows that the thin and thick wall approximations to the statistical prefactor

roughly agree, as do the two approximations of the dynamical prefactor. Better agreement

than this is not to be expected, as these are all crude estimates. However, their rough

agreement encourages us to suggest that they could be used to estimate the magnitude

of O(~) corrections in the 3d approach. Combining the various approximations to the

dynamical and statistical prefactors (excluding the uncontrolled derivative expansion) in

all possible ways leads to a range of different estimates. These different estimates amount

to an uncertainty ∆Ω/Ωmin for the 3d approach, which varies monotonically from O(10−1)
at M = 700 GeV to O(100) at M = 580 GeV.

3.6 Nonperturbativity

In the symmetric phase the perturbative mass of the magnetic gauge bosons is zero. As

a consequence, the effective coupling of their zero Matsubara modes, ∼ g2T/m, appears

to be infinite. This leads to IR divergences at finite loop order [49], and the consequent

complete breakdown of perturbation theory.25 Physically, these divergences in perturbation

theory are softened by a nonpertubatively generated mass for the gauge bosons, of order

g2T [9]. Based on power-counting arguments, one would expect the resulting softened

IR divergences to contribute to the free energy density at O(g6T 4/(2π)4) [174, 175], or

the typical size of a 4-loop order term. However, this estimate is perhaps misleading,

as the effective gauge coupling becomes large for momentum-transfers Q2 ∼ (g2T/π)2, so

perturbative estimates cannot be relied upon. The nonperturbative nature of the symmetric

phase leads to an irreducible uncertainty in our perturbative calculations which in principle

only lattice simulations can resolve.

In the broken phase, by contrast, perturbation theory may work well, as the trouble-

some magnetic gauge bosons acquire a mass via the Higgs mechanism. For a sufficiently

strong transition, this broken phase mass is large, and hence the effective coupling of the

magnetic gauge bosons, ∼ g2T/m, is perturbative. Of course, both phases are relevant

for calculating the thermodynamic properties of the transition. However, if for some ther-

modynamic quantity the contribution of the broken phase exceeds the contribution of the

symmetric phase, then one would expect perturbation theory to be an at least qualitatively

reliable guide. This scenario should take place for sufficiently strong transitions, in which

the Higgs vev in the broken phase is large, and gives correspondingly large contributions

to thermodynamic quantities.

25This breakdown of perturbation theory is not solved by resummation.
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Explicit comparisons between lattice and perturbation theory have indeed shown good

qualitative agreement for strong first-order transitions in the xSM, 2HDM, ΣSM [24, 86,

121], Abelian Higgs model [134] and also in the SM [9, 11, 136] (with artificially light

Higgs). In particular, the scan of the parameter space of the xSM in ref. [86] showed

good qualitative agreement between lattice and perturbative calculations for the phase

diagram of the theory. For the two benchmark points in the 2HDM considered in ref. [24]

it was found that Tc calculated in a dimensionally-reduced approach26 differed by 4–7%

from the lattice result, whereas αc differed by 5–25%. By contrast, calculations using a

daisy-resummed approach showed discrepancies from the lattice result for Tc of 20–45%

and for αc of 45–75%. For the two benchmark points considered in the ΣSM in ref. [121]

it was found that in a dimensionally-reduced approach αc differed from the lattice result

by 30–40%, whereas in a daisy-resummed approach the discrepancy was more than 50%.

Bubble nucleation was studied on the lattice in the Standard Model with light Higgs in

ref. [136]. There it was found that perturbative calculations of the value of (m2
3,c −m2

3)/g4
3

at nucleation, essentially (Tc/Tp)2 − 1, differed from the lattice result by around 30%.

Note that some of these discrepancies between lattice and perturbative calculations are

significantly larger than one might guess based on perturbative power counting, highlighting

the importance of carrying out nonperturbative computations.

4 Discussion

This work systematically examines theoretical sources of uncertainty in the finite-

temperature calculation of thermal tunneling rates, and the resulting uncertainty in thermal

parameters of a first-order phase transition. In particular, we have compared the sources

of uncertainty in two different methods that address the breakdown of perturbation theory

due to the long-wavelength modes at high temperature: resummation of daisy diagrams

in 4d, and dimensional reduction to 3d effective theory. The benchmark model we have

used is the Standard Model aided with a dimension-six operator, O6 =
(

φ†φ
)3
/M2, which

we expect represents qualitatively a large set of models of EWSB, which is of particular

interest for the planned LISA experiment.

Section 2 and the appendices include a thorough and comprehensive review of the 4d

and the 3d approaches, and the calculation of the thermal parameters capturing the dy-

namics of the phase transition. We develop the 3d approach, building upon previous works

utilising dimensional reduction, to include also a gauge invariant treatment up to O(g4) of

bubble nucleation and the calculation of thermodynamic quantities. The two approaches

are outlined in general, and are fleshed out for the specific example of our benchmark model.

The main sources of uncertainty were categorised in section 3, as follows: renormal-

isation scale dependence, gauge dependence, the high temperature approximation, the

unknown contributions of higher loop orders, corrections to the bubble nucleation rate,

and nonperturbativity or the Infrared Problem.

26Just as we have done in this paper, in refs. [24, 121] the dimensional reduction was carried out to NLO

and the perturbative calculations within the 3d EFT were carried out to 2-loop order.
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Figure 10. Effects of variation for different sources of theoretical uncertainty on the parameter
∆Ω/Ωmin, defined in (3.1). The renormalisation scale is varied between µ̄ = {T/2, 2πT}. The
gauge parameters are varied in the range ξ = {0, 3} in both the 3d and the 4d approach. The
chartreuse line labeled “c8,3 in 3d” gives the difference between the result including that parameter
and the result with only c6,3. The purple line labeled “high-T” gives the variation due to the high-
temperature expansion of the thermal functions Jb/f . Note that theoretical uncertainties due to
nonperturbativity and due to the breakdown of the derivative expansion in the 4d approach are not
included in this plot, as we were unable to give reliable and detailed estimates of the magnitude of
these uncertainties.

We include a qualitative discussion of the origin of these uncertainties, and where

possible explicitly calculate their magnitudes over the relevant range inM in our benchmark

model. We summarise the results of these calculations in terms of the parameter ∆Ω/Ωmin

defined in (3.1) in figure 10. Importantly, the extent of the uncertainty calculated in this

paper can not be taken as a direct predictor of the correctness of the result, as is most

obviously noticeable from the apparently vanishing uncertainty for certain M in some of

our figures. However, we expect that the variation of the results may be incorporated as

an integral part of the diagnosis of the appropriateness of the two methods.

From the analysis in this paper, we may draw several conclusions. Firstly, a direct

comparison between the 4d and 3d approaches indicates that the latter generically implies a

significantly smaller theoretical uncertainty.27 Such a comparison is shown in figure 10, and

yields a difference in ∆Ω/Ωmin of several orders of magnitude. This may be taken as support

for the choice of the 3d approach over the more commonly used 4d approach. Secondly, of

those uncertainties which we were able to estimate, the most important driver of theoretical

uncertainty in the 4d approach is the dependence on the choice of renormalisation scale.

This effect dwarfs the uncertainty introduced by other effects, such as gauge dependence

27As the calculations in both approaches here were done semi-analytically and did not utilise lattice

Monte-Carlo simulations, there remains a nonperturbative uncertainty associated with the magnetic gauge

bosons in the symmetric phase; see section 3.6.
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— as uncomfortable as the latter is. In light of the results presented here, we recommend

forthcoming works to include an analysis of the variation of the renormalisation scale.

Thirdly, the error introduced by applying the high-T approximation to thermal functions

grows sharply for the strongest transitions, below about M = 590 GeV. This was traced

back to the contribution of the top quark. As these strong transitions are those most

relevant to gravitational wave experiments such as LISA, we suggest that at least the full,

numerical mt/T dependence should be accounted for in future calculations of the SGWB

of first-order phase transitions.

In addition to those theoretical uncertainties for which we were able to give reliable

estimates, we demonstrated that the 4d approach generically depends upon an uncontrolled

derivative expansion. The breakdown of this expansion is remedied in the 3d approach, and

hence may account for the systematic discrepancy in β/H∗ between the two approaches.

We advise that care should be taken in future studies to avoid this particular stumbling

block and to ensure that calculations of the tunnelling rate are self-consistent.

Prior to this work, there have been many studies of various different theoretical uncer-

tainties in calculations of the thermodynamics of phase transitions; recent examples include

refs. [4, 20, 24, 55, 56, 77, 79–87]. However, for the first time, in this work we have compre-

hensively analysed and compared a wide variety of relevant theoretical uncertainties across

the full range from weakly to strongly first-order transitions. In doing so, we have focused

on the implications for the resulting gravitational wave spectra. Previous works have al-

most exclusively focused on the theoretical uncertainties of the transition temperature and

the corresponding vev, which can disguise the severity of the theoretical uncertainty in the

gravitational wave spectrum.28 For example, as α is inversely proportional to the fourth

power of the percolation temperature, and the peak gravitational wave amplitude in turn

depends quadratically on α, an apparently innocuous uncertainty ∆Tp/Tp = 0.1 in the

percolation temperature will result in an uncertainty ∆Ω/Ω ≈ 1 in the gravitational wave

spectrum. In fact this argument may significantly underestimate the uncertainty, as addi-

tionally the trace anomaly grows strongly as the percolation temperature decreases. To the

extent that a comparison is possible, the results presented in this paper are qualitatively

consistent with the existing literature.

The results in this paper will be of particular interest for gravitational wave studies

in anticipation of the LISA experiment and other space-based interferometer experiments

with sensitivity in the milli-Hertz range. In the benchmark model studied in this paper, the

strongest phase transitions — leading to the gravitational wave spectra most likely to be

observable — are found for smaller M . Importantly, this is also the range in which the di-

agnosis presented in this paper indicates the poorest theoretical control, cf. figure 10. This

implies that the amplitude of the gravitational wave spectrum, but also its peak frequency,

can only be predicted to a level of accuracy which depends on the method used. This has

serious implications for the prospect of model differentiation and complementary studies

28An exception was ref. [80] which studied the gauge dependence in the bubble collision term of the

gravitational wave spectrum within the Abelian Higgs model. See also ref. [87] in which the gravitational

wave spectrum of the Z2-symmetric xSM was studied, and within which a ∆Ω/Ω of O(104) was observed

in the comparison of different approximation schemes.
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with collider probes. The sheer magnitude of the theoretical uncertainty and the compara-

tive success of the 3d approach at NLO, motivates its use in studying GW phenomenology

in specific BSM models. Further, we advocate that the theoretical uncertainty should be

taken seriously and analyzed in all future phenomenological gravitational wave studies.
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A SMEFT in four dimensions

This appendix collects multiple technical details of our computation in the four-dimensional

SMEFT, as defined in eq. (2.7). The conventions and notations of the SM parts follow

ref. [99]; see section 2 of that reference.

A.1 Renormalisation: counterterms and running

Excluding the example in figure 1, all calculations in this paper include RGE running

of the parameters. While our main focus is the SMEFT with only the inclusion of the

sextic Higgs operator c6(φ†φ)3, below we do include similar operators of dimension-8 and

-10 with coefficients c8 and c10. For example, note that below the counterterm for the

dimension-8 operator — which is non-zero even if the coefficient c8 itself vanishes — is

crucial in order to cancel divergences related to the dimension-6 coefficient c6. This is due

to the non-renormalisable nature of the SMEFT, where new higher dimensional operators

have to be included to cancel divergences related to operators of lower dimension. For

the same reason, the running of higher dimensional operators is non-zero, so even if these

operators vanish at some initial scale, with RGE running they are non-zero at other scales.

For this reason, one has to ensure that this running does not ruin the numerical analysis in

the EFT without these operators. However, in most of our numerical analysis we simply

neglect dimension-8 and -10 operators altogether.

For renormalisation, we use dimensional regularisation in the MS-scheme, and for gauge

fixing we adopt the class of general covariant (or Fermi) gauges, introducing gauge-fixing
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parameters ξ1 for the U(1) and ξ2 for the SU(2) sector. In Landau gauge ξi = 0. The

one-loop counterterms that are affected by c6, c8 and c10 read

δµ2
h =

1
(4π)2ǫ

µ2
h

(

6λ− 1
4

(

3ξ2g
2 + ξ1g

′2
))

, (A.1)

δλ =
1

(4π)2ǫ

1
2

(
3
8

(

3g4 + g′4 + 2g2g′2
)

− λ
(

3ξ2g
2 + ξ1g

′2
)

+ 24λ2 − 6g4
Y + 24c6µ

2
h

)

, (A.2)

δc6 =
1

(4π)2ǫ

[

c6

(

54λ− 3
4

(

3ξ2g
2 + ξ1g

′2
))

+ 20µ2
hc8

]

, (A.3)

δc8 =
1

(4π)2ǫ

(

63c2
6 + 30µ2

hc10 + c8

(

96λ− 3ξ2g
2 − ξ1g

′2
))

, (A.4)

δc10 =
1

(4π)2ǫ

(

228c6c8 − 5
4
c10

(

− 120λ+ 3ξ2g
2 + ξ1g

′2
))

. (A.5)

The corresponding β-functions read

µ̄
d

dµ̄
µ2
h =

1
(4π)2

µ2
h

(

− 3
4

(

3g2 + g′2
)

+ 12λ+ 6g2
Y

)

, (A.6)

µ̄
d

dµ̄
λ =

1
(4π)2

(
3
8

(

3g4 + g′4 + 2g2g′2
)

+ 24λ2 − 6g4
Y

+ 24c6µ
2
h − 3λ

(

3g2 + g′2 − 4g2
Y

))

, (A.7)

µ̄
d

dµ̄
c6 =

1
(4π)2

[

c6

(

108λ− 9
2

(3g2 + g′2) + 18g2
Y

)

+ 40c8µ
2
h

]

, (A.8)

µ̄
d

dµ̄
c8 =

1
(4π)2

[

c8

(

198λ− 6(3g2 + g′2) + 24g2
Y

)

+ 126c2
6 + 60c10µ

2
h

]

, (A.9)

µ̄
d

dµ̄
c10 =

1
(4π)2

[

c10

(

300λ− 15
2

(3g2 + g′2) + 30g2
Y

)

+ 456c6c8

]

. (A.10)

These counterterms and β-functions unaffected by c8 and c10 are collected for example in

refs. [176–178].

Note that since the presence of a nonzero-temperature preserves the UV structure of

the theory, these same counterterms and β-functions are used in the renormalisation of

unbroken phase correlators for dimensional reduction and for the broken phase vacuum

renormalisation calculation of pole mass corrections.

A.2 Relations between MS-parameters and physical observables

We relate the MS-parameters of the Lagrangian to physical observables, that serve as input

parameters

(Mh,MW ,MZ ,Mt, Gf , αs) 7→ (µh, λ, g, g′, gs, gY ) . (A.11)

Note that the physically observed masses are the pole masses. These relations also depend

on the new MS-scheme BSM parameters c6, c8 and c10, which we also treat as input pa-

rameters. For the values of the physical observables used in this work, we refer the reader
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to table 1. We define the shorthand notation g2
0 ≡ 4

√
2GfM2

W for the tree-level coupling

and v2
0 ≡ 4M2

W /g
2
0 ≈ (246.22 GeV)2 for the tree-level minimum.

At tree- and one-loop level only the Higgs mass parameter and self-coupling are affected

by c6, and the tree-level relations can be solved from (Vtree is defined in eq. (2.9))

∂2

∂v2

(
Vtree(v)

)
|v=v0 = M2

h , (A.12)

∂

∂v

(
Vtree(v)

)
|v=v0 = 0 , (A.13)

resulting in

µ2
h = −1

2
M2
h +

3
4
c6v

4
0 , (A.14)

λ =
1
2
M2
h

v2
0

− 3
2
c6v

2
0 . (A.15)

At tree-level, the relations for gauge and Yukawa couplings are unaffected by c6 and read

g2 = g2
0 , (A.16)

g′2 = g2
0

(
M2
Z

M2
W

− 1
)

, (A.17)

g2
Y =

1
2
g2

0

M2
t

M2
W

. (A.18)

For an accurate numerical analysis of the thermodynamics, the above tree-level rela-

tions can be improved by their one-loop corrections (cf. refs. [24, 55, 65]). These corrections

are necessary for the complete O(g4) accuracy of our 3d approach. Regarding the masses,

this can be achieved with a standard one-loop pole mass renormalisation at zero temper-

ature. With the Minkowski metric at zero temperature, propagators are schematically

dressed as 1/
(
p2 −m2 + Π(p2, µ̄)

)
, where Π is a self-energy function with external momen-

tum p, µ̄ is the MS-scale, and m2 is the MS-mass eigenvalue (see eqs. (A.37)–(A.43)) at

the tree-level minimum v0. Diagrammatically Π consists of

+ + . (A.19)

The self-energy functions capture the momenta dependence of the two-point correlators,

and in addition include one-particle reducible tadpole contributions. Those are generated

at one-loop by the non-zero vev in the broken phase computation, since the minimisation

condition is imposed only at tree-level. Identifying the physical pole mass at p2 = M2 leads

to a condition m2 = M2 + Π(M2). We denote physical masses with capital letters, and

MS-mass eigenvalues — that are functions of running couplings — by lower case letters.

Note that self-energies Π are functions of MS-masses m2, but one may linearise these pole

equations by replacing MS-masses by the corresponding physical pole masses inside the

one-loop computation, since the difference is formally of higher order.29 We employ this

linearisation, as it suffices to reach the desired O(g4) accuracy.

29In the presence of large coupling constants, this linearisation might be insufficient; see discussions in

refs. [24, 55].
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The one-loop correction δg2 to the SU(2) gauge coupling can be obtained by computing

the one-loop 4-fermion correlator related to muon decay µ− → e− + ν̄e+νµ at zero external

momenta. This correlator is proportional to

= − g2
0

2M2
W

(

1 +
δg2

g2
0

)

. (A.20)

Diagrammatically, there is a tree-level contribution

∝ − g2
0

2M2
W

(

1 +
ΠW (MW )
M2
W

)

, (A.21)

where the W -boson self-energy appears via the one-loop improved propagator, and the

following classes of one-loop diagrams:

+ + + (A.22)

where blobs denote possible one-loop attachments. Note that all c6-dependent contribu-

tions cancel between the W self-energy piece in the above tree-level diagram of eq. (A.21)

and the first diagram class of eq. (A.22), such that the final result is equal to the SM.

Furthermore, this correction is numerically small.

We adopt the approximation of ref. [65], where the tree-level value of the U(1) gauge

coupling is not improved at one-loop, due to its small numerical significance. Note that one

could include one-loop corrections to the U(1) gauge coupling for example by computing

the correction to Thomson scattering (cf. ref. [24]).

In total, we have the conditions:

m2
φ = M2

h + Re Πh(M2
h) , (A.23)

m2
W = M2

W + Re ΠW (M2
W ) , (A.24)

m2
t = M2

t

(

1 + 2Re
(

Σv(M
2
t ) + Σs(M

2
t )
))

, (A.25)

g2 = g2
0 + δg2 . (A.26)

Here the top quark self energy consists of a vector part Σv and a scalar part Σs; see section 5

in ref. [65]. Its axial and axial vector parts do not contribute to the pole mass condition.

From these equations we can now solve for the one-loop improved MS-parameters in

terms of the physical parameters:

µ2
h = −1

2
M2
h

(

1 +
Re Πh(M2

h)
M2
h

)

+ 12M4
W

c6

g4
0

(

1 − 2
δg2

g2
0

+ 2
Re ΠW (M2

W )
M2
W

)

, (A.27)

λ =
1
8
g2

0

M2
h

M2
W

(

1 +
δg2

g2
0

+
Re Πh(M2

h)
M2
h

− Re ΠW (M2
W )

M2
W

)

− 6M2
W

c6

g2
0

(

1 − δg2

g2
0

+
Re ΠW (M2

W )
M2
W

)

, (A.28)

g2
Y =

1
2
g2

0

M2
t

M2
W

(

1 +
δg2

g2
0

− Re ΠW (M2
W )

M2
W

+ 2Re
(

Σv(M2
t ) + Σs(M2

t )
))

, (A.29)

g2 = g2
0

(

1 +
δg2

g2
0

)

. (A.30)
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The final task is to evaluate the self-energy functions. This calculation is straightforward

since there are no new fields compared to the pure SM computation: there are no new

diagrams involved, and c6 only modifies the mass eigenvalues and vertices. By direct

computation — and by adopting the shorthand notations h ≡ Mh/MW , t ≡ Mt/MW ,

z ≡ MZ/MW , and s ≡ g3/g0 — we obtain

Πh(M2
h) =

3
8
g2

0M
2
h

(4π)2

(

− 4
3

−8
1
h2

−2h2 +16
t4

h2
− 2

3
z2 −4

z4

h2

+3h2F (Mh,Mh,Mh)+4t2
(

1−4
t2

h2

)

F (Mh,Mt,Mt)

+
2
3
h4 −4h2 +12

h2
F (Mh,MW ,MW )

+
(

1
3

1
h2

− 4
3
z2 +4

z4

h2

)

F (Mh,MZ ,MZ)

−2h2 ln(h)−8t2 ln(t)+
(

− 2
3
h2 +4z2

)

ln(z)

+
(

−4+2h2 +4t2 −2z2
)

ln
(
µ̄2

M2
W

)

+64c6
M2
W

g4
0h

4

[

−2+12t4 −z4 +3h4F (Mh,Mh,Mh)−6h4 ln(h)

−24t4 ln(t)+6z4 ln(z)+
(

−2+h4 +4t4 −z4
)

ln
(
µ̄2

M2
W

)]

+3072c2
6

M4
W

g4
0h

2

[

−1+F (Mh,Mh,Mh)
])

, (A.31)

ΠW (M2
W ) =

3
8
g2

0M
2
W

(4π)2

(

− 212
9

− 8
3

1
h2

− 22
9
h2 +

4
27

(40Nf −17)− 4
3
t2 +16

t4

h2
+

14
9
z2 − 4

3
z4

h2

+
4h2(h2 −2)
h2 −1

ln(h)−8
(

2
3

− t2 +4
t4

h2

)

ln(t)+4
(

2
z4

h2
− z4 −4z2 −8

z2 −1

)

ln(z)

+
2
9

(

12−4h2 +h4
)

F (MW ,Mh,MW )− 4
3

(t2 +2)(t2 −1)F (MW ,Mt,0)

− 32
3
z2 −1
z2

F (MW ,MW ,0)+
2
9

(z4 +20z2 +12)(z2 −4)
z2

F (MW ,MW ,MZ)

+2
[

−1+
2
h2

+
(

− 59
9

−6
1
h2

−h2 +
16
9
Nf −2t2 +8

t4

h2

)

+z2 −2
z4

h2

]

ln
(
µ̄2

M2
W

)

− 8
9
πi(4Nf −3)−64c6

M2
W

g4
0

[

1− ln
(
µ̄2

M2
h

)])

, (A.32)

Σv(M2
t )+Σs(M2

t ) =
3
16

g2
0

(4π)2

(

−2−4
1
h2

−2h2 − 256
9
s2 +2t2 +16

t4

h2

− 2
27

(

39− 64
z2

+25z2 +18
z4 −1
h2

)

+
(

4h2 − 8
3
t2 +

4
3
t2

2t2 +h2

t2 −h2

)

ln(h)− 8
9

(

−9
z4

h2
+4

(4−5z2 +z4)
t2 −z2

)

ln(z)

– 50 –



J
H
E
P
0
4
(
2
0
2
1
)
0
5
5

+
(

128
3
s2 −32

t4

h2
− 4

3
t2(2t2 +h2)
t2 −h2

− 32
9

(z2 −1)(t2 −4)
z2 − t2

)

ln(t)

+
2
3

(

4t2 −h2
)

F (Mt,Mt,Mh)+
2
3

(t2 +2)(t2 −1)
t2

F (Mt,MW ,0)

− 2
27

(
64−80z2 +7z4

z2
+

32−40z2 +17z4

t2

)

F (Mt,Mt,MZ)

+
[

2
(

−6
1
h2

−h2 − 32
3
s2 + t2 +8

t4

h2

)

− 4
9

(z2 −1)(9+4h2 +9z2)
h2

]

ln
(
µ̄2

M2
W

))

−64c6
M2
W

g4
0

[

1− ln
(
µ̄2

M2
h

)])

, (A.33)

δg2

g2
0

=
1

(4π)2
g2

0

(

− 257
72

− 1
24
h2 +

20
9
Nf +

1
4
t2 −2ln(t)

+
1
12

(12−4h2 +h4)F (MW ,Mh,MW )− (t2 +2)(t2 −1)
2

F (MW ,Mt,0)

− 33
4
F (MW ,MW ,MW )+

(
4
3
Nf − 43

6

)

ln
(
µ̄2

M2
W

))

. (A.34)

The one-loop integral function F (k,m1,m2) and its various limits are given in eqs. (187–

188) in ref. [65]. Also note that in the above self-energies, U(1) gauge contributions can

be turned off by taking the limit z → 1 and MZ → MW . Apart from the new c6 terms

and U(1) gauge contributions, these results agree with eqs. (184), (191–193) in ref. [65],

apart from a −8
3 t

2 ln(h) term which is missing in the top quark self energy in eq. (193)

therein.30 From the above self-energy functions and relations between MS-parameters and

physical parameters we observe that g and gY are independent of c6 also at one-loop order.

Even though self-energies for both the W -boson and the top quark have c6-dependent

pieces, these cancel each other, and the 4-fermion correlator of muon decay is explicitly

independent of c6.

Note that often [27, 76] one-loop improved relations for the scalar mass parameter and

self coupling are obtained from the conditions

∂2

∂v2

(
Vtree + VCW

)
|v=v0 = M2

h , (A.35)

∂

∂v

(
Vtree + VCW

)
|v=v0 = 0 , (A.36)

where the tree-level potential is accompanied with the one-loop Coleman-Weinberg poten-

tial at zero temperature (see eq. (A.66)), and µ2
h and λ are solved numerically from these

equations. However, these conditions should be taken only as a heuristic approximation,

since the physical pole mass lies at nonzero momentum and hence cannot be obtained from

the effective potential (see also ref. [26]). Figure 11 compares the scalar parameters as

30The erroneous result of ref. [65] for the top quark self-energy is also pointed out in ref. [55], which

performed a similar computation in the Inert Doublet Model.
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Figure 11. Higgs MS-parameters as a function of the cutoff scale M in different approximations.

functions of c6 = 1/M2, at tree-level versus one-loop — computed both from the Coleman-

Weinberg potential and from pole conditions. This comparison shows that in fact the

estimated 1-loop effect from the Coleman-Weinberg potential overestimates the difference

with respect to the tree-level result, compared to the computation from pole masses that

consistently include momentum-dependent contributions and tadpole diagrams.

A.3 Mass eigenvalues and thermal screening

Calculating the effective potential to one-loop level by using field-dependent mass eigen-

values, requires fixing a gauge. In this context it is common to use an Rξ-style gauge.

However this fixes a different gauge for each field value; regarding the gauge-dependent

effective potential, it is not clear a priori that this is permissible [130, 179]. We therefore

follow ref. [180] by using a general covariant (or Fermi) gauge,which does not include the

vev in the gauge-fixing Lagrangian, to calculate the loop corrections to the effective poten-

tial. Gauge parameters are denoted as ξ2 and ξ1 for the SU(2) and U(1) fields respectively.

In this case the field-dependent mass eigenvalues are given by

m2
φ = µ2

h + 3λφ2 +
15
4
c6φ

4 , (A.37)

(m±
1 )2 =

1
2

(

m2
χ ±

√

m2
χ(m2

χ − ξ1g′2φ2 − ξ2g2φ2)
)

, (A.38)

(m±
2 )2 = (m±

3 )2 =
1
2

(

m2
χ ±

√

m2
χ(m2

χ − ξ2g2φ2)
)

, (A.39)

m2
W =

1
4
g2φ2 , (A.40)

m2
Z =

1
4

(

g′2 + g2
)

φ2 , (A.41)

m2
γ = 0 , (A.42)

m2
t =

1
2
g2
Y φ

2 , (A.43)

where m2
χ = µ2

h+λφ2 + 3
4c6φ

4 is the Goldstone mode mass eigenvalue in the Landau gauge.

Note the complicated gauge dependence in the Goldstone mass eigenvalues m2±
1 , m2±

2 , and
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m2±
3 . A very illuminating and thorough derivation for the gauge dependent parts of these

mass eigenvalues can be found in ref. [181] (see also ref. [139]).

Turning to high temperatures, the most straightforward way to obtain thermally re-

summed mass eigenvalues, is to calculate thermal corrections from hard modes to the

zero modes of the fields in the gauge eigenstate basis of the theory; we demonstrate this

explicitly in appendix B.2. Gauge fields Aa0 and B0 obtain Debye masses

ΠA0(T ) = T 2g2
(

5
6

+
1
3
Nf

)

≡ m2
D , (A.44)

ΠB0(T ) = T 2g′2
(

1
6

+
5
9
Nf

)

≡ m′2
D . (A.45)

The number of kinematically active families is Nf = 3 at electroweak-scale temperatures.

For temporal gauge fields, the bilinear part of the Lagrangian reads

1
2

(

A1
0 A

2
0 A

3
0 B0

)











1
4g

2φ2 +m2
D 0 0 0

0 1
4g

2φ2 +m2
D 0 0

0 0 1
4g

2φ2 +m2
D

1
4gg

′φ2

0 0 1
4gg

′φ2 1
4g

′2φ2 +m′2
D





















A1
0

A2
0

A3
0

B0











.

(A.46)

A rotation by the Weinberg angle31 yields the resummed gauge field masses

m2
W,res. = m2

W + ΠW (T ) , (A.47)

m2
Z,res. = m2

Z + ΠZ(T ) , (A.48)

m2
γ,res. = Πγ(T ) , (A.49)

where thermal corrections read

ΠW (T ) = m2
D , (A.50)

ΠZ(T ) =
(

g2m2
D + g′2m′2

D

)

/(g2 + g′2) , (A.51)

Πγ(T ) =
(

g′2m2
D + g2m′2

D

)

/(g2 + g′2) . (A.52)

However, due to thermal screening this is not an eigenstate basis, as in fact there remains

a mixing term

gg′

g2 + g′2
(m2

D −m′2
D ) ×A0Z0 , (A.53)

i.e. the Z-boson and photon are not mass eigenstates in the heat bath. The actual re-

31

(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)(

Z0

A0

)

=

(

A3
0

B0

)

, where cos(θ) = g/
√

g2 + g′2, sin(θ) = g′/
√

g2 + g′2 .
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summed mass eigenvalues read

m2
Z′,res. =

1
8

(

(g2 + g′2)φ2 + 4(m2
D +m′2

D ) (A.54)

+
√

g4φ4 + 2g2φ2
(
g′2φ2 + 4(m2

D −m′2
D )
)

+
(
g′2φ2 − 4(m2

D −m′2
D )
)2
)

,

m2
A′,res. =

1
8

(

(g2 + g′2)φ2 + 4(m2
D +m′2

D ) (A.55)

−
√

g4φ4 + 2g2φ2
(
g′2φ2 + 4(m2

D −m′2
D )
)

+
(
g′2φ2 − 4(m2

D −m′2
D )
)2
)

,

where the rotation angle to define eigenstates Z ′, A′ depends now on m2
D and m′2

D and

exhibits a more complicated form compared to the usual vacuum Weinberg angle. Note

that if these mass eigenvalues are linearised with respect to the thermal contributions m2
D

and m′2
D , one gets exactly the above resummed Z-boson and photon masses. In fact this

difference is numerically small, which suggests that one could still treat the Z-boson and

the photon as mass eigenstates. Also note that in the above ΠZ,W,γ are for the longitudinal

modes (perturbative Debye masses for the transverse modes vanish).

For the scalar doublet, thermal screening affects both its mass and self-coupling, with

contributions

Πφ(T ) =
T 2

12

(

6λ+
3
4

(3g2 + g′2) + 3g2
Y

)

+
1
4
T 4c6 , (A.56)

Γλ(T ) = T 2c6 , (A.57)

and the resummed parameters become

µ2
h,res. = µ2

h + Πφ(T ) , (A.58)

λres. = λ+ Γλ(T ) . (A.59)

The above c6 contributions are those given by the flower diagrams in eq. (2.25). Resummed

scalar mass eigenvalues are then obtained by substituting the mass parameter µ2
h and self-

coupling λ for their resummed values in m2
φ and m2

χ.

A.4 One-loop thermal effective potential

This appendix composes the thermal effective potential for the SMEFT in four dimensions

and implements the leading ring resummations, utilising the mass eigenvalues and thermal

corrections of appendix A.3. As a reminder, we fix the MS-parameters on the Z-pole

as explained in appendix A.2 and evolve them using the renormalisation group equations

(RGEs) in appendix A.1.

The one-loop correction to the effective potential can be computed as a sum over

all one-particle irreducible diagrams with a single loop and zero external momenta. This

standard computation (see ref. [182] for an illuminating derivation) results in the master

sum-integral J1-loop of eq. (2.18). Using eqs. (A.37)–(A.43), the full (unresummed) one-loop
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correction reads

V1-loop(φ, T, µ̄) = J1-loop(mφ) + 2J1-loop(m+
2 ) + 2J1-loop(m−

2 )

+ J1-loop(m+
1 ) + J1-loop(m−

1 ) − 4NcJ1-loop(mt)

+ (D − 1)
(

2J1-loop(mW ) + J1-loop(mZ) + J1-loop(mγ)
)

. (A.60)

This can be divided into a zero-temperature Coleman-Weinberg piece and a thermal piece

as in eq. (2.19), and can be evaluated by using

JCW(m) ≡ 1
2

(
µ̄2eγE

4π

)ǫ ∫ dpD

(2π)D
ln(p2 +m2) = −1

2

(
µ̄2eγE

4π

)ǫ [m2]
D
2

(4π)
D
2

Γ(−D
2 )

Γ(1)
, (A.61)

with D = 4 − 2ǫ. The divergent 1/ǫ terms are cancelled by the counterterm part

VCT =
1
2
φ2 δµ2

h +
1
4
φ4 δλ+

1
8
φ6 δc6 . (A.62)

The thermal functions from eq. (2.19) are expanded at high-T in d = 3 − 2ǫ with finite

parts

JT ,b(z)T−4 = −π2

90
+

1
24
z2 − 1

12π
z3 − 1

4(4π)2
z4 ln

(
z2

ab

)

+ O(z6) , (A.63)

JT ,f (z)T−4 =
7
8
π2

90
− 1

48
z2 − 1

4(4π)2
z4 ln

(
z2

af

)

+ O(z6) , (A.64)

where z = m/T , ab = (4π)2 exp(3
2 − 2γE) and af = ab/16. Here z-independent terms do

not contribute to the dynamics of the phase transition and can be dropped.

With these tools — together with the daisy prescription for resummation as explained

in section 2.1 — one can write down the familiar result as a sum of a temperature dependent

and a temperature independent, Coleman-Weinberg piece

V1-loop = VCW + VT + Vdaisy , (A.65)

where both terms in the one-loop correction rely on the field dependent masses. Explicitly,

this is

VCW = −12
m4
t

64π2

(

ln

(

m2
t

µ̄2

)

− 3
2

)

+ 3
∑

i∈{W,Z}

m4
i

64π2

(

ln

(

m2
i

µ̄2

)

− 5
6

)

+
∑

i∈{scalars}

m4
i

64π2

(

ln

(

m2
i

µ̄2

)

− 3
2

)

, (A.66)

where scalars includes the Goldstone modes, gauge bosons, Higgs degrees of freedom, and

VT = −12JT ,f

(

m2
t

T 2

)

+ 3
∑

i∈{W,Z}

JT ,b

(

m2
i

T 2

)

+
∑

i∈{scalars}

JT ,b

(

m2
i

T 2

)

. (A.67)
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The thermal part is accompanied with daisy terms for bosonic fields

Vdaisy =
∑

scalars,W,Z,γ

− T

12π

(

[m2
res.]

3
2 −m3

)

, (A.68)

where m2
res. denotes the mass eigenvalue with resummed parameters. Note that the daisy

contribution of the photon is non-zero due to thermal screening, but this does not give

any field-dependent contribution. The gauge dependence manifests itself through the field

dependent mass eigenvalues m. These we give in appendix A.3 together with the resummed

mass eigenvalues.

Finally, an alternative form for the one-loop part of the effective potential is provided by

separation of the master sum-integral into the soft and hard parts following eq. (2.15), and

upgrading the mass eigenvalues in the soft part to their resummed versions. The soft parts

can be evaluated as TJsoft(mres.) (and noting that in the reduced dimension the overall factor

for the gauge parts is d− 1 and not D− 1) and the hard parts in the high-T expansion are

J
b/f
hard(m) ≃ 1

2
m2I

4b/f
1 − 1

4
m4I

4b/f
2 +

1
6
m6I

4b/f
3 + O(m8/T 4) , (A.69)

where we have dropped a mass-independent piece. The one-loop master sum-integrals

I4b/f
α ≡ ∑

∫ ′

P/{P}

1
[P 2]α

, (A.70)

are expressed for example in refs. [123, 183].

Correlators from the effective potential. We have carried out a crosscheck of our

results, utilising the fact that the effective potential is the generator of renormalised 1PI

correlators of the Higgs field. We utilised two different methods to compute Γ̂φ†φ, Γ̂(φ†φ)2 ,

and Γ̂(φ†φ)3 . On the one hand, we computed them by taking derivatives of the effective

potential with respect to the external scalar field. On the other hand, we computed the

same correlators directly in terms of Feynman diagrams. For this we utilised computer

algebra tools to automate the diagrammatic calculation, as discussed in section B.2. We

emphasise that this is a strong crosscheck, since for example the six-point correlator in

the diagrammatic calculation is a sum of O(102) different diagrams, each with permutated

external legs.32

When the scalar field is shifted by the background field φ/
√

2, one has at one-loop

order

Veff =
1
2
µ2
hφ

2 +
1
4
λφ4 +

1
8
c6φ

6 + V1-loop , (A.71)

where the one-loop piece expands in powers of the background field, also utilising the

high-T expansion, as

V1-loop ≃ 1
2
δµ2

hv
2 +

1
4
δλv4 +

1
8
δc6v

6 + V1

=
1
2

(

δµ2
h − Γφ†φ

)

v2 +
1
4

(

δλ− 1
2

Γ(φ†φ)2

)

v4 +
1
8

(

δc6 − 1
6

Γ(φ†φ)3

)

v6 + O(v8)

= −1
2

Γ̂φ†φv
2 − 1

8
Γ̂(φ†φ)2v4 − 1

48
Γ̂(φ†φ)3v6 + O(v8) , (A.72)

32For fun: in total the six-point correlator contains 2185 diagrams including permutated external legs.
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in renormalised perturbation theory, where the hat denotes the renormalised correlation

function. The diagrammatic one-loop piece V1 can be computed as (note that for simplicity

we include only hard contributions — and drop O(v0) terms)

V1 = 2dJbhard(mW ) + dJbhard(mZ) + Jbhard(mφ) + Jbhard(m2+) + Jbhard(m2−)

+ Jbhard(m3+) + Jbhard(m3−) + Jbhard(m1+) + Jbhard(m1−) − 4NcJ
f
hard(mt) , (A.73)

where d = 3 − 2ǫ. The J
b/f
hard-functions read

Jbhard(m) ≃ +m2T
2

24
− m4

4(4π)2

(
1
ǫ

+ Lb

)

+
ζ(3)

3(4π)4

m6

T 2

− ζ(5)
2(4π)6

m8

T 4
+

ζ(7)
(4π)8

m10

T 6
+ O

(
m12

T 8

)

, (A.74)

Jfhard(m) ≃ −m2T
2

48
− m4

4(4π)2

(
1
ǫ

+ Lf

)

+
7ζ(3)
3(4π)4

m6

T 2

− 31ζ(5)
2(4π)6

m8

T 4
+

127ζ(7)
(4π)8

m10

T 6
+ O

(
m12

T 8

)

, (A.75)

with ζ(n) the Riemann zeta function and employing the shorthand notation

Lb ≡ 2 ln
(
µ̄

T

)

− 2[ln(4π) − γE] , (A.76)

Lf ≡ Lb + 4 ln 2 . (A.77)

We have included terms with ζ(5) and ζ(7) that are used in computing some leading (1-

loop) corrections to scalar 8- and 10-point correlators. The correlators, Γ̂, can then be

extracted from the coefficients of the expansion in the background field. One obtains the

same pure scalar correlators as in appendix. B.2.1. As emphasised above, this is a strong

crosscheck of the automated diagrammatic calculation outlined in the following section.

B Dimensionally reduced SMEFT in three dimensions

The construction of a dimensionally-reduced effective theory requires the computation of

various correlation functions in the high-temperature, unbroken phase. For the Standard

Model and its simplest extensions (e.g. 2HDM [116, 119, 123] or Z2-symmetric real-triplet

extension [120]), it is possible to perform these computations mostly by hand with lit-

tle computer assistance. However, for more complicated BSM theories — or in order to

reach higher orders of perturbation theory in simpler models — automation is inevitable.

In the past, dimensional reduction in electroweak theories has been performed in Lan-

dau gauge since the computational effort related with a general covariant gauge is usually

immense. Landau gauge greatly reduces the effort, as propagators (and corresponding mas-

ter sum-integrals) simplify and the number of contributing diagrams is reduced immensely.

However, ideally we would carry out all computations in a general gauge, to explicitly test

gauge invariance. In this work, using tools presented in ref. [183], we have fully automated

the dimensional reduction of the SM in a general covariant gauge, and furthermore we
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have included effects of the extra SMEFT dimension-six operator (1.1). Using the general

covariant gauge throughout the computation, shows explicitly that the matching relations

— for the super-renormalisable part of the EFT (cf. discussion in appendix. B.2) — are

gauge invariant. This justifies previous computations conducted in Landau gauge [65].

Before diving into the details of our computation — a combination of manual work

and automation — we give a pedagogic introduction to the different steps that call for

automation in a dimensional reduction computation. For this, we use the example of the

2-point correlator or self-energy of the SU(2) gauge boson, with an explicit diagram-by-

diagram calculation.

B.1 Dimensional reduction for beginners: electroweak Debye mass

This section gives an explicit tutorial for a typical dimensional reduction calculation, by

computing the SU(2) gauge boson self-energy at one-loop order in the unbroken phase, or

the AaµA
b
ν-correlator. The results for this correlator can then be used to obtain the Debye

mass of the temporal component, as well as the field normalisations for both temporal and

spatial fields. Note that a classic reference for these computations is ref. [65]. Here, we fol-

low ref. [99] in which appendix C.1 gives a diagram-by-diagram result for this correlator in

Landau gauge, and all required master sum-integrals are listed in appendix B and Feynman

rules in appendix A. Note that the computation of the AaµA
b
ν-correlator resembles the calcu-

lation the of corresponding correlator in high-T QCD which yields the thermal gluon mass.

This computation is found in section 5.4 of the textbook ref. [111] using Feynman gauge.

The outline of a typical dimensional reduction computation is the following: (see

section 3 of ref. [183])

Step 1: Choose a model Lagrangian.

Step 2: Derive corresponding Feynman rules in the unbroken phase. Note that the compu-

tation of correlators is done in the symmetric — unbroken phase of the theory — in

the gauge eigenstate basis where all gauge bosons and fermions are massless.

Step 3: Generate all diagrams for each required correlator, and use Feynman rules to compose

expressions for each individual diagram and compute related symmetry factors.

Step 4: Perform all algebra contractions of Lorentz, isospin, Dirac etc. indices and manipulate

sum-integrals to express all diagrams in terms of a basis of master sum-integrals.

Step 5: Evaluate the basis of required master sum-integrals.

Step 6: Match finite parts of the correlators to solve for the desired quantities of the 3d EFT.

For the SU(2) gauge boson self-energy, there is no new contribution from the dimension-

six coupling of the SMEFT at one-loop order. Therefore the computation is the same as

in the SM.
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Step 1. The relevant Lagrangian of step 1 is of the form

L ≃ 1
4
GaµνG

a
µν +

1
2ξ2

(∂µAaµ)2 +
∑

i

ψ̄i /Dψi + ∂µη̄
aDµη

a + (Dµφ)†(Dµφ) , (B.1)

where definitions and the exact form of the gauge field strength tensor, fermion struc-

tures, covariant derivatives, definitions of group indices etc. are found in section 2.1 of

ref. [99]. Here, we upgrade the computation to a general covariant gauge instead of using

Landau gauge. This Lagrangian suffices for the computation of the SU(2) gauge boson

self-energy outlined here, but of course for the full dimensional reduction, the photon field,

corresponding ghost field and Higgs potential should be added.

Step 2. For step 2, the relevant Feynman rules are listed in appendix A of ref. [99], with

the replacement of the SU(2) gauge field propagator in a general covariant gauge,

Dab
µν(P ) ≡ δab

1
P 2

(

δµν − (1 − ξ2)
PµPν
P 2

)

. (B.2)

In addition, we use the following short-hand notations:

V [Aaµ(K)Abν(P )Acλ(Q)] ≡ −ig∆µνλ
abc (K,P,Q) , (B.3)

V [AaµA
b
ν A

c
κA

d
λ] ≡ g2∆µνκλ

abcd , (B.4)

for gauge field cubic and quartic self-interaction vertices. The Lorentz indices and adjoint

isospin structures are those of eq. (A.3) and eq. (A.5) of ref. [99], respectively.

For the generation of these rules one can resort to any preferred Feynman rule gen-

erating software (e.g. FeynRules [184]). However, since the computation is conducted in

the unbroken phase, the isospin structure of the fields is comparatively simple, allowing

the economical possibility of formulating Feynman rules for the full fields, rather than for

their individual components. This significantly reduces the number of different diagrams,

but results in a non-trivial structure of the isopsin indices for some vertices (cf. (B.3)).

Our in-house software generates the Feynman rules starting from the model Lagrangian.

After going over to momentum space and symmetrising over fields, the final rules are fully

symmetric in group indices and momenta.

Step 3. Moving forward to step 3, the SU(2) gauge field 2-point correlator,

Aaµ(K)Abν(−K), is evaluated at one-loop level with corresponding diagrams:

1 = + + + + + . (B.5)

For illustration, we evaluate the pure gauge bubble and ring diagrams that explicitly depend

on the gauge parameter ξ2, as well as the fermionic diagrams. The ghost and scalar

diagrams do not depend on the gauge parameters ξi so results for them can be read from

the Landau gauge calculation in appendix C.1 of ref. [99]. In renormalised perturbation

theory, the UV-divergence is cancelled by a tree-level counterterm interaction diagram.
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The external momentum K can be set to be purely spatial, i.e. K = (0,k), and soft

K ∼ gT . The softness of external momenta allows a series expansion in K, and its K0-

piece gives a contribution to the thermal mass, while its quadratic piece contributes to

field normalisations between 4d and 3d fields of EFT; see refs. [65, 185]. Note that since

the heat bath breaks Lorentz invariance only in the temporal direction — leaving spatial

Lorentz (or rotational) symmetry intact — only the temporal part of the fields can obtain

a thermal mass. However, thermal screening does effect the spatial fields in ways that do

not break rotational symmetry, affecting their couplings and field normalisations when the

hard scale is integrated out. The following only includes contributions from the hard scale,

as at one-loop level zero-mode contributions trivially cancel against 3d contributions when

correlators are matched.

The pure gauge bubble diagram reads (with 4-momentum P in the loop)

=
1
2
︸︷︷︸

s

× g2 × ∑
∫ ′

P
︸︷︷︸

integration over
hard scale

∆µνκλ
abcd D

cd
κλ(P )

︸ ︷︷ ︸

contract indices

, (B.6)

where s is the symmetry factor of the diagram.

From a computational point of view, the required diagrams of each correlator are

generated using e.g. qgraf [186]. All momenta are shifted onto a canonical momentum

basis already at the diagram level. Only then Feynman rules are inserted to compose

expressions for each individual diagram.

Step 4. For step 4, while contraction over adjoint isospin indices is trivial, contraction

over Lorentz indices is laborious already at one-loop level. For adjoint isospin δaa =
N2

2 − 1 = 3, where N2 = 2 is the fundamental isospin dimension. For Lorentz indices

δµµ = D = d+ 1 in D spacetime dimensions. The pure gauge bubble reads

2g2δab

(

(2 −D − ξ2)δµν
∑
∫ ′

P

1
P 2

+ (ξ2 − 1)
∑
∫ ′

P

PµPν
P 4

)

. (B.7)

Next, we separate the result into temporal µ = ν = 0 and spatial µ = r, ν = s (r, s =
1, . . . , 3) parts — note that cross-terms vanish due to odd sum-integrations — and manipu-

late sum-integrals in order to express everything in terms of one-loop master sum-integrals

I4b
α,β ≡ Σ′

∫

P

Pβ
0

[P 2]α
. In the case at hand, we need the relation I4b

α+1,β+2 =
(

1 − d
2α

)

I4b
α,β . For the

calculation at hand, we find all relevant reduction relations in appendix B of ref. [99]. In

order to utilise these, we additionally scalarise integrals by e.g. Σ′
∫

P
prps

P 4 = δrs
d Σ′
∫

P
p2

P 4 which

follows from 3d Lorentz invariance, and use trivial manipulations such as p2 = P 2 − P 2
0 .

Note that P0 is always non-zero, as we integrate over non-zero modes only. Eventually, we

arrive at an intermediate result for the pure gauge bubble

g2δabI
4b
1







−d(1 + ξ2) (µ = ν = 0)

−(−1 + 2d+ ξ2) (µ = r, ν = s)
. (B.8)
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Then, turning to the fermionic diagram, we find

= 1

︸︷︷︸

s

× Nf(1 +Nc)
︸ ︷︷ ︸

# of left-handed fermions

× (− i

2
g)2 (τa)im(τb)njδijδmn

︸ ︷︷ ︸

contract fund. isospin

× (−1)
︸ ︷︷ ︸

fermion loop

∑
∫

{P}

1
P 2

1
(P +K)2

Tr
[

PLi /P γνPLi( /P + /K )γµ
]

︸ ︷︷ ︸

evaluate Dirac trace and contract Lorentz indices

, (B.9)

which becomes

− 1
2
g2Nf(1 +Nc)δab

∑
∫

{P}

1
P 2

1
(P +K)2

2
(

4Pµ(Pν +Kν) − δµνP · (P +Q)
)

. (B.10)

Due to the momentum being soft, the propagator can be K-expanded up to quadratic

order as
1

(P +K)2
≃ 1
P 2

− 2
(P ·K)
P 4

+ 4
(P ·K)2

P 6
− K2

P 4
. (B.11)

Therefore, the fermion ring diagram reads, up to quadratic order in soft momentum K

− 1
2
g2Nf(1 +Nc)δab (B.12)

× ∑
∫

{P}







−2 1
P 2 + 4P

2
0
P 4 + 2K

2

P 4 − 4K
2P 2

0
P 6 − 4 (P ·K)2

P 6 + 16P
2
0 (P ·K)2

P 8 (µ = ν = 0)

−2δrs 1
P 2 + 4PrPs

P 4 + 2δrs K
2

P 4 − 4δrs
(P ·K)2

P 6 − 8PrKs
(P ·K)
P 6

− 4K2 PrPs
P 6 + 16PrPs(P ·K)2

P 8 (µ = r, ν = s)

.

Again, all these sum-integrals can be expressed in terms of I4b
1 and I4b

2 after scalarisation of

integrals such as Σ
∫

{P }
PrPs(P ·K)2

P 8 = K2δrs+2KrKs
(d+2)d Σ

∫

{P }
p4

P 8 and by using the recursion relations

from appendix B of ref. [99]. Eventually, this simplifies to

g2Nf(1 +Nc)δab (B.13)

×







(22−d − 1)(d− 1)I4b
1 +K2 1

6(24−d − 1)(d− 1)I4b
2 (µ = ν = 0)

(−1
3)(24−d − 1)I4b

2 (K2δrs −KrKs) (µ = r, ν = s)
.

Here, the spatial part is individually transverse and without a K0 contribution, as spatial

fields do not generate a thermal mass. Next, the pure gauge ring diagram reads (we denote

here Q = P +K)

= 1
︸︷︷︸

s

×(−ig)2 ∑
∫ ′

P

∆µσλ
adc (K,P,−Q)∆ναρ

bef (−K,−P,Q)Dcf
λρ(Q)Dde

σα(P )
︸ ︷︷ ︸

contract indices

. (B.14)

Performing contractions and expanding in soft momentum yields multiple terms, but noth-

ing qualitatively new compared to previous diagrams that we have already mastered. An
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intermediate result in terms of familiar master integrals reads

g2δab (B.15)

×







d(4 − 2d+ ξ2)I4b
1 +K2 1

6

(

16 − 3d+ 2d2 − 6(d− 2)ξ2

)

I4b
2 (µ = ν = 0)

δrs(2d+ ξ2)I4b
1 + 1

6

(

K2δrs(31 − 2d) − 2KrKs(17 − d)

+ 6ξ2(K2δrs −KrKs)
)

I4b
2 (µ = r, ν = s)

.

In its spatial part, the ξ2-independent piece is not individually transverse, but together with

the corresponding ghost diagram, the sum of diagrams is rendered transverse. Also the

momentum independent part of the full spatial correlator vanishes. On the other hand, the

ξ2-dependent part is transverse, because ghosts do not contribute to that. Both ghost and

scalar diagrams can be evaluated in a manner similar to previous diagrams, and since they

do not posses a ξ2-dependence, we can read their Landau gauge results from appendix C.1

of ref. [99]. Finally, the counterterm diagram contributes by

− δZA δab







K2 (µ = ν = 0)

K2δrs −KrKs (µ = r, ν = s)
, (B.16)

where we define δZA = g2

(4π)2
1
ǫ (

27
6 + 4

3Nf − ξ2) so that our correlators become UV-finite

in dimensional regularisation. We emphasise, that counterterms within a finite-T com-

putation, are recycled from zero temperature, since the UV structure of the hard mode

contributions remains unaltered by high temperature. This means that the dimensional

reduction computation can obtain all required counterterms and eventually β-functions

along with the construction of the high-T EFT.

All algebraic manipulations encompassed in this step are handled using our favorite

kitchen knife FORM [187]. This includes contractions of Lorentz, group (colour, isospin),

and Dirac indices. Additionally we manipulate sum-integrals to express all diagrams in

terms of a basis of master sum-integrals, shift onto different integral sectors, and employ

integration-by-parts methods [188] using a standard Laporta reduction [189]. Their algo-

rithmic implementation is documented in section 3.4 of [183].

Step 5. Proceeding, step 5 evaluates the basis of master sum-integrals in dimensional

regularisation. Due to the hierarchy of scales, these sum-integrals can be expanded in

powers of m/T , and hence evaluated as massless sum-integrals, leading to significant sim-

plifications.

At the order that we work, NLO in powers of g2, only one-loop sum-integrals are

needed to match the fields and couplings. Therein, computations are straightforward and

give results in terms of Gamma- and Zeta-functions, see for example appendix B of ref. [99].

Two-loop sum-integrals are required for NLO matching of the masses of scalars and

temporal gauge fields. At two-loop order there is only one master topology, the sunset

diagram. A direct evaluations of the sunset topology sum-integrals can be found in refs. [52,

55, 190, 191]. We also recommend an illuminating ref. [192]. However, our streamlined use
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of IBP relations [183, 188, 193], reduces all massless two-loop sum-integrals to products of

one-loop sum-integrals. No two-loop masters are needed.

Going beyond NLO dimensional reduction requires higher loop sum-integrals. In this

case the evaluation of master integrals becomes the most non-trivial part in the dimensional

reduction pipeline. Automation of such computations is still in its early stages. For relevant

computations of master sum-integrals at three-loop and higher loop orders, see refs. [64,

102, 190, 193–201]. Further, see ref. [113], for a three-loop computation of the pressure in

the electroweak theory utilising the master integrals of the above references.

Step 6. At last, step 6 retrieves the final form of the correlators. After the ǫ-expansion,

1/ǫ-poles have been cancelled by the counterterm contribution and

Π̂Aa
0A

b
0

= g2T 2
(

5
6

+
1
3
Nf

)

, (B.17)

Π̂′
Aa

0A
b
0

=
g2

(4π)2

(

3 +
4
3
Nf(Lf − 1) +

(

ξ2 − 25
6

)

Lb − 2ξ2

)

, (B.18)

Π̂′
Aa

rA
b
s

=
g2

(4π)2

(

− 2
3

+
4
3
NfLf +

(

ξ2 − 25
6

)

Lb

)

, (B.19)

where schematically Π′ ≡ d
dK2 Π. Here it is crucial that Π′-parts encode both the explicit

ξ2-dependence and RG-scale dependence. It is indeed these dependencies that cancel con-

tributions from other correlators related to the matching of corresponding EFT parameters,

namely the 3d gauge coupling g2
3 and portal coupling h1 between Aa0 and 3d Higgs. We will

show this cancellation explicitly in eqs. (B.60)–(B.75). Finally, let us inspect the actual

matching formula for the electroweak Debye mass. The matching of correlators can be

achieved by equating effective Lagrangians in both 4d and 3d theories

1
2

(

Πsoft

Aa
0A

b
0

︸ ︷︷ ︸

0-modes

+ Πsoft/hard

Aa
0A

b
0

︸ ︷︷ ︸

mixed modes

+ Π̂1-loop

Aa
0A

b
0

+ Π̂2-loop

Aa
0A

b
0

︸ ︷︷ ︸

non-zero modes

)(

Aa0A
b
0

)

4d

≡ T
1
2

(

m2
D + Π3d

Aa
0A

b
0

)(

Aa0A
b
0

)

3d

.

(B.20)

In this schematic matching example, we have in fact included both correlators at 2-loop

level. At this level, one has to resum the zero-mode of the temporal gauge field by its one-

loop thermal mass, and introduce a corresponding resummation counterterm interaction

to the Lagrangian. As a result, the soft/hard mixing contribution of the correlator in

4d vanishes identically, and the 2-loop soft contribution of zero-modes matches exactly the

loop corrections to the 3d correlator, i.e. cancelling soft and 3d parts in the above equation.

By accounting for the relation between 3d and 4d fields

(

Aa0A
b
0

)

3d

=
1
T

(

1 + Π̂′
Aa

0A
b
0

)(

Aa0A
b
0

)

4d

, (B.21)

one can finally solve

m2
D = Π̂1-loop

Aa
0A

b
0

︸ ︷︷ ︸

O(g2(µ̄))

+ Π̂2-loop

Aa
0A

b
0

− Π̂1-loop

Aa
0A

b
0
Π̂′
Aa

0A
b
0

︸ ︷︷ ︸

O(g4),ln(µ̄),ξ2 cancels
︸ ︷︷ ︸

µ̄ cancels

. (B.22)

– 63 –



J
H
E
P
0
4
(
2
0
2
1
)
0
5
5

Here we have highlighted how gauge dependence drops out between 2-loop hard contribu-

tions and the 1-loop field normalisation contribution, and how the final 3d parameter is (in a

power counting sense) independent of the RG-scale µ̄, as the running of the LO piece is can-

celled by logarithms of the NLO piece. However, an important comment is necessary here:

for the electroweak phase transition the NLO piece of m2
D is not needed, as it contributes

to the Higgs effective potential (or free energy) at O(g5) and hence is of higher-order than

we work.33 The transition is driven by the Higgs field at the ultrasoft scale, and in the fact

temporal Aa0 field can be integrated out in the second step of dimensional reduction going

from the soft to the ultrasoft scale. Therefore, only the LO piece of m2
D is needed and reads

m2
D = Π̂Aa

0A
b
0

=
g2T 2

12

(
9N2

2
+ 1 +Nf(1 +Nc)

)

= g2T 2
(

5
6

+
1
3
Nf

)

. (B.23)

The explicit parameters of fundamental isospin dimension N2 = 2 and fundamental colour

dimension Nc = 3 are set to their integer values henceforth. Note that the result (B.23) is

not RG-invariant at O(g4T 2) due to the absence of the NLO contribution, but again this

only contributes to the Higgs effective potential at order O(g5). As a final remark, we note

that for studies of the EWPT although 2-loop level matching for m2
D is unnecessary, 2-loop

level matching is important for the Higgs mass parameter, as it contributes to the Higgs

effective potential at O(g4). Indeed later this appendix encounters a similar matching

relation for the Higgs thermal mass, with similar qualitative features of the cancellation

of the gauge parameter and RG-scale.

As a final illustration, we show all the diagrams contributing to the Higgs thermal

mass at one-loop level originating from the (φ†φ)-self-energy

1 = + + + + + . (B.24)

We highly recommend interested readers to embark on this computation themselves starting

from the above diagrams. At leading order in the high-T expansion, this correlator reads

Π̂φ†φ = −T 2
(

1
16

(3g2 + g′2) +
1
4
g2
Y +

1
2
λ

)

(B.25)

and will result in a familiar one-loop thermal correction to the Higgs mass parameter, cf.

eq. (A.56). The two-loop result for this correlator — with NLO mass correction — will be

presented in eq. (B.55).

Next, we proceed from this pedagogic computation of thermal masses to the full di-

mensional reduction and construction of the 3d EFT that includes thermal screening effects

to all EFT parameters.

B.2 Results for dimensional reduction of SMEFT

Dimensional reduction is performed by matching the infrared parts of correlators of the full

4d theory with those of the effective 3d theory. For leading order dimensional reduction,

33For the SM, the free energy (or pressure) has been calculated to O(g5) in ref. [113].
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the 3d mass is computed at 1-loop and couplings at tree-level, i.e. couplings are only scaled

by temperature. In terms of our power counting (g′ ∼ g, gY ∼ g, λ ∼ g2 and c6 ∼ g4) viz.

eq. (2.13), this corresponds to O(g2) accuracy for parameters at the soft scale after the

first step of dimensional reduction, and O(g3) at the ultrasoft scale after the second step

of dimensional reduction. At next-to-leading order, i.e. O(g4) accuracy at the soft scale,

the 3d mass is computed to 2-loop accuracy and couplings to 1-loop.

Effective theory parameters are expected to be independent of the choice of gauge

fixing parameters [62]. This is true at least up to O(g4). In order to prove this, we perform

dimensional reduction in a general covariant gauge and show below explicitly how the

gauge parameters cancel. Additionally, 3d parameters are independent of the 4d RG scale

in terms of our power counting. Any leftover scale dependence is of higher order than

O(g4), and if numerically important, signals a bad convergence of perturbation theory.

The cancellation of gauge parameters and RG-scale provide a very powerful cross-check for

the validity of the calculation.

The 3d effective theory which we match to is (note the Euclidean metric as this is a

purely spatial theory),

Ssoft
3d =

∫

d3x

[
1
4
GarsG

a
rs +

1
4
FrsFrs +

1
2

(DrA
a
0)2 +

1
2

(∂rB0)2 +
1
2

(DrC
α
0 )2

+ (Drφ)†(Drφ) + V soft
3d

]

, (B.26)

where Gars = ∂rA
a
s − ∂sA

a
r + g3ǫ

abcAbrA
c
s, Frs = ∂rBs − ∂sBr and Drφ = (∂r − ig3τ

aAar/2 −
ig′

3Br/2)φ. The τa are the Pauli matrices. For simplicity we do not use a different notation

for 3d and 4d fields, following the convention of ref. [65]. The scalar potential in the soft

scale 3d theory reads34

V soft
3d = µ2

h,3φ
†φ+ λ3(φ†φ)2

+ c6,3(φ†φ)3 + c8,3(φ†φ)4 + c10,3(φ†φ)5

+
1
2
m2

D A
a
0A

a
0 +

1
2
m′2

D B
2
0 +

1
2
m′′2

D Cα0 C
α
0

+
1
4
κ1(Aa0A

a
0)2 +

1
4
κ2B

4
0 +

1
4
κ3A

a
0A

a
0B

2
0

+ h1φ
†φAa0A

a
0 + h2φ

†φB2
0

+ h3B0φ
†A0 · τφ+ h4φ

†φCα0 C
α
0 , (B.27)

and together with 3d gauge couplings g3 and g′
3, our task in dimensional reduction is to

find these parameters in terms of 4d parameters and the temperature. Here g2
3, g′

3
2, and

λ3 have dimensions of [GeV] and all the fields have dimensions of [GeV]1/2. We regularise

the theory in the MS-scheme. In the following we utilise the class of covariant gauges,

Ssoft
ξ =

∫

d3x

[
1

2ξ3,2
(∂rAar)

2 +∂rη̄a∂rηa+g3ǫ
abc∂rη̄

aAbrη
c+

1
2ξ3,1

(∂rBr)2 +∂rη̄∂rη
]

, (B.28)

34Several temporal gluon interaction terms are negligable. Since the Higgs field does not have colour,

these neglected effects are formally of higher order in the final effective scalar theory at the ultrasoft scale.
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and, in sections B.4 and B.5 we adopt the Landau gauge, ξ3,1, ξ3,2 → 0+ (taking this limit

explicitly avoids certain IR divergences [130, 138]).

At the ultrasoft scale the temporal scalars A0, B0 and C0 are heavy and are integrated

out. The remaining ultrasoft EFT parameters are differentiated from the soft EFT param-

eters with a bar, i.e. ḡ3, ḡ′
3, µ̄2

h,3, λ̄3, c̄6,3, c̄8,3, and c̄10,3. Although the ultrasoft theory

differs only by these aforementioned changes, for clarity we show the ultrasoft action in full:

Sultrasoft
3d =

∫

d3x

[
1
4
GarsG

a
rs +

1
4
FrsFrs + (Drφ)†(Drφ) + V ultrasoft

3d

]

. (B.29)

The implicit gauge couplings are ḡ3 for the SU(2) and ḡ′
3 for the U(1) sectors. The

ultrasoft scalar potential reads

V ultrasoft
3d = µ̄2

h,3φ
†φ+ λ̄3(φ†φ)2

+ c̄6,3(φ†φ)3 + c̄8,3(φ†φ)4 + c̄10,3(φ†φ)5 , (B.30)

and the gauge fixing corresponds to the soft scale in eq. (B.28).

The dimensionally-reduced operator basis which we use is complete at dimension

[GeV2], but is incomplete at dimension [GeV3], at which it contains only a single inter-

action operator, c6,3(φ†φ)3. This is because this operator appears also in the 4d SMEFT,

and hence c6,3 receives a tree-level contribution of order O(g4), whereas all other coefficients

of dimension [GeV3] operators start at one-loop level, at order O(g6). Some examples of

missing operators at dimension [GeV3] in the dimensionally-reduced SMEFT are the fol-

lowing gauge invariant Higgs kinetic terms (we use a Warsaw-like basis, cf. refs. [67, 68, 74])

Oφ� ∼
(
φ†φ

)
�
(
φ†φ

)
, OφD ∼

(
φ†Drφ

)∗(
φ†Drφ

)
, (B.31)

with � = ∂r∂r. There are also multiple dimension [GeV3] operators of the Higgs coupling

to temporal scalars at the soft scale, but these are also of order O(g6).

B.2.1 Results for correlators

At NLO in dimensional reduction, higher dimensional operators with c6, c8 and c10 coef-

ficients only affect pure Higgs correlators, while all other correlators are unaffected and

therefore are already found in the literature. However, in order to demonstrate the cancel-

lation of gauge parameters in parameter matching, we list all required correlators below.

As explained in the previous section, we use an automated, computer algorithm com-

putation of all correlators in the unbroken phase: diagram generation and computer algebra

can be used to automate Lorentz contractions, Dirac traces and IBP-methods to reduce

sum-integral structures to a basis or set of master integrals. This calculation is imple-

mented via qgraf for diagram generation and FORM for algebraic manipulations and IBP

reduction. Note that at NLO in dimensional reduction the scalar propagator can be treated

as massless within two-loop order terms. This demonstrates the power of IBP reduction,

since all two-loop integrals reduce to products of one-loop master sum-integrals.

We denote four-point correlators at zero external momentum by Γ, and two-point

correlators by Π for the part evaluated at zero external momentum and Π′ for the coefficient

of the term which is quadratic in external momenta.35 For the spatial gauge fields this is

35Correlators can be expanded in external momenta Q = (0, q) when Q ∼ gT is soft.
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the transverse part of the correlator. For all correlators we only list contributions from

the hard modes, as the soft contribution cancels with corresponding 3d contribution in

the matching, as section B.2.2 demonstrates. Note that all soft contributions at one-loop

are finite, and do not require renormalisation. At two-loop, the scalar correlator requires

resummation and soft contributions require renormalisation.

All correlators are computed in renormalised perturbation theory, and are therefore

finite, which we denote by hats in Π̂ and Γ̂ (note that we omit writing corresponding isospin,

colour and Lorentz index structures explicitly). An illustrative example of renormalisation

is the mixed scalar-gauge (φ†φAA)-correlator

Γ̂φ†φAa
µA

b
ν

= −
(

Γφ†φAa
µA

b
ν

− gδg − 1
2
g2
(

δZφ + δZA

))

, (B.32)

where the unhatted Γ sums all contributing Feynman diagrams, excluding counterterms.36

Similar relations hold for other correlators, and emerge naturally in renormalised pertur-

bation theory where counterterms are treated as interactions.

We start from one-loop contributions quadratic in the soft external momentum, and

these read (Lb/f are defined in eqs. (A.76)–(A.77) and Nf = 3 is the number of fermion

families)

Π̂′
Aa

0A
b
0

=
g2

(4π)2

(

3 +
4
3
Nf(Lf − 1) +

(

ξ2 − 25
6

)

Lb − 2ξ2

)

, (B.33)

Π̂′
Aa

rA
b
s

=
g2

(4π)2

(

− 2
3

+
4
3
NfLf +

(

ξ2 − 25
6

)

Lb

)

, (B.34)

Π̂′
B0B0

=
g′2

(4π)2

(
1
3

+
20
9
Nf(Lf − 1) +

1
6
Lb

)

, (B.35)

Π̂′
BrBs

=
g′2

(4π)2

(
20
9
NfLf +

1
6
Lb

)

, (B.36)

Π̂′
φ†φ =

1
(4π)2

(

− Lb
4

(

3(3 − ξ2)g2 + (3 − ξ1)g′2
)

+ 3Lfg2
Y

)

. (B.37)

Again, due to the heat bath breaking the 4d Lorentz invariance, contributions to spatial

and temporal gauge fields differ. Crucially, these quadratic momentum contributions to

the SU(2) gauge field and to the Higgs explicitly depend on the gauge, and are required to

render the final EFT parameters gauge independent in section B.2.2. These contributions

are evaluated at one-loop at O(g2) order — which reaches the desired O(g4) accuracy

for the EFT parameters — and at this order there is no c6,8,10-dependence from higher

dimensional operators.

36Note that correlator itself is negative of sum of Feynman diagrams.
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Turning to contributions at zero external momentum, the pure Higgs correlators read

Γ̂(φ†φ)2 = −2c6T
2 − 1

(4π)2

(

− 1
4

(

3g4 +g′4 +2g2g′2
)

−6g4
Y Lf

+
[

3
8

(

3g4 +g′4 +2g2g′2
)

+24λ2 +24c6µ
2
h−λ

(

3g2ξ2 +g′2ξ1

)]

Lb

)

+
(

− 5
3
c8T

4 − 25
18
c10T

6
)

flowers

, (B.38)

Γ̂(φ†φ)3 = − ζ(3)
128π4T 2

(

− 3
8

(

3g6 +3g4g′2 +3g2g′4 +g′6
)

−240λ3

+84g6
Y +6λ2

(

3g2ξ2 +g′2ξ1

))

+
1

(4π)2
Lb

[

c6

(

324λ− 9
2

(

3g2ξ2 +g′2ξ1

))

+120c8µ
2
h

]

−10c8T
2 +
(

− 25
2
c10T

4
)

flowers

, (B.39)

Γ̂(φ†φ)4 =
24

(4π)2
Lb

(

63c2
6 +30c10µ

2
h+c8

(

96λ−3g2ξ2 −g′2ξ1

))

−60c10T
2 +Γ̂ζ

(φ†φ)4 , (B.40)

Γ̂(φ†φ)5 =
30

(4π)2
Lb

(

912c6c8 +5c10

(

120λ−3g2ξ2 −g′2ξ1

))

+Γ̂ζ
(φ†φ)5 . (B.41)

Here all contributions arise at one-loop order, except the c8,10 pieces denoted with flowers.

These appear at two- and three-loop orders: these pieces are the leading contributions from

c8,10 and are included as they are associated with the bubble integral in eq. (2.14). Note

that for dimension-8 and -10 correlators, ζ-terms of higher order in the high-T expansion

of one-loop integrals (eqs. (A.74) and (A.75)) are collected in Γ̂ζ
(φ†φ)4 and Γ̂ζ

(φ†φ)5 . We do

not write them down here explicitly due to the lengthiness of the expressions, but we do

include their contributions to the final matching relations below in eqs. (B.93) and (B.94).

Other correlators are independent of c6,8,10-couplings, and read

Π̂Aa
0A

b
0

= g2T 2
(

5
6

+
1
3
Nf

)

, (B.42)

Π̂B0B0 = g′2T 2
(

1
6

+
5
9
Nf

)

, (B.43)

Π̂
Cα

0 C
β
0

= g2
sT

2
(

1 +
1
3
Nf

)

, (B.44)

Γ̂φ†φAa
rA

b
s

= − g2

(4π)2

(
3
8

(

− g2 + g′2
)

Lb − 3
2
g2
Y Lf − 1

8

(

7g2ξ2 + g′2ξ1

)

Lb

)

, (B.45)

Γ̂φ†φBrBs
= − g′2

(4π)2

(
1
8

(

3g2 + g′2
)

Lb − 3
2
g2
Y Lf − 1

8

(

3g2ξ2 + g′2ξ1

)

Lb

)

, (B.46)

Γ̂φ†φAa
0A

b
0

= − g2

(4π)2

(

− 1
4

(

23g2 + g′2
)

+
3
8

(

− 3g2 + g′2
)

Lb

− 3
2

(Lf − 2)g2
Y − 6λ− 1

8
ξ1g

′2Lb +
(

1 − 7
8
Lb

)

ξ2g
2
)

, (B.47)
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Γ̂φ†φB0B0
= − g′2

(4π)2

(

− 1
4

(

3g2 + g′2
)

+
3
8

(

3g2 + g′2
)

Lb

+
1
6

(34 − 9Lf )g2
Y − 6λ− 1

8
Lb
(

ξ1g
′2 + 3ξ2g

2
))

, (B.48)

Γ̂φ†φAa
0B0

= − gg′

(4π)2

(

− 1
4

(

g2 + g′2
)

+
3
8

(

g2 + g′2
)

Lb

− 1
2

(2 + 3Lf )g2
Y − 2λ− 1

8
ξ1g

′2Lb +
1
2

(

1 − 5
4
Lb

)

ξ2g
2
)

, (B.49)

Γ̂
φ†φCα

0 C
β
0

= − 1
(4π)2

(

4g2
s g

2
Y

)

, (B.50)

Γ̂Aa
0A

b
0A

c
0A

d
0

= − g4

(4π)2

2
3

(

− 17 + 4Nf

)

, (B.51)

Γ̂B0B0B0B0 = − g′4

(4π)2

(

− 2 +
380
81

Nf

)

, (B.52)

Γ̂Aa
0A

b
0B0B0

= − g2g′2

(4π)2

(

− 2 +
8
3
Nf

)

. (B.53)

The computation of the Higgs two-point correlator at two-loop level is the most compli-

cated part of dimensional reduction. To illustrate this — and the power of our automated

computation — we depict all the occurring diagrams in figure 12. Note that as this corre-

lator is computed at zero external momentum, in Landau gauge many of these diagrams

vanish trivially, significantly reducing the computational effort — and allowing even a

manual, non-automated computation such as the one performed in ref. [123] in case of the

Two-Higgs-Doublet Model.

By denoting

c ≡ 1
2

(

ln
(

8π
9

)

+
ζ ′(2)
ζ(2)

− 2γE

)

, (B.54)

where γE is the Euler-Mascheroni constant, we obtain the result

Π̂φ†φ =
(

−T 2
(

1
16

(3g2 +g′2)+
1
4
g2
Y +

1
2
λ

)

+
µ2
h

(4π)2
Lb

(

6λ− 1
4

(3ξ2g
2 +ξ1g

′2)
)

+Γ̂ζ
(φ†φ)

)

1-loop

+
(

− 5
36
T 6c8 − 25

288
T 8c10

)

flowers

+
{

− 1
4
T 4c6 − T 2

(4π)2

[
167
96

g4 +
1

288
g′4 − 3

16
g2g′2 +

1
4
λ2(3g2 +g′2)

+Lb

(
41
64

(g4 −g′4)− 15
32
g2g′2 +

1
8
λ
(

3(3+ξ2)g2 +(3+ξ1)g′2
)

−6λ2

+
1
64

(3g2 +g′2)(3ξ2g
2 +ξ1g

′2)
)

+
(

c+ln
(

3T
µ̄3

))(
81
16
g4 +3λ(3g2 +g′2)−12λ2 − 7

16
g′4 − 15

8
g2g′2

)
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2 =

Figure 12. Diagrams contributing to the Higgs two-point correlator at two-loop level. Scalar fields
are represented by arrowed dashed lines, fermions as solid arrowed lines, U(1) gauge fields as wiggly
lines, SU(2) gauge fields as zig-zag lines, SU(3) gauge fields as curly lines, and corresponding ghosts
as arrowed dotted lines.

−g2
Y

(
3
16
g2 +

11
48
g′2 +2g2

s

)

+
9g4 +5g′4

108
Nf

+Lf

(

g2
Y

(
9
16
g2 +

17
48
g′2 +2g2

s −3λ+
1
16

(3ξ2g
2 +ξ1g

′2)
)

+
9
8
g4
Y −

(
1
4
g4 +

5
36
g′4
)

Nf

)

+ln(2)
(

g2
Y

(
7
72
g2 − 3

8
g′2 +

8
3
g2

s +9λ− 1
4

(3ξ2g
2 +ξ1g

′2)
)

− 3
2
g4
Y +

(
3
2
g4 +

5
6
g′4
)

Nf

)]}

2-loop

. (B.55)

Again, the leading c8,10 pieces are denoted with flowers and they appear at three- and

four-loop orders. In order to obtain this expression, resummation is required to cancel the

IR sensitive mixed hard/soft modes, that are non-analytic in the mass parameter µ2
h. This
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resummation can be performed by adding and subtracting one-loop corrections to the mass

parameter, in which case terms with plus signs contribute to the mass in the scalar propaga-

tor, while terms with minus signs are treated as (counterterm-like) interactions. For details

of this procedure, see refs. [65, 123]. However, a shortcut to circumvent this procedure is

provided by using IBP reduction to evaluate sum-integrals: since in dimensional reduction

at NLO two-loop mass effects are of higher order, all two-loop sum-integrals can be treated

as massless. Therefore, all mixed soft/hard contributions vanish trivially in dimensional

regularisation, and non-analytic IR structures in need of resummation never appear.

Additionally, renormalisation of Πφ†φ at two-loop level is more complicated than for

other correlators at one-loop. In fact, if one includes only hard contributions to this

correlator, a divergence proportional to T 2 remains. This leftover divergence is cancelled

by the divergence in the soft part of this correlator, and on the 3d theory side it corresponds

exactly to the 3d mass counterterm, cf. eq. (B.123). What remains after cancellation of

this divergence is the logarithm of µ̄3 visible in eq. (B.55).

B.2.2 Parameter matching and gauge invariance

The matching of the parameters can be performed by equating effective vertices in both

4d and 3d theories. For this, the general relation between generic 4d and 3d fields ψ reads

(ψ2)3d =
1
T

(ψ2)4d

(

1 + Π̂′
ψ2

)

. (B.56)

This relation can be derived from the condition that the physical, screened masses of the

fields agree between the 4d and 3d theories [65]. For an illustrative example of matching,

let us consider the scalar quartic coupling. The renormalised (φ†
iφjφ

†
kφl)-correlators read

(here we write isospin structure ∆ijkl ≡ δijδkl + δilδjk explicitly)

T
(

− 2λ3 + Γ3d

(φ†φ)2

)

∆ijkl
︸ ︷︷ ︸

3d

≡
(

− 2λ+ Γsoft

(φ†φ)2 + Γ̂(φ†φ)2

)

∆ijkl
︸ ︷︷ ︸

4d

. (B.57)

The contribution from soft modes equals the 1-loop 3d contribution, i.e. Γsoft

(φ†φ)2 = Γ3d

(φ†φ)2

so these contributions cancel each other. Effective vertices are then

Tλ3(φ†φ)2
3d =

(

λ− 1
2

Γ̂(φ†φ)2

)

(φ†φ)2
4d (B.58)

which leads to the following NLO matching relation

λ3 = T

(

λ− 1
2

Γ̂(φ†φ)2 − 2λΠ̂′
φ†φ

)

, (B.59)
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once the relation between the 4d and 3d fields is taken into account. In a similar manner, we

obtain a complete list of the other matching relations in terms of other n-point correlators:

µ2
h,3 = µ2

h −
(

Π̂1-loop

φ†φ
+ Π̂2-loop

φ†φ

)

−
(

µ2
h − Π̂1-loop

φ†φ

)

Π̂′
φ†φ , (B.60)

c6,3 = T 2
(

c6 − 3c6Π̂′
φ†φ − 1

6
Γ̂(φ†φ)3

)

, (B.61)

c8,3 = T 3
(

c8 − 4c8Π̂′
φ†φ − 1

24
Γ̂(φ†φ)4

)

, (B.62)

c10,3 = T 4
(

c10 − 5c10Π̂′
φ†φ − 1

120
Γ̂(φ†φ)5

)

, (B.63)

g2
3 = T

[

g2
(

1 −
(

Π̂′
φ†φ + Π̂′

Aa
rA

b
s

))

+ 2Γ̂φ†φAa
rA

b
s

]

, (B.64)

g′
3

2 = T

[

g2
(

1 −
(

Π̂′
φ†φ + Π̂′

BrBs

))

+ 2Γ̂φ†φBrBs

]

, (B.65)

h1 = −1
2
T

[

− 1
2
g2
(

1 −
(

Π̂′
φ†φ + Π̂′

Aa
0A

b
0

))

+ Γ̂φ†φAa
0A

b
0

]

, (B.66)

h2 = −1
2
T

[

− 1
2
g′2
(

1 −
(

Π̂′
φ†φ + Π̂′

B0B0

))

+ Γ̂φ†φB0B0

]

, (B.67)

h3 = −1
2
T

[

− 1
2
gg′
(

1 −
(

Π̂′
φ†φ +

1
2

Π̂′
Aa

0A
b
0

+
1
2

Π̂′
B0B0

))

+ Γ̂φ†φAa
0B0

]

, (B.68)

h4 = −1
2
T Γ̂

φ†φCα
0 C

β
0
, (B.69)

κ1 = −1
2
T Γ̂Aa

0A
b
0A

c
0A

d
0
, (B.70)

κ2 = −1
6
T Γ̂B0B0B0B0 , (B.71)

κ3 = −T Γ̂Aa
0A

b
0B0B0

, (B.72)

m2
D = Π̂Aa

0A
b
0
, (B.73)

m′2
D = Π̂B0B0 , (B.74)

m′′2
D = Π̂

Cα
0 C

β
0
. (B.75)

The key feature of these formulas is that all 3d parameters are gauge independent up to

O(g4): at one-loop level Debye masses and quartic temporal scalar self-interactions are

immediately gauge independent since the correponding correlators are (field normalisation

contributes to these parameters only at NNLO). In the other parameters we observe an

explicit cancellation of gauge parameters between correlators Π̂, Γ̂ and field normalisations

Π̂′, when we insert the corresponding expressions.

However, there is a notable exception, the higher order corrections we include for

c6,3, c8,3 and c10,3 are gauge dependent, at orders O(g6), O(g8) and O(g10) respectively.

For e.g. for c6,3 the corresponding correlator Γ̂(φ†φ)3 in eq. (B.39) is gauge-dependent at

subleading order, as the gauge-dependent parts proportional to ζ(3) are not cancelled by the

field normalisation piece. A possible explanation of this leftover gauge-dependence is that

the operator basis is incomplete. We have not included higher dimensional kinetic scalar
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operators of the schematic form (φ†Dφ)2 where D represents covariant derivative. Our

guess is, that when a complete operator basis is used, one can perform a field redefinition

into a basis that is manifestly gauge invariant. However, we do not tackle this problem

further here, but leave this topic for future research.

The final results for the 3d parameters at the soft scale read

λ3 =T

(

λ(µ̄)+
1

(4π)2

[
1
8

(

3g4 +g′4 +2g2g′2
)

+3Lf
(

g4
Y −2λg2

Y

)

−Lb

(
3
16

(

3g4 +g′4 +2g2g′2
)

− 3
2

(

3g2 +g′2 −8λ
)

λ

)])

+T 3c6 − µ2
h

(4π)2
12Tc6Lb+

5
6
c8T

5 +
25
36
c10T

7 , (B.76)

c6,3 =T 2c6(µ̄)
(

1+
1

(4π)2

[(

−54λ+
9
4

(3g2 +g′2)
)

Lb−9g2
Y Lf

])

− ζ(3)
768π4

(

− 3
8

(

3g6 +3g4g′2 +3g2g′4 +g′6
)

−240λ3

+84g6
Y +6λ2

(

3g2ξ2 +g′2ξ1

)

︸ ︷︷ ︸

ξ-dependence at O(g6)

)

+c8T
2
(

5
3
T 2 − µ2

h

(4π)2
20Lb

)

+
25
12
c10T

6 , (B.77)

c8,3 =T 3
(

c8(µ̄)+
1

(4π)2

[[(

−96λ+3(3g2 +g′2)
)

c8 −63c2
6 −30µ2

hc10

]

Lb−12g2
Y c8Lf

])

+
5
2
T 5c10 +c8,3,ζ , (B.78)

c10,3 =T 4
(

c10(µ̄)+
1

(4π)2

[[(

−150λ+
15
4

(3g2 +g′2)
)

c10 −228c6c8

]

Lb−15g2
Y c10Lf

])

+c10,3,ζ , (B.79)

g2
3 = g2(µ̄)T

[

1+
g2

(4π)2

(
43
6
Lb+

2
3

− 4Nf

3
Lf

)]

, (B.80)

g′
3

2 = g′2(µ̄)T
[

1+
g′2

(4π)2

(

− 1
6
Lb− 20Nf

9
Lf

)]

, (B.81)

h1 =
g2(µ̄)T

4

(

1+
1

(4π)2

{[
43
6
Lb+

17
2

− 4Nf

3
(Lf −1)

]

g2 +
g′2

2
−6g2

Y +12λ
})

, (B.82)

h2 =
g′2(µ̄)T

4

(

1+
1

(4π)2

{
3g2

2
−
[

(Lb−1)
6

+
20Nf(Lf −1)

9

]

g′2 − 34
3
g2
Y +12λ

})

, (B.83)

h3 =
g(µ̄)g′(µ̄)T

2

{

1+
1

(4π)2

[

−g2 +
1
3
g′2 +Lb

(
43
12
g2 − 1

12
g′2
)

−Nf(Lf −1)
(

2
3
g2 +

10
9
g′2
)

+4λ+2g2
Y

]}

, (B.84)

h4 = −T 1
(4π)2

2g2
s g

2
Y , (B.85)

κ1 =T
g4

(4π)2

(
17−4Nf

3

)

, (B.86)
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κ2 =T
g′4

(4π)2

(
1
3

− 380
81

Nf

)

, (B.87)

κ3 =T
g2g′2

(4π)2

(

2− 8
3
Nf

)

, (B.88)

m2
D = g2(µ̄)T 2

(
5
6

+
Nf

3

)

, (B.89)

m′2
D = g′2(µ̄)T 2

(
1
6

+
5Nf

9

)

, (B.90)

m′′2
D = g2

sT
2
(

1+
Nf

3

)

, (B.91)

µ2
h,3 =µ2

h(µ̄)+
T 2

16

(

3g2(µ̄)+g′2(µ̄)+4g2
Y (µ̄)+8λ(µ̄)

)

+
1
4
T 4c6 +

5
36
T 6c8 +

25
288

T 8c10

+
1

(4π)2

{

µ2
h

[(
3
4

(3g2 +g′2)−6λ
)

Lb−3g2
Y Lf

]

+T 2
[

167
96

g4 +
1

288
g′4 − 3

16
g2g′2 +

1
4
λ(3g2 +g′2)

+Lb

(
17
16
g4 − 5

48
g′4 − 3

16
g2g′2 +

3
4
λ(3g2 +g′2)−6λ2

)

+
(

c+ln
(

3T
µ̄3

))(
81
16
g4 +3λ(3g2 +g′2)−12λ2 − 7

16
g′4 − 15

8
g2g′2

)

−g2
Y

(
3
16
g2 +

11
48
g′2 +2g2

s

)

+
(

1
12
g4 +

5
108

g′4
)

Nf

+Lf

(

g2
Y

(
9
16
g2 +

17
48
g′2 +2g2

s −3λ
)

+
3
8
g4
Y −

(
1
4
g4 +

5
36
g′4
)

Nf

)

+ln(2)
(

g2
Y

(

− 21
8
g2 − 47

72
g′2 +

8
3
g2

s +9λ
)

− 3
2
g4
Y +

(
3
2
g4 +

5
6
g′4
)

Nf

)]}

. (B.92)

These formulas emphasise that the LO pieces run in terms of 4d RG-scale µ̄. By applying

corresponding β-functions, one can observe that this running cancels the explicit logarith-

mic scale dependence of the Lb/f -terms. However, there remains a scale dependence which

is formally of O(g6) for the parameters of the Higgs and spatial gauge bosons, as discussed

in section 3.1. There is also a scale dependence at O(g4T 2) for the Debye masses m2
D, m′2

D

and m′′2
D . To cancel this scale dependence, the Debye masses should be evaluated at two-

loop order. However, this scale dependence only contributes to the Higgs effective potential

at O(g5), and a full O(g5) calculation goes beyond the scope of this paper; see for example

refs. [112, 128]. In practice this leftover scale dependence is numerically insignificant since

the running of the gauge couplings is small.
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The above eqs. (B.78) and (B.79), employ the following shorthand notation for terms

proportional to ζ-functions

c8,3,ζ ≡ 1
T

(
ζ(3)
(4π)4

[

−6T 2c6λ
(

−96λ+3g2ξ2+g′2ξ1

)]

+
ζ(5)
(4π)6

[

− 3
32

(

3g8+4g6g′2+6g4g′4+4g2g′6+g′8
)

+186g8
Y

−672λ4+8λ3g′2ξ1−λ2g′4ξ2
1 +2λ2g2ξ2(12λ−g′2ξ1)−3λ2g4ξ2

2

])

, (B.93)

c10,3,ζ ≡ 1
T 2

(
ζ(3)
(4π)4

[

−T 4
(

9
2
c2

6(−312λ+3g2ξ2+g′2ξ1)+8c8λ(−132λ+3g2ξ2+g′2ξ1)
)]

+
ζ(5)
(4π)6

[

−3c6λT
2
(

2208λ2+g′4ξ1+2g2g′2ξ1ξ2+3g4ξ2−12λ(3g2ξ2+g′2ξ1)
)]

+
ζ(7)
(4π)8

[
1
32

(

3g′10+15g2g′8+30g4g′6+30g6g′4+15g8g′2+9g10−48768g10
Y (B.94)

+251904λ5−1280λ4g′2ξ1+320λ3g′4ξ2
1 +640λ3g2ξ2(−6λ+g′2ξ1)+960λ3g4ξ2

2

)])

.

These contributions — with leftover gauge dependence — are formally O(g8) and O(g10)
respectively, and we include them as they contribute at leading (one-loop) order to the

respective 3d parameters.

Finally, when the soft temporal scalar scalars are integrated out in the second step of

dimensional reduction (cf. ref. [65]), the action of the final ultrasoft scale EFT is given in

eq. (B.29). The parameters of this ultrasoft EFT read

ḡ2
3 = g2

3

(

1 − g2
3

6(4π)mD

)

, (B.95)

ḡ′2
3 = g′

3
2
, (B.96)

µ̄2
h,3 = µ2

h,3 − 1
4π

(

3h1mD + h2m
′
D + 8h4m

′′
D

)

+
1

(4π)2

(

3g2
3h1 − 3h2

1 − h2
2 − 3

2
h2

3

+
(

− 3
4
g4

3 + 12g2
3h1

)

ln
(
µ̄3

2mD

)

− 6h2
1 ln

(
µ̄3

2mD

)

− 2h2
2 ln

(
µ̄3

2m′
D

)

− 3h2
3 ln

(
µ̄3

mD +m′
D

))

, (B.97)

λ̄3 = λ3 − 1
2(4π)

(
3h2

1

mD

+
h2

2

m′
D

+
h2

3

mD +m′
D

)

. (B.98)

In this step of dimensional reduction, the two-loop matching of mass parameters requires

resummation (by adding and subtracting the one-loop contribution to ultrasoft mass).

Consequently the soft Higgs mass parameter does not appear inside the two-loop piece —

despite mixed diagrams involving both Higgs and soft temporal scalars — since the effect

of the Higgs mass is formally of higher order. We point out that this technical detail was

overlooked in ref. [123] in eq. (3.45).
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For higher dimensional operator couplings, for simplicity we neglect contributions from

B0 and C0 fields, as they are numerically insignificant. In fact, already corrections from

Aa0 are heavily suppressed. At the ultrasoft scale we have

c̄6,3 = c6,3 +
1

2(4π)
h3

1

m3
D

, (B.99)

c̄8,3 = c8,3 − 1
8(4π)

h4
1

m5
D

, (B.100)

c̄10,3 = c10,3 +
1

32(4π)
h5

1

m7
D

. (B.101)

These formulas complete our construction of the 3d EFTs that we use to incorporate higher

order resummations in our perturbative analysis of the phase transition in the SMEFT.

B.3 The 3d perturbative expansion parameter

For the case of the 3d EFT considered in this paper (cf. eq. (B.29)), we show that the

~-expansion for the phase transition equals an expansion in powers of
√
c̄6,3. Near the

critical temperature two minima are separated by a barrier, and are of similar heights. For

the tree-level Higgs potential to show this structure, all three terms must be of the same

order. From this one can derive that the broken minimum scales as φ ∝
√

−λ̄3/c̄6,3. To

expand around the broken phase or around the critical bubble, we shift the Higgs by a

background field, φ →
(

0,Φ/
√

2
)

+ φ, a saddle point of the tree-level scalar action,

S0[Φ] =
∫

d3x

(
1
2
∂rΦ∂rΦ + V (Φ)

)

, (B.102)

δS0

δΦ
= 0 . (B.103)

Expanding around this background and scaling

Φ →
√

−λ̄3

c̄6,3
Φ , φ → ḡ3

c̄
1/4
6

φ , xr →
c̄

1/2
6,3

ḡ2
3

xr ,

Ar → ḡ3

c̄
1/4
6,3

Ar , Br → ḡ3

c̄
1/4
6,3

Br , η → ḡ3

c̄
1/4
6,3

η , (B.104)

the action takes the form

S =
1

√
c̄6,3

S0[Φ] +
6∑

n=2

1
n!
c̄

(n−2)/4
6,3

δnS

δϕα1 · · · δϕαn

∣
∣
∣
∣
Φ

ϕα1 · · ·ϕαn , (B.105)

where {ϕα} = {φ,Ar, Br, η, η̄} runs over all of the fields, and all factors of c̄6,3 have been

made explicit. This shows that the effective loop expansion parameter is proportional to

c̄
1/2
6,3 . This perhaps surprising observation, that c̄6,3 controls the loop expansion in the

coupled gauge-Higgs theory (even e.g. the (Ar)4 interaction!), is a special property of the

truncated 3d theory we are considering, and would not hold in a more general truncation

including, for example, higher order derivative terms.
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As regards the ḡ2
3, ḡ

′2
3 and λ̄3 dependence of physical quantities computed in the 3d

loop expansion, by scaling out overall powers of ḡ2
3 to fix dimensions, one can see that only

the ratios λ̄3/ḡ
2
3 and ḡ

′2
3 /ḡ

2
3 may arise to modify the expansion parameter. In our analysis

of the SMEFT, c̄6,3 is naturally the smallest parameter, and hence the 3d loop expansion

will generally converge well, at least around the broken phase.

The structure of eq. (B.105) is not modified in the symmetric phase, meaning that c̄
1/2
6,3

acts as the loop counting parameter there too. However, in the symmetric phase the tree-

level mass of the 3d gauge bosons is zero, which leads to IR divergences, and consequently

nonperturbativity. A fuller discussion of this is given in section 3.6.

B.4 Two-loop thermal effective potential

For the SU(2) gauge theory, with a Higgs field in the fundamental representation, the

effective potential has been calculated to two-loop order in refs. [62, 130, 131]. Ref. [62]

also generalises this to include the U(1)-hypercharge. For the SMEFT, the (φ†φ)3 term

introduces corrections to the Feynman rules. However, there are no new connected vacuum

diagrams to be added, as we now show. Using the usual topological identities for connected

graphs (see for example the chapter on divergences and regularisation in ref. [202]), one

can derive the following equation for the number of loops, L, of a vacuum graph containing

N6 6-point, N4 4-point, and N3 3-point vertices,

L = 1 + 2N6 +N4 +
1
2
N3 . (B.106)

This shows that there are no connected vacuum diagrams containing 6-point vertices (i.e.

with N6 > 0) below L = 3. Hence, working to two-loop order we need only keep track of

the corrections to the mass and lower-point vertex rules in the computation of the effective

potential.

The tree-level 3d potential at the ultrasoft scale, after inserting the Higgs background

field φ = (0, v3)/
√

2 reads

V3(0) =
1
2
µ̄2
h,3v

2
3 +

1
4
λ̄3v

4
3 +

1
8
c̄6,3v

6
3

+
1
2
δµ̄2

h,3v
2
3 +

1
4
δλ̄3v

4
3 +

1
8
δc̄6,3v

6
3 + δV , (B.107)

where δV is the vacuum counterterm, and all counterterms arise at two-loop order. Due

to the presence of the dimension-6 operator, the 3d EFT is not super-renormalisable, and

the 2-loop counterterms are not exact, as in the pure SM 3d EFT.

Note that as we utilise the gauge-invariant ~-expansion for our 3d computations, we are

free to fix a gauge in calculating the 3d effective potential. In Landau gauge, the one-loop

contribution is given by

V3(1) = Jsoft(mφ,3) + 3Jsoft(mχ,3)

+ (d− 1)
(

2Jsoft(mW,3) + Jsoft(mZ,3)
)

, (B.108)
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Figure 13. Diagram topologies contributing to the two-loop effective potential. Dashed lines
denote scalars (S), wavy lines denote vector bosons (V) and dotted lines refer to ghost fields (G).

where the master integral is given by eq. (2.21) and the mass eigenvalues, for the Higgs,

Goldstones, W and Z bosons, are functions of the 3d parameters and the 3d background

field v3,

m2
φ,3 = µ̄2

h,3 + 3λ̄3v
2
3 +

15
4
c̄6,3v

4
3 , (B.109)

m2
χ,3 = µ̄2

h,3 + λ̄3v
2
3 +

3
4
c̄6,3v

4
3 , (B.110)

m2
W,3 =

1
4
ḡ2

3v
2
3 , (B.111)

m2
Z,3 =

1
4

(

ḡ2
3 + ḡ′2

3

)

v2
3 . (B.112)

The two-loop contribution to the effective potential in the 3d EFT is straightforward

to include, by following refs. [62, 121, 130]. Since new contributions from c̄6,3 appear only

through the modified mass eigenvalues mχ,3 and mφ,3, and through pure scalar vertices,

where the latter affects only the (SS) and (SSS) topology classes below.

V3(2) = −
(

(SSS) + (VSS) + (VVS) + (VVV) + (VGG) + (SS) + (VS) + (VV)
)

, (B.113)

where different topology classes are illustrated in figure 13 and their results read (again, in

Landau gauge)

(SSS) =
3
4
v2

3

(

2λ̄3 + 3c̄6,3v
2
3

)2
DSSS(mφ,3,mχ,3,mχ,3)

+
3
4
v2

3

(

2λ̄3 + 5c̄6,3v
2
3

)2
DSSS(mφ,3,mφ,3,mφ,3) , (B.114)

(VSS) =
1
4
ḡ2

3DVSS(mχ,3,mχ,3,mW,3) +
1
4
ḡ2

3DVSS(mφ,3,mχ,3,mW,3)

+
1
8

(ḡ2
3 + ḡ′2

3 )DVSS(mφ,3,mχ,3,mZ,3)

+
1
8

(ḡ2
3 − ḡ′2

3 )2

ḡ2
3 + ḡ′2

3

DVSS(mχ,3,mχ,3,mZ,3) +
1
2

ḡ2
3 ḡ

′2
3

ḡ2
3 + ḡ′2

3

DVSS(mχ,3,mχ,3, 0) , (B.115)

(VVS) =
1
8
ḡ4

3v
2
3DVVS(mφ,3,mW,3,mW,3) +

1
16

(ḡ2
3 + ḡ′2

3 )2v2
3DVVS(mφ,3,mZ,3,mZ,3)

+
1
4
ḡ4

3 ḡ
′2
3 v

2
3

ḡ2
3 + ḡ′2

3

DVVS(mχ,3,mW , 0) +
1
4
ḡ2

3 ḡ
′4
3 v

2
3

ḡ2
3 + ḡ′2

3

DVVS(mχ,3,mW,3,mZ,3) , (B.116)

(VVV) = −1
2

ḡ4
3

ḡ2
3 + ḡ′2

3

DVVV(mW,3,mW,3,mZ,3) − 1
2

ḡ2
3 ḡ

′2
3

ḡ2
3 + ḡ′2

3

DVVV(mW,3,mW,3, 0) , (B.117)
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(VGG) = −2ḡ2
3DVGG(mW,3) − ḡ4

3

ḡ2
3 + ḡ′2

3

DVGG(mZ,3) , (B.118)

(SS) = −15
8

(

2λ̄3 + 3c̄6,3v
2
3

)(

I3
1 (mχ,3)

)2
− 3

4

(

9c̄6,3v
2
3 + 2λ̄3

)

I3
1 (mχ,3)I3

1 (mφ,3)

− 3
8

(

2λ̄3 + 15c̄6,3v
2
3

)(

I3
1 (mφ,3)

)2
, (B.119)

(VS) = −3
4

(d− 1)ḡ2
3I

3
1 (mχ,3)I3

1 (mW,3) − 1
4

(d− 1)
(ḡ2

3 − ḡ′2
3 )2

ḡ2
3 + ḡ′2

3

I3
1 (mχ,3)I3

1 (mZ,3) (B.120)

− 1
4

(d− 1)ḡ2
3I

3
1 (mφ,3)I3

1 (mW,3) − 1
8

(d− 1)(ḡ2
3 + ḡ′2

3 )I3
1 (mχ,3)I3

1 (mZ,3)

− 1
8

(d− 1)(ḡ2
3 + ḡ′2

3 )I3
1 (mφ,3)I3

1 (mZ,3) , (B.121)

(VV) = −1
2
ḡ2

3DVV(mW,3,mW,3) − ḡ4
3

ḡ2
3 + ḡ′2

3

DVV(mW,3,mZ,3) . (B.122)

The above diagrams compose of several master integrals, that are defined and computed

in ref. [121]. The counterterms required by renormalisation read

δµ̄2
h,3 = −1

ǫ

1
(4π)2

1
4

(
51
16
ḡ4

3 + 9ḡ2
3λ̄3 − 12λ̄2

3 − 5
16
ḡ′4

3 − 9
8
ḡ2

3 ḡ
′2
3 + 3ḡ′2

3 λ̄3

)

, (B.123)

δλ̄3 = −1
ǫ

1
(4π)2

3
2
c̄6,3

(

3ḡ2
3 + ḡ′2

3 − 16λ̄3

)

, (B.124)

δc̄6,3 =
1
ǫ

1
(4π)2

51c̄2
6,3 , (B.125)

δV = −1
ǫ

1
(4π)2

1
4
µ̄2
h,3

(

3ḡ2
3 + ḡ′2

3

)

, (B.126)

and these agree with eqs. (C.133)–(C.135) of ref. [123], except that therein contributions

of the U(1) gauge field have not been included.

B.5 Computation of thermodynamics

As section 2.2.2 discusses, one vital advantage of dimensional reduction over daisy-

resummation is the ability to perform consistent ~-expansions within the low-energy ef-

fective theory, at least in the case where there is a tree-level barrier. This ensures order-

by-order gauge invariance, and further allows one to calculate the rate of bubble nucleation

self-consistently, without double-counting degrees of freedom. In this subsection, we apply

these ideas to the SMEFT.

One starts by solving everything at tree-level. In this case, and assuming λ̄3 < 0 (which

is indeed the case for the entire range of M we consider), the positive broken minimum is

given by,

v3,(0) =

√

2
3

√

−λ̄3

c̄6,3
+

1
c̄6,3

√

λ̄2
3 − 3c̄6,3µ̄2

h,3 . (B.127)

The point at which this minimum is degenerate with the symmetric phase gives the critical

mass. At tree-level this happens when the mass parameter is equal to,

µ̄2
h,3,c(0) =

λ̄2
3

4c̄6,3
. (B.128)
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One- and two-loop corrections to the broken minimum and to the critical mass are given

in terms of the ~-expansion of the effective potential in eqs. (2.42) and (2.45). Explicitly

to one-loop order, we find the critical mass,

µ̄2
h,3,c =

λ̄2
3

4c̄6,3
+

~

3(4π)

√

−λ̄3

c̄6,3

[

ḡ3
3 +

1
2

(ḡ2
3 + ḡ′2

3 )3/2 + (−λ̄3)3/2
]

+ O(~2) , (B.129)

at which point the broken minimum of the potential is

v3,c =

√

− λ̄3

c̄6,3
+

~

6(4π)
1

(−λ̄3)

[

ḡ3
3 +

1
2

(

ḡ2
3 + ḡ′2

3

)3/2
+ 25(−λ̄3)3/2

]

+ O(~2) . (B.130)

Corrections at O(~2) are straightforward to construct, using eqs. (2.42) and (2.45) and the

results of appendix B.4, but the expressions are long, so we do not quote them explicitly

here. The only subtlety, discussed below eq. (2.42), is the presence of infrared divergences,

which must be regulated by taking the Goldstone boson mass to zero only at the end of

the computation.

The change in the trace anomaly, which determines α in eq. (2.5), is determined in

terms of the ~-expansion for the effective potential, eq. (2.41), and its derivatives. As

discussed in ref. [66], the derivatives of the effective potential can be interpreted in terms

of condensates of the operators present in the Lagrangian. For the SMEFT, we have that,

∆Θ
T

= −3
4

∆V3 +
1
4

∑

i

dκi
d lnT

∂∆V3

∂κi
, (B.131)

= −3
4

∆V3 +
1
4

( dµ̄2
h,3

d lnT
∆〈φ†φ〉 +

dλ̄3

d lnT
∆〈(φ†φ)2〉 +

dc̄6

d lnT
∆〈(φ†φ)3〉

− 1
ḡ2

3

dḡ2
3

d lnT
∆〈1

4G
a
rsG

a
rs〉 − 1

ḡ′2
3

dḡ′2
3

d lnT
∆〈1

4FrsFrs〉
)

, (B.132)

where κi runs over the parameters of the theory, {ḡ2
3, ḡ

′2
3 , µ̄

2
h,3, λ̄3, c̄6,3}, and ∆V is expanded

in ~. In this expression, the condensates of the 3d EFT are manifestly gauge-invariant,

as is ∆V because it has been evaluated at its tree-level minimum. The whole expression

is therefore gauge-independent if the parameters of the 3d EFT are separately gauge-

invariant. As shown explicitly in appendix B.2, the parameters of the SMEFT ultrasoft

EFT are gauge-invariant up to O(g4), therefore this approach gives a gauge-invariant result

up to this order. We expect this to be true generically. However, due to the incompleteness

of the basis of higher-dimensional operators in our SMEFT, a numerically small O(g6)
gauge dependence of c6,3 remains, which will inevitably affect ∆Θ.
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To add some flavour of the computation, we explicitly express the five condensates at

one-loop order, evaluated at the critical mass,

∆〈φ†φ〉 = − λ̄3

2c̄6,3
+

~

6(4π)
√

−λ̄3c̄6,3

[

ḡ3
3 +

1
2

(

ḡ2
3 + ḡ′2

3

)
3/2 + 28

(

−λ̄3

)3/2
]

+ O(~2) , (B.133)

∆〈(φ†φ)2〉 =
λ̄2

3

4c̄2
6,3

+
~

√

−λ̄3

6(4π)c̄3/2
6,3

[

ḡ3
3 +

1
2

(

ḡ2
3 + ḡ′2

3

)
3/2 + 16

(

−λ̄3

)3/2
]

+ O(~2) , (B.134)

∆〈(φ†φ)3〉 = − λ̄3
3

8c̄3
6,3

+
~

(

−λ̄3

)3/2

8(4π)c̄5/2
6,3

[

ḡ3
3 +

1
2

(

ḡ2
3 + ḡ′2

3

)
3/2 + 10

(

−λ̄3

)3/2
]

+ O(~2) , (B.135)

− 1
ḡ′2

3

∆〈1
4
FrsFrs〉 = −

~

(

−λ̄3

)3/2

8(4π)c̄3/2
6,3

√

ḡ2
3 + ḡ′2

3 + O(~2) , (B.136)

− 1
ḡ2

3

∆〈1
4
GrsGrs〉 = −

~

(

−λ̄3

)
3/2

4(4π)c̄3/2
6,3

[√

ḡ2
3 +

1
2

√

ḡ2
3 + ḡ′2

3

]

+ O(~2) . (B.137)

We do not quote two-loop results explicitly due to their length, but they are straight-

forwardly constructed using the same procedures as above. Note that these condensates

are quoted at the critical temperature. To calculate α they are needed at the percolation

temperature Tp, in which case there are square roots following from eq. (B.127) which

complicate the expressions, though procedurally there is no difference in the computation.

C Estimates for the nucleation prefactor

In a semiclassical evaluation, the bubble nucleation rate takes the following form,

Γ = Ae−Sc , (C.1)

where Sc is dimensionless and A has mass dimension 4. The nucleation prefactor, A, is dis-

cussed in section 3.5. We do not calculate it explicitly in this paper, but instead give some

rough estimates for it. The prefactor naturally splits into the product of two parts, a dy-

namical part Adyn and a statistical part Astat,
37 as shown in eq. (3.14). The statistical part

of the prefactor has mass dimension 3. Although it is difficult to calculate, the definition of

this part is agreed upon in the literature. It is given by a ratio of functional determinants

of the second-order fluctuations around the critical bubble and the symmetric phase,

Astat =
2
V

Im

√

detS,αβ [φf ]
detS,αβ [φb]

, (C.2)

37This terminology follows ref. [173].
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where S is the action, α and β run over the fields which fluctuate about the critical

bubble, and we are using DeWitt notation [203] for the functional derivatives. In the 3d

theory α and β run over {φ,Aar , Br, ηa, η̄a, η, η̄}. At this stage the ratio of determinants

is formal, as there are zero and negative eigenvalues which must be dealt with separately.

The imaginary part arises due to the presence of a single negative eigenvalue, for which

the corresponding integral must be carried out by analytic continuation [91].

The dynamical part of the prefactor arises for thermal, and not for vacuum, transitions

and is essentially an inverse timescale for the critical bubble to grow,

Adyn =
ωc

2π
. (C.3)

This should depend both on the exponential growth rate of undamped linear perturbations

to the bubble radius, and on the damping due to the thermal bath. However, its precise

definition is not widely agreed upon (see e.g. refs. [89, 124, 136, 173, 204, 205]).

C.1 Dynamical prefactor

We consider two different estimates of the dynamical prefactor. The first is essentially

parametric, and follows from the dominance of infrared gauge bosons in the time evolution

of the critical bubble. The second is a detailed formula which relies both upon on the thin

wall approximation and a hydrodynamic approximation.

C.1.1 Infrared gauge boson dominance

Here we follow refs. [136, 204, 206, 207]. The exponential growth of the critical bubble is

checked by the parametrically slower evolution of the infrared modes of the gauge bosons,

as shown concretely in lattice simulations (see figure 11 in [136]). Thus, the dynamical pref-

actor should be of order g4T , the inverse timescale for the evolution of the infrared modes

of the gauge bosons [206]. This is the same reason why the sphaleron rate in the symmetric

phase is O(g10T 4).38 More precisely, up to an O(1) multiplicative factor, the result is

Adyn ∼ ḡ2
3

(4π)
ḡ2

3/(4π)
σSU(2)

∼ g4T

(4π)2
, (C.4)

where σSU(2) ≈ 0.477T is the “colour” conductivity of the weak sector. The addition of

powers of 4π here follows ref. [136]. We use this for our first estimate of the dynamical

prefactor.

C.1.2 Hydrodynamic approximation

Refs. [107, 108, 173, 208] adopted a coarse-grained, hydrodynamic approach to calculating

the nucleation prefactor. For the purposes of describing bubble nucleation, it was assumed

that the dynamical degrees of freedom could be modelled by the macroscopic energy density,

rather than working directly with the quantum fields. Further the thin-wall approximation

was adopted.

38Or, more precisely, the sphaleron rate is O(g10 ln(1/g)T 4). Here we will ignore the O(ln(1/g)) correction,

which is not large for physical values of the weak coupling.
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With the proceeding caveats and approximations, the expression for the dynamical

prefactor obtained is [107, 108],

Adyn =
8σηS

3πr3
b (∆w)2

, (C.5)

where σ is the surface tension, ηS is the shear viscosity, rb is the bubble radius and ∆w is

the change in the enthalpy, or latent heat, of the transition. Here the bubble radius can be

consistently replaced with its thin-wall expression, rb = 2σ/∆V . We have used η ≈ 82.5T 3

following ref. [108]. Note that in refs. [107, 108] the statistical prefactor was also estimated,

however in this case the contribution of the IR geometric deformations of the bubble was

wrongly dropped (see section C.2).

In the SMEFT in the 3d approach, the remaining pieces of the expression are,

σ

T
=

λ̄2
3

8c̄3/2
6,3

,
∆V
T

=
−λ̄3

2c̄6,3

(

λ̄2
3

4c̄6,3
− µ̄2

h,3

)

, (C.6)

∆w
T

=

(

−λ̄3

2c̄6,3

)

dµ̄2
h,3

d lnT
+

(

−λ̄3

2c̄6,3

)2
dλ̄3

d lnT
+

(

−λ̄3

2c̄6,3

)3
dc̄6,3

d lnT
. (C.7)

In the 4d approach, these expressions are replaced by expressions which are evaluated nu-

merically. Again, one must ad hoc throw away the imaginary part of the effective potential.

C.2 Statistical prefactor

The statistical prefactor has been computed numerically for the thermal phase transition

of a real scalar field by several groups [148, 149, 164, 209, 210], and various approximation

schemes were proposed in refs. [148, 160, 210]. For more complicated theories, such as the

electroweak sector, related computations have been performed for the sphaleron rate [204,

211–213] and the Higgs vacuum decay rate [167, 214]. A complete calculation of the sta-

tistical prefactor for the bubble nucleation rate in the electroweak sector, or related BSM

extensions, is made difficult by the radiatively induced nature of the transition (see sec-

tion 3.5), and associated infrared divergences [215]. To our knowledge, there is no complete

calculation in the literature of the statistical prefactor in the electroweak sector, or related

BSM extensions. However approximations to it have been proposed in refs. [107, 108, 215].

The statistical prefactor can be further broken up into the contributions from the zero

modes, the negative mode, and the positive modes,

Astat = A
(0)
statA

(−)
statA

(+)
stat . (C.8)

The contributions from the zero modes, and the negative mode can be calculated using

standard methods. It is A
(+)
stat which is most difficult to calculate. The factor of one over

the volume of space is included in the zero mode contribution.

C.2.1 Zero modes

Some knowledge about the statistical prefactor can be gained simply by knowledge of

the zero modes of the fluctuation spectrum about the critical bubble (see e.g. ref. [132]).
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In particular, we will be able to determine the dependence of the prefactor on c̄6,3, which

is, in all cases, the smallest parameter in the 3d effective theory.

Zero modes arise due to global symmetries of the theory which are broken by the

bubble configuration. Integration over the zero modes can be carried out with the method

of collective coordinates [216] (see also refs. [204, 211] for similar computations). There are

3 zero modes corresponding to the breaking of spatial translations. These are well known

and integration over them results in the following volume and Jacobian factors,

∫ 3∏

i=1

dai√
2π

= V

(
S

2π

)3/2

, (C.9)

where on the left hand side we have shown the form of the measure on these modes before

the collective coordinate transformation and V is the volume of space. There are also 3

zero modes due to the breaking of the global symmetry part of SU(2)×U(1) → U(1). Note

that these global symmetries are not broken by our choice of general covariant (or Fermi)

gauge, eq. (B.28), unlike in the case of Rξ gauges. Integration over these zero modes has

been carried out in appendix C of ref. [133], and results in,

∫ 6∏

i=4

dai√
2π

=
π2

2

(
2

2π

∫

d3xΦ†
0(x)Φ0(x)

)3/2

, (C.10)

where the integral over d3x is over all of space. Altogether, the zero modes contribute the

factor,

A
(0)
stat =

1

4
√

2π
S3/2

(∫

d3xΦ†
0(x)Φ0(x)

)3/2

. (C.11)

Extracting the zero modes leaves 6 eigenvalues in the ratio of functional determinants

which are not matched up. These are positive eigenvalues of Higgs fluctuations about the

symmetric phase.

C.2.2 Nonzero modes: thick walls

For bubbles which are not in the thin wall regime [142], the only length scale entering

the bounce solution is 1/µ̄h,3, which is in turn of order 1/µ̄h,3,c ∼ 2
√
c̄6,3/λ̄3 when the

supercooling is not parametrically large. Noting this, and scaling the operators in the ratio

of determinants by µ̄h,3, we arrive at

A
(−)
statA

(+)
stat = µ̄6

h,3 κ

(

λ̄3

ḡ2
3

,
ḡ′2

3

ḡ2
3

)

, (C.12)

where the function κ is given by

κ

(

λ̄3

ḡ2
3

,
ḡ′2

3

ḡ2
3

)

= 2Im

√
√
√
√

detSf,αβ
det′ Sb,αβ

(C.13)

= 2Im

√
√
√
√

detSf,hh
det′ Sb,hh

√
√
√
√

detSf,WG

detSb,WG

√
√
√
√

detSf,ZG
detSb,ZG

. (C.14)
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Here the eigenvalues of the operators have all been scaled by µ̄2
h,3 to be dimensionless and

the dash on det′ denotes that the six zero modes are removed. In the second line S,WG and

S,ZG refer to the second derivative matrices in the subspaces spanned by the W bosons and

their Goldstone modes and the Z boson and their Goldstone modes respectively. In going

from the first to the second line we have used that, in the Landau gauge, neither the ghost

propagators nor the photon propagator depend on the background Higgs field. Thus, only

the physical Higgs particle, the W and the Z bosons and their respective Goldstone modes

contribute to the statistical prefactor [167, 217].

Our first approximation to the statistical prefactor is simply κ = 1, which we call our

thick wall approximation. It is accurate up to the multiplicative function, κ, which should

be of O(1) if the ratios of couplings are themselves of O(1). In reality these coupling ratios

lie in the region ∼ 0.1 − 0.4, and hence one might expect corrections to the nucleation rate

of a few orders of magnitude. Note that we have not included a c̄6,3 dependence for κ, as

the c̄6,3 dependence of the prefactor is fixed by our assumption that µ̄h,3 is parametrically

of the same order as µ̄h,3,c, i.e. that the supercooling is not parametrically large. At larger

supercooling the c̄6,3 term becomes irrelevant to tunnelling, as the scalar field only tunnels

to φ ∼ µ̄h,3/
√

λ̄3, much short of the broken minimum, hence κ has no c̄6,3 dependence in

this case too.

C.2.3 Nonzero modes: thin wall approximation

For very small supercooling from the critical temperature, the bubble radius, rb, will

be much larger than the thickness of the bubble wall, rw ∼ 1/µ̄h,3. In this case one can

make a thin wall approximation. The large hierarchy of scales, rw/rb ≪ 1, leads to a

multiplicative correction to the statistical prefactor unique to the thin wall limit. This is

made up by low-energy geometric deformations of the bubble, with eigenvalues which scale

as ∝ 1/r2
b [125, 218–220]. For thermal transitions in the 3d effective theory it is

A
(−)
stat ≈ rb

2
√

2
, A

(+)
stat ∝

(
rb
rw

)−5/3

, (C.15)

which when combined with the contribution of the zero modes in the thin wall approxima-

tion,

A
(0)
stat ≈ 4π2

27

(
σ

T

)3/2 ( rb
rw

)15/2
(

v2
3

µ̄h,3

)3/2
1
µ̄2
h,3

, (C.16)

leads to,

Astat ∼
(
σ

T

)3/2 ( rb
rw

)41/6
(

v2
3

µ̄h,3

)3/2

, (C.17)

where we dropped the O(1) constant, given the uncertainty in the contribution of the

positive modes. Note that this result differs from ref. [107] (and consequently refs. [6, 108])

for two reasons: first, we have included the additional zero modes from the breaking

of custodial symmetry and second, we have included the parametric contribution of the

positive low-lying modes, i.e. those considered in this ref. [218]. These both affect the

statistical prefactor at leading order. Our result agrees with refs. [159, 221].
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Eq. (C.17) is applicable only after performing dimensional reduction. The reason is

that only spatial deformations of the critical bubble are included in A
(+)
stat. A similar analysis

is carried out included the deformations of the bubble in the compact thermal direction.

This was carried out in ref. [125] where it was shown that they contribute exponentially,

Astat,4d ∝ exp
(

2
3
πT µ̄h,res r

2
b

)

. (C.18)

This result suggests that, at least in the thin wall approximation, the nucleation prefactor

gives a much larger correction to the nucleation rate if one does not perform dimensional

reduction.

C.2.4 Derivative expansion

Modes with wavelengths much shorter than the critical bubble allow for a derivative

expansion of the fluctuation determinant. In this case, the leading order approximation

takes the background Higgs field to be locally constant. The wall of the critical bubble has

a width of order the inverse Higgs mass. As such the prefactor of particles which are much

heavier than the Higgs can be well approximated in the derivative expansion.

The magnetic gauge bosons can never be heavier than the Higgs in the symmetric

phase, as they are massless, at least in perturbation theory. However, for |λ̄3| ≪ ḡ2
3,

the gauge bosons are much heavier than the Higgs in the broken phase. For sufficiently

strong phase transitions, the broken phase contributions are expected to dominate over the

symmetric phase ones as discussed in section 3.6, and hence one might expect the derivative

expansion to give a reasonable approximation for the contribution of the W and Z bosons

to the nucleation prefactor, as in the following,

√
√
√
√

detSf,WG

detSb,WG

√
√
√
√

detSf,ZG
detSb,ZG

≈ exp




∑

α=W,Z,G

1
12π

∫

d3x

((

m2
α(φb)

)3/2
−
(

m2
α(φf )

)3/2
)


 ,

(C.19)

where the sum over α runs over the modes of the W , Z and corresponding Goldstone

bosons. This approach has been taken for the sphaleron rate in refs. [211–213, 222], and

was shown to give a good approximation, at least for the case |λ̄3| . ḡ2
3 (see in particular

figure 1 in ref. [213]).

On the other hand, the derivative expansion is never formally justified for the prefactor

of fluctuations of the Higgs particle itself, or for lighter particles. If one were to apply the

derivative expansion to the Higgs itself, the negative effective mass near the top of the po-

tential barrier would result in a spurious nonzero imaginary part (not systematically related

to the expected imaginary part from analytic continuation [91]). Nevertheless, ploughing

on and applying the derivative expansion to the Higgs particle fluctuation determinant, set-

ting imaginary parts to zero by hand, one can derive a rough order-of-magnitude estimate
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of the statistical prefactor. The leading order contribution is taken to be,

Im

√
√
√
√

detSf,αβ
det′Sb,αβ

≈(zero modes)exp
(

−
∫

d3xRe
(

V(1)(φb)−V(1)(φf )
))

, (C.20)

≈(C.11)µ̄6
h,3 exp

(
∑

α

1
12π

∫

d3xRe

((

m2
α(φb)

)3/2
−
(

m2
α(φf )

)3/2
))

, (C.21)

where we have followed ref. [148] in extracting, ad hoc, the zero-mode contribution,

eq. (C.11), and have extracted powers of the mass µ̄h,3 to make up the dimensions. Note

the necessity of the introduction of the real part, justified on practical grounds. An analo-

gous expression was shown in ref. [148] to result in a good approximation of the statistical

prefactor for a real scalar field in the case of thin-walled bubbles.
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