
THEORETICALLY EXACT FILTERED BACKPROJECTION-TYPE
INVERSION ALGORITHM FOR SPIRAL CT∗

ALEXANDER KATSEVICH†

SIAM J. APPL. MATH. c© 2002 Society for Industrial and Applied Mathematics
Vol. 62, No. 6, pp. 2012–2026

Abstract. Proposed is a theoretically exact formula for inversion of data obtained by a spiral
computed tomography (CT) scan with a two-dimensional detector array. The detector array is
supposed to be of limited extent in the axial direction. The main property of the formula is that
it can be implemented in a truly filtered backprojection fashion. First, one performs shift-invariant
filtering of a derivative of the cone beam projections, and, second, the result is backprojected in order
to form an image. Another property is that the formula solves the so-called long object problem.
Limitations of the algorithm are discussed. Results of numerical experiments are presented.

Key words. cone beam, spiral tomography, theoretically exact reconstruction, filtered back-
projection algorithm

AMS subject classifications. 44A12, 65R10, 92C55

PII. S0036139901387186

1. Introduction. Spiral computed tomography (CT) involves continuous data
acquisition throughout the volume of interest by simultaneously moving the patient
through the gantry while the x-ray source rotates. Spiral CT has numerous advan-
tages over conventional CT and is now a standard medical imaging modality. In
the past decade it became clear that spiral CT can be significantly improved if one
uses two-dimensional detector arrays instead of one-dimensional ones. This lead to
the development of scanners with multiple detector rows. At the present time, scan-
ners with four and eight detector rows are commercially available. It appears that
as the technology advances further, scanners with even higher number of detector
rows will emerge. On the other hand, accurate and efficient image reconstruction
from the data provided by such scanners is very challenging because there does not
exist a theoretically exact and efficient reconstruction formula. Several approaches
for image reconstruction have been proposed. They can be classified into two groups:
theoretically exact and approximate. See [TD00] for a recent review of available al-
gorithms. Most exact algorithms are based on computing the Radon transform for a
given plane by partitioning the plane in a manner determined by the spiral path of
the x-ray source [Tam95, Tam97, KS97, SNS+00]. Even though exact algorithms are
more accurate, they are computationally quite intensive and require keeping consid-
erable amount of cone beam (CB) projections in memory. Approximate algorithms
are much more efficient (see, e.g., [KND98, NKD98, DNK00, Kat02] for several most
recent techniques) but produce artifacts, which can be significant under unfavorable
circumstances. Despite the significant progress achieved in recent years, it appears
that no algorithm which would be both efficient and theoretically exact have been
proposed in the literature so far.

In this paper we propose the first theoretically exact inversion formula which is
truly of the filtered backprojection (FBP) type. This means that the formula can
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Fig. 1. Illustration of the smallest detector array required for exact reconstruction (left panel)
and illustration of a PI line (right panel).

be numerically implemented in two steps. First, one performs shift-invariant filtering
of a derivative of the CB projections, and, second, the result is backprojected in
order to form an image. The price to pay for this efficient structure is that the
algorithm requires a detector array wider than the theoretically minimum one. Also,
the algorithm is applicable if the radius of support of the patient inside the gantry is
not too big (not greater than ≈ 0.62× radius of gantry). Clearly, this limitation is not
a big problem in most cases, for example, when one scans the head or an extremity
of a patient.

In section 2 we derive the inversion formula. In section 3 we show that the result-
ing algorithm is of the FBP type and present the results of two numerical experiments.

2. Inversion formula. First we introduce the necessary notations. Let

C := {y ∈ R
3 : y1 = R cos(s), y2 = R sin(s), y3 = s(h/2π), s ∈ R},(2.1)

where h > 0 is a spiral, and U is an open set strictly inside the spiral:

U ⊂ {x ∈ R
3 : x2

1 + x2
2 < r2}, 0 < r < R.(2.2)

S2 is the unit sphere in R
3, and

Df (y, β) :=

∫ ∞

0

f(y + βt)dt, β ∈ S2,(2.3)

β(s, x) :=
x− y(s)

|x− y(s)| , x ∈ U, s ∈ R, Π(x, ξ) := {y ∈ R
3 : (y − x) · ξ = 0};(2.4)

that is, Df (y, β) is the CB transform of f . Given (x, ξ) ∈ U × (R3 \ 0), let sj =
sj(ξ, ξ ·x), j = 1, 2, . . . , denote finitely many points of intersection of the plane Π(x, ξ)
with C. Also, ẏ(s) := dy/ds. As was shown in [D+97, DNK00], any point strictly
inside the spiral belongs to one and only one parametric interval (PI) segment. Recall
that a PI segment is a segment of line endpoints which are located on the spiral and
separated by less than one pitch in the axial direction (see Figure 1, right panel).
Let s = sb(x) and s = st(x) denote values of the parameter corresponding to the
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endpoints of the PI segment containing x. We will call IPI(x) := [sb(x), st(x)] the PI
parametric interval. The part of the spiral corresponding to IPI(x) will be denoted
CPI(x). Also, inside the PI there exists š = š(x) such that the plane through y(š)
and parallel to ẏ(š), ÿ(š), contains x.

Fix x ∈ U . It is clear that any plane through x intersects CPI(x) at least at one
point. Introduce the following sets:

Crit(x) ={ξ ∈ R
3 \ 0 : Π(x, ξ) contains y(sb(x)), y(st(x)) or

Π(x, ξ) is tangent to CPI(x)} ∪ {0},
Ξ1(x) ={ξ ∈ R

3 : ξ �∈ Crit(x) and Π(x, ξ) ∩ CPI(x) contains one point},
Ξ3(x) =R

3 \ {Ξ1(x) ∪ Crit(x)}.

(2.5)

By construction, the sets Crit(x),Ξ1,3(x) are pairwise disjoint, their union is all of
R

3, Crit(x) is closed and has Lebesgue measure zero, and Ξ1,3(x) are open.
Denote

e1(s, x) :=
[β(s, x)× ẏ(s)]× β(s, x)

|[β(s, x)× ẏ(s)]× β(s, x)| .(2.6)

By construction, e1(s, x) is a unit vector in the plane through y(s) and is spanned by
β(s, x), ẏ(s). Moreover, e1(s, x) is perpendicular to β(s, x). For convenience, here and
in the rest of the paper, we think of vectors β(s, x), e1(s, x), e2(s, x) (to be defined
below) and their linear combinations as if they are attached to y(s).

Given y(s), s ∈ (sb(x), st(x)) \ {š(x)}, find stan ∈ IPI(x), stan �= s, such that the
plane through x, y(s), and y(stan) is tangent to CPI(x) at y(stan). This is equivalent
to solving

[(x− y(stan))× (x− y(s))] · ẏ(stan) = 0, stan �= s.(2.7)

Existence and uniqueness of the solution stan ∈ IPI(x) to (2.7) is shown below (see
the second paragraph following (2.24)). Also, we will show below (see (2.35) and the
argument near it) that stan(s, x) is C

∞ with respect to s on (sb(x), st(x)) \ {š(x)}
and is made continuous on [sb(x), st(x)] by setting

stan(s, x) =



st(x), s = sb(x),

š(x), s = š(x),

sb(x), s = st(x).

(2.8)

Once stan = stan(s, x) has been found, denote similarly to (2.6)

e2(s, x) :=
[β(s, x)×Θ]× β(s, x)

|[β(s, x)×Θ]× β(s, x)| ,

Θ =

{
sgn(s− stan(s, x))β(stan, x), s ∈ (sb(x), st(x)) \ {š(x)},
ẏ(stan), s ∈ {sb(x), š(x), st(x)}.

(2.9)

By construction, e2(s, x) is a unit vector in the plane through x, y(s) and is a tangent
to CPI(x) at y(stan). In addition, e2(s, x) is perpendicular to β(s, x). Using (2.8) and
the inequalities stan(s, x) > š(x) if s < š(x), stan(s, x) < š(x) if s > š(x) (see (2.39)
below), we conclude that e2(s, x) is continuous with respect to s on [sb(x), st(x)].
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For f ∈ C∞
0 (U) and k = 1, 2 define

(Bkf)(x) := − 1

2π2

∫
IPI(x)

1

|x− y(s)|

×
∫ 2π

0

∂

∂q
Df (y(q), cos γβ(s, x) + sin γek(s, x))

∣∣∣∣
q=s

dγ

sin γ
ds,

(2.10)

where e1,2(s, x) are given by (2.6) and (2.9). Our main result is the following theorem.
Theorem 2.1. The operators Bk, k = 1, 2, can be written in the form

(Bkf)(x) =
1

(2π)3

∫
R3

Bk(x, ξ)f̃(ξ)e
−iξ·xdξ,(2.11)

where for each x ∈ U , Bk(x, ξ) ∈ L∞(R3) with respect to ξ and

B1(x, ξ) =

{
1, ξ ∈ Ξ1(x),

3, ξ ∈ Ξ3(x),
B2(x, ξ) =

{
1, ξ ∈ Ξ1(x),

−1, ξ ∈ Ξ3(x).
(2.12)

Since the set Crit(x) has Lebesgue measure zero, (2.12) immediately implies the
following inversion formula.
Corollary 2.2. Under the assumptions of Theorem 2.1,

f =
1

2
(B1f + B2f).(2.13)

An important feature of the double integral in (2.10) is that for each x ∈ U the
integral with respect to s is confined only to the theoretically minimal portion of the
parametric interval IPI(x). Moreover, it will be shown later (see section 3) that (2.11)
requires only a finite detector array regardless of how long the support of f is along
the axial direction. This implies that inversion formula (2.13) solves the so-called long
object problem (see [DNK00] for a definition).

Proof of Theorem 2.1. Let x ∈ U be fixed. Consider the integral with respect to
γ in (2.10):∫ 2π

0

∂

∂q

∫ ∞

0

f(y(q) + t(cos γβ(s, x) + sin γek(s, x)))

∣∣∣∣
q=s

1

t sin γ
tdtdγ

=

∫
R2

∂

∂q
f(y(q) + u)

∣∣∣∣
q=s

1

u · ek(s, x)du

=
1

(2π)3

∫
R3

f̃(ξ)

∫
R2

∂

∂q
e−iξ·(y(q)+u)

∣∣∣∣
q=s

1

u · ek(s, x)dudξ

=
1

(2π)3

∫
R3

f̃(ξ)(−iξ · ẏ(s))e−iξ·y(s)

[∫
R

e−iξ1u1du1

∫
R

e−iξ2u2
du2

u2

]
dξ

=
1

(2π)3

∫
R3

f̃(ξ)(−iξ · ẏ(s))e−iξ·y(s)2πδ(ξ1)(−iπsgnξ2)dξ

=
−|x− y(s)|

4π

∫
R3

f̃(ξ)(ξ · ẏ(s))e−iξ·y(s)δ(ξ · (x− y(s)))sgn(ξ · ek(s, x))dξ,

(2.14)

where du is the Lebesgue measure on the plane through the origin and is parallel to
β(s, x), ek(s, x). In (2.14) we have assumed without loss of generality that the ξ1-axis
is parallel to β(s, x) and the ξ2-axis is parallel to ek(s, x).
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Since (2.14) is the starting point of the entire proof, let us briefly discuss regular-
ization of the divergent integrals occurring there. Write the integral with respect to
γ in (2.10) in the form

∫
|γ|<2π−a

∂

∂q

Df (y(q), cos γβ(s, x) + sin γek(s, x))−Df (y(q), β(s, x))

sin γ

∣∣∣∣
q=s

dγ,

(2.15)

where a > 0 is small enough, so that the wedge |γ| < 2π − a with vertex at y(s)
contains supp f . Clearly, ∂/∂q can be moved outside the integral. For convenience
assume for a moment that the x1 and x2 axes are parallel to β(s, x) and ek(s, x),
respectively. Similarly to (2.14), (2.15) transforms to

∂

∂q
lim

ε→0+

∫∫
ε|u1|≤|u2|

f(y1(q) + u1, y2(q) + u2, y3(q))
du2

u2
du1

∣∣∣∣∣
q=s

=
∂

∂q
lim

ε→0+

∫ ∫
|u2|>ε

f(y1(q) + u1, y2(q) + u2, y3(q))
du2

u2
du1

∣∣∣∣∣
q=s

,

(2.16)

which is easily seen to be equivalent to the last integral in (2.14).
Pick any δ1 ∈ C∞

0 (R), δ1(t) ≥ 0,
∫
δ1(t)dt = 1, and define δε(t) = ε−1δ1(t/ε), ε >

0. Replacing δ and sgn by δε and sgnε = sgn ∗ δε, respectively, in (2.14) we get

A(s, x) = lim
ε→0+

∫
R3

f̃(ξ)(ξ · ẏ(s))δε(ξ · (x− y(s)))sgnε(ξ · ek(s, x))e−iξ·y(s)dξ,(2.17)

where A(s, x) is the last integral in (2.14). Substituting into (2.10) we get

(Bkf)(x) =
1

(2π)3

∫
IPI(x)

lim
ε→0+

Aε(s, x)ds,(2.18)

where Aε(s, x) is the integral on the right in (2.17). Since f̃ ∈ S(R3) and x− y(s) ⊥
ek(s, x), it is easy to see that Aε(s, x) is uniformly bounded with respect to s ∈ IPI(x)
as ε → 0+. Hence, using the Lebesgue dominated convergence theorem and changing
the order of integration,

(Bkf)(x) =
1

(2π)3
lim

ε→0+

∫
R3

f̃(ξ)Gε(x, ξ)dξ,

Gε(x, ξ) :=

∫
IPI(x)

(ξ · ẏ(s))δε(ξ · (x− y(s)))sgnε(ξ · ek(s, x))e−iξ·y(s)ds.
(2.19)

Clearly, Gε(x, ξ = 0) = 0. We will show that |Gε(x, ξ)| < c, ξ �= 0, for some c > 0 and
all ε > 0. Indeed, let s = qk ∈ IPI(x), q1 < q2 < . . . , be the roots of the equation
ξ · ẏ(s) = 0. Obviously the number of such roots is uniformly bounded with respect
to ξ ∈ R

3 \ 0. Say there are no more than K roots. Then

|Gε(x, ξ)| ≤
∫
IPI(x)

δε(ξ · (x− y(s)))|ξ · ẏ(s)|ds

≤
(∫ q1

sb

+

K−1∑
k=1

∫ qk+1

qk

+

∫ st

qK

)
δε(ξ · (x− y(s)))(ξ · ẏ(s))ds sgn(ξ · ẏ(q∗k)),

(2.20)
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where q∗k is the midpoint of the corresponding interval of integration. Each term in
the summation in (2.20) is bounded because∫ qk+1

qk

δε(ξ · (x− y(s)))(ξ · ẏ(s))ds sgn(ξ · ẏ(q∗k))

≤
∫ t=ξ·(x−y(qk+1))

t=ξ·(x−y(qk))

δε(ξ · x− t)dt sgn(ξ · ẏ(q∗k)) ≤
∫

δε(ξ · x− t)dt = 1,

(2.21)

and (2.20), (2.21) imply |Gε(x, ξ)| < K+1. Take any ξ �∈ Crit(x). An easy calculation
shows

lim
ε→0+

Gε(x, ξ) = e−iξ·xBk(x, ξ),

Bk(x, ξ) =
∑

sj∈IPI(x)

sgn(ξ · ẏ(sj)) sgn(ξ · ek(sj , x)), k = 1, 2.
(2.22)

Recall that sj = sj(ξ, ξ · x), j = 1, 2, . . . , denote parameter values corresponding to
the points of intersection of the plane Π(x, ξ) with the spiral and are found by solving
ξ · (x− y(s)) = 0. Here we have used that ξ · (x− y(sj)) = 0 implies ξ · ẏ(sj) �= 0 and
ξ · ek(sj , x) �= 0. Indeed, if ξ · ẏ(sj) = 0, then Π(x, ξ) is tangent to CPI(x) at y(sj).
If ξ · ek(sj , x) = 0, then Π(x, ξ) is tangent to CPI(x) at y(sj) if k = 1 or at y(stan)
if k = 2. In both cases this leads to the contradiction ξ ∈ Crit(x). This argument
implies also that Bk(x, ξ) is locally constant in a neighborhood of any ξ �∈ Crit(x).

We now study the functions Bk(x, ξ). Recall that x ∈ U is fixed. By construction,
Gε(x, ξ) ∈ C∞(R3). Since eiξ·xGε(x, ξ) → Bk(x, ξ), ε → 0, on R

3 \ Crit(x) and the
set Crit(x) has Lebesgue measure zero, Bk(x, ξ) is measurable (cf. [Lan93, p. 125]).
Moreover, Bk(x, ξ) ∈ L∞(R3) because the functions Gε(x, ξ) are uniformly bounded
on R

3 as ε → 0.
To compute Bk(x, ξ) suppose first that the x-ray source is fixed at y(s0) for some

s0 ∈ IPI(x). Project stereographically the upper and lower turns of the spiral onto
the detector plane as shown in Figure 1, left panel. It is assumed that the detector
plane is parallel to the axis of the spiral and is tangential to the cylinder y2

1 +y2
2 = R2

(cf. (2.1)) at the point opposite to the source. Thus, the distance between y(s0) and
the detector plane is 2R. Let the d2-axis be parallel to the axis of the spiral and the
d1-axis be perpendicular to it. This gives the following parametric curves:

d1(s) = 2R
sin(s− s0)

1− cos(s− s0)
, d2(s) =

h

π

s− s0
1− cos(s− s0)

, 0 < |s− s0| < 2π.(2.23)

The top and bottom curves are denoted Γtop and Γbot, respectively (see Figure 2).
The portions of Γtop and Γbot outside the range

∆ ≤ s− s0 ≤ 2π −∆ or ∆− 2π ≤ s− s0 ≤ −∆(2.24)

correspond to zero CB data. Here ∆ is determined by the radius of support of the
patient: ∆ = 2 cos−1(r/R) (cf. (2.2)). By assumption, s0 ∈ IPI(x), so x is projected
into the area between Γtop and Γbot. Let x̂ denote this projection. Equations (2.23)
imply that the curves Γbot and Γtop are strictly convex. Also, Γtop approaches L0

from above as s → s+0 (in this case d1(s) → +∞); Γbot approaches L0 from below
as s → s−0 (d1(s) → −∞). Here L0 denotes the intersection of the plane containing
y(s0) and vectors ẏ(s0), ÿ(s0) with the detector plane.
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Fig. 2. Detector plane.

Fig. 3. Detector plane with various lines through x̂ shown.

Consider various lines through x̂ (see Figure 3). LPI denotes the intersection of
the plane containing x, y(s0), y(sb(x)), y(st(x)) with the detector plane. Note that if
Γbot and Γtop are intersected by a vertical line (i.e., parallel to the d2-axis), then the
difference between values of the parameter s at the two points of intersection is exactly
s2 − s1 = 2π. By construction, st(x)− sb(x) < 2π. Therefore, LPI has positive slope
in Figure 2. Ltan denotes the intersection of the plane containing x, y(s0), and tangent
to CPI(x), with the detector plane. Obviously, the property of tangency is preserved
under the stereographic projection described here. Thus, stan shown in Figure 3 is
exactly the same as that provided by (2.7). This observation and the properties of
Γbot and Γtop imply that the solution stan ∈ IPI(x) to (2.7) exists and is unique.
Another conclusion we can draw from Figure 3 is that x̌ �∈ L0 (that is, s0 �= š(x))
implies stan �= s0. L′

0 is the line through x̂ and parallel to L0. Finally, L(x, ξ) is
the intersection of Π(x, ξ) � y(s0) with the detector plane. Clearly, there is one-to-
one correspondence between the planes Π(x, ξ), where ξ satisfies ξ · (x − y(s0)) = 0
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and the lines L(x, ξ). The lines LPI , Ltan, and L′
0 split the detector plane into three

conical regions: Dj , j = 1, 2, 3. If L(x, ξ) ⊂ D1, Π(x, ξ) ∩ CPI(x) contains only
one point—y(s0). If L(x, ξ) ⊂ D2, there are three points of intersection of Π(x, ξ)
with CPI(x). They correspond to values of the parameter s = s1,2,3 that satisfy
s1 = s0 < s2 < s3 < st(x). Recall that in this region the slope of L(x, ξ) is smaller
than that of L0. If L(x, ξ) ⊂ D3 (an example of such a line is shown in Figure 3),
then again there are three points of intersection of Π(x, ξ) with CPI(x), and sb(x) <
s1 < s2 = s0 < s3 < st(x).

Summarizing, we can make the following conclusions. First, the condition ξ ∈ Ξ1

is equivalent to L(x, ξ) ⊂ D1, and in this case CPI(x) ∩Π(x, ξ) consists of one point.
Second, the condition ξ ∈ Crit(x) is equivalent to L(x, ξ) ∈ {L′

0, Ltan, LPI}. And,
finally, by considering the cases still unaccounted for, we see that the condition ξ ∈ Ξ3

is equivalent to L(x, ξ) ⊂ D2 or D3. When this happens, CPI(x)∩Π(x, ξ) consists of
precisely three points.

In order to compute the value of the sum in (2.22) we need a simplifying argument.
First of all, since ξ · β(sj , x) = 0, (2.6) immediately implies

sgn(ξ · ẏ(sj)) = sgn(ξ · e1(sj , x)).(2.25)

Let ξ̂ be a nonzero vector in the detector plane perpendicular to L(x, ξ) and pointing

into the same half-space as ξ; that is, ξ · ξ̂ > 0. Fix any nonzero vector e ∈ R
3

perpendicular to β(s0, x), and let L be the line in the intersection of Π(x, β(s0, x)×e)
with the detector plane. Analogously, ê denotes a vector in the detector plane parallel
to L and with the property e · ê > 0. We claim that

sgn(ξ · e) = sgn(ξ̂ · ê).(2.26)

Indeed, let d0 be the unit vector perpendicular to the detector plane and pointing
from the source position y(s0) towards the detector. This implies β(s0, x) · d0 > 0. It
is easy to check that

ξ̂ = d0 × (ξ × d0), ê = d0 × (e× β(s0, x)).(2.27)

Therefore,

ê · ξ̂ = (ξ × d0) · (e× β(s0, x)) = (β(s0, x) · d0)(e · ξ),(2.28)

and (2.26) follows. In (2.28) we have used that β(s0, x) · ξ = 0. Combining (2.25) and
(2.26) gives

sgn(ξ · ẏ(sj)) sgn(ξ · e2(sj , x)) = sgn(ξ · e1(sj , x)) sgn(ξ · e2(sj , x))
= sgn(ξ̂ · ê1(sj , x)) sgn(ξ̂ · ê2(sj , x)).

(2.29)

For convenience, vectors ê1,2(s0, x) are shown in Figure 3. We use the notation s0
instead of sj to denote a generic location of the source from which the stereographic
projection is performed.

Let us discuss how vectors ê1(s0, x) and ê2(s0, x) should be drawn in Figure 3.
By construction, ẏ(s0) is parallel to the detector plane; that is, d0 · ẏ(s0) = 0. From
(2.6) and (2.27),

ê1(s0, x) =
1

c
d0 ×

{
[(β(s0, x)× ẏ(s0))× β(s0, x)]× β(s0, x)

}
=

1

c
d0 × [ẏ(s0)× β(s0, x)] =

1

c
(d0 · β(s0, x))ẏ(s0),

(2.30)
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where c > 0 is the denominator in (2.6) and d0 · β(s0, x) > 0. Hence, ê1(s0, x) is
parallel to ẏ(s0). Therefore, we should draw ê1(s0, x) parallel to L0 and pointing
upward (i.e., in the direction of increasing s). From (2.6), (2.8), and (2.9) it follows
that ê1(s0, x) = ê2(s0, x) if s0 = š(x). By construction, e2(s, x) and, consequently,
ê2(s, x) are continuous. Clearly, ê2(s, x) �= 0, because otherwise β(s0, x) ⊥ d0, which
contradicts x ∈ U . Hence ê2(s0, x) should be drawn as parallel to Ltan and pointing
in the direction that would coincide with ê1(s0, x) when s0 → š(x) (in this case
stan → š(x) and Ltan → L0).

From (2.22), (2.25), and the discussion preceding it regarding the number of points
in Π(x, ξ) ∩ CPI(x) we immediately get the formula for B1(x, ξ) in (2.12). Consider
now B2(x, ξ). Suppose ξ ∈ Ξ1. Since in this case Π(x, ξ) ∩ CPI(x) consists of only

one point, L(x, ξ) ⊂ D1 and sgn(ξ̂ · ê1(s1, x)) = sgn(ξ̂ · ê2(s1, x)). Hence, from (2.22)
and (2.29),

B2(x, ξ) = sgn(ξ · ẏ(s1)) sgn(ξ · e2(s1, x)) = 1, ξ ∈ Ξ1.(2.31)

If ξ ∈ Ξ3, there are three points in Π(x, ξ) ∩ CPI(x) corresponding to s1 < s2 < s3.

Take s0 = s1. In this event L(x, ξ) ⊂ D2 and sgn(ξ̂ · ê1(s1, x)) = −sgn(ξ̂ · ê2(s1, x)).
Using (2.29) we conclude

sgn(ξ · ẏ(s1)) sgn(ξ · e2(s1, x)) = −1, ξ ∈ Ξ3.(2.32)

If s0 = s2, L(x, ξ) belongs to the region D3 (example of such a line is shown in

Figure 3) and sgn(ξ̂ · ê1(s1, x)) = sgn(ξ̂ · ê2(s1, x)). Therefore, from (2.29),

sgn(ξ · ẏ(s2)) sgn(ξ · e2(s2, x)) = 1, ξ ∈ Ξ3.(2.33)

If s0 = s3, the situation is similar to the case s0 = s1 (only now x̂ will appear under

the line L0) and sgn(ξ̂ · ê1(s3, x)) = −sgn(ξ̂ · ê2(s3, x)). Therefore, from (2.29),

sgn(ξ · ẏ(s3)) sgn(ξ · e2(s3, x)) = −1, ξ ∈ Ξ3.(2.34)

Using (2.32)–(2.34) in (2.22) and (2.31), we prove the formula for B2(x, ξ) in (2.12).
We establish now the properties of e2(s, x) and stan which were used above (see

the paragraph below (2.9)). Note first that if s ∈ (sb(x), st(x)) \ {š(x)}, then the
denominator in (2.9) is never zero because (x − y(stan)) × (x − y(s)) �= 0. Indeed,
otherwise x − y(stan) and x − y(s) would be parallel, the line through y(stan), and
y(s) would contain x, leading to {s, stan} = {sb(x), st(x)} and a contradiction. Recall
that s �= stan unless s = š(x). Differentiating (2.7) with respect to s we conclude that
stan = stan(s, x) is smooth unless

[(x− y(stan))× (x− y(s))] · ÿ(stan) = 0, stan �= s.(2.35)

Combining (2.7) with (2.35) we see that this is possible only if x and y(s) belong to
the plane through y(stan) and are parallel to either ẏ(stan), ÿ(stan) or (x− y(stan)) ‖
(x − y(s)). The first assumption leads to s = stan = š(x), and the second leads to
{s, stan} = {sb(x), st(x)}. Hence, stan(s, x) ∈ C∞((sb(x), st(x)) \ {š(x)}) for every
fixed x ∈ U . The continuity of stan(s, x) at sb(x), š(x), st(x) can be easily inferred
from Figure 3. For example, if s → š(x), the point x̂ slides along LPI towards L0 and
stan → š(x). If s → sb(x), then x̂ approaches Γtop (at the same time the image of
y(sb(x)) on the detector plane moves to the left and down as it approaches L0) and
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stan → st(x). Similarly, if s → st(x), then x̂ approaches Γbot (at the same time the
image of y(st(x)) moves to the right and up as it approaches L0) and stan → sb(x). Of
course, these limits can be justified rigorously. Assuming without loss of generality
that š(x) = 0, considering, for example, s → š(x), expanding (2.7) in the Taylor
series, and considering the first nonzero term, we get

[(x− y(0))× ẏ(0)] · ...y (0)
6

(stan − s)2(2stan + s) +O(s4) = 0.(2.36)

The leading coefficient in (2.36) is not zero. Indeed, by construction x − y(0) =
aẏ(0) + bÿ(0) for some scalars a and b. Moreover, x ∈ U implies b �= 0 and, using the
properties of the spiral,

[(x− y(0))× ẏ(0)] · ...y (0) = b[ÿ(0)× ẏ(0)] · ...y (0) �= 0.(2.37)

In view of (2.39) below, the solution stan = s(1+ o(1)) is impossible, and we get from
(2.36) that stan = −0.5s(1+o(1)), thereby confirming the conclusion that stan → š(x)
if s → š(x). The other two limits can be treated similarly and they give

stan − st(x) = O(
√
s− sb(x) ), s → sb(x), s > sb(x),

stan − sb(x) = O(
√
st(x)− s ), s → st(x), s < st(x).

(2.38)

Our argument also implies that if s stays on one side of š(x), x̂ will never cross
L0 and, consequently, stan will never become equal to š(x). Considering the limiting
cases s → sb(x) and s → st(x), we conclude

š(x) < stan(s, x) < st(x) if sb(x) < s < š(x),

sb(x) < stan(s, x) < š(x) if š(x) < s < st(x).
(2.39)

3. Practical implementation and numerical experiments. In this section
we discuss efficient algorithms for computing B1,2f . Denoting

e1(s, β) :=
[β × ẏ(s)]× β

|[β × ẏ(s)]× β| , β ∈ S2,(3.1)

rewrite B1f as follows:

(B1f)(x) := − 1

2π2

∫
IPI(x)

1

|x− y(s)|Ψ1(s, β(s, x))ds,

Ψ1(s, β) :=

∫ 2π

0

∂

∂q
Df (y(q), cos γβ + sin γe1(s, β))

∣∣∣∣
q=s

1

sin γ
dγ.

(3.2)

Let Π(ω), ω ∈ R, denote the family of planes containing y(s) and let Π(ω) be parallel
to ẏ(s). Intersections of Π(ω) with the detector plane generate a family of lines L(ω)
parallel to L0 (see Figure 4, left panel). Fix any β ∈ Π(ω). By construction, vectors
cos γβ + sin γe1(s, β), 0 ≤ γ < 2π, belong to the same plane Π(ω). Recall that for
convenience we think of vectors β, e1(s, β) and their linear combinations as if they are
attached to y(s). Let θ be a polar angle in Π(ω). Since e1(s, β) · β = 0, |e1(s, β)| = 1,
we can write (with abuse of notation)

β = (cos θ, sin θ), e1(s, β) = (− sin θ, cos θ), β, e1(s, β) ∈ Π(ω).(3.3)
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Fig. 4. Illustration of two one-parametric families of lines L(ω) and L(stan) used in the
numerical algorithm.

Therefore,

Ψ1(s, β) =

∫ 2π

0

∂

∂q
Df (y(q), (cos(θ + γ), sin(θ + γ)))

∣∣∣∣
q=s

1

sin γ
dγ, β ∈ Π(ω).(3.4)

Equation (3.4) is of convolution type. Hence, one application of FFT to the integral
in (3.4) gives values of Ψ1(s, β) for all β ∈ Π(ω) at once.

Calculation of B2f can be arranged in a similar way. It follows from (2.7) that,
apart from the condition stan ∈ IPI(x), stan actually depends only on s and β(s, x).
Therefore, we can write

e2(s, β) :=
[β × u]× β

|[β × u]× β| , u = u(s, β), β ∈ S2,

Ψ2(s, β) :=

∫ 2π

0

∂

∂q
Df (y(q), cos γβ + sin γe2(s, β))

∣∣∣∣
q=s

1

sin γ
dγ,

(B2f)(x) := − 1

2π2

∫
IPI(x)

1

|x− y(s)|Ψ2(s, β(s, x))ds.

(3.5)

Fix stan ∈ [s−2π+∆, s+2π−∆], stan �= s, and let Π(stan) denote the plane through
y(s), y(stan) containing ẏ(stan). If stan = s, Π(stan) is determined by continuity and
coincides with the plane through y(s) and parallel to ẏ(s), ÿ(s). The family of lines
L(stan) obtained by intersecting Π(stan) with the detector plane is shown in Figure 4,
right panel. By construction, given any x ∈ U with β(s, x) ∈ Π(stan) and such that
x̂ appears to the left (right) of the point of tangency stan if x̂ is above (below) L0,
then stan used here is precisely the same as stan provided by (2.7) and (2.8). The
condition that we have formulated regarding the location of x̂ relative to stan and L0

guarantees that stan ∈ IPI(x). Since e2(s, β) ·β = 0, |e2(s, β)| = 1, we can write (with
abuse of notation)

β = (cos θ, sin θ), e2(s, β) = (− sin θ, cos θ), β, e2(s, β) ∈ Π(stan).(3.6)
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Therefore,

Ψ2(s, β) =

∫ 2π

0

∂

∂q
Df (y(q), (cos(θ + γ), sin(θ + γ)))

∣∣∣∣
q=s

1

sin γ
dγ, β ∈ Π(stan).

(3.7)

Equation (3.7) is of convolution type and one application of FFT gives values of
Ψ2(s, β) for all β ∈ Π(stan) at once. After Ψ2(s, β) has been computed, we use only
the portion of it that is located to the left (right) of the point of tangency stan if
L(stan) is above (below) L0.

In numerical implementation of (3.2), (3.4) and (3.5), (3.7) we used bilinear in-
terpolation to pass from a rectangular grid of points on the detector to points on the
lines L(ω) and L(stan) and back. As suggested by (3.4) and (3.7), the points on L(ω)
and L(stan) were parametrized by polar angle in the corresponding plane.

Equations (3.2), (3.4) and (3.5), (3.7) imply that the resulting algorithm is of
the FBP type. First, one computes shift-invariant filtering of a derivative of CB
projections using (3.4) for all required ω: ωmin ≤ ω ≤ ωmax (cf. Figure 4, left panel)
and using (3.7)—for all stan ∈ [s − 2π + ∆, s + 2π − ∆] (cf. Figure 4, right panel).
The second step is backprojection according to (3.2) and (3.5). Since ∂/∂q in (3.5)
and (3.7) is a local operation, each CB projection is stored in memory as soon as it
has been acquired for a short period of time for computing this derivative at a few
nearby points and is never used later.

This discussion shows that for the algorithm to work the following two conditions
must be satisfied. First, the detector array should be large enough to contain the
parallelogram formed by the lines Γl,Γr and L(ωmin), L(ωmax). We will call this
parallelogram the parallelogram-shaped detector array (PSDA), and its area will be
denoted by APSDA. Thus, the size of the detector array required for the algorithm is
greater than the theoretically minimum one, which is bounded by Γl,Γr and Γtop,Γbot.
Its area will be denoted by Amin. The ratio of the two areas is independent of the
pitch h but grows as r → R. For example, APSDA/Amin = 1.53 if r/R = 1/3 and
APSDA/Amin = 1.93 if r/R = 0.5. Second, the segments of lines tangent to Γtop

and Γbot at s = s + 2π − ∆ and s − 2π + ∆, respectively, and located between Γl

and Γr should be inside the detector array. This requirement leads to the restriction
r/R ≤ cos(∆0/2) ≈ 0.62, where ∆0 is the unique solution to the equation tan(2π −
∆) = 2π −∆ on the interval π/2 < ∆ < π.

Table 1
Parameters of the data collection protocol.

Shepp Disk
phantom phantom

R (radius of the spiral) 3
h (pitch of the spiral) 0.5

Axial span of the detector array 1.02 0.96
Transverse span of the detector array 4.74 4.26

Number of detector rows 50
Number of detectors per row 500

Number of source positions per one turn of the spiral 1500

Consider now two numerical experiments. Parameters of the data collection pro-
tocol are given in Table 1. Since (3.4) and (3.7) require differencing of neighboring
CB projections, we used a somewhat higher number of sources per turn of the spiral
than what is common in spiral CT (about 900–1000).
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Fig. 5. Reconstruction of the 3-D Shepp phantom.

Table 2
Parameters of the low contrast Shepp phantom.

Center Length of axes Rotation angle Incremental density
(0,0,0) (0.9,0.69,0.92) 0 2.0

(0,0,-0.0184) (0.88,0.6624,0.874) 0 -0.98
(-0.25,-0.22,0) (0.21,0.41,0.16) 108 -0.02
(-0.25,0.22,0) (0.22,0.31,0.11) 72 -0.02
(-0.25,0,0.35) (0.35,0.21,0.25) 0 0.01
(-0.25,0,0.1) (0.046,0.046,0.046) 0 0.01

(-0.25,-0.08,-0.605) (0.02,0.046,0.023) 0 0.01
(-0.25,0.06,-0.605) (0.02,0.046,0.023) 90 0.01
(0.625,0.06,-0.105) (0.1,0.056,0.04) 90 0.02

(0.625,0,0.1) (0.1,0.056,0.056) 0 -0.02
(-0.25,0,-0.1) (0.046,0.046,0.046) 0 0.01
(-0.25,0,-0.605) (0.023,0.023,0.023) 0 0.01

In Figure 5 we show the results of reconstructing the three-dimensional (3-D) low
contrast Shepp phantom of [KMS98]. For the convenience of the reader, parameters
of the phantom are presented in Table 2. In the left panel we see a vertical slice
through the reconstructed image at x1 = −0.25, and in the right panel we see the
graphs of exact (dashed line) and computed (solid line) values of f along the vertical
line x1 = −0.25, x2 = 0. We used the grey scale window [1.01, 1.03] to make low
contrast features visible.

In Figure 6 we see the results of reconstructing the disk phantom, which consists
of six identical flattened ellipsoids (lengths of half-axes 0.75, 0.75, and 0.04, distance
between centers of neighboring ellipsoids 0.16). In the left panel we see the vertical
slice through the reconstructed image at x1 = 0, and in the right panel we see the
graphs of exact (dashed line) and computed (solid line) values of f along the vertical
line x1 = 0, x2 = 0. To better see artifacts, the graphs of exact and computed values
of f along the line x1 = 0, x2 = 0.7 are presented in Figure 7. This line is close to the
outer edges of the disks, where the artifacts are more noticeable.
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Fig. 6. Reconstruction of the disk phantom.

Fig. 7. Disk phantom. The graphs of exact and computed values of f along the off-center line
x1 = 0, x2 = 0.7.

As one can see, the algorithm produces images of good quality with a low level
of artifacts. Therefore, we can conclude that our results are compatible with the hy-
pothesis that the artifacts are only due to discretization and/or sampling errors. It
is expected that further improvements in the code can reduce the artifacts as well.
For example, currently the derivatives ∂/∂q in (3.4) and (3.7) are implemented using
first order finite differences. The author hopes that the use of more sophisticated
approximate derivatives will improve the overall image quality. An alternative ap-
proach could be to integrate by parts with respect to s in (2.10) and eliminate ∂/∂q
altogether by transferring it to the angular variables.
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