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Abstract

We identify a trade-off between robustness and
accuracy that serves as a guiding principle in the
design of defenses against adversarial examples.
Although this problem has been widely studied
empirically, much remains unknown concerning
the theory underlying this trade-off. In this work,
we decompose the prediction error for adversarial
examples (robust error) as the sum of the natural
(classification) error and boundary error, and pro-
vide a differentiable upper bound using the theory
of classification-calibrated loss, which is shown to
be the tightest possible upper bound uniform over
all probability distributions and measurable pre-
dictors. Inspired by our theoretical analysis, we
also design a new defense method, TRADES, to
trade adversarial robustness off against accuracy.
Our proposed algorithm performs well experimen-
tally in real-world datasets. The methodology is
the foundation of our entry to the NeurIPS 2018
Adversarial Vision Challenge in which we won
the 1st place out of ~2,000 submissions, surpass-
ing the runner-up approach by 11.41% in terms
of mean `2 perturbation distance.

1. Introduction

In response to the vulnerability of deep neural networks
to small perturbations around input data (Szegedy et al.,
2013), adversarial defenses have been an imperative object
of study in machine learning (Huang et al., 2017), computer
vision (Song et al., 2018; Xie et al., 2017; Meng & Chen,
2017), natural language processing (Jia & Liang, 2017),
and many other domains. In machine learning, study of
adversarial defenses has led to significant advances in under-
standing and defending against adversarial threat (He et al.,
2017). In computer vision and natural language process-
ing, adversarial defenses serve as indispensable building

1Carnegie Mellon University 2Toyota Technological Insti-
tute at Chicago 3University of Virginia 4University of California,
Berkeley 5Petuum Inc.. Correspondence to: Hongyang Zhang
<hongyanz@cs.cmu.edu>, Yaodong Yu <yy8ms@virginia.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

blocks for a range of security-critical systems and appli-
cations, such as autonomous cars and speech recognition
authorization. The problem of adversarial defenses can be
stated as that of learning a classifier with high test accuracy
on both natural and adversarial examples. The adversarial
example for a given labeled data (x, y) is a data point x0

that causes a classifier c to output a different label on x0 than
y, but is “imperceptibly similar” to x. Given the difficulty
of providing an operational definition of “imperceptible sim-
ilarity,” adversarial examples typically come in the form of
restricted attacks such as ✏-bounded perturbations (Szegedy
et al., 2013), or unrestricted attacks such as adversarial ro-
tations, translations, and deformations (Brown et al., 2018;
Engstrom et al., 2017; Gilmer et al., 2018; Xiao et al., 2018;
Alaifari et al., 2019; Zhang et al., 2019a). The focus of this
work is the former setting, though our framework can be
generalized to the latter.

Despite a large literature devoted to improving the robust-
ness of deep-learning models, many fundamental questions
remain unresolved. One of the most important questions
is how to trade off adversarial robustness against natural
accuracy. Statistically, robustness can be be at odds with
accuracy when no assumptions are made on the data distri-
bution (Tsipras et al., 2019). This has led to an empirical
line of work on adversarial defense that incorporates var-
ious kinds of assumptions (Su et al., 2018; Kurakin et al.,
2017). On the theoretical front, methods such as relaxation

based defenses (Kolter & Wong, 2018; Raghunathan et al.,
2018a) provide provable guarantees for adversarial robust-
ness. They, however, ignore the performance of classifier
on the non-adversarial examples, and thus leave open the
theoretical treatment of the putative robustness/accuracy
trade-off.

The problem of adversarial defense becomes more challeng-
ing when computational issues are considered. For example,
the straightforward empirical risk minimization (ERM) for-
mulation of robust classification involves minimizing the
robust 0-1 loss maxx0:kx0�xk✏ 1{c(x

0) 6= y}, a loss which
is NP-hard to optimize even if ✏ = 0 in general. Hence, it
is natural to expect that some prior work on adversarial de-
fense replaced the 0-1 loss 1(·) with a surrogate loss (Madry
et al., 2018; Kurakin et al., 2017; Uesato et al., 2018). How-
ever, there is little theoretical guarantee on the tightness of
this approximation.
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Figure 1. Left figure: decision boundary learned by natural train-
ing method. Right figure: decision boundary learned by our
adversarial training method, where the orange dotted line repre-
sents the decision boundary in the left figure. It shows that both
methods achieve zero natural training error, while our adversar-
ial training method achieves better robust training error than the
natural training method.

1.1. Our methodology and results

We begin with an example that illustrates the trade-off be-
tween accuracy and adversarial robustness in Section 2.4, a
phenomenon which has been demonstrated by Tsipras et al.
(2019), but without theoretical guarantees. We constructed
a toy example where the Bayes optimal classifier achieves
natural error 0% and robust error 100%, while the trivial
all-one classifier achieves both natural error and robust er-

ror 50% (Table 1). Despite a large literature on the analysis
of robust error in terms of generalization (Schmidt et al.,
2018; Cullina et al., 2018; Yin et al., 2018) and computa-
tional complexity (Bubeck et al., 2018b;a), the trade-off
between the natural error and the robust error has not been
a focus of theoretical study.

We show that the robust error can in general be bounded
tightly using two terms: one corresponds to the natural er-

ror measured by a surrogate loss function, and the other
corresponds to how likely the input features are close to the
✏-extension of the decision boundary, termed as the bound-

ary error. We then minimize the differentiable upper bound.
Our theoretical analysis naturally leads to a new formulation
of adversarial defense which has several appealing proper-
ties; in particular, it inherits the benefits of scalability to
large datasets exhibited by Tiny ImageNet, and the algo-
rithm achieves state-of-the-art performance on a range of
benchmarks while providing theoretical guarantees. For
example, while the defenses overviewed in (Athalye et al.,
2018) achieve robust accuracy no higher than ~47% under
white-box attacks, our method achieves robust accuracy as
high as ~57% in the same setting. The methodology is the
foundation of our entry to the NeurIPS 2018 Adversarial
Vision Challenge where we won first place out of ~2,000
submissions, surpassing the runner-up approach by 11.41%
in terms of mean `2 perturbation distance.

1.2. Summary of contributions

Our work tackles the problem of trading accuracy off against
robustness and advances the state-of-the-art in multiple
ways.

• Theoretically, we characterize the trade-off between
accuracy and robustness for classification problems
via decomposing the robust error as the sum of the
natural error and the boundary error. We provide differ-
entiable upper bounds on both terms using the theory
of classification-calibrated loss, which are shown to be
the tightest upper bounds uniform over all probability
distributions and measurable predictors.

• Algorithmically, inspired by our theoretical analysis,
we propose a new formulation of adversarial defense,
TRADES, as optimizing a regularized surrogate loss.
The loss consists of two terms: the term of empirical
risk minimization encourages the algorithm to maxi-
mize the natural accuracy, while the regularization term
encourages the algorithm to push the decision bound-
ary away from the data, so as to improve adversarial
robustness (see Figure 1).

• Experimentally, we show that our proposed algorithm
outperforms state-of-the-art methods under both black-
box and white-box threat models. In particular, the
methodology won the final round of the NeurIPS 2018
Adversarial Vision Challenge.

2. Preliminaries

We illustrate our methodology using the framework of bi-
nary classification, but it can be generalized to other settings
as well.

2.1. Notation

We will use bold capital letters such as X and Y to repre-
sent random vector, bold lower-case letters such as x and y

to represent realization of random vector, capital letters such
as X and Y to represent random variable, and lower-case

letters such as x and y to represent realization of random
variable. Specifically, we denote by x 2 X the sample
instance, and by y 2 {�1,+1} the label, where X ✓ R

d

indicates the instance space. sign(x) represents the sign
of scalar x with sign(0) = +1. Denote by f : X ! R

the score function which maps an instance to a confidence
value associated with being positive. It can be parametrized,
e.g., by deep neural networks. The associated binary clas-
sifier is sign(f(·)). We will frequently use 1{event}, the
0-1 loss, to represent an indicator function that is 1 if an
event happens and 0 otherwise. For norms, we denote by
kxk a generic norm. Examples of norms include kxk1,
the infinity norm of vector x, and kxk2, the `2 norm of
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vector x. We use B(x, ✏) to represent a neighborhood of
x: {x0 2 X : kx0 � xk  ✏}. For a given score function
f , we denote by DB(f) the decision boundary of f ; that
is, the set {x 2 X : f(x) = 0}. The set B(DB(f), ✏)
denotes the neighborhood of the decision boundary of f :
{x 2 X : 9x0 2 B(x, ✏) s.t. f(x)f(x0)  0}. For a given
function (u), we denote by ⇤(v) := sup

u
{uTv� (u)}

the conjugate function of  , by  ⇤⇤ the bi-conjugate, and
by  �1 the inverse function. We will frequently use �(·) to
indicate the surrogate of 0-1 loss.

2.2. Robust (classification) error

In the setting of adversarial learning, we are given a set of
instances x1, ...,xn 2 X and labels y1, ..., yn 2 {�1,+1}.
We assume that the data are sampled from an unknown dis-
tribution (X, Y ) ⇠ D. To characterize the robustness of a
score function f : X ! R, Schmidt et al. (2018); Cullina
et al. (2018); Bubeck et al. (2018b) defined robust (classifica-

tion) error under the threat model of bounded ✏ perturbation:
Rrob(f) := E(X,Y )⇠D1{9X 0 2B(X, ✏) s.t. f(X 0)Y 
0}. This is in sharp contrast to the standard measure of
classifier performance—the natural (classification) error

Rnat(f) := E(X,Y )⇠D1{f(X)Y  0} We note that the
two errors satisfy Rrob(f) � Rnat(f) for all f ; the robust
error is equal to the natural error when ✏ = 0.

2.3. Boundary error

We introduce the boundary error defined as Rbdy(f) :=
E(X,Y )⇠D1{X 2 B(DB(f), ✏), f(X)Y > 0}. We have
the following decomposition of Rrob(f):

Rrob(f) = Rnat(f) +Rbdy(f). (1)

2.4. Trade-off between natural and robust errors

Our study is motivated by the trade-off between natural and
robust errors. Tsipras et al. (2019) showed that training
robust models may lead to a reduction of standard accuracy.
To illustrate the phenomenon, we provide a toy example.

Example. Consider the case (X,Y ) ⇠ D, where the
marginal distribution over the instance space is a uniform
distribution over [0, 1], and for k = 0, 1, ..., d 1

2✏ � 1e,

⌘(x) := Pr(Y = 1|X = x)

=

(
0, x 2 [2k✏, (2k + 1)✏),

1, x 2 ((2k + 1)✏, (2k + 2)✏].

(2)

See Figure 2 for the visualization of ⌘(x). We consider two
classifiers: a) the Bayes optimal classifier sign(2⌘(x)� 1);
b) the all-one classifier which always outputs “positive.”
Table 1 displays the trade-off between natural and robust
errors: the minimal natural error is achieved by the Bayes

	!(#)	

0	

1	

%	%	

1/2	

#	
1	

Figure 2. Counterexample given by Eqn. (2).

Table 1. Comparisons of natural and robust errors of Bayes optimal
classifier and all-one classifier in example (2). The Bayes optimal
classifier has the optimal natural error while the all-one classifier
has the optimal robust error.

Bayes Optimal Classifier All-One Classifier
Rnat 0 (optimal) 1/2
Rbdy 1 0
Rrob 1 1/2 (optimal)

optimal classifier with large robust error, while the optimal
robust error is achieved by the all-one classifier with large
natural error.

Our goal. In practice, one may prefer to trade-off between
robustness and accuracy by introducing weights in (1) to
bias more towards the natural error or the boundary error.
Noting that both the natural error and the boundary error
involve 0-1 loss functions, our goal is to devise tight differ-
entiable upper bounds on both of these terms. Towards this
goal, we utilize the theory of classification-calibrated loss.

2.5. Classification-calibrated surrogate loss

Definition. Minimization of the 0-1 loss in the natural and
robust errors is computationally intractable and the demands
of computational efficiency have led researchers to focus
on minimization of a tractable surrogate loss, R�(f) :=
E(X,Y )⇠D�(f(X)Y ). We then need to find quantitative re-
lationships between the excess errors associated with � and
those associated with 0–1 loss. We make a weak assumption
on �: it is classification-calibrated (Bartlett et al., 2006).
Formally, for ⌘ 2 [0, 1], define the conditional �-risk by

H(⌘) := inf
↵2R

C⌘(↵) := inf
↵2R

(⌘�(↵) + (1� ⌘)�(�↵)) ,

and define H�(⌘) := inf↵(2⌘�1)0 C⌘(↵). The
classification-calibrated condition requires that imposing
the constraint that ↵ has an inconsistent sign with the Bayes
decision rule sign(2⌘ � 1) leads to a strictly larger �-risk:

Assumption 1 (Classification-Calibrated Loss). We assume

that the surrogate loss � is classification-calibrated, mean-

ing that for any ⌘ 6= 1/2, H�(⌘) > H(⌘).

We argue that Assumption 1 is indispensable for classifi-
cation problems, since without it the Bayes optimal clas-
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Table 2. Examples of classification-calibrated loss � and associated
 -transform. Here  log(✓) = 1

2
(1 − ✓) log

2
(1 − ✓) + 1

2
(1 +

✓) log
2
(1 + ✓).
Loss �(↵)  (✓)

Hinge max{1� ↵, 0} ✓

Sigmoid 1� tanh(↵) ✓

Exponential exp(�↵) 1�
p
1� ✓2

Logistic log2(1 + exp(�↵))  log(✓)

sifier cannot be the minimizer of the �-risk. Examples of
classification-calibrated loss include hinge loss, sigmoid
loss, exponential loss, logistic loss, and many others (see
Table 2).

Properties. Classification-calibrated loss has many struc-
tural properties that one can exploit. We begin by intro-
ducing a functional transform of classification-calibrated
loss � which was proposed by Bartlett et al. (2006). De-
fine the function  : [0, 1] ! [0,1) by  = e ⇤⇤, where
e (✓) := H�

�
1+✓
2

�
�H

�
1+✓
2

�
. Indeed, the function  (✓)

is the largest convex lower bound on H�
�
1+✓
2

�
�H

�
1+✓
2

�
.

The value H�
�
1+✓
2

�
�H

�
1+✓
2

�
characterizes how close

the surrogate loss � is to the class of non-classification-
calibrated losses.

Below we state useful properties of the  -transform. We
will frequently use the function  to bound Rrob(f)�R⇤

nat.

Lemma 2.1 (Bartlett et al. (2006)). Under Assumption

1, the function  has the following properties:  is non-

decreasing, continuous, convex on [0, 1] and  (0) = 0.

3. Relating 0-1 loss to surrogate loss

In this section, we present our main theoretical contributions
for binary classification and compare our results with prior
literature. Binary classification problems have received sig-
nificant attention in recent years as many competitions eval-
uate the performance of robust models on binary classifica-
tion problems (Brown et al., 2018). We defer the discussion
of multi-class problems to Section 4.

3.1. Upper bound

Our analysis leads to a guarantee on the performance of
surrogate loss minimization. Intuitively, by Eqn. (1),
Rrob(f) � R⇤

nat = Rnat(f) � R⇤
nat + Rbdy(f) 

 �1(R�(f) � R⇤
�) + Rbdy(f), where the last inequality

holds because we choose � as a classification-calibrated
loss (Bartlett et al., 2006). This leads to the following result.

Theorem 3.1. Let R�(f) := E�(f(X)Y ) and R⇤
� :=

minf R�(f). Under Assumption 1, for any non-negative

loss function � such that �(0) � 1, any measurable f :
X ! R, any probability distribution on X ⇥ {±1}, and

any � > 0, we have1

Rrob(f)�R⇤
nat

  �1(R�(f)�R⇤
�)+Pr[X2B(DB(f), ✏), f(X)Y > 0]

  �1(R�(f)�R⇤
�) + E max

X02B(X,✏)
�(f(X 0)f(X)/�).

Quantity governing model robustness. Our result pro-
vides a formal justification for the existence of adversar-
ial examples: learning models are vulnerable to small
adversarial attacks because the probability that data lie
around the decision boundary of the model, Pr[X 2
B(DB(f), ✏), f(X)Y > 0], is large. As a result, small
perturbations may move the data point to the wrong side
of the decision boundary, leading to weak robustness of
classification models.

3.2. Lower bound

We now establish a lower bound on Rrob(f)�R⇤
nat. Our

lower bound matches our analysis of the upper bound in
Section 3.1 up to an arbitrarily small constant.

Theorem 3.2. Suppose that |X | � 2. Under Assumption

1, for any non-negative loss function � such that �(x)! 0
as x ! +1, any ⇠ > 0, and any ✓ 2 [0, 1], there exists

a probability distribution on X ⇥ {±1}, a function f :
R

d ! R, and a regularization parameter � > 0 such that

Rrob(f)�R⇤
nat = ✓ and

 
⇣
✓ � E max

X02B(X,✏)
�(f(X 0)f(X)/�)

⌘
 R�(f)�R⇤

�

  
✓
✓ � E max

X02B(X,✏)
�(f(X 0)f(X)/�)

◆
+ ⇠.

Theorem 3.2 demonstrates that in the presence of extra
conditions on the loss function, i.e., limx!+1 �(x) = 0,
the upper bound in Section 3.1 is tight. The condition holds
for all the losses in Table 2.

4. Algorithmic Design for Defenses

Optimization. Theorems 3.1 and 3.2 shed light on algorith-
mic designs of adversarial defenses. In order to minimize
Rrob(f)�R⇤

nat, the theorems suggest minimizing2

min
f

E

n
�(f(X)Y )| {z }

for accuracy

+ max
X02B(X,✏)

�(f(X)f(X 0)/�)

| {z }
regularization for robustness

o
.

(3)

1We study the population form of the risk functions, and
mention that by incorporating the generalization theory for
classification-calibrated losses (Bartlett et al., 2006) one can ex-
tend the analysis to finite samples. We leave this analysis for future
research.

2For simplicity of implementation, we do not use the function
 −1 and rely on � to approximately reflect the effect of  −1, the
trade-off between the natural error and the boundary error, and the
tight approximation of the boundary error using the corresponding
surrogate loss function.
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We name our method TRADES (TRadeoff-inspired Adver-
sarial DEfense via Surrogate-loss minimization).

Intuition behind the optimization. Problem (3) captures
the trade-off between the natural and robust errors: the first
term in (3) encourages the natural error to be optimized by
minimizing the “difference” between f(X) and Y , while
the second regularization term encourages the output to be
smooth, that is, it pushes the decision boundary of classifier
away from the sample instances via minimizing the “dif-
ference” between the prediction of natural example f(X)
and that of adversarial example f(X 0). This is conceptually
consistent with the argument that smoothness is an indis-
pensable property of robust models (Cisse et al., 2017). The
tuning parameter � plays a critical role on balancing the
importance of natural and robust errors. To see how the �
affects the solution in the example of Section 2.4, problem
(3) tends to the Bayes optimal classifier when � ! +1,
and tends to the all-one classifier when �! 0.

Comparisons with prior work. We compare our approach
with several related lines of research in the prior litera-
ture. One of the best known algorithms for adversarial
defense is based on robust optimization (Madry et al., 2018;
Kolter & Wong, 2018; Wong et al., 2018; Raghunathan et al.,
2018a;b). Most results in this direction involve algorithms
that approximately minimize

min
f

E

⇢
max

X02B(X,✏)
�(f(X 0)Y )

�
, (4)

where the objective function in problem (4) serves as an up-
per bound of the robust error Rrob(f). In complex problem
domains, however, this objective function might not be tight
as an upper bound of the robust error, and may not capture
the trade-off between natural and robust errors.

A related line of research is adversarial training by regular-
ization (Kurakin et al., 2017; Ross & Doshi-Velez, 2017;
Zheng et al., 2016). There are several key differences
between the results in this paper and those of (Kurakin
et al., 2017; Ross & Doshi-Velez, 2017; Zheng et al., 2016).
Firstly, the optimization formulations are different. In the
previous works, the regularization term either measures the
“difference” between f(X 0) and Y (Kurakin et al., 2017),
or its gradient (Ross & Doshi-Velez, 2017). In contrast,
our regularization term measures the “difference” between
f(X) and f(X 0). While Zheng et al. (2016) generated the
adversarial example X 0 by adding random Gaussian noise
to X , our method simulates the adversarial example by solv-
ing the inner maximization problem in Eqn. (3). Secondly,
we note that the losses in (Kurakin et al., 2017; Ross &
Doshi-Velez, 2017; Zheng et al., 2016) lack of theoretical
guarantees. Our loss, with the presence of the second term
in problem (3), makes our theoretical analysis significantly
more subtle. Moreover, our algorithm takes the same com-
putational resources as (Kurakin et al., 2017), which makes

Algorithm 1 Adversarial training by TRADES
input Step sizes ⌘1 and ⌘2, batch size m, number of iter-

ations K in inner optimization, network architecture
parametrized by ✓

output Robust network f✓
1: Randomly initialize network f✓, or initialize network

with pre-trained configuration
2: repeat

3: Read mini-batch B = {x1, ...,xm} from training set
4: for i = 1, ...,m (in parallel) do

5: x0
i  xi + 0.001 · N (0, I), where N (0, I) is the

Gaussian distribution with zero mean and identity
variance

6: for k = 1, ...,K do

7: x0
i  ΠB(xi,✏)(⌘1sign(rx0

i
L(f✓(xi), f✓(x

0
i)))+

x0
i), where Π is the projection operator

8: end for

9: end for

10: ✓  ✓ � ⌘2
Pm

i=1r✓[L(f✓(xi),yi) +
L(f✓(xi), f✓(x

0
i))/�]/m

11: until training converged

our method scalable to large-scale datasets. We defer the
experimental comparisons of various regularization based
methods to Table 5.

Heuristic algorithm. In response to the optimization for-
mulation (3), we use two heuristics to achieve more general
defenses: a) extending to multi-class problems by involv-
ing multi-class calibrated loss; b) approximately solving
the minimax problem via alternating gradient descent. For
multi-class problems, a surrogate loss is calibrated if mini-
mizers of the surrogate risk are also minimizers of the 0-1
risk (Pires & Szepesvári, 2016). Examples of multi-class
calibrated loss include cross-entropy loss. Algorithmically,
we extend problem (3) to the case of multi-class classifica-
tions by replacing �with a multi-class calibrated loss L(·, ·):

min
f

E

⇢
L(f(X),Y ) + max

X02B(X,✏)
L(f(X), f(X 0))/�

�
,

(5)
where f(X) is the output vector of learning model (with
softmax operator in the top layer for the cross-entropy loss
L(·, ·)), Y is the label-indicator vector, and � > 0 is the
regularization parameter. The pseudocode of adversarial
training procedure, which aims at minimizing the empirical
form of problem (5), is displayed in Algorithm 1.

The key ingredient of the algorithm is to approximately
solve the linearization of inner maximization in problem (5)
by the projected gradient descent (see Step 7). We note that
xi is a global minimizer with zero gradient to the objective
function g(x0) := L(f(xi), f(x

0)) in the inner problem.
Therefore, we initialize x0

i by adding a small, random per-
turbation around xi in Step 5 to start the inner optimizer.
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Table 3. Theoretical verification on the optimality of Theorem 3.1.
� Arob(f) (%) R�(f) ∆ = ∆RHS �∆LHS

2.0 99.43 0.0006728 0.006708
3.0 99.41 0.0004067 0.005914
4.0 99.37 0.0003746 0.006757
5.0 99.34 0.0003430 0.005860

More exhaustive approximations of the inner maximization
problem in terms of either optimization formulations or
solvers would lead to better defense performance.

5. Experimental Results

In this section, we verify the effectiveness of TRADES
by numerical experiments. We denote by Arob(f) =
1 � Rrob(f) the robust accuracy, and by Anat(f) =
1�Rnat(f) the natural accuracy on test dataset. We release
our code and trained models at https://github.com/
yaodongyu/TRADES.

5.1. Optimality of Theorem 3.1

We verify the tightness of the established upper bound in
Theorem 3.1 for binary classification problem on MNIST
dataset. The negative examples are ‘1’ and the positive
examples are ‘3’. Here we use a Convolutional Neural
Network (CNN) with two convolutional layers, followed
by two fully-connected layers. The output size of the last
layer is 1. To learn the robust classifier, we minimize the
regularized surrogate loss in Eqn. (3), and use the hinge
loss in Table 2 as the surrogate loss �, where the associated
 -transform is  (✓) = ✓.

To verify the tightness of our upper bound, we calculate the
left hand side in Theorem 3.1, i.e.,

∆LHS = Rrob(f)�R⇤
nat,

and the right hand side, i.e.,

∆RHS = (R�(f)�R⇤
�)+E max

X02B(X,✏)
�(f(X 0)f(X)/�).

As we cannot have access to the unknown distribution D,
we approximate the above expectation terms by test dataset.
We first use natural training method to train a classifier so
as to approximately estimate R⇤

nat and R⇤
�, where we find

that the naturally trained classifier can achieve natural error
R⇤

nat = 0%, and loss value R⇤
� = 0.0 for the binary classi-

fication problem. Next, we optimize problem (3) to train a
robust classifier f . We take perturbation ✏ = 0.1, number of
iterations K = 20 and run 30 epochs on the training dataset.
Finally, to approximate the second term in ∆RHS, we use
FGSMk (white-box) attack (a.k.a. PGD attack) (Kurakin
et al., 2017) with 20 iterations to approximately calculate
the worst-case perturbed data X 0.

The results in Table 3 show the tightness of our upper bound
in Theorem 3.1. It shows that the differences between ∆RHS

and ∆LHS under various �’s are very small.

5.2. Sensitivity of regularization hyperparameter �

The regularization parameter � is an important hyperparame-
ter in our proposed method. We show how the regularization
parameter affects the performance of our robust classifiers
by numerical experiments on two datasets, MNIST and CI-
FAR10. For both datasets, we minimize the loss in Eqn. (5)
to learn robust classifiers for multi-class problems, where
we choose L as the cross-entropy loss.

MNIST setup. We use the CNN which has two convolu-
tional layers, followed by two fully-connected layers. The
output size of the last layer is 10. We set perturbation
✏ = 0.1, perturbation step size ⌘1 = 0.01, number of itera-
tions K = 20, learning rate ⌘2 = 0.01, batch size m = 128,
and run 50 epochs on the training dataset. To evaluate the
robust error, we apply FGSMk (white-box) attack with 40
iterations and 0.005 step size. The results are in Table 4.

CIFAR10 setup. We apply ResNet-18 (He et al., 2016) for
classification. The output size of the last layer is 10. We set
perturbation ✏ = 0.031, perturbation step size ⌘1 = 0.007,
number of iterations K = 10, learning rate ⌘2 = 0.1, batch
size m = 128, and run 100 epochs on the training dataset.
To evaluate the robust error, we apply FGSMk (white-box)
attack with 20 iterations and the step size is 0.003. The
results are in Table 4.

We observe that as the regularization parameter 1/� in-
creases, the natural accuracy Anat(f) decreases while the
robust accuracy Arob(f) increases, which verifies our the-
ory on the trade-off between robustness and accuracy. Note
that for MNIST dataset, the natural accuracy does not de-
crease too much as the regularization term 1/� increases,
which is different from the results of CIFAR10. This is
probably because the classification task for MNIST is easier.
Meanwhile, our proposed method is not very sensitive to the
choice of �. Empirically, when we set the hyperparameter
1/� in [1, 10], our method is able to learn classifiers with
both high robustness and high accuracy. We will set 1/� as
either 1 or 6 in the following experiments.

5.3. Adversarial defenses under various attacks

Previously, Athalye et al. (2018) showed that 7 defenses in
ICLR 2018 which relied on obfuscated gradients may easily
break down. In this section, we verify the effectiveness of
our method with the same experimental setup under both
white-box and black-box threat models.

MNIST setup. We use the CNN architecture in (Carlini &
Wagner, 2017) with four convolutional layers, followed by
three fully-connected layers. We set perturbation ✏ = 0.3,
perturbation step size ⌘1 = 0.01, number of iterations K =
40, learning rate ⌘2 = 0.01, batch size m = 128, and run
100 epochs on the training dataset.

CIFAR10 setup. We use the same neural network architec-
ture as (Madry et al., 2018), i.e., the wide residual network

https://github.com/yaodongyu/TRADES
https://github.com/yaodongyu/TRADES
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Table 4. Sensitivity of regularization hyperparameter � on MNIST and CIFAR10 datasets.
1/� Arob(f) (%) on MNIST Anat(f) (%) on MNIST Arob(f) (%) on CIFAR10 Anat(f) (%) on CIFAR10
1.0 94.75 ± 0.0712 99.28 ± 0.0125 44.68 ± 0.3088 87.01 ± 0.2819
2.0 95.45 ± 0.0883 99.29 ± 0.0262 48.22 ± 0.0740 85.22 ± 0.0543
3.0 95.57 ± 0.0262 99.24 ± 0.0216 49.67 ± 0.3179 83.82 ± 0.4050
4.0 95.65 ± 0.0340 99.16 ± 0.0205 50.25 ± 0.1883 82.90 ± 0.2217
5.0 95.65 ± 0.1851 99.16 ± 0.0403 50.64 ± 0.3336 81.72 ± 0.0286

WRN-34-10 (Zagoruyko & Komodakis, 2016). We set per-
turbation ✏ = 0.031, perturbation step size ⌘1 = 0.007,
number of iterations K = 10, learning rate ⌘2 = 0.1, batch
size m = 128, and run 100 epochs on the training dataset.

5.3.1. WHITE-BOX ATTACKS

We summarize our results in Table 5 together with the re-
sults from (Athalye et al., 2018). We also implement meth-
ods in (Zheng et al., 2016; Kurakin et al., 2017; Ross &
Doshi-Velez, 2017) on the CIFAR10 dataset as they are also
regularization based methods. For MNIST dataset, we ap-
ply FGSMk (white-box) attack with 40 iterations and the
step size is 0.01. For CIFAR10 dataset, we apply FGSMk

(white-box) attack with 20 iterations and the step size is
0.003, under which the defense model in (Madry et al.,
2018) achieves 47.04% robust accuracy. Table 5 shows that
our proposed defense method can significantly improve the
robust accuracy of models, which is able to achieve robust
accuracy as high as 56.61%. We also evaluate our robust
model on MNIST dataset under the same threat model as
in (Samangouei et al., 2018) (C&W white-box attack Carlini
& Wagner (2017)), and the robust accuracy is 99.46%. See
appendix for detailed information of models in Table 5.

5.3.2. BLACK-BOX ATTACKS

We verify the robustness of our models under black-box at-
tacks. We first train models without using adversarial train-
ing on the MNIST and CIFAR10 datasets. We use the same
network architectures that are specified in the beginning of
this section, i.e., the CNN architecture in (Carlini & Wag-
ner, 2017) and the WRN-34-10 architecture in (Zagoruyko
& Komodakis, 2016). We denote these models by natu-
rally trained models (Natural). The accuracy of the natu-
rally trained CNN model is 99.50% on the MNIST dataset.
The accuracy of the naturally trained WRN-34-10 model is
95.29% on the CIFAR10 dataset. We also implement the
method proposed in (Madry et al., 2018) on both datasets.
We denote these models by Madry’s models (Madry). The
accuracy of Madry et al. (2018)’s CNN model is 99.36% on
the MNIST dataset. The accuracy of Madry et al. (2018)’s
WRN-34-10 model is 85.49% on the CIFAR10 dataset.

For both datasets, we use FGSMk (black-box) method to
attack various defense models. For MNIST dataset, we set
perturbation ✏ = 0.3 and apply FGSMk (black-box) attack
with 40 iterations and the step size is 0.01. For CIFAR10

dataset, we set ✏ = 0.031 and apply FGSMk (black-box)
attack with 20 iterations and the step size is 0.003. Note that
the setup is the same as the setup specified in Section 5.3.1.
We summarize our results in Table 6 and Table 7. In both
tables, we use two source models (noted in the parentheses)
to generate adversarial perturbations: we compute the per-
turbation directions according to the gradients of the source
models on the input images. It shows that our models are
more robust against black-box attacks transfered from nat-
urally trained models and Madry et al. (2018)’s models.
Moreover, our models can generate stronger adversarial
examples for black-box attacks compared with naturally
trained models and Madry et al. (2018)’s models.
5.4. Case study: NeurIPS 2018 Adversarial Vision

Challenge

Competition settings. In the adversarial competition, the
adversarial attacks and defenses are under the black-box
setting. The dataset in this competition is Tiny ImageNet,
which consists of 550,000 data (with our data augmentation)
and 200 classes. The robust models only return label pre-
dictions instead of explicit gradients and confidence scores.
The task for robust models is to defend against adversarial
examples that are generated by the top-5 submissions in the
un-targeted attack track. The score for each defense model
is evaluated by the smallest perturbation distance that makes
the defense model fail to output correct labels.

Competition results. The methodology in this paper was
applied to the competition, where our entry ranked the 1st
place. We implemented our method to train ResNet models.
We report the mean `2 perturbation distance of the top-6
entries in Figure 3. It shows that our method outperforms
other approaches with a large margin. In particular, we
surpass the runner-up submission by 11.41% in terms of
mean `2 perturbation distance.

6. Conclusions

In this paper, we study the problem of adversarial defenses
against structural perturbations around input data. We focus
on the trade-off between robustness and accuracy, and show
an upper bound on the gap between robust error and optimal
natural error. Our result advances the state-of-the-art work
and matches the lower bound in the worst-case scenario.
The bounds motivate us to minimize a new form of regu-
larized surrogate loss, TRADES, for adversarial training.
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Table 5. Comparisons of TRADES with prior defense models under white-box attacks.
Defense Defense type Under which attack Dataset Distance Anat(f) Arob(f)

Buckman et al. (2018) gradient mask Athalye et al. (2018) CIFAR10 0.031 (`1) - 0%
Ma et al. (2018) gradient mask Athalye et al. (2018) CIFAR10 0.031 (`1) - 5%

Dhillon et al. (2018) gradient mask Athalye et al. (2018) CIFAR10 0.031 (`1) - 0%
Song et al. (2018) gradient mask Athalye et al. (2018) CIFAR10 0.031 (`1) - 9%
Na et al. (2017) gradient mask Athalye et al. (2018) CIFAR10 0.015 (`1) - 15%

Wong et al. (2018) robust opt. FGSM20 (PGD) CIFAR10 0.031 (`1) 27.07% 23.54%
Madry et al. (2018) robust opt. FGSM20 (PGD) CIFAR10 0.031 (`1) 87.30% 47.04%

Zheng et al. (2016) regularization FGSM20 (PGD) CIFAR10 0.031 (`1) 94.64% 0.15%
Kurakin et al. (2017) regularization FGSM20 (PGD) CIFAR10 0.031 (`1) 85.25% 45.89%

Ross & Doshi-Velez (2017) regularization FGSM20 (PGD) CIFAR10 0.031 (`1) 95.34% 0%
TRADES (1/� = 1.0) regularization FGSM20 (PGD) CIFAR10 0.031 (`1) 88.64% 49.14%
TRADES (1/� = 6.0) regularization FGSM20 (PGD) CIFAR10 0.031 (`1) 84.92% 56.61%

TRADES (1/� = 1.0) regularization DeepFool (`1) CIFAR10 0.031 (`1) 88.64% 59.10%
TRADES (1/� = 6.0) regularization DeepFool (`1) CIFAR10 0.031 (`1) 84.92% 61.38%
TRADES (1/� = 1.0) regularization LBFGSAttack CIFAR10 0.031 (`1) 88.64% 84.41%
TRADES (1/� = 6.0) regularization LBFGSAttack CIFAR10 0.031 (`1) 84.92% 81.58%
TRADES (1/� = 1.0) regularization MI-FGSM CIFAR10 0.031 (`1) 88.64% 51.26%
TRADES (1/� = 6.0) regularization MI-FGSM CIFAR10 0.031 (`1) 84.92% 57.95%
TRADES (1/� = 1.0) regularization C&W CIFAR10 0.031 (`1) 88.64% 84.03%
TRADES (1/� = 6.0) regularization C&W CIFAR10 0.031 (`1) 84.92% 81.24%

Samangouei et al. (2018) gradient mask Athalye et al. (2018) MNIST 0.005 (`2) - 55%
Madry et al. (2018) robust opt. FGSM40 (PGD) MNIST 0.3 (`1) 99.36% 96.01%

TRADES (1/� = 6.0) regularization FGSM40 (PGD) MNIST 0.3 (`1) 99.48% 96.07%
TRADES (1/� = 6.0) regularization C&W MNIST 0.005 (`2) 99.48% 99.46%

Table 6. Comparisons of TRADES with prior defenses under black-
box FGSM40 attack on the MNIST dataset. The models inside
parentheses are source models which provide gradients to adver-
sarial attackers. We provide the average cross-entropy loss value
L(f(X),Y ) of each defense model in the bracket. The defense
model ‘Madry’ is the same model as in the antepenultimate line of
Table 5. The defense model ‘TRADES’ is the same model as in
the penultimate line of Table 5.

Defense Model Robust Accuracy Arob(f)
Madry 97.43% [0.0078484] (Natural)

TRADES 97.63% [0.0075324] (Natural)
Madry 97.38% [0.0084962] (Ours)

TRADES 97.66% [0.0073532] (Madry)

Table 7. Comparisons of TRADES with prior defenses under black-
box FGSM20 attack on the CIFAR10 dataset. The models inside
parentheses are source models which provide gradients to adver-
sarial attackers. We provide the average cross-entropy loss value
of each defense model in the bracket. The defense model ‘Madry’
is implemented based on (Madry et al., 2018), and the defense
model ‘TRADES’ is the same model as in the 11th line of Table 5.

Defense Model Robust Accuracy Arob(f)
Madry 84.39% [0.0519784] (Natural)

TRADES 87.60% [0.0380258] (Natural)
Madry 66.00% [0.1252672] (Ours)

TRADES 70.14% [0.0885364] (Madry)
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Figure 3. Top-6 results (out of ~2,000 submissions) in the NeurIPS
2018 Adversarial Vision Challenge. The vertical axis represents
the mean `2 perturbation distance that makes robust models fail to
output correct labels.

Experiments on real datasets and adversarial competition
demonstrate the effectiveness of our proposed algorithms.
It would be interesting to combine our methods with other
related line of research on adversarial defenses, e.g., feature
denoising technique (Xie et al., 2018) and network archi-
tecture design (Cisse et al., 2017), to achieve more robust
learning systems.
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