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Theory is developed for the process of sequencing randomly selected large-insert clones. Genome size, library
depth, clone size, and clone distribution are considered relevant properties and perfect overlap detection for
contig assembly is assumed. Genome-specific and nonrandom effects are neglected. Order of magnitude analysis
indicates library depth is of secondary importance compared to the other variables, especially as clone size
diminishes. In such cases, the well-known Poisson coverage law is a good approximation. Parameters derived
from these models are used to examine performance for the specific case of sequencing random human BAC
clones. We compare coverage and redundancy rates for libraries possessing uniform and nonuniform clone
distributions. Results are measured against data from map-based human-chromosome-2 sequencing. We conclude
that the map-based approach outperforms random clone sequencing, except early in a project. However,
simultaneous use of both strategies can be beneficial if a performance-based estimate for halting random clone
sequencing is made. Results further show that the random approach yields maximum effectiveness using
nonbiased rather than biased libraries.

Genomic mapping and sequencing have benefited
greatly from the development of stable large-insert
cloning platforms, such as the bacterial artificial chro-
mosome (BAC) clone (Shizuya et al. 1992). Sequencing
random clones has recently been discussed, both as a
primary strategy and/or in the role of augmenting
map-based sequencing. By random clone sequencing,
we mean that large-insert clones are randomly selected
from a library without a priori knowledge of their po-
sitions in the genome. They are then sequenced by
standard shotgun techniques and assembled into con-
tigs (i.e., sets of contiguous clones) using sequence
comparison methods. Because positional information
is not known in advance, there is no guarantee that a
clone will extend a contig or will not be fully redun-
dant with respect to clones already sequenced. This
random-clone approach contrasts with map-based se-
quencing, by which clone selection is guided by a pre-
existing physical map. Here, redundancy and contig
information are known at the outset, enabling some
optimization of the selection procedure. For example,
if constant minimal redundancy can be maintained,
map-based sequencing is essentially a linear coverage
process.

As with map-based sequencing, issues for random

clone sequencing revolve largely around performance,
as measured by such parameters as rates of progress
and redundancy accumulation. These parameters have
not been empirically quantified for random sequenc-
ing because there remains a lack of substantial data for
large genomes. Conversely, map-based sequencing is
better understood from an empirical standpoint. For
example, a map-based approach was employed for the
Caenorhabditis elegans sequencing project (C. elegans
Sequencing Consortium 1998) and has figured promi-
nently in the Human Genome Project (Sanger Centre
and Washington University Genome Sequencing Cen-
ter 1998). These projects provide a good benchmark of
the map-based approach for large genomes.

As for mathematical modeling, the random-
sequencing scenario described above has not been spe-
cifically addressed. Theoretical developments have
concentrated mainly on mapping techniques, for ex-
ample, the seminal work of Lander and Waterman
(1988) for the fingerprint method and later models for
other procedures (Arratia et al. 1991; Barillot et al.
1991; Zhang and Marr 1993; Port et al. 1995; Schbath
1997). Owing to considerations of similarity, it has
been postulated that mapping models could be directly
applied to random clone sequencing (Lander and Wa-
terman 1988; Roach 1995). However, a subtle issue re-
lated to clone overlaps arises. Mapping models are nec-
essarily based on the ability of the method to detect
overlaps for contig assembly. In particular, a prescribed
clone-length fraction necessary for detection �0 > 0 ac-
counts for the fact that some percentage of overlaps
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will go undetected (the full description of nomencla-
ture is given in Table 1). A measure of overlap itself, for
example, as characterized by library depth � is not con-
sidered. However, for random clone sequencing, con-
tig assembly relies on ex post facto sequence compari-
son, which can be assumed to detect all overlaps
(�0 � 0). Application of mapping theory, for instance,
the Lander and Waterman model with �0 = 0, would
not explicitly account for library depth. Modeling li-
ability of this idealization, if any, has not been estab-
lished.

In this report, we formulate a theory for the ran-
dom-clone-sequencing procedure described above.
Our primary purpose is to provide a mechanism to es-
timate performance of an actual sequencing project
based on this paradigm. Moreover, we also evaluate the
importance of library depth as a modeling factor and,
thus, the applicability of mapping models to this prob-
lem. We focus on two types of libraries: one generated
by random means, for example, mechanical shearing,
and one created by partial digest using a restriction
enzyme. The former is expected to have essentially a
uniform clone distribution because there is no prefer-
ence for cut sites, whereas the latter depends upon the
inherent nonuniformity of restriction sites throughout
a genome and could have appreciable bias in the distri-
bution of clones. We apply the theory to the particular
case of human BAC sequencing using a randomly gen-
erated library and a library created by partial digest with
HindIII. We refer to these as the randomly generated and
HindIII libraries, respectively. Map-based results from
human-chromosome-2 BAC data are used for compari-
son. No account is made of genome-specific or non-
random phenomena; therefore, theory and results are
considered to be first-order approximations.

RESULTS

Assessment of the Importance of Library Depth
If we set �0 = 0 in the Lander and Waterman (1988)
model to simulate perfect overlap detection, the main
difference between it and our model in equation 3 is
consideration of library depth. For perfect detection,
Lander-Waterman coverage reduces to the well-known
Poisson coverage expression L(i) = G � Ge�L0i/G. Equa-
tion 3 yields the same result if we allow clone size to
vanish (L0 � 0). Thus, the importance of considering
library depth diminishes with clone size, at least in the
approximate context of these models.

The physical interpretation is that L0 � 0 tends
toward an idealized point model, for which partial
overlap of one clone with another is not possible. For
the point model, clones only overlap completely or not
at all. As would be expected, one identically recovers
the Poisson coverage law if our model is derived with-
out accounting for partial overlap. Because clone size is
usually small relative to genome size, it appears from
equation 3 that library depth is actually a secondary
consideration compared to the other variables. A cor-
ollary is that random clone sequencing can often be
reasonably approximated by the Poisson coverage ex-
pression.

Assessment of the Importance of Clone
Size Variation
Actual clone sizes in any library can be expected to
vary somewhat; however, uniform clone size has been
a standard theoretical assumption (e.g., Lander and
Waterman 1988; Barillot et al. 1991; Zhang and Marr
1993; Port et al. 1995; Roach 1995). We use data from
chromosome-2 BAC clones to evaluate the effect upon

the present model. Table 2 in-
dicates an average clone length
of 181.8 kb, with a 19-kb stan-
dard deviation. A rudimentary
test is to determine difference
in coverage over one standard
deviation in clone size, that
is, for 181.8 � 9.5 kb (the test
is more conservative than it
may initially seem because the
size distribution is entirely
concentrated at a single point
for each case). Equation 3
yields a maximum difference
below 10% when evaluated
over the whole sequencing
project. As with library depth,
variation of clone size does not
appear to be a primary factor in
modeling random clone se-
quencing.

Table 1. Nomenclature

Symbol Meaning

b number of bases from one cut site to the next in a uniformly distributed library
i number of sequenced clones
e Euler’s constant (≈2.71828)
m user-specified level of restriction site bias
n number of expected restriction sites per specified segment length
N total number of clones in a multi-fold library
s restriction enzyme specificity (number of bases)
� distance in bases along linearly arranged genome
�exp experimentally determined average overlap of sequenced clones (%)
G linear genome length in bases (∼3 Gb for human genome)
L0 nominal clone length in bases (∼170,000 for BAC clones)
�0 required threshold to detect clone overlap in a mapping project (%)
L(i) effective bases of genome covered after sequencing i clones
C(i) effective percentage of genome covered after i clones = L(i)/G
�(i) redundancy after sequencing i clones
fn Poisson probability density function for restriction site distribution
R(i) rate of progress after sequencing i clones
� library depth
µavg Poisson average number of restriction sites per specified segment length
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DISCUSSION

Performance Early in a Project
Results from 7000 randomly sequenced human BAC
clones are used to evaluate performance early in a
project. Modeling constants are genome length G = 3
Gb, nominal clone size L0 = 170 kb (derived from a
genomewide sampling of Genome Sequencing Center
BAC clones), and library depth � = 10�. Other param-
eters are as discussed in Methods; in particular, the
average value of redundancy for map-based sequenc-
ing is �exp = 14.4%. Figures 1 and 2 show redundancy
and coverage results, respectively, for each approach.
They confirm that randomly sequenced BACs, regard-
less of library type, initially yield comparable rates of
coverage and lower redundancy compared to map-

based sequencing. After some
number of clones, the advan-
tage shifts to the map-based ap-
proach. From a redundancy
standpoint, this crossover oc-
curs at approximately 5600
clones for the randomly gener-
ated library and between 2900
and 4800 clones for the HindIII
library. In terms of coverage,
the numbers are comparable:
5600 nonbiased clones and be-
tween 3500 and 5400 HindIII
clones. The upper limit for per-
formance crossover is about
5600 BAC clones, using a ran-
domly generated library. At this
point, a total of ∼one-fourth of
the genome has been covered.
This value is also a reasonable
estimate for the mouse genome
because its parameters are
nominally the same as for the
human genome. Figure 2 also
indicates that performance is
essentially independent of li-
brary type and bias level for the
first several thousand clones. In
fact, rate of progress for the first
10%–15% of the genome is es-
sentially fixed. This observation
suggests that conventional re-
striction digest libraries could
effectively be used for random
clone sequencing while map-
ping work is in progress.

Simultaneous Random,
Map-Based Sequencing
In a general scenario, random

and map-based sequencing could be conducted simul-
taneously. At the time of this writing, ∼50% of map-
based human sequencing was complete, well past the
5600 clone crossover juncture. However, Figure 3 (in-
set) suggests that sequencing from the random library
would still be justified because its coverage rate, as de-
duced from the slope, remains comparable to the map-
based approach. Conversely, suitability of the HindIII
library depends strongly on bias. For low bias, the cov-
erage rate is slightly less than that for a random library;
however, the rate is much decreased at higher bias.

To determine when random clone sequencing
should be halted, the following procedure can be ap-
plied. First, specify minimum acceptable performance
in terms of model parameters; then evaluate the result-
ing number of clones obtained for each parameter.

Table 2. Overlapping BAC Clones from Chromosome 2 RPCI-11 Library

Clone name GenBank accession no. Size (Kb) Overlap (%)

H_NH0140K04 AC005033 165.6 31.2
H_NH0019M18 AC007238 183.9 8.0
H_NH0059I21 AC006327 158.4 41.6
H_NH0074G24 AC007314 164.5 15.5
H_NH0083A12 AC007239 205.3 40.7
H_NH0086N01 AC007677 197.7 15.7
H_NH0090D01 AC007092 200.8 21.8
H_NH0148A10 AC007558 162.4 26.1
H_NH0150O02 AC008273 178.0 15.1
H_NH0154L24 AC006985 176.0 61.0
H_NH0182H09 AC007242 168.0 81.2
H_NH0206M19 AC007877 172.6 15.9
H_NH0252C12 AC006368 171.1 18.1
H_NH0260K08 AC007077 182.0 18.3
H_NH0263G22 AC006037 149.2 71.3
H_NH0288C18 AC007382 184.0 56.3
H_NH0308G20 AC007278 184.1 11.8
H_NH0309N08 AC007279 219.0 37.0
H_NH0323F11 AC007880 178.3 31.6
H_NH0332L11 AC005538 193.4 76.5
H_NH0334G22 AC007250 181.7 8.1
H_NH0343N14 AC006461 181.2 20.6
H_NH0355F16 AC007681 194.7 24.1
H_NH0359K10 AC007386 176.7 16.5
H_NH0372J12 AC007387 199.4 17.9
H_NH0374F15 AC008173 235.1 17.6
H_NH0386G20 AC007560 174.4 28.8
H_NH0394E01 AC007561 219.2 51.6
H_NH0395B14 AC007388 189.4 19.8
H_NH0407F02 AC007252 177.7 19.5
H_NH0436C12 AC006464 159.3 37.4
H_NH0445A14 AC007099 160.1 22.0
H_NH0449G16 AC007684 196.9 19.0
H_NH0481J13 AC007743 194.5 27.1
H_NH0485G02 AC007970 169.3 18.0
H_NH0493L16 AC007002 177.4 21.0
H_NH0510C23 AC007971 146.7 28.2
H_NH0518G12 AC007367 213.8 7.8
H_NH0523H20 AC005041 191.2 27.1
H_NH0536I18 AC007283 163.6 22.2
H_NH0548P06 AC007006 189.6 40.9
H_NH0559J05 AC006385 173.5 34.3
H_NH0569H17 AC007179 159.6 17.4
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Choose the lowest value as the stopping point. If fin-
ished sequence is already available, as in this case, sub-
tract the equivalent number of already-sequenced
clones to obtain the number of clones that can still be
sequenced within the original constraints. Consider
the following example: Random sequencing is per-
formed while its rate of coverage is at least half that of
map-based sequencing and its redundancy is <50%.
We work the problem for a random library because it is
already clear that this will yield a higher number of
clones. Using �exp = 0.144 from Table 2, rate of progress
for map-based sequencing is computed as R = 0.856L0

per BAC clone. Taking half this value indicates that
random clone sequencing should be continued until R
falls to 0.428L0 per BAC. Solving equation 4 for i and
substituting R = 0.428L0 yields ∼15,000 clones as one

possible stopping point. The other possibility is given
by the number of clones for 50% redundancy, which
can be read directly from Figure 4 as ∼28,000. Our pre-
scribed coverage rate governs the problem; so we
choose 15,000 as the maximum number of randomly
sequenceable BAC clones. At 50% coverage, the
equivalent number of already-sequenced BAC clones is
about 12,000, which means 15,000–12,000 or 3000
BACs could still be sequenced within our original per-
formance constraints.

Extrapolation to Higher Coverage
Figures 3 and 4 extend the simulation to 10 genome
equivalents (176,000 BACs) to examine results at
higher coverage levels. There has been considerable de-
bate on the efficacy of a clone map for sequencing
(Green 1997; Weber and Myers 1997); however, Fig-
ures 3 and 4 clearly show its superior performance at

Figure 2 Effective expected coverage for map-based and ran-
domly selected BAC sequencing for the first 7000 BAC clones.
The shaded area denotes the HindIII library; high bias is repre-
sented by the lower of the bounding curves.

Figure 1 Expected redundancy for the first 7000 BAC clones
using both map-based and randomly selected BAC sequencing
approaches. The randomly generated library appears as a single
curve and the HindIII library appears as a shaded region resulting
from low- and high-restriction site-bias estimates. The top bound
denotes high bias; the bottom corresponds to low bias. Results
for map-based sequencing are given by the horizontal line.

Figure 3 Predicted coverage up to 176,000 BAC clones (∼10
genome equivalents). The inset shows a magnified view in the
30%–45% range of coverage. HindIII coverage is denoted by the
shaded area; the high-bias simulation is the lower of the bound-
ing curves.

Figure 4 Predicted redundancy up to 176,000 bacterial artifi-
cial chromosome (BAC) clones (∼10 genome equivalents). The
inset shows a magnified view in the lower redundancy region.
The map-based redundancy of 14.4% coincides with the abscissa
in both plots.
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higher coverage levels. Specifically, map-based clone
sequencing behaves linearly, whereas random clone se-
quencing is an asymptotic process. The random library
displays better coverage and lower redundancy than
the best HindIII library and converges to full coverage.
All bias estimates predict the HindIII library falling
short of 100% coverage due to unrepresented regions
of the genome.

Summary
Performance of map-based sequencing is superior to
random clone sequencing, except early in a project.
Moreover, a randomly generated library can be ex-
pected to outperform a restriction digest library, per-
haps by a significant margin. These conclusions are
likely true for many combinations of organism, clone
type, enzyme, etc. Results suggest that sequencing via
map-based and random strategies simultaneously is
reasonable, especially if a suitable performance-based
estimate for halting random clone sequencing is
made.

Other cases of interest can be treated by applying
the same procedures shown here for human BAC
clones. Of special interest is the whole-genome shot-
gun method, which is now being used for large ge-
nomes (Adams et al. 2000). The procedure relies on
random fragmentation so that a uniform subclone dis-
tribution can reasonably be assumed. Here, L0 is the
subclone length. Because this value is considerably
small compared to genome size, a point model can
readily be assumed, permitting usage of the Poisson
coverage approximation discussed above.

METHODS
Models for map-based and random clone sequencing are de-
rived here. Solomon (1978) and Hall (1988) are good intro-
ductions to the general topic of coverage theory, which en-
compasses these processes.

Empirical Model of Map-Based Sequencing
A clone library supported by a physical map can be charac-
terized by the average overlap of the sequenced clones �exp.
We estimate this parameter empirically using 43 human-
chromosome-2 BAC clones sequenced at the Genome Se-
quencing Center. Table 2 shows derived overlap and size data
for these clones, which originate from the RPCI-11 library
(Osoegawa et al. 1998). In the present context, our documen-
tation system for clone lengths and finishing boundaries has
the effect of tallying overlaps twice. Therefore, the average
overlap of 28.9% calculated from Table 2 must be divided in
half, yielding �exp = 14.4%. This group of clones is taken as
representative of the overall map-based sequencing process
for human BAC clones. In other words, overlap is assumed to
be a constant given by �(i) = �

exp
. Therefore, the coverage

added by each sequenced clone, that is, the rate of progress is
R(i) = (1 � �exp)L0 and the total coverage L(i) is simply iR(i).

Random-Sequencing Model for a Randomly
Generated Library
Random fragmentation implies that all base positions are
equally likely to be breakage sites, which results in a uniform
clone distribution. We assume a constant clone size of L0

bases, a genome length of G bases, and a library depth of �.
The standard equation of expected value is employed for es-
timating coverage L = �p�L�, where L� is the coverage contrib-
uted by a particular event � and p� is its probability of occur-
rence. Three events are considered: the new event, in which
the clone does not overlap any established sequence (all
added sequence is new); the partial event, in which part of the
clone overlaps established sequence; and the buried event, in
which the entire clone is buried in previously generated se-
quence. The coverage after randomly sequencing a clone is
then �(pL)new + �(pL)partial + �(pL)buried. Then define a segment
length b, the average number of bases from one breakage site
to the next. Because clone ends are synonymous with break-
age sites, clones must overlap in units that are multiples of b.
The number of clones in a library N = �G/L0, equals the num-
ber of right (or left) clone ends, and therefore, the number of
uniformly distributed breakage sites. By definition, b can be
computed by dividing the genome length by the number of
breakage sites, yielding b = G/N = L0/�. A clone end can only
occupy discrete positions given by multiples of b; so the total
number of possible positions is K = N � � + 1 and the prob-
ability of any given position is p = K�1. This expression ac-
counts for so-called end effects (Port et al. 1995; Roach 1995)
and prevents clones from running off the end of the genome.
No such constraint exists for circular genomes (Parke 1997).

The length of unique sequence after i clones have been
sequenced is Li, where Li = lib. For the new event, the length
after sequencing another clone is Lnew = Li + L0 and the num-
ber of ways to obtain this event is K � (li + � � 1). For the
buried event, the length remains the same as it was before the
clone was sequenced, that is, Lburied = Li, and the number of
ways this could occur is li � � + 1. These combinations yield
pnew = (K � li � � + 1)/K and pburied = (li � � + 1)/K. Length
for the partial event is simply Lnew minus the amount of over-
lap, that is, Lpartial = Li + L0 � h b, where h is the number of
b-length segments of overlap. Because the new clone is, at
most, equal in length to the established sequence, this can
happen a total of h = � � 1 ways on either side of the estab-
lished sequence. Therefore, the partial event can be written as
∑(pL)partial = 2∑��1

h=1 (Li + L0 � h � b)/K. Using a summation
identity, this expression reduces to ∑(pL)partial = 2(� � 1)(Li +
L0)/K � (� � 1)L0/K. Taking all of these events and simplify-
ing, the final recursion for coverage is Li+1 = Li + [1 � Li/(G �

L0 + L0/�]L0. Rearranging, we obtain

Li + 1 − Li

�i + 1� − i
= L0 −

L0

G − L0�1 − 1���
Li. (1)

The left hand side is a finite difference approximation of the
rate of change of coverage with respect to the number of
clones sequenced. Eqn. (1) is therefore a discrete analog of the
differential equation

dL�i�
di

+
L0

G − L0�1 − 1���
L�i� = L0, (2)

which can be solved using eL0i/[G�L0(1�1/�)] as an integrating
factor (Martin and Reissner 1956). Initial conditions require
that the first clone sequenced yields coverage equal to its own
length, L(1) = L0, which leads to the final coverage expression
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L�i� = c0 − c1e�1−i�L0�c0 i = 1, 2, 3, . . . , N, (3)

where c0 = G � L0(1 � 1/�) and c1 = c0 � L0. Various perfor-
mance parameters can be derived from this equation. For ex-
ample, in the ideal case of end-to-end clone placement, cov-
erage is simply L0i, which allows redundancy to be defined in
a normalized sense as �(i) = 1 � L(i)/(L0i). Rate of progress,
R(i), can be calculated by differentiation as

R�i� =
dL�i�

di
=

L0 c1

c0
e�1−i�L0�c0. (4)

Random-Sequencing Model for a Restriction
Digest Library
Modeling the sequencing process for a restriction digest li-
brary must account for nonuniform clone distribution, which
arises from the natural restriction-site bias of a genome.
Rather than attempt to derive an exact solution for this case,
it is more expedient to employ Monte-Carlo simulation (Press
et al. 1991). A set of restriction sites is first established accord-
ing to an appropriate nonuniform-probability-density func-
tion. Sequence coverage is then simulated by randomly se-
lecting a site as a left clone end. Based upon local site distri-
bution and nominal clone length, the right end is then
determined, after which cumulative coverage is recomputed.
Iteration is continued until a user-specified stopping point is
encountered.

Poisson probability density functions provide a suitable
model for restriction sites in the sense that a large segment
size can be specified, for example, 4s where s is enzyme speci-
ficity, while the probability of a site occurring in any neigh-
borhood of a segment is small. Because site bias cannot be
known a priori (Green 1997), we follow the methodology of
Port et al. (1995) and Schbath (1997) in using simple func-
tions to model bias. We select (m + 1)xm, where m is the user-
specified bias level and x is the distance along the linearly
arranged genome. This function conserves the total number
of sites in a genome to µavgG/4s, where µavg is an empirically
sampled value of the number of restriction sites in a segment.
A general variable-rate Poisson process for restriction site dis-
tribution is then given by

fn =
��avg�m + 1�xm�n e��avg�m+1�xm

n!
, (5)

where n is the number of sites expected per segment. Global
distribution of sites is computed along 0 < x 	 G using equa-
tion 5; however, the local distribution in each segment is
taken to be uniform. No coverage is allowed between base
position 1 and the first restriction site x1. Thus, bias yields a
segment x1 � 1, which cannot be covered by sequence due to
lack of representation in the library.

As with the uniform distribution model, other perfor-
mance parameters can be obtained using coverage results. Re-
dundancy is computed exactly as defined for the uniform
model. For rate of progress, no closed-form expression is avail-
able. However, it can be calculated by finite difference ap-
proximation (Tannehill et al. 1997). Due to the nonsmooth
nature of Monte-Carlo simulation, it may be necessary to av-
erage out local fluctuations by computing each difference
over a large set of clones. We note that this introduces an
additional component of numerical error (Tannehill et al.
1997).

As applied specifically to a HindIII human BAC library,

the parameters are s = 6 (because this enzyme is a 6-cutter
recognizing AAGCTT) and a segment size of 4096 bases. To
estimate µavg, 868 finished sequences from the Genome Se-
quencing Center encompassing ∼105 megabases were ana-
lyzed for AAGCTT. We found µavg ≈ 1.25, implying ∼916,000
total sites for a 3-Gb genome size. A coefficient of dispersion
of 1.046 indicates that Poisson modeling is acceptable (Sokal
and Rohlf 1981). We assume lower- and upper-bound func-
tions for bias as 3√x/2 and 3x2, respectively.

A code using this model was tested with m = 0 and results
compared well to equation 3. This method is computationally
intensive because each restriction site and its coverage status
must be stored explicitly and these arrays are traversed for
each succeeding clone. Placing a clone in the genome and
computing coverage require approximately L0/4s and G/4s op-
erations, respectively. Because clone ends must be restriction
sites, the simulated length of a clone will vary in a range of ∼4s

around the nominal value of L0. Exceptions are that near the
end of the genome, a clone may be much smaller because it
cannot run off the end, and in restriction-site-poor areas, a
clone can be significantly longer because it must extend to the
next restriction site.

ACKNOWLEDGMENTS
This work was supported by a grant from the National Human
Genome Research Institute (HG02042). We thank J. Wallis of
the Genome Sequencing Center for useful discussions and
anonymous reviewers for insightful critiques.

The publication costs of this article were defrayed in part
by payment of page charges. This article must therefore be
hereby marked “advertisement” in accordance with 18 USC
section 1734 solely to indicate this fact.

REFERENCES
Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D.,

Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle,
R.F., et al. 2000. The genome sequence of Drosophila
melanogaster. Science 287: 2185–2195.

Arratia, R., Lander, E.S., Tavare, S., and Waterman, M. 1991.
Genomic mapping by anchored random clones: A mathematical
analysis. Genomics 11: 806–827.

Barillot, E., Dausset, J., and Cohen, D. 1991. Theoretical analysis of a
physical mapping strategy using random single-copy landmarks.
Proc. Natl. Acad. Sci. 88: 3917–3921.

C. elegans Sequencing Consortium. 1998. Genome sequence of the
nematode C. elegans: A platform for investigating biology. Science
282: 2012–2018.

Green, P. 1997. Against a whole-genome shotgun. Genome Res.
7: 410–417.

Hall, P. 1988. Introduction to the theory of coverage processes. John
Wiley and Sons, New York.

Lander, E.S. and Waterman, M.S. 1988. Genomic mapping by
fingerprinting random clones: A mathematical analysis. Genomics
2: 231–239.

Martin, W.T. and Reissner, E. 1956. Elementary differential equations.
Ch. 2, pp 40–42. Addison-Wesley, Cambridge, Massachusetts.

Osoegawa, K., Woon, P.Y., Zhao, B.H., Frengen, E., Tateno, M.,
Catanese, J.J., and de Jong, P.J. 1998. An improved approach for
construction of bacterial artificial chromosome libraries.
Genomics 52: 1–8.

Parke, W.C. 1997. Kinetic model of random DNA cleavage by
radiation. Physical Review E 56: 5819–5822.

Port, E., Sun, F., Martin, D., and Waterman, M.S. 1995. Genomic
mapping by end-characterized random clones: A mathematical
analysis. Genomics 26: 84–100.

Sequencing Randomly Selected Clones

Genome Research 279
www.genome.org



Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T.
1991. Numerical recipes in C: The art of scientific computing.
Cambridge University Press, UK.

Roach, J.C. 1995. Random subcloning. Genome Res. 5: 464–
473.

Sanger Centre and Washington University Genome Sequencing
Center. 1998. Toward a complete human genome sequence.
Genome Res. 8: 1097–1108.

Schbath, S. 1997. Coverage processes in physical mapping by
anchoring random clones. J. Comput. Biol. 4: 61–82.

Shizuya, H., Birren, B., Kim, U.J., Mancino, V., Slepak, T., Tachiiri,
Y., and Simon, M. 1992. Cloning and stable maintenance of
300-kilobase-pair fragments of human DNA in Escherichia-Coli
using an F-factor-based vector. Proc. Natl. Acad. Sci.
89: 8794–8797.

Sokal, R.R. and Rohlf, F.J. 1981. Biometry. pp 82–94. W.H. Freeman
and Co., New York.

Solomon, H. 1978. Geometric probability. Society for Industrial and
Applied Mathematics, Philadelphia, Pennsylvania.

Tannehill, J.C., Anderson, D.A., and Pletcher, R.H. 1997.
Computational fluid mechanics and heat transfer. Taylor and
Francis, Washington, DC.

Weber, J.L. and Myers, E.W. 1997. Human whole-genome shotgun
sequencing. Genome Res. 7: 401–409.

Zhang, M.Q. and Marr, T.G. 1993. Genome mapping by nonrandom
anchoring: A discrete theoretical analysis. Proc. Natl. Acad. Sci.
90: 600–604.

Received February 2, 2000; accepted in revised form November 21, 2000.

Wendl et al.

280 Genome Research
www.genome.org


