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Theories of Elasticity with Couple-stress 

R. A. TouPIN 

1. Introduction 

The concept of couple-stress is familiar from the theory of elastic shells. 
I t  is customary to represent the action of one part of a shell upon another by  

a line distribution of forces and  couples along a curve which divides the shell 
into two parts. If suitable other assumptions be made, the force per unit 
length (~t, and the couple per unit length (~m at a point P of the shell which 

act on the curve through P with normal n are given by 

(~)t ~ = tii (P) nj, (~)m ~ = m q (P)  n i ,  (t .1) 

where t i i ( P )  is the stress tensor at P,  mii(P) is the couple-stress tensor at P, 

and n i is the normal to the curve which lies in the shell. The stress and couple- 
stress at a given point P are determined by  the local instantaneous configuration 

of the material points in an arbitrarily small neighborhood of P. One problem 
of shell theory is to deduce these stress and couple-stress-deformation relations 
for a two-dimensional medium (i.e., a shell represented mathematically by a 
surface) from given stress-deformation relations of an elastic three-dimensional 

medium of which the shell is regarded as a thin piece. 
In the classical theory of three-dimensional elastic media, the action of one 

part of a body upon another is represented by a distribution of forces only 

upon the dividing surface, and the stress vector at a point P of a surface with 
normal n i is again given by (t.t)1. The whole of the classical theory of elasticity 

seems consistent with the assumption that  the couple-stress vanishes. Our pur- 
pose here will be to review several mathematical models of elastic continua to 
which this central feature of the classical theories of deformable media fails of 

extension. Besides a general consideration of these models which goes deeply 
into the basic principles of continuum mechanics, we shall show by examples 
the sort of phenomena embraced by  these more elaborate models of elastic 
media and excluded by the simpler classical model. While these applications 
are now few and represent delicate refinements of the classical theory, they 
might easily grow in number and diversity. At the present time, however, 
perhaps the best recommendation for study of these particular models is the 
thoughtful re-examination of the basic concepts and principles of continuum 
mechanics they require for understanding. They allow one to view the classical 
theory itself in new perspective. 

The following brief summary of the literature on couple-stresses begins ap- 
propriately with the memoir of E. & F. COSSERAT (t909, t). The COSSERATS 
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gave a systematic development of the mechanics of continuous media each point 
of which has the six degrees of freedom of a rigid body. In classical elasticity 
theory, a material point has only the three degrees of freedom corresponding to 
its position in Euclidean space. They were drawn to the general concept of 

such a medium by various special theories of elastic rods and shells, and they 
extended the notion in a natural way to three-dimensional media. The most 
striking and novel feature of their theory of three-dimensional media was the 

appearance of couple-stresses in the equations of motion. The stress tensor in 
the Cosserat theory was not symmetric as in the classical theory of elasticity 
but  satisfied rather the equation* 

t[ifl + milk, k---- 0 (1.2) 

jointly with the couple-stress tensor field when the body is in equilibrium. While 
the counterpart of (1.2) was known for shells, and the idea of couple-stress for 
three-dimensional media had occurred to VOIGT and others, the COSSERATS were 
the first to t reat  systematically the mechanics of an elastic medium in which 
couple-stresses were a central consideration. Although their work is a landmark 

in the development of continuum mechanics, it did not receive much comment 
or search for applications. HELLINGER and VON HEUN drew attention to their 
ideas (t914, t and 2), and TRUESDELL remarked upon equation (t.2) in his 

article, "The Mechanical Foundations of Elasticity and Fluid Mechanics" (t952, t). 
ERICKSEN & TRUESDELL (1958, 1) developed further the purely kinematical 
description of Cosserat continua emphasizing the one- and two-dimensional cases 
of rods and shells; but they did not explore or amplify the theory of motion 
of elastic media proposed by the COSSERATS. Also in (1958, 2), GONTHER pointed 
out the connection between the kinematics of a Cosserat continuum and the 
new theories of continuous distributions of dislocations then emerging. H. 

SCHAEYER (t962, 3) solved some explicit boundary value problems for a two- 
dimensional Cosserat medium so as to illustrate some of the novel features of 
the theory. 

JA~AMILLO (1929, t) constructed a different but  related generalization of 
the classical theory of infinitesimal elastic deformations based on the assumption 
that  the action density in Hamilton's principle was a quadratic function of the 
second- order spatial derivatives of the displacement field as well as the first- 
order spatial derivatives and velocity components which appear in the action 
density of the classical theory. Relying too strongly on the classical stress 
principle and certain of its consequences such as the symmetry of the stress 

tensor, JARAMILLO was led to impose unnatural restrictions on the dependence 
of the action density upon the second-order spatial derivatives of the displace- 
ment field. In any case, he recognized that  such a medium would be dispersive; 
i.e., that  the speed of a sound wave would depend on its frequency. TIFFEN & 
STEVENSON (t955, t) alSO considered briefly the theory of infinitesimal motions 

* Square brackets about any set of indices denotes the average of the alternating 
sum over the permutations of the indices; e.g., t t i i]=~(tii--ti i) .  The couple-stress 
field can be represented alternatively by a second rank axial tensor field mii as in 
(t.t) or by the dual absolute third rank tensor rnii ~. The relation between mii and 
its dual mi/k is m i i k = ~ e  r m s~, where eli ~ is the axial alternating tensor which has 
components 1, -- i ,  or 0 in Cartesian frames of reference. 
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of such an elastic medium of "grade 2". I t  is convenient to call a material of 

"grade N "  if N is the order of the highest position gradient in the action density. 

TIFFEN & STEVENSON saw that  couple-stresses exist in such media and redis- 
covered the COSSERATS' equation (t.2) for the balance of moments. I t  turns 
out, as will be shown later, that  if the rotation of a point in a Cosserat con- 
t inuum is constrained to equal the local rotation of the medium in the familiar 
sense of elasticity and fluid dynamics, the theory which results is equivalent 

to a certain special case of the general theory of elastic materials of grade 2. 
For ease of reference to this particular theory and set of ideas, let us call it the 
Cosserat theory with constrained rotations. Because of the constraints, in this 
theory the couple-stress tensor is not completely determined by  the action 
density as it is in the COSSERATS' original theory. This point was overlooked 

by  TIFFEN & STEVENSON and also by TRUESDELL & TOUPIN (1960, t) in their 
t reatment of stress and couple-stress in materials of grade 2. GRIOLI (1960, 2) 
gave the first general and correct t reatment of elastic materials of grade 2 whose 
energy equation was of the same form as the COSSERATS' energy equation; i.e., 

of Cosserat media with constrained rotations. In (1962, 1), I reviewed the foun- 
dations of the theory of elastic materials of grade 2, corrected the formula for 

the couple-stress given in (1960, 1), and pointed out that  the Cosserat media 
with constrained rotations were but  a peculiar subclass of the elastic materials 
of grade 2. At the same time, MINDLIN & TIERSTEN (t962, 2) gave an extensive 
analysis of infinitesimal motions of Cosserat media with constrained rotations. 
They extended to this more general theory of elasticity many of the classical 
results on stress functions, fundamental solutions, vibrations, nuclei of strain, etc. 

Also, explicit solutions of some boundary value problems were constructed which 
illustrated the novel departures from classical results predicted by the theory. 

TooPIN & GAZlS (t963, 1) applied the general theory of materials of grade 2 
to the problem of surface deformations of a crystal. They showed that  initial 
stress and "hyperstress" in a uniform crystal gave rise to a deformation of a 
thin boundary layer near a free surface such as had been observed in electron 
diffraction experiments. 

In (t958, 1), ERICKSEN & TRUESDELL suggested a natural generalization of 

Cosserat media. As remarked above, a Cosserat medium is a continuum, each 
point of which has the degrees of freedom of a rigid body. The orientation of 
a given point of such a medium can be represented mathematically by the values 
of three mutually perpendicular unit vectors which ERICKSEN & TRUESDELL called 
the "directors" of an "oriented medium". With this idea in mind, it is easy 
and natural to consider the generalization in which the three directors are stretch- 
able and not constrained to remain mutually orthogonal. MINDLIN (1964, t) has 

now considered in some detail the mechanics of elastic media with "micro- 
structure".  The kinematical model of an oriented medium with deformable 
directors is arrived at by  the following slightly different train of reasoning. 
MINDLIN begins with the very general concept of an elastic continuum each 
point of which is in itself a deformable medium. This concept stems from the 
easier notion that  a rod or a shell may trivially be viewed as a one-dimensional 
manifold of two-dimensional deformable "points",  or a two-dimensional manifold 
of one-dimensional deformable "points", respectively. If each "micromedium" 

7* 
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is constrained to deform homogeneously, such a model reverts to ERICKSEN & 
TRUESDELL'S oriented medium with deformable directors because a homogene- 
ous deformation is uniquely determined by the motion of any three linearly 
independent vectors (the directors). 

In all the foregoing models of continuous media, couple-stresses occur in the 
analysis of their mechanical behavior, and the familiar concepts of stress which 
suffice for an understanding of classical elasticity theory prove inadequate. In 
the following sections, each of the models will be considered in greater or less 
detail. Our objective has been to expose the concepts and principles of con- 
tinuum mechanics common to all the models and to devise a mathematical 
machinery for easy and precise expression of the basic ideas. 

2. Kinematical Preliminaries 

The COSSERATS gave a systematic treatment of elastic curves, surfaces, and 
extended bodies. Each variety of continuum has its peculiar features and mathe- 
matics, but  here we shall consider only the three-dimensional case. 

Let M be a three-dimensional manifold of mater ia l  po in t s  which we denote 
by  bold face Greek letters ~, ~i, etc. Let (x), (t5) . . . .  denote the coordinate systems 
of M and ~ (~), 0c ---- l, 2, 3, the mater ia l  coordinates of ~ in the coordinate system (~). 

A motion of M is a one-parameter family of mappings 

at: M---~E (2.t) 

of M into Euclidean space E. Coordinate systems of E will be denoted by (i), 

(i'), etc. The image x----x~(~) of ~ is called the pos i t ion  of ~ at the t ime  t. More 
generally, the image x t (S) of any set of points S ( M  is called the con f igura t ion  

of S at the time t. When coordinates are introduced in M and E, a motion of 
M becomes represented, at least locally, by  three real-valued functions 

x ~ = x '  ( ~ ,  t) (2.2) 

of the four real variables ~', ~ = t, 2, 3 and the time t. 

The velocity of ~ has the components 

x ~ - -  ox~(~,  t) 
a t  ' (2 .3)  

and the acceleration of ~ has the components 

~ i  ~(8~,  t) J i ~ ~/a~k (2.4) 
Ot -t- [ j h J ~  ' 

i t are the Christoffel symbols computed from the of the where j k.g components 

spat ia l  metr ic  tensor g i j  (x~) �9 Throughout we assume that  the spatial coordinate 
system is inertial and nondeforming so that  the gij (xk) never depend on the 
time t. The spatial metric tensor reduces to the Kronecker delta dii when the 
spatial coordinates are rectangular Cartesian. 

We consider only motions for which the pos i t ion  gradien t  

x ~ _ ox~(~,  t) (2.5) 

has rank three throughout M. 
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At each instant of time, a motion of M induces in it a Euclidean metric 

field defined by 
a~ (~, t)-=g~j#,~ xJ,~. (2.6) 

The instantaneous length, area, and volume of material curves, surfaces, and 
regions, respectively, are defined in the usual way in terms of the instantaneous 
material metric tensor a~a(~ ~, t). 

Let Ct= xt(M ) denote the configuration of the body at time t. We shall 

need the concept of a reference configuration CT which, in the applications, 
will have special properties. We call T the re[erence time and introduce the 

special notations 

X-----xr(~), Xi=xi(~ ~, T), A~a(~)=giiX~,~Xi,~ (2.7) 

for the position, coordinates of position, and material metric tensor at ~ at 

the reference time. Since the mapping X i =  x i(~,  T) is one-to-one and invertible, 
it is always possible to introduce the X ~ (~) as material coordinates, but  we wish 
not to restrict the formalism to this agreement. 

Absolute differentiation, which requires a definition of parallelism in M, can 

{ ~  } of the instantaneous metric a ~ .  be defined using the Christoffel symbols (3 y 

Alternatively, absolute differentiation of tensor fields in M can be defined using 

{ ~  } of the fixed (time independent) values of the material the Christoffel symbols ,  fi~ ,A 

metric tensor at the reference time T. 

The gradient of the position gradient, or alternatively, the second-order position 
gradient will be here defined by 

~2 xi 

' , ( j  kJ~ 

This tensor is distinct, in general, from the tensor 

The former of these two tensors, (2.8), reduces to the ordinary partial derivatives 

aZxi/D~'~ a when the spatial coordinate system (i) is rectilinear and the material 
coordinate system (Qr is such that  the A ~  are constants. 

3.  C o n t i n u o u s  M e d i a  w i t h  M i c r o s t r u c t u r e  

A rod or a shell can be viewed as the Cartesian product M 1 •  2 of a one- 
dimensional continuum M 1 and a two-dimensional continuum M 2. For example, 

a rod may be regarded as the Cartesian product of its line of centroids in some 
configuration and of its cross section in the same configuration. Nothing is 

gained by  such a formal step. Theories of rods and shells gain simplicity over 
a straightforward representation as three-dimensional bodies by restricting the 
deformations of one of the factors in the product Ma=M 1 •  2. One can, for 
example, constrain the cross sections of a rod or the lines normal to the mid- 
section of a shell to undergo only homogeneous deformations. But  a homogeneous 
deformation of an n-dimensional continuum is uniquely determined by  the 
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motion of any n linearly independent vectors joining one of its points to n others. 

In this way, one arrives at the kinematical model of a rod consisting of a one- 
dimensional continuum U 1 and a set of two vector fields (di(~, t), di(~, t)) in 

M a whose values fix a homogeneous deformation of the cross section of the 

rod through the point ~. In the same spirit, one could represent a shell as a two- 

dimensional continuum M s and a single vector field di(~, t) whose values de- 

termine a homogeneous deformation of a material line through ~. More generally 

now, in light of these examples, it is easy to conceive a curve, surface, or region, 

each point of which is an n-dimensional continuum constrained to deform homo- 

geneously. Such a model would be represented mathematical ly by  a one-, two-, 

or three-dimensional manifold M and a set of n spatial vector fields di(~, t), 
Q 

a = 1, 2 . . . . .  n. I f  in each case one chooses n = 3 and further assumes that  each 

"micromedium" moves rigidly, then 

g~i#dJ=~, a , ~ = t , 2 , 3 ,  (3.1) 
a b ab 

and the resulting model is a Cosserat continuum. Following ERICKSEN & TRUES- 

DELL, we call the vector fields di(~, t) directors. We shall consider the case of 
a 

deformable directors for which the COSSERATS' rigidity condition (3.1) is not 

imposed. 

Rods and shells provide specific and practical examples of one- and two- 

dimensional continua with one or more deformable directors. An electrically 

polarizable medium with its polarization field P~ (~, t) may  be cited as a familiar 

example of a three-dimensional continuum with one "director". The polarization 

field serves not only to define a charge distribution but ascribes also to each 

point of the continuum a certain structure. A continuum with director fields 

resembles also a polyatomic lattice. One may  identify points ~ with unit cells 

and the director d ~ (~, t) as the position vector of the atomic species "a" relative 
a 

to the center of mass or charge of the cell ~. All that  we shall have to say about 

the mechanics of such oriented continua will be more or less independent of 

specific physical interpretation of the director fields. Also, it will be fairly ob- 

vious how to extend the basic results on oriented media to the more general 

model in which the vector fields d i(~, t) are replaced by  any set of tensor fields 
tt 

9ii... (~, t) which might be introduced to describe the kinematical structure of 
a 

a material point. 

4. Rigid Motions 

In classical elasticity theory, a motion of a body is rigid if and only if the 

rectangular Cartesian coordinates x i (~, t) of the position of every material  point 
at t ime t are given in terms of the rectangular Cartesian coordinates X~(~) of 

the reference positions by  a relation of the form 

~ (~, t) = ~ (t)xJ (~) + v ~ (t) (4.1) 

where B (t) is a proper orthogonal matr ix  and V is some vector-valued function 
of the time. For a medium with deformable directors we amend this definition 
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of rigid motion by adding the conditions 

ad i (g, t) = R~ (t) D i (~) (4.2) 

where R(t) is the same matrix that  appears in (4.1) and D~-~ di(g, T) are the 
values of the director fields at the reference time. a a 

I t  follows from (4.t) and (4.2) that  necessary conditions for rigid motion are 

a~,a( ~, t)-- A,a(g ) , q(g, t) =-Q(g), (4.3) 
ab ab  

where a ~  and A ~  are the metric components defined in (2.6) and (2.7) and 

q(~, t)=g~, d'd i, Q(g, t) = q(~, T). (4.4) 
ab " a  ~ ab ab  

For the three-dimensional media under consideration here, the position gradient 
x i is nonsingular. If it also be assumed that  the matrix of components D i is j ~  

a 

nonsingular (i.e., that  the initial values of the directors are linearly independent), 
then it can be shown that  the conditions (4.3) are sufficient that  a motion be 
rigid. If the conditions (4-3) hold at every point ~ in some neighborhood N(~) 
of g, then the motion of that  neighborhood is rigid. 

Other necessary conditions that  a motion be rigid may be derived from (4.1) 
and (4.2) by differentiation; e.g., 

�9 ',~ (~, t) = Rj(t)  XJ.~ (~), 
d ~ (4.5) , .~ (g, t) = R~ (t) D~ . ,  (~).  

5. Hamilton's Principle for Perfectly Elastic Media 

Let P ( M  be any part of an elastic medium with deformable directors, and 
let I be an arbitrary time interval t l ~ t ~ t , .  Following the COSSERATS, we as- 
sign to every set of events P XI  an amount of action A ( P x I )  given by 

A(P x I ) = f  f L(~, t)d~dt, (5.t) 
I P 

where 

d~C/'=g~ldCXdr162 ~, A = det IIA~aI[ (5.2) 

is the differential element of volume in P in the reference configuration, and 
L(~, t) is the density o] action. We assume that  the action density is a function 
of the variables indicated now: 

L=L(x~, t ,# ,~i ,d  ~ x ~ # U). (5-3) a ~ ' r 1 6 2  s0r 

According to Hamilton's principle the equations of motion and boundary 
conditions for a material with action given by (5.t) are the Euler equations 
and the boundary conditions of the variational equation 

a 

OA(PxI)  + f f (FiOx' + G, Od') d'~ dt + 
I p , ,  (5.4) 

+ 3" f d ,,dt- f (P, Q, ]'=o 
I 0P  P t I 
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a a 

where the Fi and G i are certain generalized body/orces, the T i and H i are certain 
a 

generalized sur/ace tractions, and the Pi and Qi are certain generalized momenta. 
The variational equation (5.4) is postulated for arbi trary differentiable varia- 

tions ~x i and dd ~ of the independent field variables. Necessary and sufficient 
a 

conditions that  (5.4) be satisfied for this class of variations are the Euler equations 

k* - ~, ~ - r , - -  0L 
, ~ x i  ' 

a o . a (5.5) 

where Q* - H~,, = -~- 6i* - -  G i ~-~ 0, 

aL OL a aL a 0 L a 0 L 
- -  , H * - - - -  , G ~ ' - -  O d i '  (5 .6 )  

and the boundary conditions 

T~N=--T i=O 
a o g E O P ,  t ~ I  (5 .7 )  

H~N= -- H i = O, 

where N= is the unit normal to OP (A=aN= N a =1), and the following conditions 

on the initial and final momenta  

~* - P ~ =  o, 
~ ~ P ,  t = t ,  or t2, (5.8) 

Q* - 0  = o .  

When L is independent of x i, t, d r d i, and d i and has the special form 

L =-~e (r ~ ' - -  W(x~, r (5.9) 

the equations (5.7)1 and (5.5)1 reduce to the equations of motion and traction 

boundary conditions of the classical theory of finite elastic deformations. The 

tensor T~/ in this special case is the Kirchhoff stress tensor. Cauchy's stress 

tensor in the classical theory is defined by  
/ a 

tq 

and (in the classical theory) is symmetric if and only if the energy o/ de/ormation 
W(xi=, ~) is invariant under rigid rotations. We proceed now to show how 

these familiar results of the classical theory are modified in elastic media with 

deformable directors. 

6. Invar ianee  and Conservation 

We shall say that  two motions of a given medium differ by  a Euclidean 
displacement if 

x*i(g, t*)=R~xi(g, t ) + D  i, 

d*i(g, t*)-~R~ di(F~, t), (6.t) 

t * = t + C ,  

where the starred quantities define one of the motions and the unstarred quan- 
tities the other. All quantities are referred to a common rectangular Cartesian 
inertial frame of reference, Rj is a constant proper orthogonal matrix, and the D i 

and C are also constants. The set of all transformations (6A) of the independent 
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field quantities has the group property. We call it the group o/Euclidean dis- 

placements. Two motions of a given medium related by an element of the group 
as in (6.t) are said to be congruent. 

Following the COSSERATS, we postulate that  the action density L is invariant 

under the group o/Euclidean displacements. In other words, the action density 

has the same value for all congruent motions. 
Since the group of Euclidean displacements is a connected Lie group, it is 

sufficient to require that  the action density be invariant under infinitesimal 

transformations of the group of Euclidean displacements in order that  it be 
invariant under arbitrary, finite transformations of the group. An infinitesimal 

transformation of the group has the form 

x* i=xi + (~ii xi + D i) d2, 

d ' i =  o# +$2 ~ ~ d~, (6.2) 

t * = t + C d ~ ,  

where, except for the antisymmetry condition ~-2 i i =  --~'2 ii, the ~ij ,  D i, and C 

are arbitrary constants. It  is easy now to deduce that  the action density will 

be invariant under the group of Euclidean displacements if and only if 

eL eL 
---- O, K[in ---- O, (6.3) e x i -  ~t 

where 
eL d eL . eL + d  eL eL y ~ ,  eL 

K , ; = x , v ~  + . , ~ r .  + x , ~ r  ~ ed-7 +~',~ ex!-H + . ~G 
II 

With the conditions (6.)) in mind, consider now the variational equation 

(5.4) which summarizes the equations of motion, boundary conditions, and initial 
and final data. We know that,  in particular, (5.4) must hold for all variations 
of the special varieties, 

(1) (~x i = D i, ~ d i : 0), 
o 

(2) (~x i = f2 q xj, 3 d r = / 2  ijdj), (6.4) 

(3) (~x~ = ~i, ~ d~ = di),  
~ a 

since we postulate (5.4) for perfectly arbitrary smooth variations. Necessary 
and sufficient conditions that  (5.4) hold for these special types of variations are 

fad l"--ff d dt--ffr, d 'dt=rr d dt, jr, d d  exi (6.5) 
P I P I P I P 

t I o o 

v I P I v (6.6) 

=ffK[.]dddt, 
I P 

" ' f Ed ], -- f f +O,9)d o dt 
, I , 3 o  

P , p , t' f ff eL d '~ (6.7) 
= j j - - ~ E  dr, 

I P  
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where, in (6.7), we have set 

E = P~ s + Q, ci' -- L ,  (6.8) 
a 

which we call the energy density, and in (6.6) we have set 
a 

Sii = -- S i i =  xt~ PI"] + dti Qil, (6.9) 

which we call the density o/ angular momentum. Inspection of (6.5), (6.6) and 
(6.7) shows that  if the right-hand sides were to vanish, then the difference between 
the linear momentum, angular momentum, and energy of the set of points P 
at times t~ and t 1 would equal, respectively, the resultant linear impulse, the 
resultant angular impulse, and the total work done by the generalized forces 

a a 

F~, Gi, T~, and H i during the interval of time I. This is a common way of ex- 
pressing the laws o/ conservation o/ linear momentum, angular momentum, and 
energy. Now the right-hand sides of (6.5), (6.6), and (6.7) vanish for every set 
of particles P and for every interval of time I if and only if the action density 
is invariant under the group of Euclidean displacements, as can easily be seen 
from (6.3). Thus, we have established the basic theorem o] equivalence between 
conservation and invariance: 

Linear momentum, angular momentum, and energy are conserved in a per/ectty 
elastic medium with de[ormable directors i /and  only i/ the action density is invariant 

under the group o] Euclidean displacements. 

From the definition (6.9) of the density of angular momentum one sees that,  
in general, the angular momentum of a particle does not equal the moment 
of its linear momentum as in classical elasticity theory and fluid dynamics. 
Also, from (6.5) and (6.6) one sees that  the torque exerted on a body is not, 
in general, equal to the moment of the body forces F / a n d  surface tractions T i 

a 

but is greater by an amount equal to the volume integral of d • G plus the 
~I r 

surface integral of d •  I t  follows that  these quantities represent volume and 
fl 

surface distributions of couples, respectively. 
That the conservation of energy, momentum, and angular momentum are 

necessary and sufficient conditions for the Euclidean invariance of the action 
density in Hamilton's principle was emphasized again and again in the COSSERATS' 
memoir. In this section we have merely summarized and adapted their results 
for three-dimensional media given in (t909, t,  w167 64--65). The general theory 
of the connection between invariance and conservation in the variational calculus 
is generally attributed to F. KLEIN (1918, t) and E. NOETHER (t9t8, 2). The 
counterparts of (6.5), (6.6), and (6.7) for the general elastic material of grade 2 
were presented in (t963, 3). 

7. Stress, Hyperstress, and Couple-Stress 

To cast the equations of motion and boundary conditions (5.5) and (5.7) 
into a more familiar form let us extend the classical definition of Cauchy's stress 
tensor to the present case and set 

t~ = i -~ ~ ~ ; ,  ~ "-~ ~ L  �9 = - ~  ~-~, x',~. C7A) 
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Alongside Cauchy's stress tensor let us set the hyperstress tensor, defined by 

"-" d OL b 
h i ~ =  - - I  "ai a--d~,= x",= (7.2) 

(1 

where i is the absolute scalar defined by 

Let us also introduce the generalized forces and momenta per unit deformed 
(present) volume and area defined by 

h = i _ l  F ~ t i=  T i d A  
' d a  ' 

a dA 
Pi=i-xI~ '  h i i = d i H i  da ' 

ct 

l i i  - -  "-1 d --1 aiGi, 
a 

iq,=O,j=d, Oi. 
(7.4) 

The antisymmetric part of tii is a certain couple per unit deformed volume, 
the antisymmetric part of h ii is a certain couple per unit deformed area, and the 
antisymmetric part of qii is a certain spin angular momentum per unit deformed 
volume. 

In terms of the above quantities, which have an easy interpretation, the 
equations of motion and boundary conditions (5.5) and (5.7) may be expressed 
as follows: 

P,=d.j+ I,. (7.5) 

i - tQi i=h~i  k k + t i i+  l i j + i - l ( K i i - -  k~ Pi), (7.6) 

t[ nj = t~, (7.7) 

h ~  nk = h~j, (7.8) 

where ni is the unit outward normal to the deformed configuration of the body. 

When the action density is of such a form that  

p~= OL 
O ~  - -  ~162163  (7.9) 

and 0~--0, then Eq. (7.5) becomes 

Q~=t~.j+h, (7Ao) 

and the antisymmetric part of Eq. (7.6) becomes 

Q Sii=miik, k + t[ii ] + l[ii], (7.1 ]) 

where Q=i-xo0 is the mass per unit deformed volume, 

t 
si i = -~ q[q] (7.12) 

is the spin angular momentum per unit mass, and 

m~jk--~il k (7.t3) 



96 R.A. TOUPIN: 

is the couple-stress tensor. Eqs. (7A0) resemble formally CAUCHY'S equations of 
motion for a continuous medium, and Eqs. (7.tt) are the COSSERATS' equations 

of motion for the spin. If the action density be independent of the directors, 
their time derivatives and their gradients, then (7At) reduces to the familiar 

result, 

t i j=t i i ,  (7.t4) 
in the absence of body couples. 

The symmetric part of equation (7.6) is not so easy to interpret in terms 
of familiar concepts. However, when the action density is of such a form that  

then 

8L a ab �9 
- v = o ,  (7A5)  

n 

ab d ~ �9 Q(ii) = �89 v a (% i) =cii  (7A6) 

is the time rate of change of the /orm/ac tor  cii (~, t) of the particle ~. Especially, 
if one returns to the interpretation of the directors as defining a homogeneous 
deformation of a particle, one sees that  cir is a certain measure of strain of a 

particle. The symmetric part of Eq. (7.6) then gives an equation for the ac- 

celeration of the microstraining. 

8. Measures  of  Strain ,  Microstrain,  and  R e l a t i v e  Stra in  

Let us assume for simplicity that  the action density satisfies the two con- 
ditions (7.9) and (7A5), which insure that  the linear momentum is parallel to 
the velocity of the medium and that  the momenta conjugate to the directors 

are linear functions of the time rates of change of the directors. These con- 
ditions are necessary and sufficient that  the action density have the form 

L - - - - T - - W  (8.t) 

where 
�9 . . �9 a b " i  " "  

T =  �89 g, ix'x' + g .  (8.21 

is the kinetic action (kinetic energy), and the negative of 

W = W ( x ' , t , ~ ' ,  x' d' ~) (8.3/ ~ v ,  Q , v ~  

is the action o~ de/ormation (W is the energy of deformation) which is independent 

of ~i and d ~. In this case, the energy density, as defined in (6.8), has the familiar 

form a 
E = T + W. (8.4) 

Now the kinetic part of the action, as given in (8.2), is invariant under 
Euclidean displacements; hence, the energy of deformation must be separately 
invariant under Euclidean displacements. An immediate consequence is that  
W must be independent of x ~ and t, and we can write 

w =  a,o . (8.5) 
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Under the group of Euclidean displacements the material coordinates ~'(~) of 

a point are invariant and each of the other quantities which appear as arguments 

of W transforms as a vector for each fixed value of a and x. In other words, 
every admissible energy function W must satisfy the functional equation 

= " d' ~, ~') (8.6) R'; x; R'; J e ) w f f , , x ' , , ~  

for all values of the arguments in the domain of W and for all proper orthogonal 

matrices R)i  . CAUCHY initiated the theory of such invariant functions of vectors, 
and he showed (t850, a) that  the general solution of the functional equation 
(8.6) was an arbitrary function of the inner products of the vector arguments 
taken two at a time and of the determinants of the vector arguments taken 

three at a time, plus, of course, in our case, an arbitrary dependence on the 
material coordinates ~ (~) of the point in question. In addition to the ~,  there 

is a total of fifteen vector arguments of W listed in (8.5), and the ( ? ) + 1 5  

inner products plus the ( 7 ) d e t e r m i n a n t s  are not all functionally independent. 

We wish to prove that,  when the domain of the energy function W is restricted 

by the condition 

det II x', ~[I 4 = o, <8.7) 

every solution of (8.6) is expressible as a function of the smaller number of 

invariants 
a ~ = g i i  x i �9 ,a X~,fl, 

Aa,=gi i  x ~ o~d i, 
' " (8.8)  

s = s g u  d e t  I Ix 'A  

Proof.  Throughout the restricted domain (8.7), x ' ~  is nonsingular and (8.8)2, 

(8.8)8 can be solved uniquely for d r and d',, ~ in terms of x', ~, A~a, and A,., Thus, 

W = W ( x i ~ ,  A~, A~a, ~ ) .  Using Cauchy's theorem and the identity 

g (det [Ix',-[]) 2 = det II a~ll (8.9) 

which fixes the value of the determinant up to its sign in terms of the metric 

components, one sees that  the assertion is true. 

In elasticity theory, it is customary to introduce the coordinates Xi(F~) of 

the material points ~ in a reference configuration as independent variables in 
place of the material coordinates ~' and to describe the motion of M by the 
mapping ~x,i=xi(Xl, X 2, X 3, t). If this be done in the present case and one 

assumes that  the energy W is a function of the variables 

i A ~ 
X ,i ~- OXi '  

oXiOXk j h ~(,,) x1,~ x k ~ -  
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rather than the x~,~ and x ~,~, then the foregoing results hold with obvious 
changes in notation and meaning of the variables. Moreover, if the reference 

and present configurations are referred to one and the same rectangular Cartesian 
coordinate system, then ~ =--detllax~[aXill will always have a positive value since 

(~, T ) =  t and ~ (~, t) is never zero. Thus, ~ may be eliminated as a variable 

in the energy function because the domain of W, in this case, is restricted to 

positive values of ~. 
Returning now to the discussion of strain measures, consider the six inde- 

pendent quantities 
e~a= ~ (ava-- Ava ) . (8A0) 

Each of these quantities vanishes whenever the distance between every pair 
of neighboring material points is the same as in the reference configuration. 

Thus, they serve as measures of the strain of the present configuration x,(M) 
relative to the reference configuration x T (M) of the body. When the rectangular 

Cartesian components of the displacement field 

~ =  x'(~, t) - x ~(~) ( 8 . t t )  

yield an infinitesimal displacement gradient 

~ '  I~,:~l < < t  (8.12)  ui: i = ~ X i  ' 

and the X ~(1~) are chosen for material coordinates ~(~), then 

e~ i ---- e q - u , :  i) - ~ (u~: i + ui:  ~) (8. t 3) 

to first order terms in the ui: i. The symmetric part  eii of the displacement 
gradient is the measure of relative strain in the classical linear theory of elasticity. 

The e ~  are Canchy's measures of finite relative strain. 
Consider next  the three vectors x i D ~ where, as before, the D ~ are the j C t  a ' Q 

material components of the initial values (reference state values) of the directors; 

i.e., D~= X ~ D ~ The equation 
0 ' ~  a " 

d i -  x i ~ D ~ = 0  (8A4) 
a ' a 

holds if and on]y if each director field is "material";  i.e., if and only if each 
director deforms and rotates along with the continuum. Multiplying the left- 

hand side of (8A4) by x~,~, we obtain the quantities 

--r~,= A~, -- a ~  D a (8A 5) 
0 a o 

which vanish if and only if each director is material. I t  follows that  the variables 
7~ are measures of the relative strain of the "micromedium" and its surrounding 
a 

"macro-medium". To first order terms in the displacement gradient ui: i and 
the differences (ad'-- D i) we have 

- -  7 i  = ( d ,  - -  D , )  - -  u , :  i Di (8A 6) 
a t l  

provided again that  one chooses the Xi(l~) for material coordinates. 
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If for each rectangular Cartesian coordinate system X ~ one chooses for the 
directors D ~, the three unit vectors along the coordinate axes, then D~= 8~ and 

Q el a 

the infinitesimal relative micro-macro strain measures (8.16) have the form 

7a~ = --~0a~ + ui:a, (8.t7) 

where 

v,o,= D,, (8.t8) 

given by  MIm)LIN (1964, 1). Since a different choice is made for the initial 
values of the directors for each coordinate system, the labeling index "a"  becomes 

a tensor index as in (8.17), and, in MIN~LIS'S linear theory, ~va~ is a tensor of 
rank two under orthogonal transformations of the spatial coordinate system. 

Finally, the variables A ~  vanish in the reference configuration provided 
11 

the initial values of the directors are constant vector fields in M; hence, they 
remain small if the deformation of the directors is not too large and inhomo- 

geneous. To first order terms in the displacement gradient and the differences 
~ai we have 

~ii  = ~?ai, j = naii (8.t9) 

provided the coordinate system X i is rectangular Cartesian and the initial values 
of the director fields are unit vectors along the coordinate axes, where the n~ii 

are the infinitesimal "micro-strain" gradient measures introduced by MINDLIN. 
Now it is clear from the definitions (8.10) and (8.15) of the strain measures 

e ~  and 7~ that  any admissible energy function may be expressed in the form 
a 

W =  W(e~,a, ya ~,, ~a~,a, A~,a, D ~', ~ ) .  (8.20) 

I t  should be emphasized that  this function depends on the reference configuration 
through the A ~  and D ~ because, for a given configuration xt(M), the values 

Q 

of the relative strain measures e~  and 7~ depend on A ~  and D ~. 

9. Cosserat Continua 

A Cosserat continuum is kinematically equivalent to the media with three 
deformable directors which we have been considering provided one adds the 
six independent constraints 

gli di di = g (9A) 
a b d'b 

where g is any constant, symmetric, nonsingular, positive definite matrix. We 
a b  

may obtain the COSSERATS' equations of motion from the variational equation 
(5.4) which, in this case, must hold only for variations consistent with the six 
constraints (9A). A variation is consistent with (9A) if and only if 

Q 

d~i ~ di)=O, (9.2) 



i O 0  R . A .  T o u P I N :  

where d i d i =  ~, so that  the vectors d i are reciprocal to the set d i. The equa- 
b b a 

tions of motion and boundary conditions for Cosserat media have the form 

t / ,  i + [, = J -x ~ ,  (9.3) 

m q*,~-- t[q I + l[i il + Pti x i]----J -1QiqJ, (9.4) 

t /n i=t~ ,  (9.5) 

m i i k n,  = h[i il, (9.6) 

where all the quantities which appear have been defined in w 7. These equations 
are the same as for a medium with deformable directors with the exception 

that  Eq. (7.6) is replaced by  its antisymmetric part and Eq. (7.8) is replaced 
by  its antisymmetric part. One can easily perceive without a detailed derivation 
of these results how this reduction in the number of field equations and boundary 

conditions follows from the constraints (9.2). 
Of particular interest to the history of the subject of couple-stresses in elasticity 

theories is the energy equation for a Cosserat continuum. I t  follows from the 

constraint equations (9.t) that the tensor, 

a �9 

~i i  = di d i, (9.7) 

which measures the rate of rotation of a point in a Cosserat medium, is anti- 
symmetric (~q=- -6 i~ )"  I t  is possible, therefore, to write the energy equa- 

tion (6.7) in the form 

f ed = f ' f ' h (9.8) d~ ~ ~ ~Jl 
P P P 

The rate of working of the extrinsic forces at the boundary of the part  P of 

the body appears here as the sum of the rate of working of the stress vector t i 
and a distribution of couples h[q]. This should be compared with the energy 
equation for a medium with deformable directors in which the rate of working 
contains additional terms representing the rate of working of a distribution h(ii) 

of sel/-equilibrated double forces. Perhaps the most important concept gained 
from a study of the mechanics of media with deformable directors is the rele- 
vance of such distributions of self-equilibrated tensions to the general theory 
of continuous media. We see that  Eq. (9.8) does not hold generally in perfectly 
elastic media, but  represents accurately the balance of energy only in certain 

special models. 

10. Nonsimple Elastic Materials 

The classical theory of elasticity can be generalized in quite another direction 
which also leads to a modification of the familiar concepts of stress. Rather 
than introducing rigid or deformable points, consider the following alternative 

line of thought. In the classical theory, the elastic energy of a body is given 
by an integral of the form 

E(M)  = f Wd"Y" (10.1) 
M 
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where W is the energy per unit reference volume. For simplicity, in this section 
we shall consider only statics. Now the energy density W at a point ~ is de- 
termined by the instantaneous configuration x t (N) of an arbitrarily small neigh- 
borhood of points N(~) containing the point ~ under consideration. This principle 

o/local action is basic to the classical theory, and to the generalization we wish 
to construct. Suppose that  x t (~) has p derivatives in N(~). Then the relative 
position vector of the point ~ and the point ~'EN(~) can be written in the form 

x~(~ ') - x~(~) = xi,~(~) d ~  + �89 x~ ~(~) d~  d~  + 

zi (10.2) 
+ . . .  p! ,~,~, . . . .  p ( ~ ) d ~ l . . . d ~ ' + O ( d  p+I) 

where 0 (d p+I) represents a term of order p + 1 in the diameter d of N(~). We 
see that  the possible configurations of the points N(~) are classified more and 
more finely by the values of the successively higher position gradients at the 
point ~. In the classical theory, the energy density has the form 

W =  W(x~ ~, ~ ) ,  (t0.3) 

which means that  all configurations of the particles N(~) which correspond to 
the same values of the first order position gradient xi~ (~) are mapped into 
one and the same value of the energy density at ~. An easy generalization of 
(10.3) consistent with the principle of local action is to assume that  the energy 
density might also depend, however weakly, upon any finite number of higher- 
order position gradients. By such reasoning one is led to consider the mechanics 
of elastic media based on an expression for the elastic energy of the form 

E(M) = f W(x', ~, x i, ~a, "", xl, ~,~ . . . . .  2~, ~) dV. (10.4) 
M 

Following NOLL'S terminology (t958, 3), the classical theory based on (10.3) is 
the theory of perfectly elastic simple materials. If any higher-order position 
gradient appears in (10.4), we call the corresponding material nonsimple. If N 
is the order of the highest gradient actually present as an argument of the energy 
density, we call the material grade N. There follow some results for materials 
of grade 2. The general features of the theory of nonsimple materials are illus- 
trated sufficiently well by materials of grade 2, and the analysis of higher grade 
materials is only that  much more complicated in details. 

Let P denote any part of a material of grade 2. Its energy is given by 

E(P) : f W(x~.., #,.a, ~) de'. (10.5) 
P 

The definition of the second-order position gradient is written out in full in 
Eq. (2.8). To obtain the equations of equilibrium and boundary conditions for 
the part P of M we assume the principle of virtual work 

E ( P) = f F~ Ox~d~ + f (T i 8x ~ + H i h 6x ~) d d ,  (t 0.6) 
P OP 

where F i is the body force per unit undeformed volume, T i are the tractions 
per unit undeformed area, H i are the hypertractions per unit undeformed area, 
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and DSx ~ denotes the normal derivative of the variation 8x~: 

D cSx~= r ~. (t0.7) 

The variational equation (10.6) is postulated for arbitrary variations 8xi(} ~) of 
the position field. It  can be shown that (10.6) is equivalent to the following 
system of equilibrium equations and boundary conditions: 

T~',~, + F~= O, ~EP,  (t0.8) 

T~N.- -D~H~'PN~+H~'O(B~--B~N.N~)-=-T , ,  ~ o p ,  (10.9) 

H~'t~N~N~=Hi, 
where 

T~--- ~w ~w 

is a generalization of Kirchhoff's stress tensor of the classical theory, and 

H~,~_ OW ( t0. t t)  

is the hyperstress tensor. In the boundary condition (t0.9), D~H~ ~ is the surface 
gradient or surface divergence of the hyperstress defined by  

H~a,~ = D H ~ N ~  + D~H~ ~, 
DH~,~=H~,~ NO (t0.t2) 

and B ~  is the second fundamental form of the undeformed boundary of P 
(B~=A~Bo~) .  

The equations of equilibrium and boundary conditions (10.8) and (t0.9) for 
a material of grade 2 can be written in the following alternative spatial form: 

t ' J j + f = o ,  ~ P ,  (to.t3) 

tiini -- dihiikn~ + hiik(bi~ -- bqqnink) = t~, ~C OP, 
hi~knj nk = hl ' (t0.t4) 

where 
fli = ]/~/a T ~ x i, ~ (t0.15) 

is a generalization of Cauchy's stress tensor of the classical theory, 

h i~  = VA~/a Hi~axi,,  x~,a (t0.t6) 

is the spatial form of the hyperstress tensor, and 

t '=  T ' ( d d / d . ) ,  h'=H~(d~/da) (t0.17) 

are the tractions and hypertractions per unit deformed area, and n~ is the unit 
outward normal to the deformed boundary of P. The tensor b~i, which appears 
in the traction boundary condition (10.14)~, is the second fundamental form 
of the deformed boundary, and dih i~* denotes the deformed surface divergence 
of h ~ 

On substituting the expression (t0.10) for the Kirchhoff tensor into the 
definition (10.t5) of Cauchy's stress tensor and integrating certain of the terms 
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by parts, we find the following relation: 

+ (t0.18) 

Now the expression in brackets in (10.18) is symmetric in the indices i and 7" 
i / a n d  only i / t h e  energy function is invariant under rigid rotations of the de- 
formed body. I t  follows, therefore, that  a necessary and sufficient condition 
that  the energy be invariant under rigid rotations is that  the COSSERATS' mo- 

ment equation 
t ~j] + m "k, ~ = o ( t o . t 9 )  

be satisfied at each point ~. Here the couple-stress rn ~ik is defined as the anti- 
symmetric part 

m~7"~ = ht~il k (t0.20) 

of the hyperstress. 

If the energy density is invariant under all rigid transformations of the 
deformed body, then the variation of the elastic energy E(P) of each part vanishes 
identically for every variation of the form 

x ~ = a t + b ~j x~. ( 1 0 . 2 t )  

where a ~ and b i i = -  b ii are arbitrary constants and we assume that  the spatial 
coordinate system (i) is rectangular Cartesian. I t  then follows directly from the 
variational equation (t0.6) that  no solution is possible unless the body force 
and the boundary data (tractions and hypertractions) satisfy jointly the com- 
patibility conditions (conservation laws) 

f / i d a , +  f h d * = O ,  (10.22) 
P oP 

f xt~/j] d,, + f (xti ti] + n t i  hi] ) d a = 0. (t 0.23) 
P aP 

It  follows from these conditions that  n • h is a couple per unit deformed area. 
The normal component n . h  of the hypertraction enters neither of the compati- 
bility conditions (t0.22)--(10.23). I t  represents a distribution of self-equilibrated 
forces. 

By an argument similar to that  given in detail in w 8 it can be shown that  
every rotationally invariant energy density is expressible in the form 

W = W(e~, a, q~,ar, A~,a, ~)  (t0.24) 
where 

qaav= zi,~xl, a v (t0.25) 

and the e~a are the finite relative strain measures defined in (8A0). The q's are 
expressible as linear combinations (an isomer) of the gradient of the strain 
measures e~a,v: 

q~a~=e~a,~ + e~v,a -- eva,~. (t0.26) 

In words, therefore, what we have shown is that  every admissible energy func- 
tion of a material of grade 2 is expressible as a function of the six classical 
measures of finite strain, the material gradient of these measures, the initial 
metric components, and the material coordinates ~(~). 

8* 
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11. Cosserat Materials with Constrained Rotations 

The particular class of elastic materials with couple-stresses considered by 
GRIOLI (1960, 2), MINDLIN & TIERSTEN (1962, 2), and TOUPIN (t962, J) is a 
subclass of the materials of grade 2, the theory of which we have just outlined. 
In this section we shall sllow that  this subclass may be viewed as consisting of 
Cosserat media in which the rotation of a point is constrained to equal the local 
rotation of the continuum. In (1962, t) it was shown that  this same class of 
materials comprised the materials of grade 2 for which the energy was a function 

W =  W(e~,~, e~,t~,~, 1, A,,~, ~') (11.t) 

independent of the completely symmetric part e(~a,r) of the strain gradient. 

Now the directors of a Cosserat medium may be expressed in terms of their 
values in the reference configuration as follows, 

~'(~, 0 =R-'~(~, 4)D~(~) (1t.2) 

N .  

where the tensor R'~ satisfies the orthogonality condition 

g, iR"~=]Ta=A=a. (1t.3) 

Also, the position gradient x i may be decomposed uniquely into a product 

x ~, ~ = n' a (a~)a (l t.4) 

of an orthogonal tensor Ri~ satisfying (1t.3) and the positive definite square 
root (a~)~ of a~=A~'rara. The tensor R~ measures the local rotation of the 

continuum. In a true Cosserat medium, the rotations Ri, and ~ i  are independent. 
Differentiating (a 1.2) we find that  

N , r  ~I , 

2R~Rj=2d~dj = ~ .  (tt.5) 

where ~i j  are the rates of rotation which appear in the energy equation (9.8). 
Differentiating (11.4) we find that  

~i, i = / ~ -  R?  + ~,r ~a i (a-~)r~ (a�89 (t 1.6) 

The last term on the right-hand side of (11.6) is symmetric in i and/', so that  
the classical vorticity or spin tensor of the continuum is given by 

cos i ---- 2 xti, i] ~ 2Rff k i ~. (11.7) 

Suppose the rotation of the Cosserat triad d i is constrained to follow the 
r  

local rotation of the continuum in the sense that  we require 

Ri~ = R~. (t t .8) 

I t  then follows from (1t.5) and (tt.7) that  the corresponding measures of the 
rate of rotation will be equal: 

o~ij = ~ j .  (11.9) 
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I t  now follows that,  in a Cosserat medium with constrained rotations (con- 

straints (11.8)), the energy equation has the form 

f Ea = f f + • , ,  
P P P 

where co ii is the ordinary vorticity. 

The energy equation (1t.t0) was taken as a starting point in the special 
theory of grade 2 materials considered in (1962, 1) and (t962, 2). To the postulate 
(11.10) was added the assumption that  the energy density E had the special 

form 

which, because it lacks any contribution to the kinetic energy from the motion 
of the directors, is less general than that  for the most complex type of Cosserat 

medium with constrained rotations. The spin density vanishes identically if 
the energy has form (1tAt) but  does not vanish for all Cosserat media with 
constrained rotations. I t  was found that  the couple-stress for these materials 
was given by  

m i ( i k ) : 2  ~W x i xk 

m [iik] indeterminate. 

Since m i i k = - - m  iik, m(i(ih))=O so that  one cannot have the relation (tt.12) 

unless the energy function W satisfies the ten independent differential equations 

ew x j ~ x  k) = 0 .  (11.13) 

Rotational invariance of the energy requires that  W satisfy the three independent 
equations 

OW ~W 
~ti ,~  xj], ~ + ~ xj], ~ = 0.  (1 t.14) 

The general solution of the equations (t 1.13) and (t t . t4) is an arbitrary function 

W=W(e~, a, e, ta,~ J, ~'). ( t1.t5)  

This result shows that  the Cosserat media with constrained rotations are a 
proper subclass of the materials of grade 2. My present feeling is that  this 

special class of grade 2 materials does not warrant further special s tudy or 
attention. The conditions ( t t . t3)  seem unnatural in view of the general theory 
of grade 2 materials; moreover, we know from the analysis of special problems 
that  these materials have some peculiar properties. For example, it was found 
that  the longitudinal waves in an isotropic material had a speed independent 
of their frequency as in the classical theory, but  that  shear waves were dispersive. 
Also, the deformation of the boundary of certain crystals caused by initial stress 
and hyperstress in a general material of grade 2 does not occur when expected 
in a Cosserat medium with contrained rotations. 
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12 .  I n i t i a l  S t r e s s  a n d  H y p e r s t r e s s  

In the classical theory of elasticity a homogeneous initial stress in a homo- 
geneous material can be transformed away by a suitable homogeneous trans- 
formation of the reference configuration. The stress-free configurations of a 

material in the classical theory are called natural states. In the classical theory, 
the existence of a natural state is the rule rather than the exception; for materials 
of grade 2, we shall show that  the existence of a state in which both the stress 
and hyperstress vanish is the exception rather than the rule. 

I t  was shown in w t0 that  the energy function of a grade 2 material was 
expressible as a function 

W= W(e~, q~v, A~ ,  ~) (12.1) 

of the strain measures e~  and the linear combinations q~av of the strain gradient. 

The function W depends on the reference configuration xr(M),  the material 
coordinate system (~), and the spatial coordinate system (i). 

Using the formulas (t0.10), ( t0. t l ) ,  (10.15), and (t0.16), we obtain the follow- 
ing expressions for the stress and hyperstress in terms of the function W in (t2.1) : 

tli=V~/a)[Te~xi xia+2H[=rlax i x i --H~a, axl xi~3, 
,~ , ,~a  ,r  '~ ' ( t 2 . 2 )  

hiJ~ = V U [ ~  H~a, xi x ~ ,O;Xl,  o~ , ~  

where 

T~&_ 0W H ~ r _  0W (12.3) 

Now every property of a given material is fixed once and for all by its 
energy function W. We proceed now to lay down definitions of special materials 
in terms of properties of the function W. 

If the reference configuration is changed from X i to X 'i, the variables upon 

which W depends undergo the transformations 

t 

e'~ = e~  + �89 (&~ - &~),  

(12.4) ' + ~ 

q~tJ, =q~r  ({~ i l ia--{~ fl}a')a,~, 

and the energy function W' based upon this new choice for the reference con- 
figuration is defined in terms of W by the relation 

t t 

W'(e~a,q,,av,A~a,~) = ~ W ( e ~ a , q ~ a ~ , A ~ a , ~ " ) .  (12.5) 

We now define a homogeneous material as one for which a reference configuration 
exists such that,  in a rectilinear material coordinate system for that  configuration 
(i.e., a coordinate system such that  A~a = constant), the energy function does 
not depend on the point ~. I t  is easy to see from the transformation laws (12.4) 
that  if one such configuration exists, then any homogeneous deformation and/or 
translation 

X 'i= LijX i + D i (t 2.6) 

(we assume the spatial coordinate system (i) is rectilinear) of the reference con- 
figuration yields another reference configuration with the same properties. We 
call such a reference configuration of a homogeneous material undistorted. The 



Couple-stresses in Elasticity t07 

general formalism does not require that  the reference configuration be undistorted, 
but from this point on, let this be assumed. Also, let it be assumed that  the 
material coordinate system is rectilinear. 

From the definitions (12.2), the stress and hyperstress in an undistorted 
reference configuration of a homogeneous material are given by the simpler 

formulas o t~ J : o T ~  X~, ~ Xi, a, (t 2.7) 

The coefficients o T ~  and oH ~ and the initial values of the position gradient 
X~,= are all constants provided (a) and (i) are rectilinear coordinate systems. 
The oT ~ and o H ~ v  are defined in terms of the energy function by 

oTa~_ OW e=~=o' 
Oe~a (12.8) 

cqW e = q = O  ~ ?~q~3y 

In general, it cannot be expected that  for an arbitrary choice of the reference 
configuration these values of the "initial" stress and hyperstress will vanish. 
From the definition of W' in terms of W given in (~2.5) we can deduce how 
the stress and hyperstress in two reference configurations must be related. 

where 

0 T , ~ =  0W' = l / ~  OWl 
Oe~ 3 e ' = q ' ~ 0  " ' "  " Oec~3 e=(A'--A),q=O 

=- ( A V ~  ~ Oea~e:,~ q=o ] 
$ 

- V(aT  [or + ' - ~(av. )  ( A ~ e  - A ~ ) ] ,  

(t2.9) 

e~a (e) = e (A'~a -- A ~a). 

The coefficient C~a{.~ e is a sort of average elastic modulus of the material along 
a straight line in the space of strain measures e~  joining the two points which 
correspond to the pair of reference configurations. Suppose that  0T ~ 4=0 and 
we seek to determine the existence of a reference configuration such that  o T ' ~  = O. 

From (12.9) we see that  sufficient conditions for the existence of a transformation 
to such a new reference configuration are that  C~a{.~ e be nonsingular in the 
sense that  C ~ e v ~ v v ~ > O ,  v ~  =~0 and that  

A,g  = A ~  --  (C(~,,.)):,ovooT (t2.t0) 
be positive definite. 

A similar analysis for the hyperstress yields the formula 

o H ' ~ v  ----- V(A/A')  [o H~'~v + Dt~O*(A'~, - -  Ao,)].  (t 2.tt)  

Since the condition 0T'~----0 fixes the metric A~s, this condition determines 
the reference configuration to within a rigid motion. To require that  the initial 
hyperstress 0 H ' ~ v  vanish simultaneously leads, in general, to an overdetermina- 
tion of the reference configuration. To sum up, we have the following theorem 

on initial hyperstress: 
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For almost all uniJorm homogeneous materials o/grade 9 there exists a re[erence 
configuration/ree o/initial stress, but, except/or special materials, such a natural 
state possesses initial hyperstress. The natural state is unique to within a rigid 
motion. 

13. Material Symmetry 

In each of the models of an elastic continuum which have been considered, 
the action density determines a material symmetry group. We shall illustrate 

the idea and definition of material symmetry using materials of grade 2 and 
restrict attention to statics so that  it suffices to consider the energy density W. 
For these materials we are given a function 

W - -  (13.t) 

Since A~a is a Euclidean metric field, the material coordinates (~) can always 
be chosen in such a way that  the components A~a are constants 

A~a=6~ a. (13.2) 

Consider, then, the length-preserving transformations 

(L, h ) :  M-+M (13.3) 

of the material manifold into itself. Each such transformation is represented 

in a coordinate system (~) where (t3.2) holds by a formula 

8'~----L% 8~+D  ~ (t3.4) 

where L is an orthogonal matrix so that  L L r =  1. 

The arguments in the energy function (t 3.1) transform as follows under each 

transformation (13.4) of the manifold: 

q'ae=L'~LSL~q,vr 

The material symmetry group of the material with energy function (t3.t) is 

the set of all transformations (L, D) such that  

' W(e  a, q~a~, ~ ) q~a~, ~) (t3.6) 

throughout the domain of W. 

If a group of transformations (t3.3) is given for a material, the functional 
equation (13.6) may be viewed as a system of restrictions on the energy function 
for that  material. The material symmetry group of a homogeneous, isotropic 
material is the set of all distance-preserving transformations (t3.3). Crystals 

are characterized by crystallographic space groups (t3.3), etc. 

14. The Boundary-Layer Effect in Crystals 

Low-energy electron-diffraction studies (c[., e.g., (1961, 1)) of very clean 
surfaces of crystals have revealed that  the spacing between the first few layers 
of atoms adjacent to a free surface differs a small amount froln the uniform 
spacing of the deep layers. As an application of the theory of elastic materials 
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of grade 2, we shall show how an initial hyperstress causes a deformation of a 

boundary-layer near a free surface in qualitative agreement with what has been 

observed. 

For simplicity, let the material be homogeneous so that  

W =  W(e~a,  q ~ v ) .  (14.t) 

We can define a natural  length for the material with energy function (t4.1) by 

the formula 

l ~ - - I F I  (a4.2) 
ICl 

where 

aq=/~v Oqevr _ ~ e=q=O (t4.3) 

and the norm IT[ of any material tensor such as F or C is defined by 

I T  I = V A ~ a A r a . . .  T ~ r a'''~. (14.4) 

For simplicity and definiteness, consider now an infinite slab of a material 
of grade 2 which has plane parallel faces free of all tractions and hypertractions. 

Let  its thickness be 2L in its natural  state. Let material coordinates coincide 
with the initial positions of the particles in a rectangular Cartesian coordinate 
system (i) chosen in such a way that  the free surfaces of the slab correspond 

to the coordinate planes IX[ = IX1[ = L .  
We seek a solution of the equations of equilibrium (10.8) and (10.9) with 

vanishing body force, surface tractions, and hypertractions and which has the 
form 

x 1 =  x 1 ( X ) ,  

x z = X  2 + u 2 ( X ) ,  (14.5) 

x3 = X 3  + u 3 ( X ) .  

For a solution of this form, the position gradient x i is a function of X only. 
Hence, the Kirchhoff tensor T i~ is a function of X only, and the equilibrium 

equations have the simple form 

T i~' - -  T i l  ~ (i4.6) ,ct-- ,1 "~-O" 

Since the boundary of the slab is everywhere free of curvature, and the surface 
gradient of the hyperstress vanishes for solutions of the form (14.5), the boundary 
conditions simplify to 

Ti= N~, = T i l  ---- O, 
(14.7) 

H i = a N = N t ~ = H i 1 1 = O  at [ X I = L .  

The general solution of (14.6) is T i l=Cons tan t ,  and from the boundary con- 

dition (14.7)1 it follows that  the constant is zero. Hence, the problem reduces 
to finding a solution of the lower-order equations 

T i l = O  (14.8) 

which satisfies the boundary conditions (14.7),. To simplify the notation, let 

y '  (X)  = x ~, ~ ( X ) ,  (l 4.9) 
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and let a superposed dot denote differentiation with respect to X = X  1. Thus, 

p~=x~11. (14.to) 

For deformations of the class (t4.5), the energy is a certain function 

w =  U(y ~, p). (14.t 1) 

Expressed in terms of the function U, the equations (t4.8) are 

oU aU - o ,  I x I < L ,  (t4.t2) 
ayi Opi 

and the boundary conditions (t4.7)3 are 

~U 
IXI=L. (14.t ) 

I t  is interesting to note that,  if one replaces the independent variable X by 

the time t, the two-point boundary-value problem (t4.12)--(t4.t3) is mathe- 
matically equivalent to the determination of the motions of a mass point in 
a force field [i=OU/ay i such that  the initial momentum pi=aU/O~ i and the 

final momentum at some later time vanish. Systems of equations of this standard 

Eulerian form with one independent variable have an extensive literature. I t  
appears, although I have not found a precise statement of the result, that  

sufficient conditions for the existence of a solution to the boundary-value problem 
(t4.12)--(t4.t3) are the positive definiteness of the Hessian matrix 

O2U (14.t4) 

in a suitable region of the phase space. 

To exhibit the boundary-layer effect in more explicit form, let us write the 

variables y~ as 

y i =  8~ + w i (x) .  (t4.15) 

The new variables w ~ (X) all vanish when the particles are in the natural, reference 
configuration. If the equilibrium configuration of the slab differs from the 
reference configuration by  a motion with small strain and small rotation, then 
the dimensionless variables w i are all small: 

I '1 <<1. (t4.t6) 

If it also be assumed that  the gradient of the relative deformation and rotation 
is small in the sense that  

Z l 'l <<t, (14.t2) 

then the solution for w ~ is approximated very closely by  the solution of the 
linearized equations of equilibrium 

l*~ + lfl[ii]~i -- Yii wi = 0, (t4.t8) 

which satisfies the linearized boundary conditions 

l ~ j f v J + f l i i w ~ = - - # i ,  IX[ = L  (14.t9) 
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where xii is the dimensionless constant tensor obtained by  setting w i = 0  in 

the right-hand side of (t4.t4), and the dimensionless tensors flq, ~ii, and #i 

are defined by  
U 

82 ~ w=O 

~ U  w=o' (14.20) ~ii-- ~yl 8yi 
ou 

l# i  = ~ w=0" 

Note tha t  #i measures the initial hypertraction on planes normal to the X axis. 

The ~q  are the elastic constants Citit of the classical theory of elasticity. 

To solve the boundary-value problem (t4. t 8) --  (t 4.t 9), set 

w i=  Wie ~x# (t4.2t) 

where the W i are constants. Substituting (14.2t) into the equilibrium equations 

(14.t8), one gets the linear homogeneous system 

(k~iJ  + kfl[i i] -- 7i i) Wi = 0 (14.22) 

which has a nonzero solution if and only if k is a root of the characteristic equation 

P(k) = det ]lk2~,i + kflt, j j - -  r,j]l = 0. (t 4.23) 

I t  follows from the symmet ry  of the coefficients ei i  and ~ii and the ant isymmetry  

of the coefficients flriij tha t  the sixth degree polynomial P(k) is even in k: 

P(k) = P ( - -  k). Hence, P(k) is a bicubic, and if k is a root of (t4.23), so also is - -  k. 

Let  us assume as a condition on the strain energy function that  ei i  and ),r are 

positive definite*. Since P(k) is bicubic, it is not difficult to determine the con- 

ditions on the coefficients ~ii, flr and )lij such that  all of the roots of (14.23) 
are real. With positive definite xii and ?ii ,  the roots are all real for sufficiently 

small fli/. We shall assume tha t  all six roots k = 4- k, a = 1, 2, 3 are real. Then 

the general solution of the equilibrium equations can be written in the form 

{ cosh( X/l) U' sinh(kX/l) } 
wi=~_f  A cosh(kL/l) + B sinh(aL//) V i (14.24) 

where U i and V i are unit vectors. Substituting (t4.24) into the boundary con- 
lg a~ 

ditions (t4.19), one obtains a system of six linear equations for the six scalar 

amplitudes A, B, a = t ,  2, 3. These always have a solution which is linear in 

the initial hyperstress #i. The amplitudes have been so defined that  the coef- 

ficients in the linear relation are of order unity. Thus, when the thickness of 

the slab L is much greater than the characteristic length l of the material, one 

sees by  inspection of the solution (t4.24) tha t  the strain and rotation determined 
by  w ~ decays exponentially to zero from values on the surface of the slab which 
are linear functions of the initial hyperstress. 

* MINDLIN (1962, 2) has shown that, in the linear theory of materials of grade 2, 
uniqueness of the usual boundary-value problems holds under these conditions and 
fails, in general, if they are not satisfied. 
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