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Work supported by CNPq (Brasil)

brought to light the unsolved problem concerning the non—e:zistence of the Newtonian

The present attention theoretical physicists devote to lower dimensional gravity

1. Introduction

the corresponding Newtonian picture is made.

Einstein equations, and by considering Brans—Dicke theory of guavity. A comparison with

spacetimes generated by circularly symmetric matter distributions in two cases: weakening

assuming alternative equations for the gravitational Held. We investigate the properties of

when the spacetime dimensionality is reduced to 2 —l- 1 and try to bypass this difiiculty

We discuss the failure of General Relativity to provide a proper Newtonian limit
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dimensional Jackiw’s gravity. OCR Output

Figure 2: ' Effective potential determining the radial motion of a. particle in (2 + 1)
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(2+1)-dimensional Newtonian universe.

Figure ·1: Phase space trajectories of a particle subjected to a gravitational field in 11,



(2) OCR OutputV(r) = GM£m·.

Thus, if n = 2 this corresponds to the gravitational potential

where G is a constant and r is the distance from the center of the distribution, with r > oz.

(1)a(r) = ·GM/r"`1»

expressed by the generalized law (see, for instance,refs. [3,4]):

distribution of mass M and radius cz in a cl : n + 1 dimensional spacetime should be

It is generally accepted that a Newtonian gravitational field due to a spherical matter

2. Newton’s theory of gravity in 2+1 dimensions.

consider the same problem in the light of Brans-Dicke theory of gravity.

Jackiw in his attempt to formulate gravity in 1 + 1 dimensions (ref. Secondly, we

different ways. Firstly, we ‘weaken’ the Einstein equations in much the same way as did

better,_circularly) symmetric distribution of matter. We approach this problem in two

the classical problem of determining the gravitational field generated by a spherically (or,

to the above situation when the Einstein field equations are modified. Thus, we take up

In this paper, we restrict ourselves to a (2 + 1)—manifold and examine what happens

etary’ motions nor gravitational waves are allowed to exist in a 2 + 1 spacetime.

In particular, if matter creates no gravitational field outside its location neither ‘plan—

General Relativity cannot even be formulated’ (ref.

In the second case, as was pointed out by Jackiw, ‘gravity has to be invented anew since

consequence, in the first case spacetime must be flat in regions where matter is absent.

the situation is more drastic since in this dimensionality G py vanishes identically. As a

is completely determined by the Einstein tensor (R,,,,0,p — c,,,,,,e.,,g.,G""). For cl = 1 + 1

[1,2]). This results basically from the fact that when d = 2 — 1 the Riemannian curvature

limit of General Relativity when the spacetime dimensionality d is less than four refs.
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region of space.

matter how large is its energy a test particle is constrained to move within a' bounded

So, we arrive at the conclusion that in a Newtonian universe with 2 —l1 1 dimensions no

corresponding to the energy E0 = (1/2m)L/rg +MG€m·,, and a period rr = 2rL(mMG)"

__ topology of a center; see ref. represents the circular orbit r = rc = Lm'1(MG)'1/2 ,

of the momentum (see fig. 1). In this diagram the equilibrium point To (which has the

if we display these orbits in the particle’s phase space, where pr is the radial component

of force, the permissible orbits being bounded. An illustrative picture may be obtained

It is clear from the latter equation that the particle cannot escape from the center

with E being the total energy of the particle.

mviz/2 = E — (1/2m)L/r— MGZm·,2z

the other hand, the energy conservation equations yields directly

where r and 0 are polar coordinates and L is the angular momentum of the particle. On

(4)mii = L2/mr3 — GmM/r

(3)mrzél = constant = L,

matter distribution would be given by

Then, the equations of motion for a test particle of mass m put in a region exterior to the



there is no possibility of a Newtonian limit to exist. OCR Output

test particles in these spacetime are not bounded, ‘planetary’ motions no being allowed,

integration along a closed contour) are measured (ref`. Howewer, as the trajectories of

the gravitational field in a number of effects whenever global variables (which involves

Minkowskian spacetime, particles moving in these conic geometries are said ‘to detect’

matter distribution. Since the geodesics in both cases are not simply straight lines in a

dimensional analogue of this configuration may be generated by any circularly symmetric

Riemannian flat geometry with bidimensional spatial conic sections (ref. The 2 + 1

generated by an infinite static matter string in 3 + 1 dimensions which is described by a

geometrical structure. The main quoted example of this phenomenon is the spacetime

nevertheless present global features allowing one to distinguish it from a pure Minkowskian

defects (ref. Essentially, these reffer to the properties of a locally fiat spacetime which

Recently, there has been great interest in metric configurations exhibiting topological

way to obtain a Newtonian limit.

curvature is null everywhere except in the interior of the matter distribution, there is no

of particles under the influence of circularly symmetric massive bodies. And, since the

Newtonian picture, specifically if we regard the previously analysed problem of the motion

are simple straight lines. Thus, the situation here seems to diitier drastically from the

field in regions where matter is absent. The spacetime is flat (RWM = O) and the geodesics

dimensions one is led to the conclusion that a test particle does net ‘feel’ the gravitational

As we have mentioned earlier, if one consider Einstein’s theory of gravity in 2 + 1

which, in turn, must be determined from the gravitational field equations.

finding the spacetime geodesics. Thus, one has to know the geometry of that spacetime,

generated by matter distribution in any metric theory of gravity reduces to the problem of

To find the motion of a test particle under the influence of the gravitational field
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is to consider a static circularly conformally fiat metric given by

geometry by choosing a metric tensor with only one degree of freedom. A natural choice

alone. A way to bypass this difiiculty is to reduce the number ofdegrees of freedom of the

However, if N and P are independent then they cannot be defermined by equation (8)

where N and P are functions of the radial coordinate r only (see, for example ref.

(9)dsz = c2Ndt2 — e2Pdr2 -— r2d6l2

may be given by the line element

variable r. On the other hand, the most general form of a static aircularly symmetric field

reduces to a second ordinary differential equation involving onlyme metric function in the

R = U (8)

r only. Since T : 0 in regions where matter is absent the equation

source of the curvature the metric coefficients should be function of the radial coordinate

manifold. Now, considering a static circularly symmetrical matter distribution as the

We shall assume (7) as a plausible field equation describiige gravity also in a 2 + 1

where T = Tf is the trace of the energy-momentum tensor.

R = T

are ‘weal<ened’ by replacing (6) by its trace. In this way, we are lei: with the scalar equation

Guv : Rav " (1/2)-R : Tw (6)

was put forward by R. Jackiw (ref.[l]). In this approach Einsteifs equations

spacetime manifold. An attempt to formulate the field equations in this dimensionality

As we have remarked before, the Einstein’s tensor G ,,,, vanisiies identically in a (1 +1)
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get the following first integral:

where or and Z are integration constants. Now, if we divide (13) by ds? and use (14) we

(146)fr2d9/ds : 6,

fdt/ds = or (14a)

writing down the geodesic equations:

Let us investigate the motion of a massive test particle in this geometry. We begin by

presents no asymptotic Hatness, and this is a question deservinga further comment.

it is worthwhile to mention that as far as behavior at infinity is concerned this geometry

the gravitational field nor change in the metric signature takes pllace. On the other hand,

equation (8)), this surface does not represent an event horizon, since light is not affected by

and Frankel (ref. (who found a similar solution in the weal<—&eld approximation of the

by the invariant R,,,,R”" at the surface 2* = A. However, as was pointed out by Cornish

This solution has a singularity as it may be readily seen by evaluating the value assumed

(13)432 : (ln(v~ - A))4 (d¢2 - (112- r2d62),

vacuum equation is given by the line element:

where A 2 _O and B 2 O are constants. Thus, the conformally Hat solution of J ackiw’s

(12)f(¤‘) = B (Knit — AD`,

whose solution is given by

(U)f" i (3/4f)(f')2 = 0,

limit in the weak field approximation. Putting (10) into (8) we get the equation:

which, as we shall see later, has the property of leading to the correct (2 + 1)-Newtonian
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and apply it to solve the same problem of obtaining the extericr gravitational field due to

In this section let us consider the Brans—Diclce theory of gravity in 2 -4- 1 dimensions

5. Brans-Dicke theory of gravity in 2 -}- 1 dimensions

general conformally flat metric gw, : fn", in 2 + 1 dimensions (see ref.[8)).

limit for the metric (10) if we use the same argument due to Cornish and Frankel for a

Finally, we should point out that J acl<iw’s scalar equation leads to the Newtonian

gravity exhibit a rather similar physical picture.

circularly symmetric solution of Jackiw’s gravity, and the motion of particles in Newtonian

dimensions the motion of particles in the spacetime of equaticn (13), which represents a

Thus, if we disregard the existence of the ‘forbildden’ region r f Awe conclude that in 2+1

Figure 2

characterizes a circular motion of the particle around the center of the matter distribution.

Newtonian gravity, the equation 1* = TQ), with ro corresponding to the minimum of Ve_,·f(r),

spacetime if also bounded and cannot penetrate the barrier r = A. As in the case of

ple analysis of the form of KH, (see fig. 2) show us that the motion of particles in this

VCH = + B [£n(r — A)]° which determines the radial motion of the particle. A sim

tial energy given by V : = B(€p(r — A.))4. Then, we have an ‘ef`fective’ potential

energy conservation in Newtonian gravity, if we formally define a gravitational p0ien·

ordinate. Now, this equation may be regarded as the analogous of (5), i.e. the law of

in which we have put 042 = Q and dot means derivative with respect to the time co



(16a) does not vanish. As a consequence of tl1e last result, in principle one should not OCR Output

there is no Newtonian limit in the weak field approximation since the right-hand side of

a) it has no singularities for r ¢ O; b) the spacetime is not asymptotically flat; and, finally,

Looking at the equation (18a) we verify that this metric has the following properties:

with Qsg = constant.

q$ : ¢>0r“, (18b) _

hand, the scalar field is given by

D, B and A being integration constants with D = B(B + 1)'1(BW`/2 — 1). On the other

_(18a)(182 s 1-2DdH - A7~2<D+B>dT2 - M0?

equations lead to the metric (after some obvious simplifying coordinate transformations):

where 1,/2 = q$'/45 and ¢' = do/dr,P' = dP/dr , etc, The general solution of this system of

(17c)N’2—N'P'+N"=—u2zb2/2+v,b/r

(17b)NI/2=(w/2+1)¢2—P't/2+2/JI

(17:1)P,/r :4412,02/2-N’z,b

the equations (16a,b) become:

start from the metric tensor given by the equation (9) and a scalar field o = q5(r). Then,

Since we are assuming a static and circularly symmetric matter distribution we should

Relativity when w —> oo (ref.

In 3 + 1 spacetime, usually (but not always) the theory is expected to reduce to General

where d> is the scalar field and w is a free parameter to be determined by experiments.

Qqp : O, (1Gb)

R;~v_(1/2l9uvR Z “(“/$2) (¢,#¢.v “(1/2)9uv¢’p¢,Bl+(1/¢l(¢,u;¤ '“ 9u¤¢’B¢.Hl v (wal

The Brans—Dicke field equations inthe absence of matter are given by:
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epistemological point of view, have what is usually called a ‘Newionian limit’

substitute General Relativity in lower dimensions ? Should such a theory, at least from a

point, it seems that a natural and legitimate question arises inevitably: what theory could

such as the problem of the ‘breal<down’ of General Relativity in lower dimensions. At this

the subject has recently called the attention of theorists to some of its non—quantum aspects,

failure to construct a sucessful quantum theory of gravity in,3+l dimensions. Nevertheless,

The investigation of gravitation in 2 + 1 dimensions was primarily concerned with the

6. Final remarks

particles in (2 + 1)—Newt.onian gravity.

expect the motion of particles in this spacetime to have any similaxity with the motion of


