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THEORIES OF GRAVITY IN 2+1 DIMENSIONS
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ABSTRACT

We discuss the failure of General Relativity to provide a proper Newtonian limit
when the spacetime dimensionality is reduced to 2 + 1. and t1y to bypass this difficulty
assuming alternative equations for the gra,vitatioﬂa.l field. We imvestigate the properties of
spacetimes generated by circularly symmetric matter distributians in two cases: weakening
Einstein equations, and by considering Brans-Dicke theory of gravity. A comparison with

the corresponding Newtonian picture is made.

1. Introduction

The present attention theoretical physicists devote to lower dimensional gravity

brought to light the unsolved problem concerning the non-emstence of the Newtonian
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Figure 1:  Phase space trajectories of a pariicle subjected to a gravitational field in a

(2+1)-dimensional Newtonian universe.
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Figure 2: ~ Effective potential determining the radial motion of a particle in (2 + 1)-

dimensional Jackiw’s gravity.



limit of General Relativity when the spacetime dimensionality d is less than four (refs.
[1,2]). This results basically from the fact that when d = 2 — 1 the Riemannian curvature
is completely determined by the Einstein tensor (Ruvap — €uvp€apyG?Y). Ford =1+1
the situation is more drastic since in this dimensionality G, vanishes identically. As a
consequence, in t_he first case spacetime must be flat in regions where matter is absent.
In the second case, as was pointed out by Jackiw, ‘gravity has to be in_vented anew since

General Relativity cannot even be formulated’ (ref. [1]).

In particular, if matter creates no gravitational field outside its location neither ‘plan-

etary’ motions nor gravitational waves are allowed to exist in a 2+ 1 spacetime.

In this paper, we restrict ourselves to a (2 + 1)-manifold and examine what happens
to the above situation when the Einstein field equations are modified. Thus, we take up
the classical prqblem of determining the gravitational field generated by a spherically (or,
better, circularly) symmetric distribution of matter. We approach this problem in two
different ways. Firstly, we ‘weaken’ the Einstein equations in much the same way as did
Jackiw in his attempt to formulate gravity in 1 + 1 dimensions (ref. [1]). Secondly, we

consider the same problem in the light of Brans-Dicke theory of gravity.

2. Newton’s theory of gravity in 2+1 dimensions.

It is generally accepted that a Newtonian gravitational field due to a spherical matter
distribution of mass M and radius @ in a d = n + 1 dimensional spacetime should be

expressed by the generalized law (see, for instance,refs. [3,4}):
g(r) = -GM/r"71, (1)

where G is a constant and r is the distance from the center of the distribution, with r > a.

Thus, if n = 2 this corresponds to the gravitational potential

V(r) = GM¢{nr. (2)
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Then, the equations of motion for a test particle of mass m put in a region exterior to the
matter distribution would be given by

mr?f = constant = L, (3)

mi = L2 /mr® — GmM/r (4)

where 7 and 6 are polar coordinates and L is the angular momentum of the particle. On

the other hand, the energy conservation equations yields directly:

mi?[2 = E — (1/2m)L*/r* — MGinr, (5)

with E being the total energy of the particle.

It is clear from the latter equation that the particle canndi escape from the center
of force, the permissible orbits being bounded. An illustrative picture may be obtained
if we display these orbits in the particle’s phase space, where p, is the radial component
of the momentum (see fig. 1). In this diagram the equilibrium point rro (which has the
topology of a center; see ref. [5]) represents the circular orl;wit r=r,=Im Y (MG)"/?,
corresponding to the energy E, = (1/2m)L/r? +MGénr, and a period 7 = 2r L(mMG) ™.
So, we arrive at the conclusion that in a Newtonian universe with 2 4 1 dimensions no

matter how large is its energy a test particle is constrained to move within a’bounded

region of space.

Figure 1



-

3. Einstein’s theory of gravity in 241 dimensions. '

To find the motion of a test particle under the influence of the gravitational field
generated by matter distribution in any metric theory of gravity reduces to the problem of
finding the spacetime geodesics. Thus, one has to know the geometry of that spacetime,

which, in turn, must be determined from the gravitational field equations.

As we have mentioned earlier, if one consider Einstein’s theory of gravity in 2 + 1
dimensions one is led to the conclusion that a test particle does not ‘feel’ the gravitational
field in regions where matter is absent. The spacetime is flat (R,,e3 = 0) and the geodesics
_are simple straight lines. Thus, the situation here seems to differ drastically from the
Newtonian picture, specifically if we regard the previously analysed problem of the motion
of particles under the influence of circularly symmetric massive bodies. And, since the
curvature is null everywhere except in the interior of the matter distribution, there is no

way to obtain a Newtonian limit.

Recently, there has been great interest in metric configuraticns exhibiting topological

defects (ref.[2]). Essentially, these reffer to the properties of a locally flat spacetime which
| nevertheless present global features allowing one to distinguish it fiom a pure Minkowskian
geometriczi.] structure. The main quoted example of this phenamenon is the spacetime
generated by an infinite static matter string in 3 + 1 dimensions which is described by a
Riemannian flat geometry with bidimensional spatial conic sectias (ref. [6]). The 2 +1
dimensional analogue of this configuration may be generated by any circularly symmetric
matter distribution. Since the geodesics in both cases are not smply straight lines in a
Minkowskian spacetime, particles moving in these conic geomeifries are said ‘to detect’
the gravitational field in a number of effects whenever global wriables (which involves
integration along a closed conto{n‘) are measured (ref. [7]). Howewr, as the trajectories of
test particles in these spacetime are not bounded, ‘planetary’ mwtions no being allowed,

there is no possibility of a Newtonian limit to exist.



4. Jackiw’s scalar equation for gravity in 2 + 1 dimensions.

As we have remarked before, the Einstein’s tensor G, vanisdhes identically in a (14+1)-
spacetime manifold. An attempt to formulate the field equatims in this dimensionality '

was put forward by R. Jackiw (ref.[1]). In this approach Einsten’s equations
Gu =Ry = (1/2)R =T, (6)
are ‘weakened’ by replacing (6) by its trace. In this way, we are leb with the scalar equation
R=T )

- where T' =T} is the trace of the energy-momentum tensor.

We shall assume (7) as a plausible field equation describirg gravity also in a 2+ 1
manifold. Now, considering a static circularly symmetrical matter distribution as the
source of the curvature the metric coefficients should be function of the radial coordinate

r only. Since T' = 0 in regions where matter is absent the equatnn
R=0 (8)

reduces to a second ordinary differential equation involving only me metric function in the
variable r. On the other hand, the most general form of a static drcularly symmetric field

may be given by the line element
ds® = eNdi? - P dr? — r2d6?, (9)

where N and P are functions of the radial coordinate r only fsee, for example ref.[8]).
However, if N and P are independent then they cannot be detrmined by equation (8)
alone. A Way' to bypass this difficulty is to reduce the number ofdegrees of freedom of the
geometry by choosing a metric tensor with only one degree of fredom. A natural choice

is to consider a static circularly conforma.]]y.ﬂat metric given by

ds? = f(r)(di? — dr® — r2d§?), | (10)

5



which, as we shall see later, has the property of leading to the correct (2 4 1)-Newtonian
limit in the weak field approximation. Putting (10) into (8) we get the equation:

=GN =0, )

whose solution is given by
f(r) = B(tn(r - 4))*, (12)

where A > 0 and B > 0 are constants. Thus, the conformally flat solution of Jackiw’s

vacuum equation is given by the line element:
ds? = (In(r — A))* (di® — dr® —r?d6?), (13)

This solution has a singularity as it may be readily seen by evalwmting the value assumed
by the invariant R,, R*” at the surface r = A. However, as was pointed out by Cornish
and Frankel (ref. [8]) (who found a similar solution in the weak-feld approximation of the
equation (8)), this surface does not represent an event horizon, since light is not affected by
the gravitational field nor change in the metric signature takes ghce. On the other hand,
it is worthwhile to mention that as far as behavior at infinity isconcerned this geometry
presents no asymptotic flatness, and this is a question deservinga further comment.

Let us investigate the motion of a massive test particle in this geometry. We begin by

writing down the geodesic equations:

fdt/ds = a (14a)
fridd/ds = ¢, (14d)

where a and £ are integration constants. Now, if we divide (13) by ds® and use (14) we

get the following first integral:

224 S gy =t (15)
lu’ T2 - 27
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in which we have put a® = £ and dot means derivative with respect to the time co-
ordinate. Now, this equation may be regarded as the analogous of (5), i.e. the law of
energy conservation in Newtonian gravity, if we formally define a gravitational poten-
tial energy given by V = f(r) = B(¢n(r — A))*. Then, we have an ‘effective’ potential
Vess = -,% + B[fn(r — A)]* which determines the radial motion of the particle. A sim-
ple analysis of the form of Vs, (sce fig. 2) show us that the motion of particles in this
spacetime if also bounded and cannot penetrate the barrier r = A. As in the case of
Newtontan gravity, the equation r = ry, with r¢ corresponding to the minimum of Veyss(r),

characterizes a circular motion of the particle around the center of the matter distribution.

Figure 2
Thus, if we disregard the existence of the ‘forbildden’ region r < A we conclude that in 241
dimensions the motion of particles in the spacetime of equatian (13), which represents a

circularly symmetric solution of Jackiw’s gravity, and the motion of particles in Newtonian

gravity exhibit a rather similar physical picture.

Finally, we should point out that Jackiw’s scalar equation {7) leads to the Newtonian
limit for the metric (10) if we use the same argument due to Cornish and Frankel for a

general conformally flat metric g,, = fn,, in 2+ 1 dimensions (see ref.[8]).

5. Brans-Dicke theory of gravity in 2 + 1 dimensions

In this section let us consider the Brans-Dicke theory of gravity in 2 + 1 dimensions

and apply it to solve the same problem of obtaining the exterier gravitational field due to

a circularly symmetric matter distribution.



The Brans-Dicke field equations in the absence of matter are given by:

Ruy~(1/2)gu0 R = ~(w/¢") (6,460 — (1/2)9,067$,5)+(1/$) ($,0 — 904" 6,6) , (160)

-

C¢ =0, (16b)

where ¢ is the scalar field and w is a free parameter to be determined by experiments.
In 3 + 1 spacetime, usually (but not always) the theory is expected to reduce to General
Relativity when w — oo (ref.[9]).

Since we are assuming a static and circularly symmetric matter distribution we should
start from the metric tensor given by the equation (9) and a scalar field ¢ = ¢(r). Then,
the equations (16a,b) become:

-

P'[r =wi?/2 - N'p (17q)
N'/2 = (w/2+ 1) — P +¢' ' (170)
N2 —N'P' 4+ N" = —wp? /2 + /7, (17¢)

where ¢ = ¢'/¢ and ¢' = d¢/dr,P' = dP/dr , etc. The general solution of this system of

equations lead to the metric (after some obvious simplifying coordinate transformations):
ds? = r?Pdi? — A2 P+B) g2 _ 12492, ' (18a)

D, B and X being integration constants with D = B(B + 1)"!(BWW/2 - 1). On the other
hand, the scalar field is given by

¢ = gor®, _ (18b)
with ¢ = constant.

Looking at the equation (18a) we verify that this metric has the following properties:

a) it has no singularities for r # 0; b) the spacetime is not asymptotically flat; and, finally,

" there is no Newtonian limit in the weak field approximation since the right-hand side of

(16a) does not vanish. As a consequence of the last result, in principle one should not
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expect the motion of particles in this spacetime to have any similarity with the motion of

particles in (2 + 1)-Newtonian gravity.

6. Final remarks

The investigation of gravitation in 2+ 1 dimensions was primarily concerned wifh the
failure to construct a sucessful quantum theory of gravity in 3+1 dimensions. Nevertheless,
£he subject has recently called the attention of theorists to some of its non-quantum aspects,
such as the problem of the ‘breakdown’ of General Relativity in lower dimensions. At this
point, it seems that a natural and legitimate question arises inevitably: what theory could
substitute General Relativity in lower dimensions ? Should such a theory, at least from a

epistemological point of view, have what is usually called a ‘Newtonian limit’?
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