
VLSI Design
1993, Vol. 1, No. 1, pp. 9-22
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1993 Gordon and Breach Science Publishers S.A.
Printed in the United States of America

Theory, Analysis and Implementation of an On-Line
BIST Technique

RAJIV SHARMA*
Test Products Group, Cadence Design Systems Inc., Lowell, Massachusetts, USA

KEWAL K. SALUJA
Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, USA

A Built-ln Concurrent Self-Test (BICST) technique for testing combinational logic circuits concurrently with their
normal operation is proposed. Concept of sharing the test hardware between identical circuits to reduce the
overall area overhead is introduced. The method was implemented in the design of an ALU with on-line test
capability in CMOS technology. The additional hardware used for a 12-bit ALU was 19% of the total chip area
and it did not impose any timing overhead on the operation of the ALU. The overhead decreases with an increase
in the size of the ALU.

Following the description of the BICST technique, measures for evaluating the performance of the BICST
technique are defined. Methods for the computation of the performance measures using analytical and simulation
techniques are discussed and results of these methods are reported. Methods for detecting intermittent faults and
for computing the transient fault coverage using BICST are also described. The impact of BICST on the system
diagnostics and system maintenance is discussed.

Key Words: Concurrent testing; Test latency; Built-In self test; VLSI Testing; Transient faults; Intermittent faults

evelopments in the VLSI technology respon-
sible for increase in the complexity of logic in

integrated circuits are ever compounding the prob-
lem of testing digital circuits and systems. The testing
is done at different stages of manufacturing and
hence it is a continual problem as explained below.
A device must be thoroughly tested before it is
shipped. A device must also undergo an acceptance
test before it is integrated into a system. After the
initial acceptance test, periodic testing of integrated
circuit chips at the system level has to be done to
prevent the accumulation of faults. Such periodic
testing is generally carried out off-line, that is the
system is stopped and tested using a set of test vec-
tors. Traditional techniques for off-line testing use
algorithms to find a set of test vectors to detect the
modeled faults in the circuit. These test vectors can
either be applied by an external tester or they can
be stored on chip and applied during test mode. The

*This work was completed when the author was with UW-
Madison.

latter technique can be viewed as an off-line Built-
In Self- Test (BIST) technique 1].
Almost all off-line BIST techniques employ extra

hardware. This extra hardware can also be used for
off-line maintenance tests of a system by periodically
stopping the system for test purposes. Off-line pe-
riodic testing degrades overall system performance
since the system becomes unavailable during these
off-line maintenance tests. An alternative approach
is to carry out some form of on-line or concurrent
testing. That is, testing while the system is actually
carrying out a useful computation.

In this paper we propose a novel technique for on-
line testing, which we call Built-In Concurrent-Self-
Test (BICST). BICST assumes the presence of un-
derlying BIST resources for off-line testing. These
resources are modified in such a way that they can
be used for both off-line and on-line testing. By car-
rying out testing concurrently with the normal op-
eration of a circuit/system, we shall show that BICST
circumvents the performance degradation caused by
periodic maintenance testing. We shall also show that

10 RAJIV SHARMA and KEWAL K. SALUJA

BICST can provide the circuit with enhanced diag-
nostic capability, reduced system maintenance re-
quirements, and detection capability for transient
and intermittent faults in addition to permanent
faults. Note that the off-line testing capability of the
BIST resources must still be maintained for produc-
tion testing purposes. We also propose a technique
for sharing the BICST hardware resources between
identical circuits, thereby reducing the overall extra
overhead for testing.

BICST CONCEPT AND
ARCHITECTURE

As mentioned in the introduction, conventional test-
ing methods apply set of test vectors to the circuits
that is undergoing an acceptance test. In the BICST
technique proposed in this paper, we make use of
the same test vectors to accomplish concurrent (on-
line) testing of the circuit. However, the technique
proposed in this paper is not restricted and limited
to using such tests. Any test set which achieves the
desired fault coverage and is suitable for BIST ap-
plication can be used.
The block diagram of the BICST architecture is

shown in Figure 1. Note that this figure and the de-
tails in this section are for the purpose of concept
illustration only. Issues such as overhead, perform-
ance penalty, are the subjects of the subsequent sec-
tions. The n-input, m-output circuit to be tested dur-
ing the normal operation is called Circuit Under Test
(CUT). The extra hardware for BICST consists of a
Concurrent Test Circuit (CTC) and a comparator.
The normal inputs to the CUT are also fed to the
CTC. The CTC has n inputs andm outputs (the same
as for the CUT). The CTC is designed such that its
outputs for those normal inputs to the CUT which
are also test vectors for the CUT are the same as the
expected response of the CUT. During normal op-
eration of the circuit, occurrence of an input which
is also a test for the CUT is termed as a HIT con-
dition. The CTC generates a signal known as Com-
parator Enable (CE), for enabling the comparator,
whenever a HIT occurs. Thus on every HIT the CUT
outputs are compared with the CTC outputs, which
are expected to be identical if the CUT is fault-free.
In this way testing of the CUT proceeds concurrently
with its normal operation and the testing of the CUT
is said to be complete when all the test vectors nec-
essary to test the CUT have appeared at least once
as normal inputs to the CUT. The CTC marks the
completion of the test by asserting the Test Complete

n

Com

c’rc

(COmltor

FIGURE BICST Architecture.

(TC) signal. The CTC can be as simple a structure
as a linear feedback shift register as explained in
Saluja et al. [2] or as complex as an extra copy of
the CUT.
We briefly digress from our discussion and describe

the design of a CTC using a PLA. Let us assume
that the n-input, m-output CUT can be tested by
test vectors. The PLA used to design the CTC for
this CUT will consist of n input lines, m output lines,
and product lines. The PLA is programmed so that
for each n-bit test vector the PLA output is the same
as the expected response of the CUT for that test
vector. Thus each product line of the PLA corre-
sponds to a unique test vector. We illustrate the or-
ganization of the PLA by the following example.
Consider a CUT with n 4, m 6, and 5. The
five test vectors and their expected responses for the
CUT are shown in Table I. The realization of the
PLA is shown in Figure 2. The PLA has been aug-
mented to generate the CE and the TC signals. A
tag bit is attached to each product line of the PLA

TABLE
Test/Response Table for PLA of the Example CTC

Test Vector Expected Response

t 0010 100101
t2 0011 011000
t3 1011 100111
t4 1100 111010
t5 1101 101011

ON-LINE BIST TECHNIQUE 11

Tllg Bits

n=4 m=6

FIGURE 2 CTC for Example of Table I.

to keep track of the test vectors which have been
HIT. The tag bits are initialized to logic 0 at the
beginning of concurrent testing. Whenever a product
line is activated during normal operation of the CUT,
the corresponding tag bit is set to logic 1. Testing is
said to be complete when all the tag bits in the PLA
are at logic 1. The signal TC, logical AND of all the
tag bits, marks the completion of the test. This signal
can be used to reset all the tag bits to 0, thus ini-
tializing them for the next testing cycle. The CE sig-
nal is generated by ORing all the product lines of
the PLA.
We must comment that the above method of im-

plementation is but one way to implement CTC.
Clearly, if the number of test vectors are large then
the use of PLA or ROM may not be a practical
alternative in terms of area overhead. Other alter-
natives such as use of an AND plane for storing the
test vectors while using the duplicated CUT in the
place of OR plane would need to be investigated.
None the less the method suggested in Figure 2 can
be used for circuits which are realized as iterative
logic. Most such circuits can be tested by small and
constant number of test vectors [9, 10].
The test hardware, which consists of the CTC and

the comparator, can be shared, in time, by s identical
CUTs (CUT#l, CUT#2, CUT#s) in an en-
vironment where these CUTs are either identical
subcircuits of a larger circuit as in the case of iterative
logic approach or when many copies of a CUT are
used in a logic system. Further, it is possible to test
each CUT in a roving manner. The testing can pro-

ceed as follows. Initially the test hardware tests
CUT#1 and when CUT#I has been tested, the test
hardware is reconfigured to test CUT#2. Thus the
process of testing can continue until the complete
subsystem has been tested. The test hardware can
be relegated to test any one CUT at a time by using
multiplexers as shown in Figure 3. In this figure,

l-lln l.-Im Oil-Olin 0.1-O.m

m

FIGURE 3 BICST Hardware for Testing s Indentical CUTs.

12 RAJIV SHARMA and KEWAL K. SALUJA

li(Oi) denotes the jth input (output) of CUT # i.
The MUX control circuit controls the input and out-
put multiplexors so as to allow the testing of the
CUTs to proceed in a sequence. The TC signal from
the CTC provides a feedback to the MUX control
circuit so that the testing of the next CUT can be
initiated. In the next section we shall discuss the
implementation of the scheme shown in Figure 3 to
design an ALU with built-in concurrent self-test
(BICST) capability.

BICST DESIGN OF AN ALU

The scheme explained in Figure 3 was used to design
an ALU with BICST capability, in CMOS technol-
ogy. The ALU was made up of 4-bit 74181 ALU
slices connected together in a ripple carry chain. The
five main components of the CTC (units forming the
on-line test circuitry) for a 12-bit ALU (made up of
three 4-bit 74181 ALU slices) are briefly described
below.

(1)

(2)

PLA: The PLA is used to store the expected
responses to test vectors for the ALU slice, as
discussed in the previous section. Each ALU
slice consists of 14 input-lines and 6 output-
lines. The minimum number of test vectors [3]
required to test the 4-bit 74181 ALU, available
in the literature, is 12. Therefore, our PLA
had 14 inputs, 7 outputs, and 12 product-lines.
Note that one additional output from the PLA
corresponds to the generation of the CE sig-
nal.

Tag bits: Twelve latches were connected, one
for each product line of the PLA, and the TC
signal was generated by logically ANDing the
outputs of these latches.

ALU Size

TABLE II
Area Overheads for Various ALU Sizes

Area Overhead (as % of total area)

4-bit
8-bit

12-bit
16-bit

36%
26%
19%
15%

(3)

(4)

MUX control: The MUX control was imple-
mented as a three stage ring-counter (one
stage for each ALU slice) with preset capa-
bility. The ring-counter and the tag-bits are
initialized at the beginning of the test.

Input and output MUX: Each ALU slice has
5 common inputs (control signals) and 9
unique inputs (data signals). All 6 outputs of
each ALU slice are unique. Therefore we had
a (3 9) input-MUX and a (3 6) output-
MUX. The input-MUX and the output-MUX
were embedded at the ALU inputs and out-
puts respectively (Figure 4) to facilitate rout-
ing and to conserve chip area.

Comparator: A 6-bit comparator was designed
to compare the 6 outputs of the selected ALU
with the 6 outputs obtained from the PLA
when the CE signal is logic 1.

The floor plan and the relative areas of the various
subsections of the system are given in Figure 4. The
area of the BICST logic for the 12-bit ALU is 19%
of total chip area. In this context the total chip area
does not include pads but it includes the latches even
though the latches are not tested in the present con-
figuration. Details of the design are given in Sharma
and Saluja [4]. The overall percent hardware over-
head will decrease further if a 16 or higher bit ALU
is designed using this scheme. The actual overhead
for a 12-bit ALU and estimated overhead for 4, 8,
and 16-bit ALUs is shown in Table II. It was con-

Tag Bits

Control
Compamor

Input l.mclm

InputMUX

ALU

OutputMUX

Output Latches

FIGURE 4 Floor Plan of a 12-bit ALU with BICST.

ON-LINE BIST TECHNIQUE 13

cluded from timing verification that the test hardware
does not impose any time overhead on the normal
operation of the ALU because the BICST hardware
does not lie in the critical path.
The layout of the system was done using the layout

editor MAGIC. The CAD tool MPLA was used to
generate the PLA. Logic simulation and timing ver-
ification were done using ESIM and CRYSTAL re-
spectively.

EVALUATION OF THE BICST
TECHNIQUE

For our study we shall make the following two as-
sumptions"

A1. an input pattern occurs on every clock cycle,
and

A2. the occurrence of any input pattern is statis-
tically independent of the occurrence of any other
input pattern.

First of these two assumptions is not limiting and
the second assumption is realistic as the statistical
dependence of the inputs cannot be known in ad-
vance. We shall now describe in detail the methods
of computing the three parameters defined above and
apply these methods to the example ALU.

We have argued in the previous section that BICST
is a conceptually sound method for concurrent testing
and it is also a viable method for some classes of
circuits such as an ALU realized as an iterative logic
circuit. The question one can ask next is what is to
be gained by concurrent testing in general and
BICST as proposed here in particular? Clearly an
answer to this question is required to justify the im-
plementation of BICST. To answer this question we
will first define certain parameters which can be used
to evaluate a concurrent testing scheme. We will
identify methods which can be used to compute these
performance parameters. Following which we shall
present the results of computation for the BICST as
used for an ALU described earlier.
Below, we define three parameters which can be

used as quantitative measures to determine the ef-
fectiveness of a concurrent testing scheme. These
parameters are:

1. Latency of Test Completion (LTC): This is the
time required to completely test the circuit
while it is in normal mode of operation.

2. Latency of Fault Detection (LFD): This is the
time required to detect a fault in the circuit
under normal operation.

3. Error Latency (EL): This is the difference be-
tween the time when the fault is detected and
the time when the fault manifests itself. (Shin
and Lee [8])

These parameters can be determined only in prob-
abilistic terms because the inputs to a circuit for its
normal mode of operation cannot be known a priori.
The parameters can be computed either analytically
by using probability theory or through Monte Carlo
simulation methods. In any event, we need to make
some assumptions about the occurrence of inputs.

Analytical Method to Compute Performance
Parameters

For each of the parameters, we shall derive a general
expression. An additional simplifying assumption
will be made to keep the problem tractable. Follow-
ing which the values of these parameters will be pre-
sented for our example subsystem, i.e. the ALU.

Computation of LTC

Consider a circuit employing BICST in which the
CTC consists of test vectors. Here we are interested
in finding the probability PTC(L) that within L nor-
mal input cycles, the CUT is completely tested.
PTC(L) stands for Probability of Test Completion
within L cycles of the normal system operation. This
happens when a HIT corresponding to each of the
test vectors of the CTC has occurred.
With the assumptions mentioned above, each nor-

mal input vector can be viewed as an independent
Bernoulli trial. Each trial can have one of the + 1
outcomes given below"

Outcome i: A HIT corresponding to the ith test
vector of the CTC occurs (i 1, 2,

,t)o
Outcome + 1: None of the test vectors in the

CTC are HIT.

Let pi be the probability of outcome (i 1, 2,
t). Therefore the probability q of outcome +

1 is given by:

q 1 E Pi (1)
i=l

14 RAJIV SHARMA and KEWAL K. SALUJA

Now let us consider an experiment with L trials.
Further, let L k + k: + kt + kt+ where k
denotes the number of occurrences of outcome in
L trials. If P(L) is the probability that in L trials
outcome occurs exactly ki times, then the value of
P(L) is given by Parzen [5]:

I1 ,klk2 kt+
P(L) z’’ll IJ2 p’q

kl!k2! kt!kt+l!
(2)

The CUT is completely tested when at least one
HIT occurs for each test vector in the CTC. There-
fore using (2), we can write the following expression
for PTC(L):

L-il L-i2 L-it

PTC(L) ., E Z P(L) (3)
kl=l k2=l kt=l

where

K kr; ki >- 1 for all 1,... t;

K k;andL->K.
]--1

Latency of Test Completion with a desired prob-
ability a, denoted by LTC(a), can be calculated using
expression (3). LTC(a) is the time after which the
test completion probability is greater than or equal
to a. If L r is the smallest number of normal input
cycles for which PTC(Lr) >- a, then LTC(a)
L r" ok, where b is the time for one normal input
cycle.

It can be extremely difficult to compute expression
(3) for large L and for modest value of r Also, it
may be difficult, if not impossible, to know the values
of pis a priori. Therefore, we need to make an ad-
ditional simplifying but realistic assumption. The ad-
ditional assumption and its justification for the case
of example ALU is given below:

A3. All input patterns are equally likely to occur.

At first glance this appears to be an unrealistic and
very restrictive assumption. Let us consider the case
of the ALU to justify this assumption. It is often
argued that the numbers most likely to occur as in-
puts to the ALU during its normal operation will be
small positive or negative numbers. If such an in-
formation is known a priori, we suggest that we
choose a set of tests which is biased accordingly. If
one is using 2’s complement system, this statement
is equivalent to having test vectors with larger pro-
portions of ls (0s) as opposed to equal number of ls
and 0s. Note that this would need to be done only

for the most significant bit end of the ALU. The
impact of the above assumption on the least signif-
icant bit end of the ALU will be minimal. Thus a
choice of the appropriate test vectors will increase
the probability of occurrence of certain test vectors
above the value obtained with the assumption A3
while the probability of occurrence of other test vec-
tors will be smaller. Hence, as a result of assumption
A3 the overall outcome will be close to the actual
value.
We must also comment on the limitation of the

assumption A3 and possible ways to get around it.
It is possible that in certain circuits some of the test
vectors derived for off-line testing may never occur
during normal operation of the circuit. This can hap-
pen due to the use of don’t care conditions in the
design of a circuit. For such circuits, (1) the test
vectors should be carefully chosen so that vectors
which may not occur as normal inputs are never used
as test vectors, or (2) time out indicator, similar to
the one to be discussed under Applications of the
BICST Technique in this paper, can be used to de-
termine the absence of test vector. Time out indi-
cator can also be used to select an appropriate test
set for the circuit. On the other hand, it can poten-
tially be used to inject test vectors for the express
purposes of testing a circuit at certain instances and
thus causing reduced test latency.

In any case, in what follows we shall assume that
the assumption A3 applies for each analysis. Thus
for a CUT that has a total of N normal input vectors,
we can assume:

P P2 P,
1

=p andq 1
N

Therefore the expression in (3) can be written as:

L-ii L-i2 L-i

PTC(L) E , E
k=l k2=l kt=l

L!pKqL-K
(4)

kl!k2! k,!(L K)!

Even this expression is not easy to compute, hence
we suggest to use the following method based on a
rule of thumb to compute its approximate value. We
observe that the probability of a HIT at the beginning
of testing is t/N and it reduces after each HIT and
eventually becomes 1/N when only one test vector
remains to be HIT for test completion. In general,
we denote p(i) i/N to be the probability of a HIT
when test vectors remain to be HIT. Then the cor-

ON-LINE BIST TECHNIQUE 15

responding mean number of cycles, L(i) required for
a HIT (when test vectors remain to be HIT) is 1/
p(i) or N/i (see Parzen [5]). Thus the rule of thumb
number of cycles, Lot, is given by expression (5)
below.

Zrot Z(i) N(i=l (5)

The computed values of L,.ot for ourALU are given
in Table III. These are found to be in close agreement
with the simulation results (discussed later in this
section).

Computation of LFD

The time required to detect a fault f depends on the
number of test vectors in the CTC which can detect
f. Let to(f) denote the set of vectors in the CTC
which detect fault f and let Ito(f)l be the cardinality
of the set to(f). The set to(f) and its cardinality
[to(f)l can be determined at the time of coverage
evaluation by fault simulation. The fault f will be
detected if a HIT occurs corresponding to any ele-
ment of to(f). With the assumption that all input
vectors are equally likely to occur, the probability
that a vector from to(f) occurs as a normal input
on any cycle, denoted by P o, is given by Po
Ito(f)l/N. Now the probability, PD(f, L), that f is
detected within L normal cycles is the same as the
probability that at least one HIT for an element of
to(f) occurs within L cycles. This is given by Saluja
et al. [2]"

PD(f, L) PDqD

or

PD(f, L) 1 qo (6)
where

qo 1 PD

TABLE III
Values of LTC (in cycles)

Simulated

ALU Average Worst Best
Computed

Lrot
4-Bit 49148 69560 25699
8-Bit 85245 125940 63935
12-Bit 156981 254033 87737
16-Bit 211918 298152 149735

50843
101686
152529
203372

The latency of detection of the fault f, denoted by
LFD(f, a), can be calculated using PD(f, L) ob-
tained from expression (6), in a similar manner as
LTC(a) was calculated using PTC(Lr) in the section
on Computation of LTC. By determining the value
of PD(f, L) for every fault the worst case value of
this parameter can be determined. Alternatively, the
average value of this parameter may be of more in-
terest and can be determined as follows. If F {fi}
is the set of all faults of interest and the total number
of faults in F is IFI then the average number of test
vectors in the CTC to detect any of these faults, e,
is given by"

eav i=1

Ifl (7)

Therefore, the probability that a random fault from
the set F will be detected within L normal cycles of
.its occurrence, denoted by PDv(L), is given by:

PDv(L) 1 q,,,v (8)

where

qoav 1 eav/N (9)

The latency of detection of a random fault, denoted
by LFDav(f, a), can now be calculated as before from
PD,v(L).
The value of e,v for our ALU is 3. We computed

this value using a fault simulator and for the same
set of test vectors which we used to design the CTC
for the ALU. The fault set consisted of all single
stuck-at-faults. For the 4-bit ALU, the computed
value of LFD was found to be 12574 cycles for a
0.9 for a fault with ItD(f)l 3. For a larger ALU
realized as iterative copies of the 4-bit ALUs, com-
putation ofLFD must take into account the test strat-
egy. If each ALU is tested independently then the
value of the LFD is same as shown above. On the
other hand if each ALU is tested serially by sharing
the CTC then much larger value of a is required.
For a 12-bit ALU and for values of eav and
given earlier the computed value of LFD for a fault
will be 3 12574 37722 cycles for a (0.9)
0.73. For a system with 10MHz clock this is 3.77
msec.

Computation of EL

Let EL(f, a) be the time at which a fault f is de-
tected, after its manifestation, with a probability a.

16 RAJIV SHARMA and KEWAL K. SALUJA

Then the error latency, EL(f, a), for the fault f is
given by the expression"

EL(f, a) LFD(f, a) LFM(f, 1 a) (10)

In the above expression LFM(f, 1 a) is the latency
of manifestation for the fault f with a probability
1 a or less. The evaluation of LFD(f, a) was done
in the foregoing discussion. We shall now determine
an expression for the evaluation of LFM(f, a).

Latency of manifestation of a fault f depends upon
the number of input vectors, re(f), which result in
erroneous outputs in the presence of fault f. The
probability that f manifests on any normal cycle, PM,
is given by PM m(f)/N. Therefore using similar
arguments as in the derivation of (6) the probability
that fault f manifests itself within L normal input
cycles of its occurrence, PM(f, L) can be written as:

PM(f, L) 1 qM (11)

Thus LFM(f 1 a) c LM where LMisthe
smallest number of cycles for which PM(f, LM) >--
1 a.
The average error latency for the fault f can now

be calculated by using (10). The error latency for the
CUT, with a probability a on the occurrence of any
fault at random, denoted by ELav(a), is given by

ELav(a) LFDv(a)- LFMa(1 a) (12)

LFMav(1 a) can be obtained by using qMav instead
of q in (11) and qMav can be computed from the
following expression"

IFI
E m(fi)

qMv 1 -i=1
Ifl (13)

The calculated values of LFD, LFM, and EL for
the 4-bit ALU using BICST are given in Table IV

for Ito(f)[3 and for different values of m(f). The
values of EL for different values of m(f) and larger
size ALUs can be computed in the same manner as
shown in the previous section.

Simulation Method to Compute Performance
Measures

A sequence of pseudo-random numbers satisfying
the assumptions stated earlier in this section can be
used as normal input vectors to the CUT for simu-
lation purposes. The performance measures can then
be computed by averaging over several simulation
runs.
Such simulations were carried out to compute the

LTC, LFD, and EL for our ALU. The results for
LTC over 10 simulation runs are included in Table
III where these values are also compared with the
computed values using analytical method. A close
agreement between calculated and simulated values
was also observed for LFD and EL.
We shall now explore what is accomplished by the

BICST scheme in terms of fault detection and the
possible applications for this technique.

APPLICATIONS OF THE BICST
TECHNIQUE

It is easy to see that the BICST technique helps in
the detection of permanent faults while the circuit is
in normal mode of operation. What additional ben-
efits does BICST offer? In this section we argue that
BICST can be used for system diagnostics and
for reducing maintenance requirements. Further,
BICST can also be used for detection of intermittent
and transient faults. These issues are discussed in
greater detail in the following subsections.

Detection and Diagnosis of Intermittent Faults

TABLE IV
Evaluation of LFD, LFM, and EL

Probability LFD(a) LFM(1 a) EL
re(f) a (cycles) (cycles) (cycles)

6 0.5 3785 1892 1893
6 0.7 6575 973 5602
6 0.9 12574 287 12287
12 0.5 3785 946 2839
12 0.7 6575 486 6089
12 0.9 12574 143 12431
24 0.5 3785 473 3312
24 0.7 6575 243 6332
24 0.9 12574 72 12502

Intermittent faults are known to account for a large
percentage of all system failures [6, 7]. These faults
have always been a source of menace because they
are subtle in nature and extremely difficult to detect
and diagnose. Repeated application of test vectors
during off-line testing has been suggested as a partial
solution to this problem [6]. This approach is limited
by the exorbitant test time when used in off-line test-
ing environment. However, this approach can be ef-
fectively used to detect and diagnose intermittent
faults during on-line testing using the BICST tech-
nique.

ON-LINE BIST TECHNIQUE 17

If a test vector ti for a particular intermittent fault
fg appears a sufficiently large number of times, as a
normal input vector to the circuit and the detection
circuitry (comparator in the BICST technique) does
not indicate any error, then we have a fair amount
of confidence that the circuit is free of the intermit-
tent fault f. Now the question we need to address
is how long must we wait before we can be assured
with a reasonable probability that the intermittent
fault is not present?
A mathematical model was proposed in Kamal and

Page [6] for the detection of intermittent faults by
repeated application of test vectors during off-line
testing. The same model and mathematical results
can be used to estimate the number of applications
of a test vector to reach a certain confidence level
about the absence of intermittent fault. According
to this model, the minimum number of times, lmin,
that a test vector must be applied to detect an in-
termittent fault (with a specified confidence) is given
by the following expression [6]:

log(tzl ,)
lmin > (14)log(1 g)

where

the probability that the fault goes undetected,
fp/fn, fp is the probability that the fault is pres-
ent (assumed to be known to start with) and
fn 1 fp, and
the probability that the intermittent fault is ac-
tive.

Note that it and g are constants and assumed to
be known a priori. Thus during on-line testing using
BICST when a test vector for an intermittent fault
Occurs Imin times (and the detection circuitry does not
indicate any error), then we are assured with a de-
sired degree of confidence that the circuit is free of
the intermittent fault. The probability that a partic-
ular input (test vector) occurs/min times as a normal
input within L normal input cycles is given by the
expression:

e(/min, L) 1 Z pk
k=0

qL- (15)

Where p is the probability that the test vector occurs
as normal input on any input cycle and q 1 p.
We shall illustrate these calculations with an ex-

ample. Consider an intermittent fault for which A

10 -4, and g 0.0006. Also, if we select/z 10 -8

log(lO-8/lO -4)
then/min lo-- -- .-6"0-0) 15346. If we further

assume that only one test vector from the given test
set is capable of detecting the intermittent fault under
consideration, the time required for that test vector
to appear 15346 times as normal input is obtained
using the expression in (15). For our 4-bit ALU, we
obtain P(/min, L) 0.99 for L 275424870. In other
words, we have a 99% probability that the required
test vector would appear 15346 times within
275424870 normal input cycles. If the ALU operates
on a 10 MHz clock, then this would require 27.54
seconds. Computation of this value can also be car-
ried out for larger ALUs as in the section on Com-
putation ofLFD knowing if the ALU slices are tested
in parallel or serially by sharing logic.
An Intermittent Test Complete (ITC) signal can be

generated in a similar manner the test complete (TC)
signal was generated for detection of permanent
faults. For each test vector in the CTC, instead of a
single tag bit, a counter can be associated which
counts to/min for that test vector (the counter is reset
by the ITC signal). Whenever a HIT occurs, the
corresponding counter will be incremented. The ITC
signal is generated when all the counters have
counted to their respective values of /rain. A more
cost-efficient way to generate ITC would be to have
a single counter which counts to the maximum value
of/min for the CUT and the TC signal can be used to
increment this counter.

It must be noted that although the analysis in Ka-
mal and Page [6] was done for the class of intermit-
tent faults pertinent to off-line testing environment,
the on-line testing method proposed here offers a
method of detecting a wide range of intermittent
faults including those which are related to system
load [7]. Thus our method is capable of detecting
faults related to system load conditions, the faults
which will otherwise remain undetected by off-line
testing methods.

Detection of Transient Faults

Transient faults occur during normal system opera-
tion due to several reasons like environmental con-
ditions, stress or improper operating conditions.
Transient faults are different from intermittent faults
in that they do not recur. On-line testing can be used
to detect the transient faults when they occur, and
thus avoid the effects of erroneous circuit and system
behavior. The coverage of transient faults by the on-
line test techniques can be calculated as follows"

18 RAJIV SHARMA and KEWAL K. SALUJA

p(T)

T

C(a) Area Under Region HI
ESC(a) Area Under Regions l-and HI

FIGURE 5 Transient Fault Coverage.

Transient faults have an active duration T, where
T is a random variable with a probability density
function p(T). A fault is detected if its active du-
ration is greater than its LFD. Note that LFD is
computed by assuming a fault to be permanent. To
determine the coverage of transient faults we carry
out the following analysis by assuming that the faults
are permanent. We then compute the detection prob-
ability of a fault at time To. If the detection proba-
bility at time To is a then the coverage of transient
faults, C(a) is given by the expression

C(a) p.(T)dT (16)

If the active duration of a transient fault is less
than the time for the manifestation of the fault, TM,
then the fault would not produce any errors and
would thus be harmless to the circuit operation (Fig-
ure 5). Thus, faults which have active duration longer
than To are detected by our method (with probability
a) and faults with active duration shorter than T
are harmless. Therefore, we can consider the circuit
employing BICST to be error secure during the in-
terval 0 to Tu and To to o. The error-secure coverage
(with a probability a), ESC(a), of transient faults is

given by the expression"

ESC(o) pA(T)dT + pa(T)dT (17)

For a hypothetical curve of Pa(T) shown in Figure
5, C(a) is the area under region III, and ESC(a) is
the sum of areas under regions I and III.
We shall now illustrate the evaluation of C(a) for

our 4-bit ALU. Let us assume for simplicity that the
transient faults are uniformly distributed within the
range of 0 to 20 msec [7]. If we assume that the ALU
operates on a 10 MHz clock, then the values of C(a)
are given in Table V for Ito(f)l 3. Once again
C(a) and ESC(a) can also be computed for the larger
size ALUs in a straightforward manner. The table

TABLE V
Transient Fault Coverage C(a) for 4-bit ALU

ID tM
m(f) a (msec) (msec) C(a) ESC(a)

6 0.5 0.38 0.19 98.1% 99.1%
6 0.7 0.66 0.09 ’96.7% 97.1%
6 0.9 1.26 0.03 93.7% 93.8%

24 0.5 0.38 0.05 98.1% 98.3%
24 0.7 0.66 0.02 96.7% 96.8%
24 0.9 1.26 0.01 93.7% 93.8%

ON-LINE BIST TECHNIQUE 19

exhibits a reasonably good coverage of transient
faults by the BICST technique for the transient faults
having the given distribution.

System Diagnostics

The TC and the ITC signals from various CTCs in a
system can help in system diagnostics in the following
manner. The TC and the ITC signals from the CTC
can be used to place a time-stamp for the CUT. A
record of each Current Time-Stamp (CTS) and Pre-
vious Time-Stamp (PTS) can be maintained. Now
consider a situation where the system in which a CUT
i, which is embedded in another circuit, is deter-
mined to have failed at some time TFi. As far as
CUT is concerned, we are sure that the only time
during which a fault could have occurred is the time
between PTS and TFi. The difference, TFail PTS,
is therefore a measure of the probability that the
failing unit in the system is CUT i. This is shown in
Figure 6. Thus from the diagnostics viewpoint, when
many embedded CUTs are present in the system, the
most probable CUT which may have failed is the one
for which TFai! PTS is maximum.

tain threshold. (TMS stands for Time for the next
Maintenance Schedule.) With the concurrent testing
technique proposed in this paper, the number of
maintenance schedules can be reduced. This is
achieved as follows.
We denote TC(i) to be the time at which the ith

TC signal occurs from the CTC. Also, TMS(i) rep-
resents the TMS after the occurrence of TC(i). At
the beginning of concurrent testing, TMS(0) (=
TMS) is the original TMS (see Figure 7). If TC(1)
occurs before TMS(0), then maintenance can be
postponed until TMS(1)(= TMS(0) + TC(1)).
Thereafter, if TC(2) occurs before TMS(1), then
maintenance can be postponed until TMS(2) (=
TMS(1) + TC(2)). The generic expression for TMS
at any given time during normal operation is given
by:

TMS(i) TMS(i- 1) + TC(i) (18)

.It should be evident from the above discussion that
no maintenance schedule would be required so long
as LTC is less than TMS. This results in improved
system availability.

Reduced Maintenance

Periodic off-line testing of circuits must be done to
flush out latent faults, which could otherwise lead to
system failure. In the absence of concurrent testing,
the interval between maintenance schedules for pe-
riodic testing is set at the time TMS after which the
probability of presence of latent faults reaches a cer-

CONCLUSIONS AND COMMENTS

We have proposed a technique for on-line testing of
digital circuits in this paper. We have also discussed
a design of an ALU using BICST, the on-line test
technique proposed by us. The ALU was designed
in the CMOS technology. The results indicate a mod-
est area overhead for implementation of BICST. We

Fault is

Detected Here

Failure

Probabity

T0

TLme (T)

FIGURE 6 System Diagnostics.

CTS TFI

20 RAJIV SHARMA and KEWAL K. SALUJA

TC(I)

TC(1)

(= TMS(0) +

TC(2)

TC(2) TC(3)

a’MS(2)
(= TM$(I)+ TC(2))

TMS(3)
(ffi TMS(2) + TC(3))

Time (T)

FIGURE 7 Reduced Maintenance.

have defined a set of parameters for the performance
evaluation of on-line test techniques. These param-
eters are general enough and can be used to evaluate
not only on-line test techniques but can also be used
to evaluate on-line checking techniques. Following
the definition of these parameters, we developed an-
alytical and simulation methods to compute these
parameters for the BICST technique proposed in this
paper. The results of these computations show that
BICST can be a viable alternative for improving re-
liability and availability. We have also argued that
BICST technique can be used for detection and di-
agnosis of transient and intermittent faults.
A comparison between circuits employing BICST

and self-checking circuits is interesting. Unlike
BICST, the self-checking circuits provide 100% pro-
tection against errors due to transient faults (fault-
secure property). The amount of protection against
transient faults with the BICST technique (Table V)
depends upon the distribution of these faults and it
can be increased to an arbitrarily high value by in-
creasing the number of test vectors in the CTC at
the expense of hardware. In the extreme case when
the CTC contains all input vectors as test vectors,
then we obtain the goal of 100% protection against
transient faults. Note that this situation is the same
as duplication of the CUT.
Although the self-checking circuits can lead to the

detection of intermittent faults, there is no means of
determining whether the circuit is free of intermittent

faults. The circuits with BICST on the other hand
can help in diagnosing the intermittent faults with
the help of the test completion signal.
The fault-secure property of self-checking circuits

ensures that any error due to a fault within the pre-
scribed fault-model for the self-checking circuit will
be detected. The fault-secure property may be in-
validated on the occurrence of a fault which violates
the fault model. The fault model for designing self-
checking circuits is generally the single stuck-at fault
model. This means that the self-checking circuits may
lose their fault-secure property in the presence of
multiple faults. At any given time a self-checking
circuit is said to be model-secure if the fault(s) in the
circuit (if any) are confined to the fault model. What
is therefore desirable is to have some means to ensure
that a self-checking circuit remains model-secure at
all times. It is exactly this job that is done by the
BICST technique. The occurrence of the TC signal
within some predetermined time can be used to de-
cide that the circuit is model-secure.

Acknowledgments

The authors are grateful to Prof. C.R. Kime, Dr. Vishwani Agra-
wal and the anonymous referees for their suggestions to improve
the presentation of the paper. This work was supported in part
by the University of Wisconsin Graduate Research Committee,
National Science Foundation under grants MIP 8509194 and MIP
911886.

ON-LINE BIST TECHNIQUE 21

Glossary

BICST
c()
CE
CTC
CTS

EI
EL
EL(f,
L,,,,()

SC()

F
IFI
HIT

ITC
lmin

Lrot

LFD
LFD(f, a)

LFD,,,,(f, a)

Confidence level, expressed in %
Cycle time for normal inputs
Built-In Concurrent Self-Test
Coverage of transient faults with a probability a
Comparator Enable
Concurrent Test Circuit
Current Time-Stamp
Average number of test vectors present in the CTC
to detect any fault in the CUT
Error Indicator
Error Latency
Error latency of a fault f with a probability a
Error latency for the CUT, with a probability a on
the occurrence of any fault at random
Error secure coverage of transient faults with a
probability a
A fault on the CUT
(-- {fi}) Set of all faults of interest in the CUT
Total number of faults present in the CUT
Condition when the normal input vector to the
CUT matches a test vector of the CTC
Intermittent Test Complete
Minimum number of applications of a test vector
required to reach a desired confidence level about
the absence of the intermittent fault under consid-
eration
Number of cycles (obtained by using the rule of
thumb) required for completely testing the CUT
Latency of Fault Detection
Latency of detection for fault f with a probabil-
ity a
Latency of detection of a random fault with a prob-
ability a

LTC
LTC(a)

m(f)

n
N
P

p,,(T)
P,

P(/min, L)

P

PD,,,,(L)

PD(f, L)

PM(f, L)

PTC(L)

PTS
q

qo

qoav

LFM,,,.(f, a) Latency of manifestation of a random fault with a
probability a

LFM(f, a) Latency of manifestation for a fault f with a prob-
ability a
Latency of Test Completion
Latency of test completion with a probability a
Number of output lines of the CUT
The number of input vectors which result in er-
roneous outputs in the presence of the fault f
Number of input lines of the CUT
Total number of input vectors for the CUT (= 2")
Probability that a particular test vector is HIT on
any normal input cycle
Probability density function of T,,
Probability that an element of to(f) occurs as a
normal input on any cycle
Probability that a particular test vector occurs/min
times as normal inputs within L normal input cycles
Probability that the fault f manifests itself on any
normal input cycle
Probability that a fault at random will be detected
within L normal cycles of its occurrence
Probability that the fault f is detected within L
normal input cycles
Probability that the fault f manifests itself within
L normal input cycles of its occurrence
Probability that the CUT is completely tested
within L normal input cycles
Previous Time-Stamp
Probability that none of the test vectors is HIT on
any normal input cycle
Probability that no element of to(f) occurs as a
normal input on any cycle
Probability that on an average no element of to(f)
occurs as a normal input on any cycle

qM

qMav

to(f)

Ito(f)l

TC
ZFail

TMS

Probability that the fault f does not manifest itself
on any normal input cycle
Probability that on an average the fault f does not
manifest itself on any normal input cycle
Active duration of a transient fault
Time at which a fault is detected
Set of test vectors in the CTC which detect the
fault f
The number of elements in the set to(f)
Time at which a fault is manifested
Test Complete
Time at which the system in which the CUT is
embedded is detected to have failed
Time between Maintenance Schedules

References

[1] T.W. Williams and K.P. Parker, "Design for Testability--
A Survey," Proc. IEEE, 71(1), 98-112, January 1983.

[2] K.K. Saluja, R. Sharma, and C.R. Kime, "A Concurrent
Testing Technique for Digital Circuits," IEEE Transactions
on Computer Aided Design of Integrated Circuits and Sys-
tems, 7(12), 1250-1260, December 1988.

[3] S.B. Akers and B. Krishnamurthy, "Test Counting: An
Analysis Tool for VLSI Testing," Tech. Report CR-86-55,
Computer Research Laboratory, Tektronix Laboratories,
November 1986.

[4] R. Sharma and K.K. Saluja, "Design, Analysis and Ap-
plications of an On-Line BIST Technique," Technical Re-
port ECE-88-10, Department of Electrical and Computer
Engineering, University of WisconsinmMadison, June
1988.

[5] E. Parzen, Modern Probability Theory and Its Applications.
New York: John Wiley, 1960.

[6] S. Kamal and C.V. Page, "Intermittent Faults: A Model
and Detection Procedure," IEEE Transactions on Com-
puters, C-23(7), 713-719, July 1974.

[7] R.K. Iyer and D.J. Rossetti, "A Measurement-Based
Model for Workload Dependence of CPU Errors," IEEE
Transactions on Computers, C-35(6), 511-519, June 1986.

[8] K.G. Shin and Y. Lee, "Measurement and Application of
Fault Latency," IEEE Transactions on Computers, C-35(4),
370-375, April 1986.

[9] H. Elhuni, A. Vergis, and L. Kinney, "C-Testability ofTwo-
Dimensional Iterative Arrays," IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems,
5,573-581, July 1986.

[10] W.K. Huang and F. Lombardi, "On an Improved Design
Approach for C-Testable Orthogonal Iterative Arrays,"
IEEE Transactions on Computer Aided Design ofIntegrated
Circuits and Systems, 7(5), 609-615, May 1988.

Biographies

RAJIV SHARMA received his B.E. degree in Electronics from
Punjab Engineering College in India. He obtained his masters
degree in Electrical Engineering from Michigan Technological
University, and worked as a Research Assistant in the area of
design for testability at the University of Wisconsin--Madison.
Currently, he is working as a Software Engineer responsible for
design and development of test products at Cadence Design Sys-
tems.
KEWAL K. SALU,IA received his B.E. degree in Electrical En-
gineering from the University of Roorkee, India, and M.S. and
Ph.D..degrees from the University of Iowa.

22 RAJIV SHARMA and KEWAL K. SALUJA

He is currently a Professor in the Department of Electrical and
Computer Engineering at the University of Wisconsin--Madison
where he teaches logic design, computer architecture, micropro-
cessor based systems, and VLSI design and testing. Previously he
was at the University of Newcastle, Australia. He has also held
visiting and consulting positions at a number of institutions in-

cluding the University of Southern California, the University of
Iowa, the State University of New York, and Hiroshima Univer-
sity. His research interests include design for testability, fault-
tolerant computing, VLSI design and computer architecture and
he has authored or co-authored over 100 research papers in these
areas.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

