
THEORY AND ANALYSIS OF THRESHOLD CHARACTERS 1 

Daniel Gianola 2 

University of Illinois, Urbana 61801 

Summary 

This paper deals with theory, methods and 
problems in the analysis of categorical data in 
animal breed/ng when a threshold model is 
postulated fo i  an underlying normal distribu- 
tion of phenotypes. Linear and nonlinear 
statistical models potentially useful for esti- 
mating parameters of  the underlying and out- 
ward distributions are reviewed and extended. 
Methods for evaluating the genetic value of 
candidates for selection from single or multiple 
populations are discussed comparatively. 
(Key Words: Threshold Characters, Categorical 
Data, Linear Models, Nonlinear Models, Sire 

Evaluation.) 

Introduction 

Most applications of  quantitative genetics 
theory to animal breeding have been made with 
respect to characters showing a continuous 
phenotypic distribution. Muhifactorial models 
based on an underlying Mendelian mechanism 
usually provide a reasonable fit to continuous 
data. Another area of animal breeding deals 
with simple Mendelian models with discrete 
phenotypic distribution, with attention cen- 
tered on prevalence and incidence of traits, 
numbers of alleles and(or) loci, distribution of 
gene frequencies, map distance, penetrance, 
fitness and levels of  consanguinity (see, e.g., 
Rasmusen and Lewis, 1973; Rasmusen and 
Christian, 1976; Haseman and Eiston, 1972). 

Many traits of  importance in animal produc- 
tion such as littler size in sheep, degree of 
calving difficulty, conformation and type 
scores, survival or death," or liability to disease, 
present a discontinuous distribution of pheno- 

types. In these instances, breeding tests show 
features that cannot be readily explained by 
simple strict Mendelian inheritance. Characters 
of this sort, known as threshold or quasi- 
continuous (Griineberg, 1952; Falconer, 1960), 
can be analyzed by postulating an underlying 
continuous distribution of  phenotypes which 
maps into the observed distribution via a set of 
fixed thresholds. 

The objective of this paper is to review, 
characterize and extend models for quasi- 
continuous variation of  possible interest in ani- 
mal breeding, to outline procedures suitable for 
estimating parameters of  these models, and to 
discuss methods for estimating the worth of  
candidates for selection. 

Quj-Continuous Variation 

Historical Background. Wright (1934a) 
analyzed the variability of number of digits 
between and within strains of guinea pigs. He 
observed that the character did not occur in 
grades from which the variances could be 
calculated directly and that the most signifi- 
cant classification was the dichotomy three- 
toed or four-toed. Wright (1934a) hypothesized 
an underlying normal distribution of pheno- 
types, with mean Vi in the itn strain and com- 
mon variance 02 . In this underlying scale there 
is a fixed threshold - i.e., if the underlying 
variate is above the threshold, the four-toed 
character is expressed. If ~'i is the proportion 
above the threshold (t) in the i th substrain 

lri = ft ~176 ( N / ~  0 ) -  i e-(Y-ui)2/za;  dy 

= 1 - q~ ( t i ) ,  (1) 

where q~(ti) is the cumulative distribution func- 
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From (1), 

ti = g b - l ( 1  - f f i ) ,  (2) 

yields the inverse probabil i ty transformation 

or the point  in the underlying scale at which 

there are probabil i ty masses equal to 1 - ni and 
Ir i to the left and right of the threshold, respec- 
tively. Wright (1934a) calculated the statistics 
mi = - t i o ,  which gives the distance of the mean 
of the ith strain from the threshold, and 

0r2 m = Y. (m i -- m)2/n, 
i 

yielding (incorrectly, as pointed out  by Wright, 
1943) the variance of such means. The propor- 

tion of  the total variability due to differences 
among strains was computed as 

2 2 o m/(o  m + 02), 

with the within strain standard deviation (o) 
taken as unit of  measurement.  Wright assumed 

that  all strains had the same variance in the 

underlying scale and that  the strains were a 

random sample from a populat ion of  strains. 
Wright (1934b) extended the model to study 

the t r ichotomy three-toed, four-toed (im- 
perfect) and four-toed (good) and a t tempted  to 

compare means and variabilities of a number of 

strains. He also used the inverse probabil i ty 
transformation to study flower color in Linan- 
thus parryae (Wright, 1943). 

If the distance between thresholds is the 
same from populat ion to population,  the vari- 
ances of the populations can be compared by 
taking the difference between thresholds as the 

unit  of  measurement;  this cannot be done with 
only two categories of response. The reciprocal 
of the distance between the thresholds gives the 
standard deviation on a scale on which the 
thresholds are separated by a unit distance; the 
thresholds on this scale can be obtained by 
multiplying the previous threshold values by 
the "new" standard deviation. The inverse 
probabil i ty  transformation was discovered inde- 
pendently by Bliss (1934a,b) who termed it 
"probi t" .  Probits are widely used in bioassay 
(e.g., Finney, 1947). 

Generalized Multiple Threshold Model. Con- 

sider an animal or experimental unit that is 
subjected to a set of conditions defining a 
populat ion in a statistical sense. The expres- 
sion of a character to a set of factorial com- 
binations is a response in one of m mutally 

exclusive and exhaustive categories that  follow 
an order in some sense. For  example, a ewe of 

a certain age and breed may produce 0, 1, 2, 3 

or more lambs in a given lambing season. The 
response may be ambiguous and measurement 

error occurs, e.g., whether a cow has an "ex- 

tremely difficult" calving or "considerable 
force is required" (Pollak and Freeman, 1976). 
Assume an underlying continuous distribution 

of phenotypes and that  this continuous random 
variable (y) has a jo int  distribution with the 
outward discrete variable. In the continuous 
scale there are m - 1 fixed thresholds repre- 

sented by the vector 

t '=  It t , t 2 , . . . , t m _ l ]  

corresponding to the m discontinuities in the 
outward scale. With t o -- -oo  and tm = 0% if 

t j_  1 < y <  tj, 

for j = 1 . . . . .  m, the animal is scored as respon- 
ding in the jth category. The phenotype of the 
i th animal in the underlying scale is represented 

by a linear combination of  parameters and 
random variables 

Yi =x[3  + z [ u + a  i + e i ,  (3) 

where 3 is a p x 1 vector of parameters, x i is a 

p x 1 known vector of variables relating Yi to 
3, u'X, (0,D) is a q x 1 random vector, z i is 
a q x 1 known vector of variables relating Yi 
to u, a i is the additive genetic value of  the i th 

individual and ei is an environmental deviation. 
Location and dispersion assumptions are 

~i x~ / E 0 ; 

_ei 0 

O a O" e 

Var = c D 0 0 

2 2 O a O' O a 0 

2 
e i /  oe 2 O' 0 o e 

- - J  

In addition, u, a and e i are mult inormal mu- 
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tually stochastically independent random varia- 
bles so that they are also stochastically inde- 
pendent pairwise (Hogg and Craig, 1970). The 
model can be standardized as 

0j = ~ 1  -a* f(s) d s - ~ _ a ,  f(s) ds 

(6) 

Yi* = (Yi - x[/3)/o = z~u/o + ai/o + ei/o 

= ui* + a t + e l ' ,  (4) 

With E(y*) = E(ui*) = E(a*) = E(e*) - 0, 
Var(u*) = q2, Var(at ) h 2, which is heritabil- 
ity in the narrow sense, and Var(e*) = 1 - h 2 
_ q2 = e2; all terms in (4) are also mutally 
stochastically independent. The vector of thres- 

holds becomes 

t ' t =  it?(1) , t~2) . . . . .  t i~m_l)] 

[ t I -- xi3 t m -  1 -- X 

The standardized thresholds are now peculiar 
to the population defined in (3) to which the 
individual belongs. Each standardized thres- 
hold is the distance between the fixed threshold 
and the mean of said population in standard 

deviation units. 
With m categories of response, for each a* = 

k, say, there is a vector 

G'  = [ 0 1 , 0 2  . . . . .  0 m l ,  

with 

m 
O j - -1  

j=l 

where f(s) is the density function of s The 
genotype in the outward scale is then 

G ' =  [ 7 o - 7 1 , 7 1  - 3 ' 2  . . . . .  7 m - I  - T m ] ,  

with 70 = 1 and "Ym = 0, and it should be noted 
that G is a function of a*. If in the standardized 
model of (4) the only sources of variation are 
a* and e*, from (5) and (6) with only two cate- 
gories of response one obtains 

0 = ft~ , [2r -- hU)] V2exp -e*z/2(l -h2) de* 

(7) 

which is the outward genotypic value derived 
by Dempster and Lerner (1950). The genotype 
in the outward scale can then be regarded as 
the proportion of  environments in which an 
individual with underlying genetic value a* = k 
would exhibit the character. The conditional 
variance of phenotypes in the outward scale 
given a fixed genotypic value in such scale, i.e., 
the environmental variance, is given by 

0j(1 -- 0j): 

Hence, genetic and environmental effects in the 
outward scale are not statistically independent 
of each other. 

In the general case, the genetic variance for 
the jth category in the outward scale is 

corresponding to the distribution of response 
probabilities. G is the genotype in the outward 
scale of an individual with additive genetic 
value equal to k in the underlying scale, and 0i 
is its probability of  response in the jth category. 
Omitting the population subscript in the stan- 
dardized thresholds 

0 j = P r o b  (tj*_ 1 < y *  < tj* l a * = k )  

= Prob (tj*_ 1 - a* < u* + e* < 

q - a*  I a*  = k ) .  (5) 

The distribution of s = u* + e* is normal and 

independent of a*. Hence, 

E [0j - ~-] 2 = 

j._~176 [ftj*-a* f ( s )ds ]  2f(a*)da* 
t~_ 1 - a -  

t* -a*  
-- [f-'oo ftJ, a .f(s)f(a*)dsda*]2,  

j--l-- 
( 8 )  

where the expectation (E) is taken with respect 
to the distribution of a* and this can be ob- 
tained numerically for any desired degree of 
approximation. While the model postulates that 
the genetic variance is entirely additive in the 
underlying scale, there is nonadditive genetic 
variance in the outward scale. The effect of a 
gene substitution in the underlying scale on the 
outward genotype is given by 
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a0j a ( T j - i  - T j )  a ( t - a * )  

aa* a( t  -- a*) aa* 

= [2~(1 - h2)] - ~  

{exp- (t*j_ 1 - a*)2/2 ( 1 - h  2 ) 

- -  exp--(tr--a*)2/2(1 --ha-) }. (9 )  

Equation (9) illustrates that the outward effect 
of  a gene substitution in the underlying scale is 
not  constant throughout the range of  a*. 
Dempster and Lerner (1950) showed for bi- 
nary traits that the relative contribution of  non- 
additive genetic variance to the total genetic 
variance in the outward scale increases as herita- 
bility increases and as the prevalence of  the 
trait deviates from 50%. For example, if a bi- 
nary trait has a 20% prevalence and if h 2 in the 
underlying scale is .36, the nonadditive genetic 
variance as a proportion of the total genetic 
variance in the outward scale is about 11 to 
12%; if the prevalence is 10%, then this propor- 
tion is about 25%. Corresponding figures for a 
trait with h 2 = .64 are 22 and 40%, respec- 

tively. This implies that it may be difficult to 
obtain estimates of additive genetic parameters 
free of  nonadditive biases if the scale of  the raw 
data is used for analysis. 

The additive genetic variance in the observed 
scale can be obtained by postulating a linear 
relationship between the additive genotype in 
the outward scale, G A, and the additive genetic 
value in the underlying scale (see the Appendix 
by Robertson in Dempster and Lerner, 1950). 
Letting 0 A be the jth element of CA, and 

0 D be a residual genotypic value, one can write 

raojl 
0j = 0/~ + 0p = ~ j  + j a" + 0p. 

where aj is a location constant. Hence 

V a r ( 0 A ) = E 2 r  0 o j ]  2 La-~J h , (10) 

where the expectation is taken with respect to 
the distribution of a*. Now, 

/a0j\ 
E ~ ~--~-) = (2~')- �89 [exp-  t V  112 

- -  exp-t~ =/2] = zj_ 1 -- zj, (11) 

following from an extension of results from 
Robertson (Dempster and Lerner, 1950); 

Zj_ 1 and z I are ordinates of  a standard normal 
density function corresponding to thresholds 
between categories j - 1 and j, and j and j + 1, 
respectively. From (10) and (11), 

Var(0 A) = (zj_ 1 - zj)2h 2 , (12) 

so the additive genetic variance in the observed 
scale depends on the distribution of  prevalence 
by category of  response in the population in 
question. Even if h 2 is the same from popula- 
tion to population, differences in prevalence 
will result in different amounts of additive 
genetic variance. 

The phenotype in the outward scale is an 
m x 1 random vector, v, which has elements 
equal to 1 in the position corresponding to the 
category of response and zero elsewhere. The 
varianee-covariance matrix of v has elements 

*rio - 7ri), i = 1 . . . . .  m 

and 

-n i , r  j for i 4=j; 

7r i is the probability of response in the i th 

category. From (12) the "heritability of  the 
jtn category" is 

hUoj = h 2 (zj_ 1 - zj)U/Trj (1 - lrj), (13) 

which reduces to h2o = h2z2/Ir(1 - It) with two 
categories of  re@onse, a well known result due 
to Dempster and Lerner (1950). 

A common practice in animal breeding is to  
score response categories by a vector of  weights 
(Hazel, 1943; Pollak and Freeman, 1976). 
Letting 

~ / =  [7/1, r/2 . . . . .  ~ m  ] 

be such an m x 1 vector of scores, the aggre- 
gate genetic value in the outward scale is 
defined as ~'/'G A and the phenotypes are scored 
as P = ~'v. The heritability of  this phenotypic 
score is then 

h2o ' A ' = r /Var(G )r//r/Var(v)~. 

However, 

G A = (0lj + (zj_ 1 - zj)a*); for j  = 1 . . . . .  m. 
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Hence, Var(G A) is a symmetric matrix ob- 
tained by multiplying h z times the vector 

(z j_ l  - z i }  

times its transpose. Thus 

17'Var(GA)r h2[j=~ 1 1 7 j ( z j - I - z j ) ]  2 

= z j  (17j+I - -  ~ j  

L j= l  
(14)  

since z o = z m = O. Similarly 

m 

Var(P) = r �9 r r 
j=l 

(15) 

The heritability of  the scores is given by 

h2o ' >]: = Zj (~i+ 1 - -  ~j / 
l= j=l 

17j /rj - -  / '/ i/rj 
j=l  J 

(16) 

which for two response categories reduces to 

h 2 z2/[~(1 -- zr)]. 

In the case of two categories h2o is invariant to 
r this is not  so in the general case. Gianola and 
Norton (1981) describe a scaling procedure 
with several optimality properties. 

Bivariate Aspects of the Threshold Model, 
In designing animal improvement schemes, in- 
formation is also needed on genetic and pheno- 
typic associations between pairs of  continuous 
variables, pairs of  discrete variables and mix- 
tures of continuous and discrete variables. For 
example, an index for sheep selection may in- 
clude records on fleece weight, 90-d body 
weight, foot-rot  classification and litter size. 
Foot-rot  classification and litter size may be 
regarded as polychotomous variables having an 
underlying normal distribution. Results pre- 
sented here have also been obtained in 
a path analysis framework by Vinson et al. 
(1976). 

Consider two underlying bivariate standard 
normal variables (w* and y*) represented 

by a model similgf to that  Oi ~ equation (4), ex- 
cept that the subscripts will now indicate the 
random variable in qtiestioil: 

w *  = U* + a*  + e *  
w w w 

y *  = U *  + a *  + ~ i ,  
Y Y Y 

Since the variateS ate iia standard deviation 
units, the correlati0ti b e ~ e e n  w and y is 

P w y  --- Cov(u.*. ,u~) + Cov(a.*. ,a.*.) 
w y iv y 

+ Cov(e ,e ) 

= Pwy (u) qwqy + Pwy (a) hwhy 

+ Pwy(e) ewer (17) 

where Pwy(u) is the Correlation between the u 
values of the variables w and y, and Pwy (a) 
and Pwy(e) are genetic and environmental 
correlations. 

The phenotypes i n  the outward scales are 
n and m polychotomi~s induced by n -~ I and 
m - 1 thresholds in the distributions of  w* and 
y*, respectively. Let W = i and Y = j index a 
response in the it h category of the outward 
variable W and jtn category of the outward 
variable Y. The joint distribution of W and Y 
is characterized by the statement 

Prob {W=i,Y=j) 

Prob {t*w(i-l) < w* < t*w(i ), 

t * y ( j _ l )  < y* < t *y ( j )  } 

--_ ft*w(i) j.t* y (j) f(w*,y*)dw*dy*, 
" t * w ( i - 1 )  t * y ( j - l )  

(18) 

where f(w*,y*) is a bivariate normal density 
function. Now, write 

Prob (W = i) = floi "~ flli W* + Ei 

Prob (Y = j) = 3oj +/~IjY* + El, 

(19) 

(20) 

where E i and El are mutually independent 
residuals which are alSO independent of other 
terms in (19) and (20). Thus 
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Cov[Prob(W = i),Prob(Y = j)] 

a(W = i) a(Y =j)  

~w* ~y* 
m Pwy 

t t 

= (Zi_ 1 -- Zi)(Zj_ 1 -- Zj)/)wy (21) 

where (21) follows from an argument similar 
to the one used in (11); z i is the ordinate of  a 
standard normal variate corresponding to the 
threshold between categories i and i + 1 of W, 
and z~ is its counterpart for Y. 

The vector of scores for the categories of  W 

may have the form 

~, = [ 1 ,  2 . . . . .  i . . . . .  n l ' .  

Likewise, the vector of scores for the categories 
o f  Y m a y  b e  

r h = [1, 2 ..... j ..... ml ' 

From (14) and (21) 

= r n ~  1 [ m ~  1 
(22) 

Hence, the correlation in the underlying scale, 
Pwy, can be obtained from the correlation in 
the outward scale, 0wy,  as follows: 

Pwy = PWY OW Oy 

zi]-'r m:Tl z,'] 
L i=l L j--I 

-1 
(23) 

which agrees with the result of Vinson et al. 
(1976). The additive genetic variance of W and 
Y and their genetic covariance in the outward 
scale follow from (14) 

2 [ ' n - I  i] 2 
Var(WA) = hw L i~l Za (24) 

:rm:71 = z ( 2 5 )  Var(Y A) hy t. j=l 

Cov (W A , yA ) = 

r n ~  l i ] F m z  I ' ]  
Pwy(a) hw hy z zj . (26) 

L i=l L j=l 

Hence,  Pwy(a) = PWY(a), in agreement with 
results of Vinson et al. (1976). 

A case of  interest is the one in which one of 

the two continuous variables, y*, say, is ob- 
servable. Then 

Cov {(W = i),y* ) = ( z i _  1 - z i ) P w y  ' 

rn:7, ' ] Cov(W,y*) = zi Pwy, 
L i=l 

from which 

Pwy PWy, OW [ n ~  1 1 - 1  = z i 
k i=l 

]-' 
= PWy ffW zi 

Li=l  
(27) 

A similar relationship applies to the correlations 
between additive genetic values, environmental 
deviations and other random components of 
the model. 

Probability Statements in Tbresbold Models. 

It may be of  interest to calculate the probabil- 
ity that a certain individual exhibits a response 
in one of m possible categories given informa- 
tion on the distribution of outcomes in a set of 
relatives. This has received attention and appli- 
cation in genetic counseling in Homo sapiens 
where the aim has been to assess relative recur- 
rence risks of specific diseases given informa- 
tion on rela'tives (Curnow, 1972, 1974; Mendell 
and Elston, 1974; Smith and Mendell, 1974; 
Curnow and Smith, 1975). 

Cumow (1972) proposed a probability 
model for dichotomous outcomes based on the 
concept of a risk function. However, as pointed 
out by Bulmer (1980) this model is equivalent 
to a model with abrupt thresholds. The method 
of Curnow (1972) is useful in instances in 
which multiple integrals involving the multi- 
normal density function can be written as pro- 
ducts of single integrals (Curnow and Dunnett, 
1962). An extension of the method incor- 
porating information on concomitant contin- 
uous variables has been described by Curnow 
(1974). This could be useful for the analysis of 
traits such as calving difficulty where the under- 
lying variate may be correlated with birth 
weight. Information on this trait for a set of 
relatives could be utilized jointly with calving 
difficulty scores in the planning of a breeding 
program aimed to improve calving ease. 

Unordered Categories of Response: The 

External Concept. Polychotomous data also 
arise in ways in which no explicit ordering of 
the response categories is possible. For exam- 
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pie, consider an experiment in which cows of 

a certain breed are evaluated for their choice of 

one among m diets at a specific time of the day. 

If the trial last 2 wk, the data might be sum- 

marized as the number of cow-days that a 

specific diet is chosen. There is a need to dis- 

tinguish between "design" and "response fac- 

tors", and both can have a crossed or nested 

arrangement. In this hypothetical experiment 

there might have been four diets resulting from 

the combination of two sources of animal pro- 

tein and two levels of an additive, thus defining 

a crossed response structure. 

Thurstone (1927) and Bock and Jones 

(1968) developed the extremal model to ac- 

count for the mechanism by which an under- 

lying continuous scale maps into the observed 

scale. In this model, the underlying process is 

vector valued, i.e., whenever an experimental 

unit  is subject to a treatment combination, a 

vector y of order rn arises in the underlying 

scale. The response category corresponds to the 

largest element of y. The probability that the 

individual responds in the mth category is 

Prob (Ym > Yl,Ym > Y2 . . . . .  Ym > Ym-I  ) 

=Prob { (3 ( Y m - Y i )  > 0 )  
i:#m 

where the symbol ~ indicates "intersection". 

The differences 

Ym--Yi,  i=  1 . . . . .  m - l ,  

can be described by the linear combination 

y* = Cy, 

where C is an (m - 1) x m matrix with its jth 

row having zeroes except for cjj = - 1  and Cjm -2 

1 , j = 1  . . . . .  m - l .  lf 

y % N(/a,V), 

then 

y* % N(C/a,CVC') 

and 

Prob { (3 ( Y m - Y i )  0 )  
i~#m 

=~0 Jo . . . fo  k 

exp-  ~(Y* - c u ) ' ( c v c ' ) -  ~ (y* -Cu)  

dy~dy ;  . . .  d y ~ _ l  (28) 

where 

k = (27r) - ( m  -1)/2 ievc,l-y~. 

If V is such that all the diagonal elements are 

equal, say to e 2 , and all off-diagonals are equal 

to 4, then 

Var(ym - Yi) = 2( ~ - 4) = 7 

C~ - Yi, Ym - Yj) = 02 - ~b = 7/2 

and 

Corr(ym - Yi, Ym - Yj) = 1/2. 

In this case (Bock and Jones, 1968), the m - 1 

variate logistic distribution can be used to 

approximate a multivariate normal and 

Prob ( f3 (Ym - Y i )  > 0} 
i~m 

- [1 + exp - (um-u~)  + . . . 

+ exp-(~am-/Zm_l)] -1 

= expUm/(expU~ + exp'2 + . . .  + exp urn). 

(29) 

The marginal distributions of (29) are logistic 

with mean 0 and variance 7r 2/3, the covariance 

for any pair of variables is n ~/6 and the correla- 

tion is 1/2. While application of the multi- 

variate normal model is constrained by the 

difficulty of integrating (28) when the num: 

ber of variates exceeds two, the approximation 

of equation (29) is excellent for moderate 

values of ti =/am --/ai (Bock, 1975). 

In the case of two categories of response, 

the threshold and extremal concepts are for- 

mally equivalent (Bock, 1975) since the vector 

valued function involved in the extremal model 

can be reduced to a univariate random variable 

given by the difference between the two ele- 

ments of y. If 

/a' = [/ai ,/a2 ], 

Var(yl )  = o~, 

Var(y2) ~ o2 and 

Cov(yl ,y : )  --- o1:, 
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a response in the first category occurs if Yl > 

Y2- Letting 

f =  Yt - -Y2 ,  

Var(f) = o~1 + o~ - 2 o12 = 02, and 

E(f) = f*, 

the probability of response in the first category 

is given by 

Pl = ( X / ~  o) -1 f :  exp -(f-f*)2/2~ df 

= (2rr)-% f-~f*/o e-d/2 dt = ~ ( f * / o )  (30) 

and P2 = 1 - (P (f*/o). By taking o = 1 as the 

unit  of  measurement  the result of equation 1 

for the threshold model follows. 

Estimation of Heritability 

Outward Scale. In view of previous consider- 

ations, there is question as to the significance 

of heritability estimates obtained directly in the 

outward scale. There may be considerable non- 

additive genetic variance present and the as- 

sumption of independence of genetic and en- 

vironmental effects is generally not tenable. For 

binary traits, Robertson and Lerner (1949) pre- 

sented formulae for a one-way classification 

model with two random sources of variability: 

"among" and "within" families. Their develop- 

ments are based on an analysis of variance 

framework with the outward variate scored as 

zero or one, depending on the absence or pres- 

ence of the characteristic in the individual in 

question. Because the variance in the outward 

scale is binomial 

~2 = [SSF/~r(1 - n)] - ( s -  1) 

r(k - s + 1) ' (31) 

where SSF is the corrected sum of squares 

"due to" families, 7r is the prevalence of the 

character in the general population, s is the 

number of families, r is the additive relation- 

ship between family members, and 

k = ~  n i - ~  n2/~ni ,  
i i 

with ni the number of individuals in the i th 

family. Since SSF/zr(I -- rr) is chi-sq, uare with 

s - 1 degrees of freedom, with large nis, 

^ 2 ( s  - 1 )  

Var(h 2) - r2(~-__ s + ' l ) 2 "  (32) 

An application of this method was presented by 

Milagres et al. (1979), in which the authors ob- 

viated effects of fixed classifications in the 

model by computing chi-square statistics within 

levels of fixed effects and pooling them across 

levels. 
The method can be extended to multiple 

categories of response. Let vij be an m X 1 

vector corresponding to the jth individual in 

the i TM family (i = 1, . . . , s). If the individual 

responds in the mth category, then vij has a 1 

in the m th position and O's elsewhere. The ij th 

individual is scored as T/'vij, where r/ is  a vector 

of scores and the model is 

~'vij =/2 + S i + Wij, (33) 

where s i is the random effect of  the ith family 

and wij is a residual. Taking into account t ha t  

2 
OZw = 7/' var(vij)r / - as, 

~2 SSF/(r/ 'Var(vij)r/) -- (s -- 1) 
= (34) 

r(k - s + 1) 

Which reduces to equation (31) when m = 2; 

r/'Var (vij) r/ 

can be calculated from (15). Estimates of 

heritability in the underlying scale can be ob- 

tained by the application of (16) to (31) or 

(34). 

Van Vleck (1972) found in a Monte Carlo 

study that (16) yielded a slight overestimate of 

heritability in the underlying scale when 

paternal half-sib correlations were computed 

from binomial data. However, substantial over- 

estimates resulted when parent-offspring cor- 

relations were used; this was particularly true 

at low or high prevalences and when heritabil- 

ity in the underlying scale was high. These 

results are consistent with the theory developed 

by Dempster and Lerner (1950). 

Equations (31) and (34) have a multivariate 

counterpart. Since vij follows a muhinomial  

distribution with fixed n i in the ith family, one 

of the elements in the vector is redundant. 

Omitting the last element of vij, the model can 
be written as 

"~ij = ~ + S + W  
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where ~ij, #, s, and w are (m - 1) x 1 vectors. 
The complete data set can be written as 

= ~ t  m 
= V l l  

~ t  
Y v t2  = [ Y t ,  Y2 . . . . .  Y m - I  ] 

vm~ 

where Y is a matr ix of  order 

n ix (m - 1). 
i 

Further,  
$ 

Var(yi)  = I~+ [~i(1 - ~'i) - sii] | j  
s j= l  

+ X + Jjsii = Zii and (35) 
j=l 

$ 

Cov(yi,  y [ )  -" 2;+ [--ffiUk -- Sik] lj 
j=l 

$ 

+ ~+ JjSik = Zij , (36) 
];1 

where Z + denotes direct sum, lj is an identi ty 
matrix of order nj corresponding to the jth 

family, Jj is an n~ matrix of l ' s ,  and Sik is the 
ik th element of  S, which is an (m - 1) 2 sym- 

metric matrix containing "family"  variance and 
covariance components  for the m - 1 cate- 

gories. With this in mind, one can compute F, 
the (m - 1) 2 matrix of "among-families" cor- 
rected sums of squares and products corres- 
ponding to the m - 1 independent  categories 

so 

E(F)  = ( s - -  1)V + ( k -  s + 1)S (37) 

where V has elements hi(1 - Tri) in the diagonal 
and -lriTr j in the off-diagonals; i = 1 . . . . .  
m - 1. The "heri tabi l i ty"  matrix H is the 

multivariate version of  (31); 

A 

H = [ V - i F - - ( s  - 1 ) I ] / r ( k - s + l )  (38) 

where V -1 has diagonal elements equal to 

Ir~ "1 +*rml, i = 1 . . . . .  m - l ,  

and off diagonals 

Kendall and Stuart, 1977). The jth element of 
is the heritabili ty of the jth category and its 

ijth element is 

h i hj Pij 

where/gij is the genetic correlation between the 
i th and jth category. An approximation to the 

variance of H can be obtained by writing F as 
Y'AY, where A is the matrix of quadratic or bi- 
linear forms arising in the corrected sums of  

squares and products. Under normali ty,  the 
variance of the ij th element of F (Searle, 1971) 
would be 

Var(fij) = Var(y[Ayj)  

= 2tr(AZij)  2 + t r(AZiiAZij)  

+ jAtTr~(1 - ffi)2Zjj + ff~(1 - "ffj)2 Zii 

+ 21riTrj(1 - Iri)(1 - nj)Zij] Aj, 

where j is an 

(39) 

~ n i x  1 
i 

vector of l ' s  and t r  is the trace operation. From 

(38) 

{tar(H) = [V-I  Var (F)V -x ] [ r ( k -  s + 1) ] -2  

(40) 

with Var(F)  computed from (39). Note from 

(35), (36) and (39) that  Vat (F)  is a function of  
S which generally will not  be known. 

Little work has been done on variance com- 
ponent  estimation with categorical data. Landis 
and Koch (1977) presented a multivariate 
analysis procedure which yields unbiased esti- 
mates for a one-way classification with un- 

balanced data. The procedure can be extended,  
at least in theory,  to classifications with fixed 
and additional random factors but  comparisons 
of this method with established procedures in 

animal breeding such as those of Henderson 
(1953) or maximum likelihood (Searle, 1979) 
are lacking. Leonard (1972) has described a 
Bayesian procedure for the binomial distribu- 

tion in which the estimates depend little on 
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prior parameter values. However, Thompson 

(1979) warns that this method yields zero esti- 
mates for variance components when nonzero 
solutions were "expected" .  

Regression of Relatives on Propositi. 

Falconer (1965) developed a method for esti- 
mating heritabili ty of liability to disease from 
prevalence in relatives. This procedure has re- 
ceived little at tention in animal breeding but  
could be used, for example, for estimating the 
heritability of propensity to twinning. Assump- 

tions of the method are: 1) an underlying nor- 
mal distribution of liabilities in the general 
populat ion with the individuals showing the 
disease (propositi) being those whose liabili- 
ties exceed a certain fixed threshold; and 2) the 

distribution of liabilities in relatives of affected 
individuals is also normal with variance equal to 

that in the general population. The method ap- 
plies to situations in which the genetic com- 
ponent  is muhifactorial  and excludes cases in 

which the variation of liability is discontinuous 
such as would happen with a gene of major 

effect. 

Consider a population with a prevalence, 
~, of a certain disease. The mean liability for 
affected individuals is thus 

a = z/F, 

where z is the ordinate of the truncation point, 

X = q b -1  (1 -- q), 

in a standard normal distribution. Since the 
mean liability in the general population is 0, 
then a can be regarded as a selection differential 
for liability and x is the distance between the 
threshold and the mean of the population in 
standard deviation units. In relatives of  the 
propositi ,  the prevalence is qR and the devia- 
tion of the threshold from the mean liability of 
the relatives is 

X R =dP - 1 ( 1  - - q R ) .  

By using the concept of  response to selection, 
the regression of relatives on propositi  is 

b = (x --  x R ) / a  

and because the variance of liabilities in pro- 
positi and relatives is the same, b yields the 
correlation between relatives. Hence, in the 

absence of or elimination of common familial 
environmental influences, 

~a 2 = (x - -  XR)/a r, (4I )  

where r is the additive relationship between 

relatives. Asymptot ical ly  (Falconer, 1965), 

Var(~a) 2 = r  -2 [ 1 / a - b ( a - x ) ] 2  

(1-~)  (1--qR) l 
a2N + a4NR I (42) 

where N and N R are the sample sizes from 
which q and qR are calculated, respectively. 

If the prevalence of a character differs 
between sexes, interesting results are obtained. 
For  example, the prevalence of congenital 

pyloric stenosis is lower in females than in 
males, but  the prevalence in relatives of female 
propositi  is higher than is found in relatives of 

male propositi  (Carter, 1961). This can be 
explained by the threshold model, as follows: 
the females have a lower mean liability than 

males and, hence, a larger "selection differen- 
tial", and if liability is inherited, the expected 
"response to selection" will be larger in females 

than in males (Falconer, 1965). If data on the 
two sexes are available, four separate regres- 

sions can be calculated, two for like-sexed and 

two for unlike-sexed relatives. The first two 
estimate h2m and h~ (where m = males and f = 

females) and the second two both estimate 

hmhfrg (Falconer, 1965), where rg is the 
genetic correlation between sexes. The two esti- 

mates from unlike-sexed relatives should be the 
same and if all four estimates are the same, 
within the limits of sampling errors, then the 
genetic correlation does not  differ from unity. 
In this latter case the four estimates should be 
combined statistically. Falconer (1965) pointed 
out  that if the propositi  and their relatives be- 
long to different generations, the estimate of 
heritabili ty would be valid only if the variance 
of liability remained unchanged from genera- 
tion to generation. However, it was shown 
later (Falconer, 1967) that  the method adjusts 
automatically for this source of bias. Two 
sources of bias are present in Falconer 's  (1965) 
method. Since the propositi  form a truncated 
group with a skewed distribution, the variance 
of liabilities among relatives may be smaller 
than in the general populat ion and the distribu- 
tion of liabilities in relatives may also be 

skewed (Smith, 1970). Numerical analyses by 
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Smith (1970) indicate that Falconer's (1965) 
method underestimates the correlation between 
relatives by about 10% of the true value, so the 
bias is only important when the correlation is 
high. Refinements of Falconer's method are 
given by Reich et al. (1972) and Mendell and 

Elston (1974). 
The frequency in relatives can be calculated 

from a method presented by James (1971). 
Suppose individuals are taken at random from 
the whole population and given the score X = 1 
if they have the attribute and X = 0 if they do 
not. Relatives of these individuals are scored in 
the same way, with the variable Y denoting 
their scores. Since X has only two values, the 
conditional expectation of Y given X = 1 is 
linear in X and given by 

Cov(Y,X) 
qR = q + q ( l - - q ) ( I - - q )  

Coy(Y,X) 
= ~ +  ~ , (43) 

which yields the expected frequency in relatives 
of individuals showing the attribute. Cov(Y,X) 
is the covariance between relatives which can be 
obtained by standard procedures. 

Underlying Scale. Tallis (1962) presented 
an application of maximum likelihood to the 
estimation of  correlation between relatives and 
repeatability of  records. The data are arranged 
into a p x q contingency table, with one of the 
dimensions the ordered categories of response 
in the parent (first record in the repeatability 
model) and the other the categories of response 
in the progeny (or second record). Hence, nij 
would be the number of observations in the ith 
category of parental responses and i TM category 
of progeny responses, with 

~. ]~. nij = n 
1 j 

taken as fixed. If the underlying variables in the 
two dimensions follow a bivariate normal 
distribution, with thresholds in each of the axes 

given by 

a' = ( a t ,  a2 . . . . .  a p - 1  ) 

and 

then 

= ai f :J  r  du dv Pij fai_l j--1 

= ~(ai,bj;p) -- qb(ai_ 1, bj ;p)  

-- ~(a i ,b j_ l  ;p) + ~(a i_  1 ,bi_ 1 ;p) (44) 

where r  is a bivariate standard normal 
density function with correlation p, and q5 is 
the cumulative distribution function. An exten- 
sion of results of Tallis (1962) yields 

(}~ (a i,bj ;p) 
Dp = ~b(ai,bj;p) , 

~ ( a i , b  j ;p) [ bj - P a i \  

~)ai = (~(ai) (:I)~ ~ )  

= ~(ai)(I)(Bij) and 

aCP(ai,bj ;p) (a  i -- pbj 

abj - r  \ ~ /  

= r ~(Aij), 

where r and ~b(bj) are standard normal den- 
sities evaluated at a i and bj, respectively, 

bj - pa i 
Bij - ~ , and 

a i - pbj 
Aij - ~/~ _ p2 - 

The log-likelihood equations are 

i ~ n L  = ~  ~nij 0Pi) 

~P i j Pij Op 

= ~i ~ nij 
�9 J ~ij [r  

-- r  1 ,bj;p) -- ~b(ai,bj_ 1 ;p) 

+ q~(ai_ 1 ,bj-1 ;P)], 

a~n  L 

aai = ~b(ai) ~'1 

nij n(i+ 1 )j 

Pij P(i+ 1 )j 

{~ (Bij) - -  qb (Bi( j_ 1 ) ) ) 

(45) 

(46) 

b' = (bl ,  b2 . . . . .  bq_l  ), for i = 1 . . . . .  p - l ,  and 
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a ~n L I nij hi(j+ 1 ) ] 

{~(Aij) - @(A(i- I )j) } 

forj = I .... , q--l. 

(47) 

These equations are nonlinear and must be 
solved by iterative procedures such as the 
Newton-Raphson method (see, e.g., Dahl- 
quist and Bjorck, 1974). This method requires 
evaluation of the inverse of the matrix of  
second partial derivatives of the log-likelihood 

with respect to the parameters. An additional 
computational difficulty is that bivariate 
volumes need to be calculated. The large- 
sample variance-covariance matrix of  the maxi- 
mum likelihood estimates can be obtained as 
usual by evaluation of  the negative in- 
verse of  the matrix of  second partials at the 
solution. 

The method of Tallis (1962) as extended 
here addresses only a subset of  problems en- 
countered in animal breeding: there can be 
only two populations of  thresholds corres- 
ponding to the parental and progeny genera- 
tions or first and second records in the repeata- 
bility model. In the case of sib-data in which 
families are independent, the likelihood func- 
tion is the product of the likelihood of  the 
families and Thompson (1972) has presented a 
completely general solution for independent 
families in which each individual can belong 
to a different population. The computations are 
formidable and require the evaluation of k- 
dimensional integrals where k is the family size. 
In some instances it is possible to write these 
multiple integrals as products of  one-dimen- 
sional normal integrals (Curnow and Dunnett, 
1962). If the families are not independent, 
computations involved in maximum likelihood 
are generally prohibitive. 

Plackett (1965) has presented a simple 
method of  estimating the correlation between 
two underlying variates each of  which is di- 
chotomous in the outward scale. The data con- 
sist of a fourfold table with entries n i l ,  nl2, 
n21 and nm, where nij is the number of  records 
in the ith category of  the parents (or first 
record in the repeatability model) and jth 
category of  the progeny (or second record). 
The estimator is 

A 
,o = -- cos [~�89 + ~'A)] (48) 

where 

= nl~ nm/n12n21 �9 

Further, 

I Var(p) = ~.2 sin a 

~2(1 1 1 1) 
+ + '  �9 + ,,, 

n l l  h i 2  n21  n22 

[4g'(1 + ~ ) 4 ]  -1 (49) 

gives a consistent estimator of  Var(p), Rutledge 
(1977), in a Monte Carlo study, found that p 
had much less bias than a statistic proposed by 
Lush (1956) for estimating the correlation in 
the outward scale. However, the bias of Plack- 
ett 's statistic seemed to be affected by the 
threshold location and by the value of p. I t  
would be interesting to compare the maximum 
likelihood estimator of p with Plackett's (1965) 
estimator since the latter is much easier to 
compute. For a data set found in Plackett's 
paper, his estimator had a larger estimated 
sampling variance than the maximum likelihood 
estimator of  p. Wahrendorf (1980) has ex- 
tended Plackett's (1965) statistic to p x q con- 
tingency tables. 

Linear Models for Categorical Traits 

Fixed Effects. Grizzle et al. (1969) de- 
veloped a linear model approach to the analysis 
of  categorical data. The procedure is available 
in a release of the Statistical Analysis System 
(Helwig and Council, 1979) under the 
FUNCAT procedure. The data are arranged into 
a s x r contingency table where the s rows 
represent factorial combinations and the r 
columns are mutually exclusive and exhaustive 
response categories. The entries in the table, 

nij, i = 1 . . . . .  s, and j = 1 . . . . .  r, 

are counts and 

n i .  = ~. n i j  
J 

indicates the marginal total for the itn factorial 
combination. Let Irij be the expected cell prob- 
abilities such that 
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~. n i j  = 1 ,  
J 

and 

Pij = nij/ni.  

S = Var(F)  ; In = p 

+ Var(p  i ~ In = 
k i = l  

(52) 

be the observed probabilit ies.  On defining 

r 
n i =  [nil , n i 2 , . . .  , n i r ] ;  

t 
Pi [Pi l '  Pi2 . . . . . .  Pir] ';  

n t  r p r 
= [ n l ,  n 2  . . . . .  n s ]  ; 

t t t t 
P = [ P l , P 2 , - . - , P s l  

the variance-covariance matr ix  of Pi is sym- 

metric  with elements 

7rij (1 -- nij)/ni . ,  

for j = 1 . . . . .  r, and 

- n i j  n i  k 

for j 4 = k. Hence, 

S 

Var(p)  = 2~ + Var(pi)  
i = l  

When F is a linear func t ion  of  p, S is the exact 

variance-covariance matr ix  of F. The next  step 

is to describe the family of funct ions  by  

F(n) =X3  (53) 

where X is a u x v matr ix  of r a n k r  < v <  u 

and 13 is a v • 1 fixed vector of  u n k n o w n  

parameters.  Minimizing 

SS[F(n)  = Xfl] = F 'S  - 1 F  

- ~' (x's  -~ x)  # (54) 

with respect to 3y ie lds  

~ ' = ( X ' S - I X )  - X ' S - 1 F  (55) 

from which it is possible to obta in  best asymp- 

totic normal  estimators (BAN) of  funct ions  of 

/3 which are invariant  to the generalized inverse 

( X t 8 - 1  X )  - 

is block diagonal of order rs x rs. 

In view of  the restrictions 

7 r i . = l , f o r i = l  . . . . .  s 

up to s(r - 1) independen t  funct ions  of cell 

probabil i t ies may be selected to describe the 

cont ingency table. These funct ions,  

fm(70, w i t h m =  1 . . . . .  u <  s ( r - 1 ) ,  

when evaluated at /3 = 3. BAN est imators  have 

the same asymptot ic  propert ies as m a x i m u m  

likelihood estimators,  are much easier to com- 

pute,  and in some instances (Berkson, 1968) 

yield estimates and test statistics numerical ly  

similar to m a x i m u m  likelihood. The form in 

(54) has an asymptot ic  chi-square dis t r ibut ion 

with u - r degrees of f reedom so the model  can 

be tested for fit. Given the model,  the hypothe-  

sis 

can be of any form provided that  they have 

partial derivatives up to second order with 

respect t o  ffij. Compact ly  

F ' (n )  = [ f l (n) ,  f2(n),  . . . ,  fu (n)] (50) 

F '  = I l l (p ) ,  f2(P) . . . . .  fu(P)] (51) 

describe the cont ingency table where 

F = F (n = p). 

The asymptot ic  variance-covariance matr ix  of F 

is est imated by S, a matr ix  of order u • u 

H: C3 = 0 

of rank d can be tested by referring 

ss tc /3  = 01 = ~ ' c ' t c ( x ' s - '  x ) - c ' 1 - 1 c ~  

(56) 

to a chi-square dis t r ibut ion with d degrees of 

freedom. Confidence intervals for C/3 can be 

obta ined from 

c#_+ [x~ c(x's-~  x ) -c ' ]  1/2 
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where X~ is the appropriate  percentage point  of 
the X 2 distribution with d degrees of freedom. 

The method assumes that  all cells in the 
table are filled but  singularity in S can result if 
some of the nij's are zero. The empty cell prob- 
lem may require collapsing the table or re- 
placing the empty  cell by 1/r (Berkson, 1955). 
Addit ional  limitations relate to the assignment 
of scores to the elements of n (see the examples 
in Grizzle et al., 1969). It may be of interest to 

obtain fi t ted probabilities by inverting (53) so 

= r - '  (x~') 

yields an estimate of rr if F is invertible. Even in 
this case, the resulting probabil i ty estimates for 

some classes of  functions may not  be in the 
range 0 to 1. This illustrates that although BAN 

estimators have the same asymptot ic  properties 

of maximum likelihood estimators, not  all of 
them can be maximum likelihood. Some in- 
vertible functions of response probabilit ies such 

as iogits provide estimates of 7r within the 
parametric range. When F(n)  defines a family 

of logit transforms and r = 2, the method of  
Grizzle et al. (1969) reduces to Berkson's 
(1955) "minimum logit chi-square", widely 
used in bioassay. Koch et al. (1972) have gen- 
eralized the method of Grizzle et al. (1969) for 
incompletely classified data. 

Mixed Models. The multivariate general 
linear model is the main tool used for analysis 
of animal breeding data. When response varia- 
bles are categorical, tests of hypotheses based 
on the assumption of normali ty are approxi- 
mate and may be inadequate. In mixed models 
in the sense of  Henderson (1973), where the 
aim is to estimate conditional means, additional 
problems arise when the data are categorical. 

Cochran (1951) showed that  the conditional 
expectat ion of a predictand given the data is 
the best selection rule under certain idealized 
conditions since it 1) minimizes mean square 

error of prediction among all predictors; 2) is 
unbiased; 3) maximizes the expected value of 
the predictand in a group that has been selected 
by truncation; 4) maximizes the correlation be- 

tween predictor  and predictand; and 5) if the 
predictand and the data follow a multivariate 

normal distribution, genetic progress is maxi- 
mized. 

In the multivariate normal distribution, the 
conditional expectat ion of the predictand given 
the data is linear in the observations. This gives 
a strong justification for using linear models 

and predictors in animal breeding. The optimal 
properties of best linear unbiased predictors 
(BLUP) of realized values of random variables 
(Henderson et al., 1959; Henderson, 1973, 
1975) have given impetus to research in sire 
evaluation and these methods have been ap- 
plied in the U.S. and elsewhere. However, if the 

data are categorical, the best linear predictor  
may not  be a good approximation of the best 
selection rule. Suppose that in the underlying 
scale the additive genetic value (a) and the 

phenotype of an individual (y) follow a bi- 
variate normal distribution and y and a are 
defined such that 

E ( a ) = E ( y ) = O ,  

Oy = 1, and 

Corr(a ,y)  = h 

where h is the square root  of the heritabili ty of 

the trait. Now, y is polychotomized in the out- 
ward scale by a set of  thresholds 

t l , t 2 , . . . , t m _ l ,  

defining an outward variable Y, i.e., if 

t i - i  < y < ti, 

then Y is a score in the i th category of  re- 
sponse, with m mutually exclusive and exhaus- 
tive such categories. The jo int  distr ibution of a 
and Y is defined by 

f i ( a ) = P r o b  ( Y = i , a < A < a + d a ) ;  

i =  1, . . .  , m  

= Prob ( t i_ 1 < y < ti, 

a < A < a + d a ) ;  

i =  1 , . . . , m .  

Hence, the conditional distribution of  a given 
Y = i i s  

f (a lV  = da dr/  

ftt~_l qS(y)dy; i = 1 . . . . .  m 

where ~(a ,y)  is the bivariate normal density. 
The conditional expectat ion or best predictor  
of a is 
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E(a[Y = i) = ftt~_l h2y $ (y )dy /  

f~t~_ ~ ~(y)dy 

h2 t 2 /2 - t?  
( e -  i - 1  - - e  i / 2 ) /  

[~(ti) -- ~ ( t i -  1)] '  (57) 

If the threshold model is postulated as in this 
example, the best linear predictor of additive 
genetic value (BLP) can be calculated from 

equations (22) through (27) as 

e- t i  / 
i=l 

BnP(a) = ~ o }  (Y -- ~ )  (58) 

where Y and o~ are the mean and variance of 
Y, respectively. Clearly, equations (57) and 

(58) differ. 
Shaeffer and Wilton (1976) studied the 

method of Grizzle et al. (1969) for possible 
application to sire evaluation for calving ease, 
a categorically scored trait. They pointed out 
that the number of observations per subclass 
did not allow for estimation of  lr i in each popu- 
lation. They suggested each subclass be con- 
sidered a random sample from the same popu- 

lation i.e., 

�9 ?f' = (?i'l , 7/" 2 . . . . .  err),  

where ~'i is estimated from the overall total in 
each response category. With this assumption 
and when the same function of probabilities is 

calculated in each subclass 

Ap = [a 'p l ,  a'p2 . . . . .  a'p] ' 

the method of  Grizzle et al. (1969) is equi- 
valent to least-squares applied to the scores of 
each experimental unit. They concluded that 
since BLUP provides a modification of least- 
squares to accommodate random effects in the 
model, it would also yield an extension of the 
approach of Grizzle et al. (1969) to mixed 
models under the previous conditions. How- 
ever, regarding all subclasses as random sam- 
ples from the same population for the purpose 
of estimating Ir was not consistent with the 
model, where several populations were defined 
by specific combinations of fixed effects. There 

is also difficulty in assigning meaningful scores 
to the elements of a. Schaeffer and Wilton 
(1976) combined three categories of  calving 
difficulty with two categories of calf condition 
and assigned scores from 1 (alive, normal or 
unobserved) to 6 (dead, extremel difficulty) to 
the six resulting subclasses. It is difficult to 
agree or disagree with the proposition that an 
"alive, extremely difficult birth" should receive 
a score of 3 while a "dead, slight difficult 
birth" would be scored as 5. Further, in com- 
bining calving difficulty with calf condition as 
a single variable, information provided by the 
association between these two response varia- 
bles may be lost. Pollak and Freeman (1976) 
and Berger and Freeman (1978) presented 
applications of BLUP to sire evaluation for 
calving difficulty in dairy cattle. 

The problem of assigning scores to re- 
sponse categories is not  a trivial one. If the 
response process is related to an underlying 
normal model with thresholds, (16) shows that 
heritability in the outward scale is generally not 
invariant to the scores. In fact, it is possible to 
develop a set of scores "more heritable" than 
any other set of scores (Gianola and Norton, 
1981). Since heritability in the outward scale 
is always smaller than the underlying herita- 
bility, maximizing (16) with respect to the 
scores would yield a scoring criterion that 
would mimic a transformation from the out- 
ward to the underlying scale. Fisher (1938) 
developed a comparable scoring procedure by 
maximizing the ratio of treatment sum of 
squares to the total sum of squares. Snell 
(1964) has presented a method for determining 
numerical scores for ordinal categorical data 
arising from an underlying normal distribution. 
The procedure consists of estimating the 
thresholds of a logistic distribution (which 
resembles the normal distribution throughout 
the real line) by maximum likelihood and then 
developing scores by taking the mid-points of 
neighboring estimated thresholds except in the 
extreme categories where a different calculation 
is needed. Since the logistic distribution has 
variance 1r2/3, one may wish to multiply the 
estimated thresholds by X/3/~r in order to ap- 
proximate more closely the spread of a stan- 
dard normal distribution. Tong et al. (1977) 
applied Snell's scoring procedure to type 
classification records and calving ease data. In 
the case of highly skewed calving ease data, 
they found that the heritability of calving ease 
calculated from Snell's scores was larger than 
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that of  equally spaced scores but the rank 
correlation between sire evaluations obtained 
from the two sets of  scores was .98. Their re- 
suits are data specific and no generalization can 
be made. 

The method of  sire evaluation for calving 
difficulty presented by Berger and Freeman 
(1978) consists of  applying BLUP to raw 
scores with the variance-covariance matrix of  
the residuals taken as block diagonal with 
blocks corresponding to parity classes, and 
maintaining a single variance-covariance matrix 
for the random effects. In the context of  a 
threshold model, as pointed out before, the 
conditional variance of phenotypes in the out- 
ward scale given a fixed genotypic value, i.e., 
the environmental variance is not constant 
throughout the range of  genotypic values. 
Hence, independence between residuals and 
predictands cannot be assumed in the ob- 
served scale. Further, the additive genetic 
variance in the outward scale depends on the 
position of  the thresholds and applications of  
mixed linear models consistent with the thres- 
hold concept should attempt to consider this 
problem. Presence of  nonadditive genetic 
variance in the observed scale is another com- 
plicating factor in evaluations from the raw 
scores. With skewed distributions it may be 
difficult to obtain estimates of  heritability free 
of dominance or epistatic biases and mixed 
model predictors under these circumstances will 
yield unnecessarily large prediction error 
variances. 

The preceding methods of sire evaluation 
for categorical traits have not taken advantage 
of  the probability structure of  the data. If the 
sum of response probabilities must equal 1, this 
should be taken into account in the estimation 
procedure since it would be possible to derive 
predictors with smaller sampling variance than 
those obtained without restrictions in the esti- 
mation space. This is well known in linear esti- 
mation (Searle, 1971; Urquhart and Weeks, 
1978). Quaas and Van Vleck (1980) have pre- 
sented a "score free" multivariate BLUP pre- 
dictor that takes into account the probabilistic 
aspects of  the data: The method is useful for 
unordered categories of  response and does not 
assume an underlying continuous distribution 
of  liabilities as a point of  departure. Under 
certain conditions which simplify computations 
but reduce the flexibility of the method, 
particular applications of  the method of Quaas 
and Van Vleck (1980) yield results equivalent 

to BLUP of raw scores. Unfortunately, the 
method can be applied to one-way random 
models only. 

Gianola (1980a,b) described a method of  sire 
evaluation for unordered categorical data based 
on the logistic distribution. Transformations of 
counts from m categories of  response are de- 
scribed by an m - 1 variate mixed model linear 
in the logarithms of  the transformations. Tl~e 
residual variance of the log transformation can 
be obtained from asymptotic theory considera- 
tions and estimated consistently. The method 
is conditional on the variance-covariance matrix 
of  random effects and, in fixed effects models, 
it yields BAN estimators of  functions estimable 
in the logqinear scale. In other words, the solu- 
tions are identical to those obtained by Grizzle 
et al. (1969), and when m = 2, to Berkson's 
(1955) minimum logit chi-square. The prop- 
erties of this proposed predictor are: con- 
sistency, asymptotic normality and asympto- 
tic efficiency, i.e., it is impossible to obtain a 
predictor with smaller asymptotic variance. 

Unfortunately, no critical comparisons of  
the proposed methods of sire evaluation for 
categorical data have been made. This is an area 
of considerable importance. 

Literature Cited 

Berger, P. J. and A. E. Freeman. 1978. Prediction of  
sire meri t  for calving difficulty. J. Dairy Sci. 61: 
1146. 

Berkson, J. 1955. Maximum likelihood and minimum 
X 2 estimates of  the logistic function.  J. Amer. 
Statist. Assoc. 50:130. 

Berkson, J. 1968. Application of  minimum logit X 2 
estimate to a problem of  Grizzle with a notat ion 
on the problem o f  no interaction. Biometrics 24: 
75. 

Bliss, C. I. 1934a. The method  of  probits. Science 79: 
38. 

Bliss, C. I. 1934b. The method  of  probits - a correc- 
tion. Science 79:409. 

Bock, R. D. 1975. Multivariate Statistical Methods in 
Behavioral Research. McGraw-Hill Book Co., 
New York. 

Bock, R. D. and L. V. Jones. 1968. The Measurement 
and Prediction of  Judgement  and Choice. 
Holden-Day, San Francisco. 

Buimer, M. G. 1980. The Mathematical Theory of  
Quantitative Genetics. Clarendon Press, Oxford.  

Carter, C. O. 1961. The inheritance of  congenital 
pyloric stenosis. Brit. Med. Bull. 17:251. 

Cochran, W. G. 1951. Improvement  by means of  
selection. Proc. 2nd Berkeley Syrup. Math. Stat. 
and Prob., pp 4 4 9 - 4 7 0 .  

Curnow, R. N. 1972. The multifactotial model  for the 
inheritance of  liability to disease and its implica- 
tions for relatives at risk. Biometrics 28:931. 

Curnow, R. N. 1974. The use of  additional informa- 



ANALYSIS OF THRESHOLD CHARACTERS 1095 

tion in estimating disease risks from family his- 
tories. Biometrics 30:655. 

Curnow, R. N. and C. W. Dunnett. 1962. The numeri- 
cal evaluation of certain multivariate normal 
integrals. Ann. Math. Stat. 33:571. 

Curnow, R. N. and C. Smith. 1975. Multifactorial 
models for familial diseases in man. J. Roy. 
Statist. Soc., Ser. A. 138:131. 

Dahlquist, G. and A. Bjtrck. 1974. Numerical Meth- 
ods. Prentice Hall, Englcwood Cliffs. 

Dempster, E. R. and I. M. Lerner. 1950. Heritability 
of threshold characters. Genetics 35:212. 

Falconer, D. S. 1960. Introduction to Quantitative 
Genetics. Ronald, New York. 

Falconer, D. S. 1965. The inheritance of liability to 
certain diseases estimated from the incidence 
among relatives. Ann. Hum. Genet. 29: 51. 

Falconer, D. S. 1967. The inheritance of liability to 
diseases with variable age of onset with particu- 
lar reference to diabetes mellitus. Ann. Hum. 
Genet. 31:1. 

Finney, D. J. 1947. Probit Analysis: A Statistical 
Treatment of The Sigmoid Response Curve. 
University Press, Cambridge, England. 

Fisher, R. A. 1938. Statistical Methods for Research 
Workers (Tth Ed.). Oliver and Boyd, Edinburgh. 

Gianola, D. 1980a. A method of sire evaluation for 
dichotomies. J. Anita. Sci. 51:1266. 

Gianola, D. 1980b. Genetic evaluation of animals for 
traits with categorical responses. J. Anim. Sci. 
51:1272. 

Gianola, D. and H. W. Norton. 1981. Scaling threshold 
characters. Genetics (In Press). 

Grizzle, J. E., C. F. Starmer and G. G. Koch. 1969. 
Analysis of categorical data by linear models. 
Biometrics 25:489. 

Griineberg, H. 1952. Genetical studies on the skeleton 
of mouse. IV. Quasi-continuous variations. J. 
Genet. 51:95. 

Haseman, J. K. and R. C. Elston. 1972. The investiga- 
tion of linkage between a qualitarive trait and a 
marker locus. Behav. Genet. 2: 3. 

Hazel, L. N. 1943. The genetic basis for constructing 
selection indexes. Genetics 28:476. 

Helwig, J. F. and K. A. Council. 1979. SAS User's 
Guide. SAS Institute, Inc., Raleigh. 

Henderson, C. R. 1953. Estimation of variance and co- 
variance components. Biometrics 9: 226. 

Henderson, C. R. 1973. Sire evaluation and genetic 
trends. Proc. of Anita. Breeding and Genetics 
Symp. in honor of Dr. J. L. Lush, Amer. Soc. of 
Anim. Sci. and Amer. Dairy Sci. Assoc., Cham- 
paign, IL. 

Henderson, C. R. 1975. Best linear unbiased estima- 
tion and prediction under a selection model. 
Biometrics 31:423. 

Henderson, C. R., O. Kempthorne, S. R. Searle and 
C. M. yon Krosigk. 1959. The estimation of en- 
viroumental trends from records subject to cul- 
ling. Biometrics 15:192. 

Hogg, R. V. and A. T. Craig. 1970. Introduction to 
Mathematical StatiStiCS. McMillan, New York. 

James, J. W. 1971. Frequency in relatives for an all- 
or-none trait. Ann. Hum. Genet. 35:47. 

Kendall, M. and A. Stuart. 1977. The Advanced 
Theory of Starisrics. Vol. 1. MacMillan, New 
York. 

Koch, G. G., P. B. lmrey and D. W. Reinfurt. 1972. 
Linear model analysis of categorical data with 
incomplete reference vectors. Biometrics 28: 
663. 

Landis, J. R. and (~. G. Koch. 1977. A one-way com- 
ponents of variance model for categorical data. 
Biometrics 33:671. 

Leonard, T. 1972. Bayesian methods for binomial 
data. Biometrika 59: 581. 

Lush, J. L. 1956. Answer to Query. Biometrics 12:84. 
Mendell, N. R. and R. C. Elston. 1974. Multifactorial 

and qualitative traits: generic analysis and pre- 
diction of recurrence risks. Biometrics 30: 41. 

Milagres, C., E. U. Dillard and O. W. Robison. 1979. 
Heritability estimates for some measures of re- 
production in Hereford heifers. J. Anim. Sci. 49: 
668. 

Plackett, R. L. 1965. A class of bivariate distributions. 
J. Amer. Statist. Assoc. 60: 516. 

Pollak, E. J. and A. E. Freeman. 1976. Parameter esti- 
mation and sire evaluation for dystocia and calf 
size in Holsteins. J. Dairy Sci. 59:1817. 

Quaas, R. L. and L. D. Van Vleck. 1980. Categorical 
trait sire evaluation by best linear unbiased pre- 
diction of future progeny category frequencies. 
Biometrics 36:117. 

Rasmusen, B. A. and L. L. Christian. 1976. H blood 
types in pigs as predictors of stress susceptibility. 
Science 191:947. 

Rasmusen, B. A. and J. M. Lewis. 1973. The M-L 
blood-group system and survival of Suffolk and 
Targhee lambs. Anim. Blood Group and Bio- 
chem. Genet. 4: 55. 

Reich, T., J. W. James and C. A. Morris. 1972. The use 
of multiple thresholds in determining the mode 
of transmission of semi-continuous traits. Ann. 
Hum. Genet. 36:163. 

Robertson, A. and 1. M. Lerner. 1949. The heritability 
of all-or-none traits: viability of poultry. Genetics 
34:395. 

Rutledge, J. J. 1977. Repeatability of threshold traits. 
Biometrics 33: 395. 

Schaeffer, L. R. and J. W. Wilton. 1976. Methods of 
sire evaluation for calving ease. J. Dairy Sci. 59: 
544. 

Searle, S. R. 1971. Linear Models. John Wiley and 
Sons, New York. 

Searle, S. R. 1979. Notes on variance component esti- 
marion: a detailed account of maximum likeli- 
hood and kindred methodology. Biometrics Unit, 
Comell Univ., Ithaca, NY. 

Smith, C. 1970. Heritahility of liability and con- 
cordance in monozygous twins. Ann. Hum. 
Genet. 34:85. 

Smith, C. and N. R. Mendell. 1974. Recurrence risks 
from family history and metric traits. Ann. Hum. 
Genet. 37:275. 

Snell, E. J. 1964. A scaling procedure for ordered cate- 
gorical data. Biometrics 20: 592. 

Talils, G. M. 1962. The maximum likelihood estima- 
tion of correlation from contingency tables. Bio- 
metrics 18: 342. 

Thompson, R. 1972. The maximum likelihood ap- 
proach to the estimate of liability. Ann. Hum. 
Genet. 36:221. 

Thompson, R. 1979. Sire evaluation. Biometrics 35: 
339. 



1096 GIANOLA 

Thurstone, L. L. 1927. Psychophysical analysis. Amer. 
J. Psychol. 38: 368. 

Tong, A.K.W., J. W. Wilton and L. R. Schaeffer. 
1977. Application of a scoring procedure and 
transformations to dairy wpe classifications and 
beef ease of calving categorical data. Can. J. 
Anim. Sci. 57:1. 

Urquhart, N. S. and D. L. Weeks. 1978. Linear models 
of messy data: some problems and alternatives. 
Biometrics 34:696. 

Van Vleck, L. D. 1972. Estimation of herita- 
bility of threshold characters. J. Dairy Sci. 55: 
218. 

Vinson, W. E., J. M. White and R. H. Kliewer. 1976. 
Overall classification as a selection criterion for 

improving categorically scored components of 
type in Holsteins. J. Dairy Sci. 59:2104. 

Wahrendorf, J. 1980. Inference in contingency tables 
with ordered categories using Plackett's coeffi- 
cient of association for bivariate distributions. 
Biometrika 67:15. 

Wright, S. 1934a. An analysis of variability in number 
of digits in an inbred strain of guinea pigs. 
Genetics 19: 506. 

Wright, S. 1934b. The results of crosses between in- 
bred strains of guinea pigs differing in number of 
digits. Genetics 19:537. 

Wright, S. 1943. An analysis of local variability of 
flower color in Linanthus parryae. Genetics 28: 
139. 


