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MANAGEMENT SCIENCE 
Vol. 12, No. 9, May, 1966 

Printed in U.S.A. 

THEORY AND APPLICATION OF AN ESTIMATION MODEL 
FOR TIME SERIES WITH NONSTATIONARY MEANS*t 

MELVIN HINICHI AND JOHN U. FARLEY2 

Time series models of a complex nature, such as consumer brand switching 
analyses, have required assumptions of parameter stability because statistical 
models were not available to deal with parameter change. A model is developed 
here to estimate a stepwise change in the mean process of a Gaussian time series. 
Estimators which are small-sample efficient in a special sense are presented, 
along with examples and suggested applications of the method to brand switch- 
ing problems. 

I. Introduction 

The problem of studying a parameter over time where there is random error 
and systematic stochastic parameter change has posed significant problems in 
such areas as the analysis of consumer brand switching. Switching behavior has 
been examined in stochastic frameworks both explicitly and implicitly, and 
complex models have been developed in Markovian and learning frameworks to 
analyze sequences of consumer purchases (Farley and Kuehn [4]). These models 
have used aggregate parameter estimation techniques in static frameworks- 
that is where underlying process parameters are assumed stable over a period 
of time. The stability assumptions have been necessary because no satisfactory 
inference techniques have been available to deal with parameter change. 

Researchers have been aware of stability problems, and some work has been 
done on magnitudes of difficulties posed by instability (Frank [5]). Some more 
recent models have explicitly incorporated a "mix" approach which attempts to 
segregate effects of temporal instability from tendencies to form a stable mix of 
purchases (as with cereals for different members of a family), (Kuehn [7] and 
Rohloff [10]). Suppose, for example, the brand sequence history for a product 
reported by three members of a consumer panel in a period of time looked like 
this: 

ABABABABAB (1) 

AAAAABBBBB (2) 

ABBAABABBAAB (3) 

Sequence (1) probably represents a household which divides its purchases evenly 
between two brands-perhaps between two smokers in a family who favor differ- 
ent brands of cigarettes and who smoke an equal amount. The mix occurs be- 

* Received March 1965. 
t Much of this work was performed at the Carnegie Institute of Technology as part of 

the Management Science Research Group, ONR Contract 760(24). Other parts were done 
at Stanford University and the Hudson Laboratories of Columbia University. 

1 Hudson Laboratories of Columbia University and Carnegic Institute of Technology. 
2 Carnegie Institute of Technology. 
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cause panel data are gathered by family rather than by user. The second sequence 
probably shows a bona fide switch from brand A to brand B. However, sequence 
(3) is not so easy to interpret directly, because there may be mixing, switching 
or both going on. Unfortunately, many actual observed sequences more closely 
resemble (3) than (1) or (2), and this poses the instability problem discussed 
earlier. Further, both switching and mixing behavior may involve important 
random components because of such common factors as stock-outs or occasional 
purchases in unfamiliar places. 

These types of problems have held up model building aimed at testing the 
effects on brand purchase sequences of various types of changes in merchandising 
variables-advertising, in-store merchandising, etc. Thus a useful step in the 
development of brand switching models is to develop statistical techniques to 
identify basic changes in underlying probability distributions generating discrete 
panel observations. As is often the case, a lead into this problem came from a 
seemingly unrelated field-tracking an unknown time-varg parameter in 
random noise. Part II of this paper lays out an estimation routine for a special 
class of such problems, while Part III discusses potential applications of the 
model to problems involving consumer switching behavior. 

1I. A Model for Tracking a Time-Varying Parameter 

A stochastic process, X (t) = 0(t) + N (t), may generate sequence data where 
0 (t) is the mean value process and N (t) is Gaussian noise with zero mean and a 
known covariance function. The mean process is assumed to behave as a step 
function, so for i = 0, 1, 2, - * 

(1) 0(t) = o when t* I < t ? * 

in an interval where the to* (the times when 0 changes) follow a Poisson process 
with a known rate parameter y per time unit, where the time unit is defined 
appropriately for the problem. 0(t) is thus the expected value of X (t), and it 
may change from one constant value to another at random times t*. In any T 
successive time units, the probability of k jumps is (yT)/k ! eT , and the mean 
time between jumps is y-1 time units. Figure 1 shows how the step function 
0 (t) might behave, and this work will deal with the case in which no more than 
one change occurs within the total sampling period. 

Discrete samples are drawn during non-overlapping periods (called records) 
n time units long. Each record consists of n successive observations of X (t) 
where the observations are taken one time unit apart, If n, the record length, 
is smaller than ly', the mean time between jumps, the possibility of two or more 
jumps in a record can be disregarded in the manner normal for dealing with 
Poisson variables. Given these conditions, a small-sample efficient estimator of 
0(t) can be developed as a function of the sequence of observations.3 

3 This work was motivated by an investigation in adaptive ocean bottom ranging by a 
type of sonar. Let 0(t) denote the ping distance from the sonar to the bottom. Due to rough 
bottom scattering and random perturbations of the medium, 0(t) changes from ping to ping. 
Assume additive Gaussian noise with a known spectrum, the problem is to remove the 
systematic bias introduced by a change in the medium. 
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FIG. 1. Randomly shifting mean parameter 

Chernoff and Zacks [2] used Bayesian methods to deal with this problem. 
Since their estimator is a complicated function of the observations they present 
a simpler ad-hoc procedure for at most one change, and test it by Monte Carlo 
computations. Page [9] deals with the problem of testing for a change in the 
mean using a test statistic similar to the one developed here. Our variances have 
not been compared with those of the Chernoff-Zacks estimators. 

In practice, n successive time points, t1 < ... < tn are observed so that 
tits - ti constitutes the natural time unit in the problem. The sample points 
form the random vector { X1, * * , Xn4 where each Xi is the value of the random 
process X (t) = 0(t) + N (t) at time ti . Since the parameter is a step function, 

r01 if t < t 
(2) 0(t) - 102 if t > t 

where t* is the time of a random jump in the mean from 01 to 02 . N (t) is Gauss- 
ian noise with known covariance o-i = E[N (ti)N (tj)]. 

It might happen, for example, that t* > tn and thus there is no jump in the 
mean during the sampling period. If to < t* < t1, then a jump occurs in the 
start of the record. Since t* is purely random, it can fall anywhere within the 
sample with equal probability for any interval. -y, the rate of occurrence of 
jumps, is the probability for each of the n events ti < t* < ti+1 for i = 0, **, 
n- 1. Thus the probability of no jump in the sampling interval is 1 - ny. 
If o' >> n, it is likely that the mean does not change. We can express the prob- 
ability of each possible state of nature by defining 

(3) Si - {0. n+2 X Oi-nf3 X* j+1 

where for any integer k 

(4) O5k 
f01 if k ? 1 

02 if klo?2 
andj = *, n. Thus for eachj = 1, * , n 

(5) E{X1X*** X I = Sj6 with probabilityy and 

(6) E{X1 Xn, = Soo = {0o, * * *, 0O} with probability 1 - ny. 
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For example, if n = 5, 

S10 = {IO, 0i, 01, 01 , 02} with probability -y 

S20 = { 01, 02, 01, 02, 02} with probability y 

S30 = { 01 X01 X02 X02, 02} with probability y 

S40 = { 0 2, 62,02, 02 X02} with probability y 

S50 = { 02, 02, 02, 02, 02} with probability y 

SoO = {0., 01, 01, 01, 01} with probability (1-57y). 

Thus 57y is the probability of a change occurring during the observation period 
and the conditional probability distribution as to when the change occurs is 
uniform over the period. 
From (3 ), (4), (5), and (6), the vector 

jN + S10 with probability y 
(7) |N + S20 with probability 7 

X +r 
LN + SnO with probability -y 
UN + SOD with probability 1-n-y, 

where N = {N1, . , N.) has a multivariate normal distribution with mean 
zero and covariance matrix I = (o-ij). If f (x I 0) is the density function of X 
given the parameter vector 0 = { 0s, 02}, then 

(8) f (x I 0) = (1 - ny7)n (xI SoO, ) + -y 7=1 n (x I SjO,2 ) 

where 

(9 ) n (x | 2, r) = j 1-112 exp [-((x - '- 

is a n-dimensional normal density with mean vector I { j, ***, en} and co- 
variance matrix T. The density function f(x I 0), a convex combination of 
multivariate normal densities but not in general multivariate normal itself, is 
approximated by expansion in Taylor series in the neighborhood of zero. 

If we assume that 

012 + 022 <<E{N2(t)}, 

the noise can be normalized so that E{ N2 (t)} = 1, and thus c-i = 1 for all 
i = 1,** .., n. 

The Information Matrix 

The Cram6r-Rao inequality (Cram6r [3]) gives a bound for the variance of 
unbiased estimators in terms of the inverse of the "information matrix." Given 
a parameter vector 4 = {Jo, *. *, On) and a random variable X with density 
function p (x I 4)), the information matrix for p and 4, I (4), is defined by: 

(10) I (4) = E0[6 log p (X I 4 )/94)]'[a log p (X I 0)/a90] 
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where I(+) is an n X n matrix, 

[1 log p (x |+)/a+] = { a log p (x | )/a4)1, ,a log p (x |5)/a40 X, 

and EK is the matrix of expectations with respect to p (x I 4)). 
If ERT (X) = do T (X) is an unbiased estimator of X, a matrix 

KT = E4[T(X) - EOT(X)]'[T(X) - EOT(X)] 

can be defined as the covariance of T, so 

(11) KT = 14 [T (X) - -][T (X)- ]. 

The Cram6r-Rao inequality shows if T is an unbiased estimator of 4, then 
KT I F1(p), where the inequality between matrices means that for any n- 
dimensional vector v 

(12) vKTV' ? VI'(c)v' 

v171(c)v' is thus the lower bound for any unbiased estimator of the parameter 
cV' = V:=1 v4i. 

The standard definition of efficiency for an unbiased estimator, T, is that 
its covariance matrix KT = F'(0). However, our criterion for unbiased esti- 
mators uses a weaker concept called efficiency near ce defined so that for every 
vector v, 

(13) limvI-0 V' (cp)v'/vKTv' = 1. 

The information matrix I'(0) with the ijth element is defined as: 

Iij (0) =EO 
Fa log f(X I 0) a log f(X I)1 

(14) oaf(x I 0) f(x 10) 1 
xi dxn 

06i 06jf(X O)dx 
) 

x 

= EJF 1 af(X i 0)1[ 1 Cf(X I 0)lf(x I O) 
ALxfxI 0) aa If(x 0) 0o1 I f(X I 0) J 

By expanding in Taylor series about 0 0 we have, from (9) with 

the likelihood ratio: 

(15) n(x I {,Y)/n(x I 0, I) = 1 + xi-lt' + 10 1_Z (x' x - 

+ II53 K* (x, ) 

where I K* (x t)I < de"l*l"'+-+t+*lxfl for some ti* > 0 and d > 0. Thus EO 
[K* (x, tyjr exists and is bounded by some number independent of t for each 
r> O. 
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Setting t = SjO in (15) and summing, we have from (8), 

f(x I 0)/f(x I 0) = 1 + (1 - ny)01(x-1 1') 

(16) 
+ 'YxT'-1 (f7=1 sjo)' 

)+ 012[ (xy-11' )2 -11 
l 

+ yO(II 0 112)K(x, 0) 

where 1 is the n-dimensional unit row vector. From (6) 

Soo = Oil, SO 

Eo[K (x, 0)]r exists and is bounded by some number independent of 0 for each 
r > 0. Moreover, the coefficient of K (x, 0) in (16) does not involve x. Using 
(5), and defining a as the vector {1, 2, , n} 

(17) E3=1 SjO = nOil + (02- 01)a. 

Using (17) in (16) and setting , = (02- 01) (the size of the jump of the mean), 

f(x I 01 , 1u)/f(x I 0) = 1 + (xI-h1')0i + (xl-a'),u 

(18) + l012[(xy-1')2- 1 ] 

+ 70(11 0 112)K (x, 0). 

The results in equation (18) can be used to estimate the parameter vector 
OI, I} . If q* = qA, where A is an n X n nonsingular matrix, then by applying 
the chain rule to (10), 

(19) I *) -11 () (A-')' 

where I (4O*) is the information matrix of 0*. Thus, 

(20) Il (4*) = A'-1 (F)A 

Furthermore, given an unbiased estimator, T, 

T* (X) = T (X)A 

is an unbiased estimator of 4* with covariance 

(21) KT* = A'KTA. 

Thus if T is efficient, from (20) and (21) T* is also efficient. Now 

{01, 02} = {01,( A ) 
and thus if 01 and -2 are efficient estimators of 01 and ,u, then (O' + j2) is an 
efficient estimator of 02. 

I (01, ,A) can be approximated using (18) in (14) with a change of parameters. 
The Taylor expansion argument which gave (18) also yields 

(22) (1/f(x I 0)) (Of(x I 01, ,u)/O01) = xd'l' + 0(01) 

(1/f (x I 0)) (af (x I 01 , I)/aIa) = 'yx la' + yO (11 0 11) 
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where again a = { 1, 2, .. , n}. The proof of Lemma 3 in Hinich [6] is used 
to bound f(x I O)/f(x I 0) in (14), and using (22) in (14), 
Lemma 1: 

- FiZ7'i y1Z-a][- 0(O1) 7yOj 0 I) 
(23) I(loA) = [ y-a e2av-l I + 20) ( 0) -L1a -yal a]- L7OII O 1) 72(1y ) 

The main part of the information matrix is nonsingular since by the Schwarz 
Inequality, 

(1I-W t)2 < (1 I-1T) (al-W ). 

The inverse of (23) yields 
Lemma 2: 

171(0ig) = ((11-11')(ala-) - (11 a')2X1 [alyiia, -2i -'] 

(II 0 1) 7-0(jQ 0 II)] + 
l[710o(1 0 11) 7-20(jj 0 II)1 

An example is presented in the Appendix. 

Estimation of 01 and A 
Efficient estimators of 01 and A are linear combinations of X-11' and 7yXI-a 

where a ={ 1, 2, * * *, n}. In order to demonstrate efficiency we need the mean, 
M, and covariance matrix, K, of {XI-11', yX -1a'}. 

From (8) and (17), 

(24) E{X-11'} = (1 - n-y)0j(12-') + y E3=i (Sj0) 1-11' 

(24) = ~~~~~~~~~~~~~~(12 1-1 01 + Or (12 l-a I), 

and similarly 

(25) Eo { X2-1a'} = (1 -a') 0, + Or (ala') A. 

From (24) and (25), 

(26) M =E {X2E1o , X2 la} = {6a , I } [I*(01, 

where I*(01, pa) is the main part of the information matrix I (01, IU) in (23). 
From (8), the second moment is 

Eo{11-1X'XI-'1'} = 12-11' + (1 -n)02(11-11)2 

(27) + 7 Z=[1r-1 (Sj0)']2 =12-1' + 0(11 0 11) 

K =Eo L12?-1X'X-1a' al-'XX7-l'a'J A 

so from (26) and (27) 

it a r-11, l-la'- 0?(11 0 11) a?(11 0 1) 
(28) = [-1'a' a-1a'] + L%700 0 11) y20(l 0 11)] 
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The estimators 0 and i are 

0= [(a-Va') (X '1)- (1 ;-'a') (X'-a'a)]/ 

(29) [(1-l') (a22'a') - (11a')2] 
=9 A 7[ (l2-l') (XI-a') - (12 la') (X25' 1)]/ 

[(11-111) (al-lal) _(11-la')2]. 

From (24) and (25) 

E601 01 and EoA = A 

so 01 and ji are unbiased estimators. 
Rewriting (29), 

(30) {0i, j} X l= 'xi , I X 7l a'}[1*(6, ,u)F', 

and using (28), (29) and Lemma 2, 

KT = [I*(6i, ,.)Fl1K[I*(61, XH)V' = l-1(01, A) 

(31) 00?10 11) 1-lo0l a 0 
+ 

LOy(ll 
6 I) y2O(I11 

6 
)_ 

For any vector v, then, 

limj1o1 m +ovl '(6l, ,p)v'/vKTv' = 1, 

and 01 and -i are thus efficient near zero for 01 and u. 
As an example, suppose the covariance matrix is the identity matrix. Then 

from (Al) and (A2) we can write (29) as 

01 2/n(n - 1)[(2n + 1)IjXj - 31jjXj] and 
(32) 

A2 = 6f'/n (n - 1) [ (2/n + 1) jjXj -2jXj], 

where the simple sums are self explanatory and the 2;jjXj are weighted terms 
related to exponential smoothing techniques. 

An Alternative Formulation 

The property of efficiency of the estimator - results from the assumption 
that u is small compared to the variance of the noise, not from any assumption 
about 6l . By expanding f(x I 0) in powers of b' and bounding the non-linear 
terms, the information matrix can be approximated for 01 and u. The efficient 
estimators of 01 and b' (for small values of oy and 4) are the same linear functions 
of X2-11' and X2-'a' as were developed in the immediately preceding section. 
The approximation approach produces estimators which are easy to calculate 
and which contain most of the information about the parameters in a range. 

III. Applications to Brand Switching Problems 

The techniques developed in the last section can be used to study parameter 
changes in hypothesized processes generating consumer panel data. We might, 
for example, take a sequence of purchases and divide it into a number of non- 
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overlapping subsets. (When to sample and how to divide the sequences are im- 
portant issues; while the techniques described here are useful in handling only 
the statistical problems, it will be shown later that some clues are available 
from the structure of the problem, about when to sample.) We might be inter- 
ested, for example, in changes in the probability of a family's buying a particular 
brand, brand A. In each sub-sequence a variable Yi can be defined as 1 if A 
is purchased at the ith observation and as 0 otherwise. The statistic 

E1 Yi/r, 

where the summation is over the r observations in a given subset, can then be 
viewed as an observation of the variable X(t) needed for the analysis. Further, 
a binominal approximation argument leads to normal error associated with 
values of X (t) constructed in this way, for samples small enough to be manage- 
able. An arscine transformation (Brownlee [1]) provides, under the model, the 
required known variance-covariance matrix with 1/r on the diagonal and zeros 
elsewhere. 

The inference model might then be used in two types of closely-related situa- 
tions: 

1) Investigation of various types of cross-sectional stability conditions. Tests 
can be developed, for example, to see whether A. = 0-that is whether there is 
no change in the mean purchase probability during some arbitrarily defined 
time period. This could lead to analyses of whether the mix of brands bought 
over a long period is stable with respect to shorter sub-periods. The same tech- 
niques might be even more useful in the study of store switching, where much 
more data are available for a short time period than for brand switching in any 
single product class. For these purposes, sampling might be on some natural 
basis like seasons, on the basis of some arbitrary time divisions such as three or 
six-month periods, or on the basis of some external data like the date of a change 
of address. 

2) Another application for this model is to test "before and after conditions" 
where the test period is divided at a point in time when some type of shock 
has been introduced into the system-perhaps a special promotional campaign 
was launched. Here, we may even have some good idea about special properties 
of u. For instance, some influences may be subject to deterioration patterns, as 
with advertising effects where the effect of a given campaign may be monotone 
decreasing in t. Here 61(t) is the influence of a base rate of advertising, 02(t) is 
the influence of a new level of expenditure, and u is the effect attributable to a 
given campaign. One-shot advertising campaigns might thus be viewed as pro- 
ducing a value for 62 which declines exponentially in t, (Kuehn [7]) while a pulsed 
type of advertising strategy may produce a series of exponentials. 

Ultimately, this type of inference model may help improve methods for build- 
ing and testing models of consumer brand choice behavior or conceptually simi- 
lar processes like inventory systems with demand rates subject to random shocks. 
Inference models such as these are important steps in developing empirical 
tests for more complex models-an area where statistical inference has to some 
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extent lagged behind development of modeling techniques (Farley and Kuehn 
[41). 

Appendix: An Example for Lemma 2 Where N(t) is "White Noise" 

Suppose the noise is white in the sense that the errors are independent and 
homoscedastistic. Given the normalization E{N2(t)} = 1, I is n X n identity 
matrix because 

(l if i==j 
if i~j 

Then -' = I and 
~ n 

(Al) a'- = j=n (n + 1)/2 

a2l7a' = = j2 n(n + 1) (2n + 1)/6 

and 

(A2) X-1l'- =X XI-aa' =j 

Using (Al), (A2) and Lemma 2, 

'N , y) =n(n 1) [, _ -1 6r ] + [0-(11011) Y-2 0(11 ? I)] 

is the lower bound for the covariance of unbiased estimators of 0A and y. 
To carry this example further, suppose that y-, the average distance between 

jumps is 4n, and thus yn = 4 which is the probability that there is a jump 
somewhere in the record of duration nS time units. From (A3), 

F'(O,, ~ - 2 [2?1 -121 
n- L 12 96 nj 

The error terms for F' are not precise enough to show the power of the method 
when y is a function of 1/n. However, more detailed analysis on the higher order 
terms in the Taylor series expansion with respect to n shows that the linear 
term contains most of the information about the parameters. 
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