
Review Article

Theory and Application of Audio-Based Assessment of Cough

Yan Shi , He Liu, Yixuan Wang, Maolin Cai, and Weiqing Xu

School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

Correspondence should be addressed to Yan Shi; shiyan@buaa.edu.cn and Weiqing Xu; weiqing.xu@buaa.edu.cn

Received 17 August 2017; Accepted 27 November 2017; Published 6 March 2018

Academic Editor: Mucheol Kim

Copyright © 2018 Yan Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cough is a common symptom of many respiratory diseases. Many medical literatures underline that a system for the automatic,
objective, and reliable detection of cough events is important and very promising to detect pathology severity in chronic cough
disease. In order to track the development status of an audio-based cough monitoring system, we briefly described the history of
objective cough detection and then illustrated the cough sound generating principle. The probable endpoints of cough clinical
studies, including cough frequency, intensity of coughing, and acoustic properties of cough sound, were analyzed in this paper.
Finally, we introduce some successful cough monitoring equipment and their recognition algorithm in detail. It can be obtained
that, firstly, acoustic variability of cough sounds within and between individuals makes it difficult to assess the intensity of
coughing. Furthermore, now great progress in audio-based cough detection is being made. Moreover, accurate portable objective
monitoring systems will be available and widely used in home care and clinical trials in the near future.

1. Introduction

Cough is a common but complicated symptom of respiratory
diseases. This symptom is also the very reason why people
seek medical advice in America and China [1, 2]. Even
though the importance of cough diagnosis is well admitted
by academic organizations [2–4] in recent years, there is no
gold standard to assess cough due to the lack of objective
and accurate measures of cough frequency and severity [5].
When cough becomes chronic, it is so extremely unpleasant
and distressing that the life quality of chronic cough patients
has significant reductions [6]. The health care cost, medical
consultations, and medication use hence become a heavy
burden for them [7]. The assessment of cough severity is
subjective at present: it contains visual analogue scales
(VAS), health-related quality of life (HRQOL), Leicester
cough questionnaire (LCQ), cough-specific quality of life
questionnaire (CQLQ), and so on [8, 9]. They have been
validated in chronic or acute cough in clinical trials [9].
However, these tools are completed either by the patient
himself or by a parent [10], and hence it is in conflict with
the standard that the primary outcome measure of clinical
trials should be objective. Moreover, some literatures have

shown that the objective cough frequency monitors may
not have much to do with the subjective assessment methods
of cough [11, 12]. It may be due to the different standards
used in these tools. The medical literature indicates the
necessity of an objective and reliable tool to measure the
severity of cough [3].

As early as the 1950s, some attempts to monitor cough
objectively have been made [13]. Since then, there have been
three main ways to record cough. One is based on the airflow
measurement at the mouth to obtain the flow dynamics of
cough [14, 15]. However, this method is not suitable for
continuous monitoring in the outpatient environment [16].
The second is based on the movement of the chest. For exam-
ple, some researchers [17] invented an accelerometer-based
system that used an accelerometer placed at the volunteer’s
chest wall to record cough events, but such system required
researchers to count coughs manually. The measurement of
cough sounds, the last one, has been more universal because
of advances in computer technology and the availability of
portable digital sound recording devices [18].

The underlying disease determines the physical character
of the cough sound [19]; cough has been described as dry,
wet, loose, or whooping, depending on the amount of
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expectoration and sound quality. Therefore, methods based
on cough sounds for counting and classifying cough events
have been developed. This article focuses on audio-based
methods and systems for the analysis and measurement
of cough.

2. Cough Sound Basics

An airflow and acoustic signal for a cough is seen in Figure 1.
As shown in the figure, a deep inspiration usually starts a
classical cough, followed by glottis closure. During the glottis
closure, respiratory muscles contract against the closed glottis
and then the sudden opening of the glottis occurs with tran-
sient and fast expiratory airflow accompanied by the typical
cough sound. Sometimes, several further partial glottis clo-
sures lead to some extra voiced sounds, which also called a
cough sequence [6, 20]. However, the origin of cough sounds
is still unclear because laryngeal structures and the resonance
of the nasal and thoracic cavity are all involved in cough and
their roles in cough are uncertain to some extent [21].

The typical cough sound is usually divided into three
phases (in Figure 2) [3]: (1) an explosive expiration due to
the glottis suddenly opening, (2) the intermediate phase with
the attenuation of cough sounds, and (3) the voiced phase
due to the closing of the vocal cord. In fact, there are a variety
of patterns of cough that occur; for example, some cough
sounds only have two phases (the intermediate phase and
the voiced phase) and the explosive phase usually prolonged
because of some diseases.

3. Endpoints of Objective Cough Assessment

Cough frequency evaluation is considered to be a gold
standard for the objective evaluation of cough [8]. Besides
it, the intensity of coughing, the pattern of coughing, and
the acoustic properties of cough sounds may be used as
clinical endpoints [3, 8].

3.1. Cough Frequency. According to the second part, even if
there exist a variety of patterns of coughing making it difficult
to identify and quantify cough, coughing can be quantified in
four different ways [22]:

(1) Explosive cough sounds: the number of characteristic
explosive cough impulses

(2) Cough seconds: the quantity of seconds and hours
having at lowest an explosive phase

(3) Cough breaths: respiration rates including at least
a cough

(4) Cough epochs: the number of cough sounds with no
more than two seconds of each coughing interval.

The effectiveness of any of these metrics over the other is
still ongoing research.

These methods are used for counting cough events, and it
is not clear whether any of them is more valid than the other.
There is a good linear relationship between explosive cough
sounds and cough seconds under different circumstances.

Cough epochs are less related to explosive cough sounds
[6, 23]. As a result, current chronic cough frequency mon-
itors usually use explosive cough sounds to evaluate cough
frequency [22].

24-hour cough frequency is proved correct and effective
in a longitudinal observational study of 33 healthy subjects
with acute cough [24]. 4-hour cough frequency is found to
be responsive to improvements in cough severity following
trials of therapy in 100 patients with chronic cough [25].

3.2. Cough Intensity. Chronic cough is a common condition
related to significant physical and psychological morbidity.
But there is a weak relationship between health-related qual-
ity of life and cough frequency [26]. This has resulted in
cough intensity of some patients that may be significant
[27, 28]. The intensity of voluntary, induced, and spontane-
ous cough has been researched [29, 30], and peak cough flow
rate, oesophageal pressure, and gastric pressure are impor-
tant and relevant measures of cough intensity in patients with
chronic cough [31]. Limitations of above indexes are that
they are either invasive or impractical to measure in an
ambulatory setting [8]. Therefore, cough sound is a potential
measure of the intensity of coughs.

Cough intensity may be measured by cough sound
power, peak energy, and mean energy [31, 32], and these
indexes can be calculated for a time window with a duration
of 0.5 second from one set of phase 1, the explosive phase of
cough sound [32]. However, more researches should assess
cough sound responsiveness as a measure of cough intensity.

3.3. Cough Patterns and Acoustic Properties of Cough Sounds.
Cough patterns and the quality of a patient’s cough sound
may reflect useful information about their condition. Cough
patterns and some cough sound features may be endpoints of
clinical experiments [33]. However, more researches should
be undertaken to study the relationship between cough pat-
terns (or acoustic properties of cough sounds) and the
illness-triggering cough.

4. Audio-Based Cough Monitoring Systems

In the analysis of cough sounds, researchers focus on two
aspects: one is the study of cough recording and monitoring
equipment and the other is the study of a cough sound pro-
cessing algorithm.

As previously mentioned, cough frequency is the most
valuable index of objective cough assessment [34]. Mean-
while, cough frequency monitoring technology is also the
most mature one among the present objective cough assess-
ment technology researches [22]. Manual counting of cough
sounds remains the reference standard because compared
with other tools, the human ear performs best in counting
cough events [35, 36]. Even so, the arduous and time-
consuming nature of manually counting cough events
restricts its feasibility in larger-scale studies and clinical
application [35]. Therefore, automatic monitoring of cough
sounds is a development trend of objective cough evaluation.

Currently, there is no accurate fully automated cough
detection system available, because it is challenging to
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replicate the performance of the human ear to detect
cough sounds. Recently, technological advances in digital
storage devices and sound sensors make it portable and
accurate to record cough sounds. Several cough monitors
have been developed, and they adopt audio signals alone

(microphone and/or contact microphone) or in combination
with other sensors such as accelerometers, pneumographic
belt, electromyography electrodes, electrocardiography elec-
trodes, induction plethysmography, and pulse oximeter (in
Figure 3). Drugman et al. [37] found that the audio
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Figure 1: An airflow (a) and acoustic signal (b) for a cough. The airflow has been measured at the mouth and the cough sound at the sternal
manubrium of the patient.
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Figure 2: Typical cough sound (1: explosive phase, 2: intermediate phase, and 3: voiced phase).

Figure 3: Block diagram of the acquisition system.
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microphone performed best among these sensors for cough
detection. Thus, we can divide these existing cough frequency
monitors into two sections: one only uses audio signal and
the other uses mixed signals.

4.1. Audio-Only Cough Monitors. Some cough monitors use
the audio only. The Hull Automatic Cough Counter (HACC,
Castlefield Hospital, Hull, UK) uses a free-field microphone
to record ambulatory sound around 24 h (Figure 4(a)). It uses
an artificial neural network (ANN) to detect coughs after
signal processing. The system can label coughs automatically
but count coughs manually. In a test of 33 patients with
chronic cough, the HACC presents a sensitivity of 80%
(range from 55 to 100%) and a specificity of 96% [38]. Over
24 h recording and further assessment in different conditions
are required.

The Leicester Cough Monitor (LCM, Glenfield Hospital,
Leicester, UK) consists of a free-field microphone and MP3
digital recording device [34] (Figure 4(b)). It also enables
24 h recordings. A keyword spotting method based on hid-
denMarkov models is applied in this system to select possible
cough fragments [39]. Then, human experts select some of
these cough sounds to develop a statistical model to fit the
current record. Finally, the designed model is used to handle
the whole recording. As a result, the sensitivity of the system
is 91% and the specificity is 99% [40]. The system has been
used in clinical trials [41]. Crooks et al. [42] used a hybrid
system consisting of the Hull Automatic Cough Counter
(HACC) and Leicester Cough Monitor (LCM) software
to measure cough frequency during COPD exacerbation
convalescence and achieved the overall sensitivity of 57.9%
and a specificity of 98.2%.

The VitaloJAKTM system (Vitalograph Ltd., Buckingham,
UK, and University Hospital of South Manchester, UK) is a
semiautomated cough recording device with two sensors
(Figure 4(c)). One is a free-air condenser microphone for
manual validation, and the other is a chest wall air-coupled
condenser microphone for recording cough sounds [43].
An algorithm based on a median frequency threshold is used
to compress 24 h cough sound recordings into average
1.5-hour period. This system is accurate but labor intensive
and time consuming because of the manual counting [44].
This system reaches a sensitivity more than 99% in a 24 h
ambulatory context on ten patients [43], and it can be used
in children to exactly measure cough frequency [45].

Drugman et al. designed an acoustic system using ANNs
that was tested on voluntary cough from ten healthy subjects
in various circumstances with a sensitivity and specificity of
about 95% [46]. In [16], a precise and privacy-protecting
cough monitor using a low-cost mobile microphone is
proposed by Larson et al. They used principal component
analysis (PCA) and a random forest classifier to reconstruct
and classify the cough sounds with an average true-positive
rate of 92% and a false-positive rate of 0.5% from subjects
in the wild. Their system is hence able to protect personal
privacy. Amrulloh et al. attempted to design an automated
method to automatically identify cough segments from the
pediatric sound recordings and achieved a sensitivity and
specificity of 93% and 98%, respectively [5].

4.2. Cough Monitors with Mixed Signals. There are two
commercial systems using multiple signals to detect cough.
The Lifeshirt™ (Vivometrics, San Diego, CA, USA) appeared
in 2005. It included several sensors integrated in a shirt worn
by the user: electrocardiogram, induction plethysmography,
3-axis accelerometer, and a contact microphone placed on
the throat (Figure 4(d)). The device achieved a sensitivity of
78.1% and a specificity of 99.6%. Unluckily, the Lifeshirt is
no longer available due to the liquidation of the company
in 2009.

The Pulmo Track-CC [47] (KarmelSonix Ltd., Haifa,
Israel) includes a piezoelectric belt for monitoring chest wall
motion, one lapel microphone, and two contact microphones
placed on the trachea and the thorax (Figure 4(e)). The
device has been tested over about 2 h in healthy volunteers
simulating coughing in different situations (while walking,
climbing stairs, and sitting and while in a supine position
and in noisy environments). The device achieved a sensitivity
of 91% for detecting explosive cough sounds and a specificity
of 94% on voluntary cough [47]. However, in a study led by
Turner and Bothamley, the device only had a sensitivity of
26% for detecting coughs identified by the ear [35] and it
performed very well when detecting coughing caused by
acute asthma [48].

4.3. The Ideal Cough Frequency Monitors. The ideal ambula-
tory cough monitoring system would have these characteris-
tics [3, 49]: mobility, unobtrusiveness, compactness, and
privacy protection. More importantly, it can allow 24hour
reliable recording and distinguish cough from other sounds
automatically with high sensitivity, high specificity, and pro-
portionately few false-positive events compared to the true-
positive events. Audio cough monitoring systems mentioned
above have met some of these requirements, but the huge
number of noncough sounds limits the development of a
cough monitoring system.

5. Cough Sound Processing Algorithms

Automatically detecting cough events requires some great
answers to at least four major questions [39, 50, 51]: (1)
ambient noise reduction: this is an important problem in
audio-based detection systems; (2) differentiation from
patient sounds, especially speech, laughing, and sneezing:
even the most severe cough is far exceeded by the amount
of talking; (3) the variability of the cough acoustics: both
within and between individuals, combined with the addi-
tional complexity of different respiratory diseases; and (4)
classification of dry or wet cough: this is a significant medical
indicator. Currently, multidisciplinary teams of researchers
all over the world are attempting to use pattern recognition
techniques such as neural networks, support vector machine
(SVM), and naive Bayesian classifier (Bayesian) to manage
these questions.

The general workflow for the automatic assessment of
cough used in literatures [52, 53] is displayed in Figure 5.
The sound signals usually are captured by a microphone,
and the first step aims at removing silence within signals.
Next, extracting a wide variety of features is a need but this
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Figure 4: Objective cough monitoring systems: (a) the Hull Automatic Cough Counter; (b) the Leicester Cough Monitor; (c) the
VitaloJAKTM system; (d) the Lifeshirt; (e) the Pulmo Track-CC.
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results in huge amount of data. Therefore, dimensionality
reduction is carried out by selecting only the most relevant
ones. Finally, a part of the dataset is chosen as training data
and they are trained by classifiers. After that, the rest of the
dataset is then used for testing.

6. Silence Removal

The raw data of cough sounds contains a lot of silent frag-
ments, whose intensity is low. Removing silence is required
to save storage space. In many literatures [25, 37, 54], frame
processing is the first and then the start time and end time
of cough events are calibrated by the double threshold
method using the time-domain features, such as zero-
crossing rate and energy entropy.

The energy entropy of a divided audio frame expresses its
intensity. Ei can be calculated by following formula:

Ei =〠x2i m , 1

where xi m represents cough sound single after frame
processing.

The zero-crossing rate (ZCR) [55] is the ratio of sign
changes of a signal. It can enhance the accuracy of the
detection of cough sound endpoints. It is defined as

ZCRi =〠
m

sign xi m − sign xi m − 1 , 2

where xi m represents cough sound single after frame
processing and sign [A] is 1 if A is greater than zero and 0
if otherwise.

6.1. Feature Extraction. After silence removal, cough recogni-
tion mainly involves extracting features from cough data and
then inputting them into a model classifier. Features can be
detected from time-domain signals as mentioned above
[56] or from frequency-domain signals. Several features have
been successfully applied to monitor cough events, including
mel-frequency cepstral coefficients (MFCCs) and the charac-
teristic parameters learned by the convolutional neural
network (CNN).

6.1.1. Mel-Frequency Cepstral Coefficients (MFCCs).MFCC is
based on the hearing mechanism of human beings. The
frequency of subjective perception is not linear, and it follows
the empirical formula [57]:

Fmel = 1125log 1 +
f

700
, 3

where Fmel is the perceptual frequency in mel and f is the
actual frequency in hertz.

Therefore, the frequency of cough signals is usually
transformed into the perceptual frequency, which can simu-
late auditory processing better. The concrete steps are as
follows [58–61]:

(i) Preemphasize high frequencies, frame, and add
windows.

(ii) Take the Fourier transform of each frame signal.

(iii) Calculate the spectral line energy for each frame
of data.

(iv) Calculate the logs of the energy at each of the mel
frequencies.

(v) Carry out the discrete cosine transform of the results
achieved in the fourth step.

(vi) The MFCCs are the coefficient of the results, and
usually the first 12 coefficients are taken.

6.1.2. Convolutional Neural Network (CNN). CNN is an
efficient identification method which has been developed
recently and has attracted extensive attention. Generally,
the basic structure of CNN consists of two layers; one is the
feature extraction layer. The input of each neuron is con-
nected with the local accepted domain of the previous layer,
and the feature of the part is extracted. Once the local feature
is extracted and its position relationship between other
characteristics can be determined, the other is the feature
mapping network layer. Each computing layer is composed
of multiple feature maps, each of which is a flat plane, and
all neuron weights are equal.

6.2. Learning by Classifiers. There are several classifier
algorithms for detecting cough, such as support vector
machine (SVM), naive Bayesian classifier (Bayesian), neural
network (NN), hidden Markov model (HMM), and dynamic
time warping (DTW) [62]. Some studies have been
conducted to compare the classifier algorithms with each
other [57]. The performance measures are explained as
follows [63]:

(1) Accuracy is the percentage of samples correctly
classified from the testing data set.

(2) Sensitivity measures the ratio of positives which
are exactly identified as well. Sensitivity is defined
as the ratio of correctly classified positive samples
and true-positive samples.

Feature
extraction

Learning by 
a classi�er

Test
Silence

removal

Feature
selection

Sound signals

Labels Labels Labels & test signals

Results

Figure 5: Workflow for the automatic detection of cough.
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(3) Specificity measures the percentage of negatives
which are recognized intrinsically. Specificity can be
calculated as the ratio of correctly classified negative
samples and true-negative samples.

The advantages and disadvantages of these algorithms
cannot be determined because the results of different experi-
ments are different [34, 64]. However, MFCCs+ SVM is used
more widely [65, 66], and the neural network has potential to
model and achieve accurate identification [67, 68].

7. Future Application of Audio-Based
Cough Monitoring

Audio-based cough monitoring has potentially wide applica-
tion in home medical equipment, clinical trials, and the
development of new cough therapies.

7.1. Application in Home Care. Chronic cough is common in
old people, and the objective monitoring of chronic cough in
the daily life helps to improve the quality of life of the aged
with chronic cough [69, 70]. Many doctors stress the impor-
tance of early diagnosis of childhood asthma and infantile
pneumonia [71–73]. The objective cough assessment pro-
vides a probability for this situation. It has been reported that
objective cough monitoring is helpful in the diagnosis
and treatment of infantile pneumonia [71]. The Pulmo
Track-CC produced by KarmelSonix Ltd. achieves a great
praise in the diagnosis of asthma [72]. With the develop-
ment of the cough monitoring device, it could be widely
used in home care in the future.

7.2. Response to Treatments and New Antitussives. Clinical
treatment trials are a critical part of the diagnosis and man-
agement of chronic cough [74]. Some studies have examined
the least important difference of cough frequency monitoring
that has been available now [24, 75]. Cough monitors are the
first choice for the objective evaluation of cough so that they
are more widely used in clinical trials as main endpoints.
Cough monitors will be a key part of understanding the
response of patients with common respiratory diseases.

In recent years, novel antitussives are under develop-
ment, but the primary outcome measure of antitussive drugs
is still subjective, which harms the interests of patients. Many
medical literatures point out that a randomized, placebo-
controlled, double-blind clinical trial is the gold standard
[76, 77]. The primary endpoint should be objective [78, 79].
Objective cough monitoring would be an ideal tool if it can
successfully prove the clinical efficacy of novel antitussives.
Moreover, subjective outcome measures would be used to
assess symptoms and health-related quality of life.

8. Conclusions

Cough is one of the most important symptoms in respiratory
clinical trials, while the objective indicators of cough severity
are severely absent. This is because the cough frequency,
cough intensity, and other objective cough assessment
indicators cannot be accurately measured due to technical
conditions. This situation has been improved with the

development of sound recording and monitoring techniques
over the last 20 years.

The generation of cough is not only related to the vocal
cords but also to the lungs, and the cough sounds contain a
wealth of individual information. Audio-based cough moni-
tors are emerging. In this paper, the basic principle, hardware
composition, and experimental results of a cough monitoring
instrument are analyzed in detail. This paper also analyzes
objective assessment algorithms of cough and their advan-
tages and disadvantages.

Audio-based cough detection systems are now increas-
ingly applied in clinical research. They are becoming more
important to study cough. Automated cough algorithms are
being developed in quality and processing speed so that
audio-based cough monitors will change the assessment of
patients’ responses to treatments and enter many families
in the near future.
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