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Abstract

This work is devoted to the theory of joint interpretation of multimethod geophysical data and its

application to the solution of real geophysical inverse problems. The targets of such joint

interpretation  can be geological bodies with an established dependence between various physical

properties that cause  anomalies in several geophysical fields (geophysical multiresponse). The

establishing of the relationship  connecting the various physical properties is therefore a necessary

first step in any joint interpretation  procedure. Bodies for which the established relationship between

physical properties is violated  (single-response bodies) can be targets of separate interpretations. The

probabilistic (Bayesian) approach  provides the necessary formalism for addressing the problem of

the joint inversion of multimethod  geophysical data, which can be non-linear and have a non-unique

solution. Analysis of the lower limit of  resolution of the non-linear problem of joint inversion using

the definition of e-entropy demonstrates that  joint inversion of multimethod geophysical data can

reduce non-uniqueness in real geophysical inverse  problems. The question can be formulated as a

multiobjective optimisation problem (MOP), enabling the  numerical methods of this theory to be

employed for the purpose of geophysical data inversion and for  developing computer algorithms

capable of solving highly non-linear problems. An example of such a problem  is magnetotelluric

impedance tensor inversion with the aim of obtaining a 3-D resistivity distribution. An  additional

area of application for multiobjective optimisation can be the combination of various types of

uncertain information (probabilistic and non-probabilistic) in a common inversion scheme applicable

to  geophysical inverse problems. It is demonstrated how the relationship between seismic velocity

and density  can be used to construct an algorithm for the joint interpretation of gravity and seismic

wide-angle  reflection and refraction data. The relationship between the elastic and electrical

properties of rocks,  which is a necessary condition for the joint inversion of data obtained by seismic

and electromagnetic  methods, can be established for solid- liquid rock mixtures using theoretical

modelling of the elastic and  electrical properties of rocks with a fractal microstructure and from

analyses of petrophysical data and  borehole log data. 

Keywords: joint inversion, multiobjective optimisation, non-probabilistic uncertainty, frac-

tal rock models
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Introduction 

At the present moment it is clear to everyone dealing with the interpretation of 
geophysical data that the perfect method for probing the deep structure of the Earth does 
not exist. Every method has its own strengths and weaknesses, and only a combination of 
various methods can produce a realistic model of the Earth’s interior. Unfortunately, a 
very common practice in multidisciplinary geophysical projects is that specialists in each 
geophysical method form a research group of their own at the beginning of the project 
and interpret the experimental results in isolation from the other specialists. At the final 
stage all the specialists get together to compile a combined model, and are very often 
faced with the problem that the models produced by the different groups without taking 
into consideration data derived from other methods cannot be combined as they 
contradict each other.    

One possible way to avoid this problem is to make the combined model not at the end 
of interpretation, when a great amount of work has already been completed by specialists 
in all the groups, but from the very beginning, i.e. to perform joint interpretation of 
multimethod geophysical data.  The problem is far from a simple one, however, and it 
cannot be solved if one just puts all the experimental data into one common data set and 
inverts it using a powerful computer.  

I began to study the problem of joint interpretation of geophysical data sets 
systematically in 1989 during my postgraduate work at the Institute of Geological 
Sciences of the Academy of Sciences of Belarus in Minsk, under supervision of Prof. G. 
Karatayev.  At that time the problem of joint interpretation was a topic of investigation of 
several research groups in the former Soviet Union. Two of the approaches developed 
then were selected as a background to real algorithms for the joint interpretation of 
several geophysical data sets.  

The first was a statistical approach (Bayesian approach) developed by Prof. F.M. 
Goltsman and T.B. Kalinina at St. Petersburg University since the 1960s. This enables 
joint inversion of several geophysical experimental data sets and assumes that the 
unknown geological medium can be described by a parameter vector common to all the 
data sets that allows a generalised objective function to be constructed in a natural and 
convenient way as a joint a-posteriori probability density function of the observed data. 
The book by Goltsman (1982) contains a complete description of the approach, and thus 
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reference is made to that book in the present work, although a number of earlier papers 
published in Russian editions also exist.  

The second approach is that proposed by Prof. G.I. Karatayev, and described by him as 
a “correlation theory of integrated interpretation of geophysical fields”. It is based on the 
supposition that there exists and can be found in principle an equation connecting various 
physical parameters of geological media, e.g. density and seismic velocity. The main 
point in this approach is use of the relationship between various physical parameters of 
geological media for the joint interpretation of multimethod geophysical data. This 
unknown relationship is approximated by a function constructed from a-priori 
information. It should be noted that the idea of the method was proposed by Prof. G.I. 
Karatayev in 1980s (Karatayev and Pashkevich, 1986), but could not be implemented at 
that time due to the lack of sufficiently powerful computers. 

In my Candidate in Science thesis written in Minsk I considered these two approaches, 
formulated a theoretical background to the joint inversion of multimethod geophysical 
data on the base of multiobjective optimisation theory and developed corresponding 
computer programs for the joint inversion of gravity and magnetic data. I also developed 
computer algorithms for solving the problem of joint interpretation of seismic and gravity 
data using the relationship between density and seismic velocity. 

There was a difficult time in the history of many of the republics of the former Soviet 
Union when interesting research topics became frozen for many years, but eventually the 
INTAS programme of the European Science Foundation helped some researchers to 
continue their studies. The multidisciplinary EUROPROBE/EUROBRIDGE/INTAS 
project carried out by an international research team in Belarus gave me the possibility to 
continue my investigations and apply my previously developed techniques of joint 
interpretation of seismic and gravity data to the good quality experimental data obtained 
in the EUROBRIDGE wide-angle reflection and refraction profiles. Subsequent work at 
the Oulu Unit of Sodankylä Geophysical Observatory, in collaboration with the 
seismologist Jukka Yliniemi, and then at the Department of Geophysics of Oulu 
University under the supervision of Prof. Sven-Erik Hjelt on the problem of joint 
inversion of seismic and electromagnetic data marked a continuation of my previous 
investigations in the area of joint interpretation.  

The present work consists of four chapters. Chapter 1 is based on my former 
Candidate in Science thesis and articles devoted to certain theoretical aspects of the joint 
interpretation of multimethod geophysical data. Several of these articles were written in 
Russian and published by the Academy of Sciences of Belarus. Selected conclusions 
from those papers are incorporated into the present work. Section 1.2 contains an analysis 
of non-uniqueness and resolution of the problem of non-linear joint inversion of 
multimethod geophysical data. It is demonstrated in Section 1.3 that the joint inversion 
problem can be regarded as a problem of multiobjective optimisation. Multiobjective 
formulation allows application of the numerical methods of multiobjective optimisation 
for the purpose of geophysical data inversion and the development of computer 
algorithms capable to solve strongly non-linear problems. Some of the basics of the 
theory of multiobjective optimisation are also included in this part to help the reader to 
understand the problem. 

 Section 1.4 is devoted to the problem of presenting a-priori information in 
geophysical inverse problems. As the non-probabilistic theories of uncertainty are not 
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very popular among geophysicists, I have included a discussion of various types of 
uncertainty in geophysical inverse problems in this section. This question is also 
considered in Paper I, where it is demonstrated that the use of measures of uncertainty 
other than probabilistic ones can be an efficient tool for presenting a-priori information in 
geophysical inverse problems. A review of the main non-probabilistic measures of 
uncertainty is given in Appendix 1 to help the reader to understand the problem. 
Appendix 2 contains the main aspects of fuzzy set theory.  

Chapter 2 is devoted to the joint interpretation of seismic and gravity data using an 
equation connecting density with the velocity of elastic waves, and is based on Papers II 
and III, in which the method itself and some results of its application to the joint 
interpretation of seismic and gravity data along the EUROBRIDGE’95 (Lithuania) and 
SVEKA (Finland) wide-angle reflection and refraction profiles are discussed. The seismic 
models described in these papers were developed by J. Yliniemi.   

Chapter 3 is devoted to the relationship between elastic and electrical rock properties. 
The establishing of this relationship is the main condition for the joint inversion of 
seismic and EM data. The results of the petrophysical investigations contained in the 
KTB deep drilling programme and theoretical calculations of rock elastic and electrical 
properties were used for this purpose. Section 3.1 contains an analysis of previous 
theoretical investigations into common factors that affect both elastic and electrical 
properties. The theoretical rock model that allows elastic and electrical properties of 
solid-liquid rock systems with a fractal microstructure to be calculated simultaneously is 
discussed in Section 3.2 and Paper IV. Selected results of calculations of elastic properties 
of crustal rock by means of the fractal rock model are described in Section 3.2. Section 
3.3 contains an analysis of the borehole evidence for a relationship between velocity and 
electrical resistivity and of the multiscale nature of the factors affecting these two 
properties in the upper crust. This leads to the conclusion that a multiscale presentation of 
geological media can be used to separate the factors affecting various physical properties 
of rocks and can become an additional tool for use in the joint inversion of multimethod 
geophysical data.  

The problem of magnetotelluric impedance tensor inversion is dealt with in Chapter 4, 
where it is demonstrated that multicritera optimisation, i.e. the ideal point method, can be 
used to develop robust algorithms for the inversion of magnetotelluric impedance tensor 
data. 

The main results are summarised in the Conclusions section.  





  

1 Theory of joint interpretation of multimethod geophysical 

data 

1.1  Relationship between physical properties as a major condition for 

the joint interpretation of multimethod geophysical data 

The physical background to the joint interpretation of multimethod geophysical data is 
the empirical fact that there exists a large class of geological objects that cause anomalies 
in several geophysical fields. Ore deposits are often sources of both anomalous gravity 
and magnetic fields, conductive zones in the crust can coincide with areas of high seismic 
reflectivity, and a close correlation exists between density and compressional wave 
velocity in crustal rocks etc.     

Consider a geological body T limited by a surface S and having physical parameters 
(density, magnetisation, P- and S-wave seismic velocity etc.) denoted as β

1
(T), β

2
(T),…, 

β
k
(T). If a physical property of the body T, namely, β

i
(T) differs from that of the 

surrounding medium, it should cause an anomaly in the corresponding geophysical fields 
that can be expressed as  

 
[ ] ,,...,2,1,,,),()( kiQTTFU iii =∈∈= rttr β                           (1.1) 

 
where Q is the observation area, the value )(tiβ  implies the ith parameter of the body T 
and )(⋅iF  is an operator (non-linear in the most common case) connecting the ith 
geophysical field to the corresponding physical parameter. Bodies with anomalous 
physical properties that cause observable anomalies in geophysical fields are the targets 
of geophysical investigations.   

Assume that the formation of the body T was controlled by a number of physical and 
geological processes that influenced various physical properties simultaneously. As a 
result, the physical parameters of the body T assumed a certain relationship one to 
another. This relationship is probabilistic in nature and can be formally described by a 
function, e.g. a probability density function, regression equation etc. 
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The geological body T with physical properties kii ,...,2,1),( =tβ , connected by equation 
(1.2) may be referred to as a multiresponse geophysical body (Karatayev and 
Kozlovskaya, 1997).    

If the physical parameters of the body T are connected, i.e. they satisfy equation (1.2), 
this will cause anomalies in the corresponding geophysical fields which can be expressed 
as a system of integral and differential equations that are commonly non-linear: 

 
[ ]

[ ]
.,

,),()(

...

,),()( 111
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=

=
QT

TFU

TFU

kkk

rt

tr

tr

β

β
                                (1.3) 

  
The system of equations (1.3) can be solved in principle for the unknown physical 
parameters kii ,...,2,1),( =tβ  and the geometry of the body T, assuming that the fields in 
the observation area Q denoted as kiU

obs
i ,...,2,1),( =r are known from measurements. 

This procedure can be called the joint interpretation of multimethod geophysical data. It 
is necessary to stress that if a physical parameter of the body T does not differ from that 
of the surrounding media, the corresponding geophysical field in the observation area will 
not differ from the background “normal” value, i.e. it will not contain information about 
the body T. This situation can occur if some of the physical parameters of the body T are 
not connected to the others by the equation (1.2).   

Thus, only geological bodies with established dependences between various physical 
properties can be targets for the joint interpretation of multimethod geophysical data.   

The only exception from this rule is the case in which different geophysical methods 
are used to establish the distribution of one physical parameter, e.g. the combined use of 
DC and EM sounding to investigate the electrical resistivity of the Earth.  

From (1.1) and (1.2) it follows that the geophysical fields )(),...,(),( 21 rrr kUUU  
caused by the body T and observed in the area Q are also connected, by a relationship: 
 

0)](),...,(),([ 21 =rrr kUUUY .                                              (1.4)  

The classical example of such a relationship is the Poisson relation that connects the 
gravity and magnetic potentials of a body with uniform density and magnetisation. 

Since the problem (1.3) cannot be solved analytically for an arbitrary distribution of 
physical parameters within the body T, numerical methods have to be employed for this 
purpose. One possible way is to approximate the unknown geometry of the body T by 
some model described via geometrical parameters ),...,,( 21 sggg=g that together with 
the distribution of physical parameters kii ,...,2,1),( =tβ  form the parameter vector 

),...,,( 21 pmmm=m common to all the data sets under consideration. Note that if 
equation (1.2) connecting the physical parameters is known, then some of )(tiβ  can be 
expressed via other parameters and the number of unknown parameters of the body T can 
be reduced. It is possible to find an estimate for the vector m as a solution to the problem 
of joint inversion that is implemented by minimising the differences between all the 
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geophysical fields observed in the area Q and corresponding values calculated from the 
parameter vector m: 

 









∈∈ ,,

)],,(),([ minimise 

...

)],,(),([ minimise 11 1

QM

FUJ

FUJ

k
obs

k

obs

k

rm

rmr

rmr

            (1.5) 

 
where M is a set of feasible values of the vector m and kiFUJ i

obs
i i

,...,1)],,(),([ =rmr  is 
a function characterising the discrepancy between the observed values for the ith 
geophysical field and the corresponding theoretical response calculated from the 
parameter vector m.  

One more problem in obtaining parameters for the multiresponse geophysical body is 
that the field )(riU measured in the observation area Q is a combined effect of the body T 
and other field sources formed as a result of geological and physical processes that did 
not necessary affect all the physical properties simultaneously. These field sources do not 
have physical parameters connected by equation (1.2) and can be called single-response 
bodies with respect to the body T. If the target of data interpretation is to find parameters 
of the body T, then the effect of single-response field sources can be regarded as noise 
that may be of the same order as the field produced by the body T.  The effect of single-
response bodies can be estimated if equation (1.2) or its approximation is known. In this 
case one of the physical parameters can be expressed via others: 
 

  )](),...,(),(),...,([)( 111 ttttt kiii V βββββ +−= ,                              (1.6) 

where V[⋅] denotes an operator. The equation (1.6) can then be substituted into the 
corresponding equation (1.3) for the ith field: 
 

)]}(),...,(),(),...,([{)( 111 ttttr kiiii VFU ββββ +−= .                       (1.7) 

Parameters ijkjj ≠= ,,...,2,1),(tβ  can in turn be expressed from observed geophysical 
fields ijkjU obs

j
≠= ,,...,2,1),(r , assuming that the corresponding inverse operators 

1−
jF are known for jF  in (1.3):  
 

ijkjUF
obs

jj j
≠== − ,,...,2,1)],([)( 1 rtβ .                                        (1.8) 

Equation (1.8) can then be substituted into (1.7), giving an expression for the effect of the 
multiresponse body T in the field )(robs

i
U .  The difference between )(robs

i
U and 

)(riU calculated from eq. (1.7-1.8) gives an expression for the effect of single-response 
bodies with an anomalous distribution of the single parameter )(tiβ : 
 

)]}(),...,(),(),...,([{)()( 111 ttttrr kiii
obs

i VFUU
i

ββββ +−−=∆ .                     (1.9) 

The effect of single-response bodies, described by eq. (1.9), can be the object of a 
separate interpretation. 
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The approach described by equations (1.6 -1.9) is difficult to implement analytically 
because precise analytical expressions for equation (1.6) or for the inverse operators (1.8) 
very seldom exist.  As demonstrated in Papers II and III, it is possible in some cases to 
approximate the equation (1.6) by simpler expressions depending on a-priori 
information. The method of joint interpretation of seismic and gravity data discussed in 
Chapter 2 and presented in Papers II and III is based on approximation of the relationship 
between density and seismic velocity, which is constructed from a-priori data.    

The effect of single-response bodies within the area under study can be as large as the 
effect of the multiresponse body T, and cannot always be regarded as non-informative 
noise. One of the purposes of the present investigation was to demonstrate that bodies for 
which the established relationship between physical properties is violated could be targets 
of separate interpretations. It is demonstrated in Chapter 2 that the areas in the crust 
where the well-known dependence between seismic velocity and density is violated are 
often associated with important tectonic boundaries, and it is shown in Chapter 3 how the 
concept of a multiscale medium can be used to separate the effect of common factors 
(pores and fractures in the upper crust) affecting both seismic velocity and electrical 
conductivity from a factor that affects only velocity (rock mineral composition).  

1.2  Formulation of the problem of joint inversion of multimethod 

geophysical data  

The traditional geophysical inverse problem was formulated for one separate 
experimental data set by Goltsman (1982) and Tarantola (1987) as follows. 

Let T be a geological object (body) described by a parameter vector 
m=[m1,m2,…,mn]∈∈∈ ∈ M, where M is a set of feasible solutions defined in the parameter 
space Rn. Let us assume that some a-priori information about the object T was obtained 
from previous independent experimental observations and can be expressed as a 
probability density function (PDF) )(mp . The new information about the geological 
object T, i.e. about the vector m, can be obtained by inverting data from a geophysical 
experiment that form the observation vector ),...,,( 21 Qddd=obsd . The a-posteriori 
conditional probability density of the vector m after the experiment is (Tarantola 1987): 

 

,)|( obs ) )/p() p(p(p obsobs dm|dmdm =                    (1.10) 

where )(mp  is the a-priori PDF of m, )p( m|dobs  is the conditional probability density 
of the experimental data (probability of obtaining certain experimental data for given 
values of model parameters), and )p( obsd  is the marginal probability density of the 
experimental data. As )p( obsd  does not depend on m, it can be assumed to be equal to 
some b=const after the experimental data have been obtained. The maximum of the 
conditional probability density function (1.10) gives an estimate for the parameter vector 
m that is called the maximum likelihood solution: 
 

))|()((max))|((max* mdmdmm obs
m

obs
m

ppp == .             (1.11) 
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The conditional probability density of the experimental data in (1.10) depends on an 
operator g that allows theoretical values for observable geophysical fields to be calculated 
from known values of model parameters subject to a certain assumption regarding the 
signal-noise model M, i.e.  
 

)),((),( nmdmd obsteor gMg == .                                (1.12) 

Depending on the type of PDF in  (1.10-1.11), one can obtain different formulations of 
geophysical inverse problems. Goltsman (1982) and Tarantola (1987) demonstrated that if 
the PDF )(mp  and )p( m|dobs  in (1.11) are generalised Gaussian of order Q and n, 
respectively, where ∞<≤∞<≤ nQ 1,1 , the problem (1.11) is equivalent to minimisation 
of the objective function 
 

nQ ll
gL 0obs mmdmm −+−= )()( ,                             (1.13) 

where 
Ql

g obsdm −)(  denotes the difference between the theoretically calculated and 
observed geophysical fields in the weighted l

Q
 norm and 

nl
0mm − denotes the 

difference between m and the a-priori model m
0 
in the weighted l

n  
norm.  

Maximisation of the PDF (1.10) or minimisation of (1.13) in real geophysical inverse 
problems requires the application of numerical optimisation techniques. Although it is 
often assumed that the PDFs in (1.10) and (1.13) are defined on an infinite set and are 
continuous, we have to deal in practice with a finite data set measured by a digital device 
of limited accuracy. We also have to use computers to calculate the theoretical response 
of the vector of the model parameters and perform optimisation of (1.10) or (1.13) 
numerically.  As a result, one has in reality to optimise a discrete function that can be 
calculated with limited accuracy and is defined on a finite and discrete set of feasible 
values of the parameter vector m.  

The other problem is non-uniqueness, which can be called a fundamental property of 
geophysical inverse problems. Two types of non-uniqueness can be distinguished. The 
first type can be called theoretical non-uniqueness, which arises due to the existence of 
equivalent field sources that cause the same response in the observation area. There exist 
certain classes of field sources for which it is possible to prove a “uniqueness theorem”, 
i.e. to establish theoretically that the inverse problem has a unique solution for perfect, 
error-free data (uniqueness proof). The classical example of a uniqueness theorem is 
Novikov's lemma (Novikov, 1937) concerning conditions for the uniqueness of the 
solution of an inverse gravimetric problem in a three-dimensional space. Unfortunately, 
one very often finds that such classes of field sources cannot be used to describe real 
geological objects.  

The second type of non-uniqueness originates from the fact that there exist sources 
producing different fields in the observation area but giving equal, or near equal values of 
the PDF (1.10) or objective function (1.13), due to the finite set of experimental data and 
the presence of noise (Parker, 1977). This type of non-uniqueness can never be avoided, 
as one always has to deal with finite, noisy experimental data. 

Due to the non-uniqueness of the real geophysical inverse problem, there exists a set B 
of vectors m that maximise the a-posteriori PDF (1.10) with finite accuracy δ>0, i.e. 
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})|()|(|{ δ<−= obsobs dmdmm true
ppB , where m

true corresponds to the “true” 
maximum likelihood point of theoretical distribution. Since this set can contain 
geologically meaningless solutions as well, the proper solution to a problem of 
geophysical data inversion can be found only after analysis of all possible solutions from 
this set. The model that agrees with the information obtained by the other methods can 
then be accepted as the final solution. If the geological body T can be described by a 
parameter vector m that is common to all methods, joint inversion of the multimethod 
geophysical data can be applied to obtain a model that agrees with all the data sets. 

Suppose that we have the results of k independent geophysical experiments carried out 
in the same observation area, i.e. a set of observation vectors },...,,{ 21 k

obsobsobsobs dddd = . 
If all the k geophysical experiments are independent, then all kii

obs ,...,1, =d can be 
regarded as independent random variables and the a-posteriori PDF of vector m after all 
the sets of experimental data were obtained can be written as (Goltsman, 1982) 

 

)p())p() p(bp(p
kk m|dm|dm|dmdddm
obsobsobs

...),...,,|( 2121

obsobsobs
=  ,        (1.14) 

where b=const represents the marginal PDF of the experimental data that does not 
depend on m. 

Maximisation of (1.14) gives an estimate for the parameter vector m*, i.e. a solution to 
the problem of joint inversion. 

Equation (1.14) is the most common formulation of the problem of joint inversion of 
multimethod geophysical data, as already proposed by Goltsman and Kalinina in the 
1960s. It follows directly from the multiplication theorem for the probabilities of 
independent events (Pugachev, 1965). Namely, if two events A and B are independent, 
then the probability of their combined appearance )()()( BPAPBAP =∩ .  

As already mentioned, it is usually assumed that all the PDFs )(mp  and 
ki)p( i ,...,1, =m|d

obs
 in (1.14) are generalised Gaussian with diagonal covariance 

matrices of order Q
i
 and n, respectively, where ∞<≤∞<≤ nQi 1,1 . In this case 

maximisation of (1.14) is equivalent to minimisation of the objective function 
 

,                           (1.15) 
 

where 
iQl

i
ig

obs
dm −)( denotes the difference between the theoretically calculated and 

observed geophysical fields in a weighted 
iQl norm and  

nl
0mm− denotes the 

difference between m and the a-priori model m
0 
in a weighted l

n  
norm. If all the PDFs in 

(1.14) are Gaussian of order 2 and the operators )(mig  are linear, problem (1.15) 
becomes a linear one. In this case the resolution analysis can be performed and the 
inversion efficiency estimated on the basis of covariance matrices (Tarantola, 1987, 
Menke, 1989, Hjelt, 1992). This analysis is not valid in the case of non-linear problems, 
due to the multimodality of the PDF (1.14) and the objective function (1.15), so that the 
efficiency of the joint inversion of multimethod geophysical data is analysed here using 
the definition of ε -entropy (Kolmogorov and Tichomirov, 1959). As can be seen from the 
following definitions, ε -entropy makes it possible to analyse non-uniqueness in real 
geophysical inverse problems which have finite accuracy and a finite set of feasible 
solutions. By means of ε -entropy it is possible to demonstrate that joint inversion of 

n
iQ
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i
i

k

i

gL 0mmdmm
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multimethod geophysical data can reduce non-uniqueness in a real geophysical inverse 
problem.  

Let A be a non-empty set in a space Rk with a norm denoted by , and let ε be a 
positive number. Then the following subsets of set A can be introduced (Kolmogorov and 
Tichomirov, 1959): 

Definition 1.1. The system γ  of sets  JjRU
k

j ∈⊂ ,  is the ε-partition of the set 
kRA ⊂ if the diameter d( U

j 
) of any  γ⊂jU  does not exceed 2ε and  

γ∈
⊆

jU
jUA  . 

Definition 1.2. The set kRU ⊂ is the ε-net of the set A if for every point A∈a  there 
exists a point U∈u  such that ε<−ua . 

The following statements can be proved for any kRA ⊂ : 

Theorem 1.1. (for proof,  see Kolmogorov and Tichomirov (1959)  
a) For any 0>ε there exists a finite ε-partition of the set A.  
b) For any 0>ε there exists a finite ε-net of the set A. 

Then the following characteristics of the set A can be defined. 

Definition 1.3. Let )(AεΝ be the minimal number of sets in the ε-partition of the set A 
and )(A

kR

ε
Ν be the minimal number of points in the ε-net of the set A. Then the function 

)(log)( 2 AAH εε Ν=  is the minimal entropy of the set A or ε-entropy of the set A. The 
function )(log)( 2 AAH

kk RR

εε
Ν= is the ε-entropy of the set A with respect to R

k
. 

If the space R
k is centred (i.e. if rUdRU k 2)(diameter  with =⊂∀  

UrU ∈∀<−∈∃ xxxx 00 | ), then )()( AA
kR

εε Ν=Ν and )()( AHAH kR

εε = . 
The difference between the Shannon entropy used in classical information theory and 

minimal ε-entropy is clear from the above definition. The entropy of the PDF 
Ap ∈mm),(  is an informational measure of the uncertainty of the random vector m, 

defined as (Shannon, 1948) 
 

∫−=
A

dppH mmm )(log)( .                                         (1.16) 

This is a function of the probability density function, i.e. of a measure of the set A. On the 
other hand, the ε-entropy can be regarded as a function of the set A and ε.  It does not 
depend on any probability measure defined on A, i.e. it is similar to the Hartley function 
introduced as a measure of the uncertainty of finite sets (Hartley, 1928): 
 

||log)( AcAU b⋅= ,                                                 (1.17) 

where b>1 and c>0  are positive constants and |A| denotes the cardinality of a finite non-
empty set A. 

If A is a set of feasible solutions to the inverse problem (1.11) in which two vectors m 
and m1 are distinguishable if ε>− 1mm , where ε is a positive number, then )(AεΝ  is 
the  minimal number of solutions that can be recognised in the set A with the accuracy ε, 
and )(AHε  is the measure of uncertainty of the set A, which can also be used to estimate 
the non-uniqueness of the inverse problem under consideration.   
The minimal value of ε for any geophysical inverse problem depends on many factors, the 
main ones being model parameterisation, the correlation between the model parameters, 
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the accuracy of forward problem calculation and noise in the observed data.  Two 
parameter vectors m and m1 can be distinguished in the parameter space of a geophysical 
inverse problem (1.11) if the following condition is satisfied: 
  

δε >−⇒>− )|()|( 1
obsobs

1 dmdmmm pp ,              (1.18) 

where δ is the lower limit of accuracy that can be obtained in the calculation of function 
(1.11). The corresponding value of ε defines the lower limit of resolution of the inverse 
problem under consideration, in the sense that if ε<− 1mm , the difference between 

)p( obsdm | and )p( obsdm |1
 becomes insignificant.  

Kolmogorov and Tichomirov (1959) demonstrated that if the two sets A and B belong 
to the same set C and are independent, i.e. CBCA ⊂⊂ ,  and ∅=∩ BA , then the ε-
entropy of the set BAC ∪=  is  

 
)()()( BHAHCH εεε += .                                          (1.19) 

From (1.19) it follows that if BA ⊆ , then )()( BHAH εε ≤ . 
The a-posteriori PDF of vector m in the case in which only data from the ith 

experiment are known is 
 

ki)) p(p(bp
i
obsobs ,...,2,1,)|( i == m|dmdm .                     (1.20) 

Let  ABi ⊂  be a set of estimates m
* that maximise the ith a-posteriori PDF in (1.20) 

with the accuracy δ
 i
 , i.e. 

  
    ,                  (1.21)  

where m
true is the “true” maximum likelihood point of PDF (1.20), which cannot be 

achieved in reality due to discreteness and numerical errors.  
Then the uncertainty of the random vector m after separate interpretation of the data 

from the ith experiment is estimated by the entropy )|( i
iBH obsdε , where ε is the lower 

limit of resolution of the ith method.  As ABi ⊂ , then )()|( AHBH i
i εε ≤obsd .  

The set of estimates of vector m* obtained from joint interpretation of the data from all 
k experiments must maximise the joint a-posteriori PDF (1.14). Consider the set of 
vectors m

1 that simultaneously maximises all the a-posteriori PDFs (1.20) with the 
accuracy δ 

i
, i=1,…,k. i.e.  

k

i
iBD

1=
= and iBD ⊆ . Obviously, if a vector D∈1m , then it 

also maximises the joint a-posteriori PDF (1.14), i.e. D is the set of solutions to the 
problem of joint interpretation. Note that in the case in which ∅=D  it is always 
possible to increase some values of δ

 i
 and obtain ∅≠D . The large values of δ

 i
 in this 

case indicate that either the model parameterisation is not correct or the PDFs making up 
the joint PDF (1.14) have not been selected properly.  

The values for the lower resolution limits ε
i
 are usually different for each separate 

method. However, it follows from Theorem 1.1 that for every set B
i
 it is possible to define 

the ε-partition with ε corresponding to the method with the smallest value for the lower 
limit of resolution. This means that in principle it is always possible to construct a 
procedure for joint inversion of multimethod geophysical data with a lower limit of 
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resolution equal to that of the method with the best resolution. The other conclusion is 
that the lower limit of resolution of any procedure of joint inversion of multimethod 
geophysical data cannot be less than that of the method with the best resolution.    
In this case the entropy of vector m after joint interpretation of the data from k 

independent experiments is ),...,,|( 21 kDH obsobsobs dddε . Then it follows from 

kiBD i ,...,2,1, =⊆  that 

 

)()|(),...,,|( 21 AHBHDH i
i

k
obs εεε ≤≤ obsobsobs dddd .                   (1.22) 

 

Equality of ),...,,|( 21 kDH obsobsobs dddε  and )|( i
iBH obsdε  in (1.22) is achieved only if the 

sets D and B
i
 coincide. Inequality (1.22) means that joint inversion of data from several 

geophysical methods can reduce non-uniqueness in real geophysical inverse problems.  
The following conclusions can be reached from the above analysis: 

a) The lower limit of resolution of any procedure of joint inversion applied to 
multimethod geophysical data corresponds to the value for the method with the best 
resolution, but cannot be less than this. 

b) As joint inversion of multimethod geophysical data can reduce non-uniqueness in 
real geophysical inverse problems, the solution obtained from such data is better then 
that obtained from separate inversion of data from only one method.  

It is important to note that these conclusions do not depend on the type of PDF in a 
concrete joint inversion algorithm or on the linearity of the problem. 

1.3  Joint inversion of multimethod geophysical data as a 

multiobjective optimisation problem (MOP) 

1.3.1  Formulation of the problem 

As demonstrated in the previous section, the problem of joint inversion of multimethod 
geophysical data can be formulated as a problem of simultaneous maximisation of all 
conditional a-posteriori PDFs of the vector of the model parameters m that are included 
in equation (1.14), i.e. it can be formulated as a problem of the kind (1.5) with the 
functions kipFUJ obsi i

obs
i ,...,1),|()],(),([ =−= dmrmr . 

This is a multiobjective optimization problem (MOP). The theory of multiobjective 
optimisation is a part of optimisation theory that deals with the case when the objective 
function is a vector. It is assumed in the present work that the inverse problem is always 
formulated as a minimisation problem, because any maximisation problem can be 
transformed into a minimisation one. The MOP can then be formulated as follows: 
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Minimise the vector objective function ))(),...,(),(()( 21 xxxxf kfff=  that assumes 
values in kR subject to n

n RXxxx ⊆∈= ),...,,( 21x , where X  is a set of feasible 
solutions to the MOP, i.e. 

  

                            minimise Xfff k ∈= xxxxxf )),(),...,(),(()( 21 ,                      (1.23) 

where the set of feasible solutions X is defined by a system of inequality constraints.  
The vector objective function maps the set of feasible solutions X from the solution 

space nR  to the objective space kR .  If all the functions kifi ,...,1),( =x  are linear and 
the set of feasible solutions X is defined by a system of linear inequalities, then the 
problem (1.23) is called a multiobjective linear optimisation problem (MOLP).  

If some of the functions kifi ,...,1),( =x  are non-linear and/or the set of feasible 
solutions X is defined by a system of constraints that is composed of both non-linear and 
linear inequalities, then the problem (1.23) is called a multiobjective non-linear 
optimisation problem (MONLP).  

A non-linear multiobjective problem is called a convex MONLP if all kifi ,...,1),( =x  
as well as the inequalities defining the set of feasible solutions X are convex functions.  

The following definitions are a generalisation of the definition of the minimum of a 
scalar function to the case of a vector objective function (Sakawa, 1993).   

Definition 1.4 (complete optimal solution): *x  is said to be a complete optimal solution 
of a MOP with the vector objective function ))(),...,(),(()( 21 xxxxf kfff=  if and only if 
there exists X∈*x  such that kiff ii ,...,1),()( * =≤ xx  for all X∈x . 

Definition 1.5 (weak Pareto optimal solution): *x  is said to be a weak Pareto optimal 
solution of a MOP with the vector objective function ))(),...,(),(()( 21 xxxxf kfff=  if and 
only if no other X∈x  exists such that kiff ii ,...,1),()( * =< xx  for all i.   

Definition 1.6 (Pareto optimal solution): *x  is said to be a Pareto optimal solution of a 
MOP with the vector objective function ))(),...,(),(()( 21 xxxxf kfff=  if and only if no 
other X∈x  exists such that kiff ii ,...,1),()( * =≤ xx  for all i and )()( *xx jj ff ≠  for at 
least one j. 

Let WPPCO XXX ,,  denote sets of complete optimal, Pareto optimal and weak Pareto 
optimal solutions of a MOP, respectively. It then follows from Definitions 1.4-1.6 that if a 
complete optimal solution to the MOP exists, WPPCO

XXX ⊆⊆ . 
The objective functions in a real MOP usually contradict each other, and no complete 

optimal solution may exist. On the other hand, the sets of Pareto optimal solutions (Pareto 
set) and weak Pareto optimal solutions (weak Pareto set) always exist. Consequently, the 
methods of multiobjective optimisation aim at finding a set of Pareto optimal solutions to 
the MOP, or at least a set of weak Pareto optimal solutions.  It is seen from Definitions 
1.5-1.6 that any Pareto optimal solution is a trade-off solution: it is not possible to 
improve it by reducing one objective function without increasing the others. Since the 
number of trade-off possibilities in a MOP can be fairly large, the set of Pareto optimal 
solutions to a real MOP may contain a variety of solutions with different trade-off rates. 
Obviously, the larger the number of objectives of the MOP, the larger will be the number 
of possible trade-off variants. Selection of the final solutions from the Pareto set requires 
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analysis of the information on the trade-off rate between various objectives and is a 
necessary stage in the solution of the MOP. 

Consider the set of vectors m* that simultaneously maximise all PDFs in (1.14), i.e. 
 
k

i
iBD

1=
= . In accordance with Definition 1.4, this is a complete set of optimal solutions 

to a multiobjective problem (1.5) in which the a-posteriori PDFs (1.20) are used as 
objective functions.  Although it is not correct to say that the joint inversion of 
multimethod geophysical data is a problem with highly contradictory objectives, errors in 
the experimental data and approximation of the real medium by a parameter vector can 
mean that no complete optimal solution exists, i.e. ∅=D . As has already been 
mentioned in section 1.2, it is possible in this case to require that some or all of the a-
posteriori PDFs (1.20) should be as close to the optimum value as possible, i.e. to allow a 
trade-off between PDFs. This can be done by the following very simple procedure, for 
example: 

Step 1. Find the set AB ⊂1  of estimates m* that minimise the 1st objective function in 
(1.5). 

Step 2. Calculate the values for the second objective function at each point in the set B
1
. 

Step 3. Find the set 12 BB ⊂ of estimates m1 with a minimum value for the 2nd objective 
function. 

Step 4. Calculate the values of the 3rd objective function at each point in the set 12 BB ⊂ .  

Step 5. Find the set 123 BBB ⊂⊂ of estimates m
2 with the minimum value for the 3rd 

objective function. 

Step 6. Calculate the values of the 4th objective function at each point in the set 

123 BBB ⊂⊂ , etc. 

The process stops when the entire vector of objective functions in (1.5) is being 
considered, or when only one point remains in the set B

i
. The points in the final set 

11 ... BBB kk ⊂⊂⊂ −  are Pareto optimal in accordance with Definition 1.6. Note that this 
set does not contain all the possible trade-off solutions and cannot be accepted as the best 
way to solve the MOP.  

 Among the variety of multiobjective optimisation techniques there exist a group of 
scalarization methods which allow transformation of the MOP into a one-objective 
problem. These methods usually aim at finding the solution in the Pareto set in 
accordance with the a-priori defined trade-off rate between the various components of the 
vector objective function. Only the main methods for scalarization of multiobjective 
problems are analysed here, as some of them are used explicitly in the practice of 
geophysical data inversion.  

1.3.2  The weighting method of scalarization for a MOP 

The weighting method, originally proposed by Kuhn and Tucker (1951), involves solving 
the following weighting problem instead of (1.23): 
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                                                 minimise  

  subject to X∈x ,                                       (1.24)  

where 0),...,( 1 ≥= kwww  is the vector of weighting coefficients assigned to the 
components of the vector objective function prior to solution of the problem. The 
weighting coefficients characterise the rate of trade-off between different components of 
the vector objective function; i.e. the selection of a solution from the Pareto set depends 
entirely on the selected vector w.      

In the case of MOLP the relationship between the optimal solution to the problem 
(1.24) and Pareto optimality is given by the following two theorems, the proofs of which, 
as for other theorems concerning the Pareto optimality of solutions to MOPs, can be 
found in the book by Sakawa (1993): 

Theorem 1.2. If X∈*x is an optimal solution to the weighting problem for some 
0),...,( 1 ≥= kwww , then x* is a Pareto optimal solution to the MOLP. 

Theorem 1.3. If X∈*x is a Pareto optimal solution to the MOLP, then x* is an optimal 
solution to the weighting problem for some 0),...,( 1 ≥= kwww . 

Note that Theorem 1.2 can also be proved for MONLP, whereas Theorem 1.3 can be 
proved for arbitrary 0),...,( 1 ≥= kwww only in the case of MOLP and convex MONLP. 
This means that in the case of non-linear problems there can be Pareto optimal solutions 
for which no corresponding weighting problem exists.  Podinovsky and Nogin (1982) 
demonstrated that in the case of a non-convex MONLP there can be vectors 

0),...,( 1 ≥= kwww  for which the minimum of (1.24) does not exist within the set of 
feasible solutions M. This property of MONLP must be taken into consideration when 
employing the weighting method to solve non-linear problems involving joint inversion 
of multimethod geophysical data.  

The weighting method is one of the most popular ways of treating the problem of joint 
inversion in the practice of geophysical data interpretation. In the weighting method the 
functions kiFUJ i

obs
i i

,...,1)],,(),([ =rmr  are normalised and combined into a sum, the 
minimisation of which gives an estimate for the parameter vector m:  

∑
=

=
k

i
i

obs
ii FUJw

i
1

* )),(),(( min rmrm
m

.                                        (1.25)    

The problem of joint inversion of multimethod geophysical data, formulated as (1.15), i.e. 
under the assumption that all a-posteriori PDFs in (1.14) are generalised Gaussian, can 
also be regarded as the weighted sum of the objective functions of the following MOP: 
                              

 
 

minimise ))(),(),...,(),(()( 121 mmmmmL += kk LLLL  where 
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In (1.26) 
iQl

i
ig

obs
dm −)( denotes the difference between the theoretically calculated and 

observed values for the ith geophysical field in a weighted 
iQl  norm and 

nl
0mm − the 

difference between m and the a-priori model m
0 
in the weighted l

n  
norm. 

In the case of linear joint inversion and convex non-linear joint inversion problems the 
estimate given by minimisation of (1.15) is a Pareto optimal solution to the problem 
(1.26). In the case of non-convex problems the minimum of (1.15) does not necessary 
exist, and numerical optimisation algorithms can fail.  

A multiobjective interpretation can also be given for the method of solving ill-posed 
problems known as Tikhonov regularisation (Tikhonov and Arsenin, 1977), in which an 
estimate for the parameter vector m is obtained as a solution to the minimisation problem 
 

 0)],()),(([min* >Ω+= αα mdmm obs
m

gJ ,                     (1.27) 

where )),(( obsdmgJ  is a function describing the difference between the experimental 
data and a calculated model response (the difference in the l

2  norm is usually used), 
)(mΩ  is a stabilising function defined on the set of feasible solutions M and 0>α  is a 

regularisation parameter laid down a-priori. As demonstrated by Sobol (1985), if αm  is 
the solution to the problem (1.27) for some α>0, then C∈αm , where C is the Pareto set 
of the following two-objective problem: 
 

. subject to
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obs
                       (1.28) 

In this case problem (1.27) can be regarded as scalarization of a two-objective problem by 
a weighted sum of objective functions. 

It is known that Tikhonov regularisation was originally proposed for the case in which 
)(mg is a linear, finite operator, and experience with its application to problems with a 

non-linear operator )(mg  has demonstrated that it is much less effective in that case. The 
reason for this is that in the case of non-linear, non-convex components of the vector 
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objective function, the minimum of the weighted sum does not exist for any vector of 
weights, i.e. for any 0>α . Consequently use of the Tikhonov regularisation technique 
cannot be recommended in the case of non-linear inverse problems for which convexity is 
not guaranteed. 

1.3.3  The constraint method of scalarization of a MOP  

The constraint method (Haimes et al., 1971) is not so sensitive to non-convexity as the 
weighting method considered above. In this method the MOP is formulated as a 
constraint problem by taking one component of the vector objective function as the main 
objective and constraining the other components by means of inequalities, i.e.  
 
                                                minimise )(xif  

 
.

,,,...,1,)(  subject to

X

ijkjf jj

∈
≠=≤

x

x ε
                       (1.29) 

The relationship between the optimal solution to the constraint problem and the Pareto 
optimality of the MOP is given by the following theorems, which are valid for both 
MOLP and MONLP cases: 

Theorem 1.4. If X∈*x is a unique optimal solution to the constraint problem (1.29) for 
some ijkjj ≠= ,,...,1,ε , then x* is a Pareto optimal solution of the MOP. If X∈*x is 
an optimal solution to the problem (1.29) that is not unique, then it is a weak Pareto 
optimal solution to the MOP. 

Theorem 1.5.  If X∈*x is a Pareto optimal solution to the MOP, then x* is an optimal 
solution to the constraint problem (1.29) for some ijkjj ≠= ,,...,1,ε .  

The constraint method is widely used to integrate data derived from several geophysical 
methods. The main principle of such integration is to invert the data of one method while 
treating the information from the other methods as constraints. Theorem 1.5 states that 
only a weak Pareto optimal solution can be guaranteed if the uniqueness theorem cannot 
be proved for the main method selected. The solution to the constraint problem depends 
greatly on the values of ijkjj ≠= ,,...,1,ε . If they are too small, the constraint problem 
can cease to be feasible.  It is also important to note that the lower limit of resolution of 
the problem of joint inversion corresponds in this case to the lower limit of resolution of 
the problem regarded as the main objective, i.e. it is not necessarily the minimal one. 
These properties of the constraint method must be taken into consideration when trying to 
apply it to the integrated interpretation of multimethod geophysical data. 
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1.3.4  The weighted minimax method for the scalarization of a MOP 

The second scalarization method that is not sensitive to non-convexity in the objective 
functions and restrictions to the MOP is the weighted minimax method (Bowman, 1976). 
This implies solving the following problem instead of the original MOP (1.23): 

 
                                  minimise kifwf ii

i
,...,1),(max)( == xx  

                                           subject to X∈x ,                                                          (1.30) 
 

where 0),...,( 1 ≥= kwww  is the vector of the weighting coefficients. The relationship of 
the optimal solution to the weighted minimax problem and the Pareto optimality of the 
MOP are given by the following two theorems, which are valid for both the MOLP and 
MONLP cases: 

Theorem 1.6. If X∈*x is a unique optimal solution to the weighted minimax problem 
(1.30) for some 0),...,( 1 ≥= kwww , then x* is a Pareto optimal solution to the MOP. If 
the solution to the weighted minimax problem is not unique, only weak Pareto optimality 
can be guaranteed.  

Theorem 1.7.  If X∈*x is a Pareto optimal solution to the MOP, then x* is an optimal 
solution to the weighted minimax problem (1.30) for some 0),...,( 1 ≥= kwww . 

Sakawa (1993) pointed out that the weighted minimax method solves the problem of 
multiobjective optimisation better than the weighted sum method or the constraints 
method. In spite of this, it has the disadvantage that the solution is defined by a single 
objective function that has its maximum value among other ones.  

1.3.5  Goal programming and compromise programming methods 

The idea of goal programming was originally proposed by Charnes and Cooper (1961) 
for a MOLP in which it is possible to specify goals or aspiration levels for the 
components of the vector objective function ))(),...,(),(()( 21 xxxxf kfff= , i.e. to define 
the goal vector ),...,,( **

2
*

1
*

kfff=f . The goal programming problem can then be 
formulated as follows: 

                                                      minimise  ))(,( * xffd  

subject to X∈x ,                                                   (1.31) 

where ))(,( * xffd  is the distance in the objective space R
k between the goal vector 

),...,,( **
2

*
1

*
kfff=f  and ))(),...,(),(()( 21 xxxxf kfff=  according to a selected norm 

∞≤≤ plp 1, .  The aim of goal programming is to approach as close as possible a set of 
specified goals that may not be simultaneously attainable. Note that it is not usually 
possible to specify any goal vector in geophysical inverse problems a-priori.  

A modification of the goal programming method known as compromise programming, 
or the ideal point method, was proposed by Yu (1973) and Zeleny (1973, 1982). This is 
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obtained from problem (1.31) if the goal vector ),...,,( **
2

*
1

*
kfff=f  is replaced by an 

ideal point or utopia vector ),...,,( minmin
2

min
1

min
kfff=f , where   
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                  (1.32) 

                                          subject to X∈x ,                                

where 0),...,( 1 ≥= kwww is the vector of the weights.   
It can be proved (Zeleny, 1982) that any solution to problem (1.32) for any ∞<≤ p1  

is Pareto optimal and any unique solution to problem (1.32) for p=∞ is Pareto optimal. 
The ideal point method has the advantage that it can be applied to MOLP and MONLP 
cases.  The Pareto optimality of the solution to problem (1.32) does not depend on the 
convexity of the problem.   

It is important to note that the ideal point is regarded as existing only in the objective 
space, although the corresponding solution in the parameter space may not exist. The 
solution to problem (1.32) can be interpreted as that which is closest to the ideal point in 
the objective space. The ideal point in the problem of joint inversion of multimethod 
geophysical data corresponds to the point in the objective space with co-ordinates equal 
to the maximum values for all a-posteriori PDFs in (1.14).  

Comparison of the ideal point method with the other scalarization techniques 
described above demonstrates that the ideal point method can be used for joint inversion 
of several geophysical data sets in both a linear and a non-linear formulation. A more 
detailed discussion of the ideal point method with an application to the problem of 
magnetotelluric impedance tensor inversion is presented in Chapter 4. 

In conclusion, it is necessary to point out that a generalisation of all scalarization 
methods for multiobjective optimisation problems is known as the hyperplane method 
(Sakawa and Yano 1990, Sakawa 1993). Since the application of this rather complicated 
method requires a-priori knowledge about the behaviour of the vector objective functions 
that is not available in real geophysical inverse problems, it cannot be applied directly to 
the solution of non-linear problems of joint inversion of multimethod geophysical data. 

1.3.6   Fuzzy multiobjective optimisation 

MOP (1.23) can be treated using a fuzzy set approach as proposed by Bellmann and 
Zadeh (1970). The basic definitions of fuzzy set theory are given in Appendix 2. Suppose 
that a goal vector ),...,,( **

2
*

1
*

kfff=f can be defined for the problem (1.23). If it is 
possible to estimate the degree of achievement of the goal *

if at every point in the set X 
by a number [ ]1,0)( ∈x

iCµ , then each component of the vector objective function 
kifi ,...,1),( =x  can be associated with a fuzzy set iC defined in the parameter space and 

having a membership function [ ]1,0)( ∈x
iCµ . The fuzzy set C

i
 is then called a fuzzy goal. 

Each constraint mjg j ,...,1,0)( =≤x  can also be associated with a fuzzy set jB  if the 
degree of satisfaction of the jth constraint at every point in the parameter space Rn can be 
estimated by a number [ ]1,0)( ∈x

jBµ . The fuzzy set jB  is called a fuzzy constraint.  
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The solution x* that satisfies all the goals and constraints then belongs to the fuzzy set 
that is an intersection of all the fuzzy goals and constraints, with the membership function 
defined in accordance with Definition A2.9:  
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               (1.33) 

The solution to the multiobjective problem is then a vector x
* that maximises the 

membership function of the intersection of the fuzzy goals and constraints defined by 
(1.33). This solution is called a fuzzy decision in multiobjective optimisation theory.  

A number of other ways of defining a fuzzy decision also exist. Bellman and Zadeh 
(1970) defined a convex fuzzy decision as a solution to the optimisation problem 
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The other type of fuzzy decision proposed by Zimmermann (1978) is the product fuzzy 
decision: 

. subject to

)),(( maximize
1
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i
ii
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x

xµ
                                             (1.35) 

The conditions of Pareto optimality for fuzzy decisions applying to a convex MONLP are 
defined by the following theorems (Sakawa, 1993): 

Theorem 1.8. If X∈*x is a unique optimal solution to problem (1.33), then x* is a Pareto 
optimal solution to the MONLP. 

Theorem 1.9. If X∈*x is an optimal solution to problem (1.34) with 1))((0 << xii fµ  for 
all ki ,...,1= , then x* is a Pareto optimal solution to the MONLP. 

Theorem 1.10. If X∈*x is an optimal solution to problem (1.35) with 1))((0 << xii fµ  
for all ki ,...,1= , then x* is a Pareto optimal solution to the MONLP. 

It should be stressed that the construction of membership functions for fuzzy goals and 
constraints requires subjective estimation of the degree of satisfaction of each goal and 
constraint prior to solution of the MOP. As demonstrated in Paper I, a-priori information 
in geophysical inverse problems can easily be presented as a system of fuzzy constraints 
due to its non-probabilistic nature. On the other hand, the objective functions of the 
geophysical inverse problem cannot be easily presented via fuzzy sets because of the 
probabilistic nature of the errors in the experimental data. Two types of uncertainty in 
geophysical inverse problems are discussed in Section 1.4. 
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Investigation of the behaviour of the objective function in a geophysical inverse 
problem usually requires a large number of forward problem calculations, which makes it 
difficult to formulate the problem of joint inversion of multimethod geophysical data 
purely as a fuzzy decision making problem. It is demonstrated in Paper I how it is 
possible to combine fuzzy and probabilistic approaches in one inversion scheme using the 
definition of Pareto optimality.  

1.4  Adequate presentation of a-priori information in geophysical 

inverse problems 

As already mentioned in Section 1.2, geophysical inverse problems have to deal with 
uncertain information that is present both in the observed data and a-priori knowledge 
about model parameters. It is for this reason that they are traditionally formulated using 
the mathematical apparatus of probability theory. This approach is discussed in detail in 
the books by Goltsman (1982) and Tarantola  (1987), who proposed that the experimental 
data and model parameters in geophysical inverse problems should be treated as random 
variables specified by probability density functions. In spite of the great popularity of the 
probabilistic approach, it is necessary to remember that two types of uncertainty are 
present in geophysical inverse problems: the uncertainty attached to the observed data, 
which is probabilistic as it results from random observation errors, and the uncertainty 
attached to the a-priori information, which is often of a different nature, i.e. it is 
connected with imperfect knowledge.  

Tarantola (1987) also pointed out two common intuitive interpretations of the axioms 
of probability that correspond to these two types of uncertainty in geophysical inverse 
problems. The first is purely statistical: when a "random" physical process takes place it 
leads to a given outcome, so that if a great number of outcomes are observed, these can 
be described in terms of "probability" and “random variables”. The mathematical theory 
of statistics is the natural tool for analysing the outputs of a random process. The second 
interpretation of probability is in terms of subjective degree of knowledge of the "true" 
value of a given physical parameter. By "subjective" we mean that it represents the 
knowledge of a given individual, obtained using objective methods, but that this 
knowledge may vary from individual to individual because each may possess different 
data sets. This type of uncertainty is present in a-priori information. Tarantola (1987) 
explicitly postulated that both types of uncertainty could be adequately described using 
probability theory. This postulate states as follows. 

Let X be a discrete parameter space with a finite number of parameters. The most 
general way we have for describing any state of information in X is by defining a 
probability (in general, a measure) over X. 

One of the greatest difficulties in the probabilistic formulation of inverse problems is 
the construction of the multidimensional PDF for the model parameters. As a rule, the use 
of a multidimensional PDF is limited to the case of a Gaussian PDF (both the a-priori 
PDF and the a-posteriori PDF in (1.10) are Gaussian and the dependence between the 
parameters is described via a covariance matrix): 
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where m
0 
is the a-priori model, C

M
 and C

D
 are the covariance matrices for the model and 

observed data, respectively, and |C
M
| and |C

D
| are the corresponding determinants. The 

model covariance matrix C
M
 describes the uncertainties in the a-priori knowledge about 

model parameters and the correlation between them, while the data covariance matrix C
D
 

describes uncertainties in the data, both theoretical (modelling) and observational 
(Tarantola 1987). The inverse problem can then be reduced to minimisation of the 
objective function 
 

  [ ] [ ] )()()()()( 0
1T

0obs
1T

obs mmCmmdmCdmm −−+−−= −−
MD ggL .     (1.37) 

The function (1.37) can be minimised effectively in the case in which g(m) is linear and 
the matrices C

M
 and C

D
 are diagonal. This is the main reason why the Gaussian 

formulation of the inverse problem became very popular among geophysicists. In real 
inverse problems the assumption of a Gaussian PDF for both the experimental data and 
the a-priori information is not always valid, however. One example of an inverse problem 
with a non-Gaussian PDF for the experimental data is the problem of magnetotelluric 
impedance tensor inversion considered in Chapter 4.  The difficulties connected with the 
presentation of a-priori information by means of a multidimensional PDF are also 
analysed in Paper I, where it is proposed that possibility distributions described via fuzzy 
sets can be used instead of PDFs.  

This proposal is based on the alternative approach to uncertain information in real 
problems introduced by Lofti A. Zadeh (1965), who formulated a theory in which the 
objects are fuzzy sets, i.e. sets with imprecise boundaries. An element of a fuzzy set can 
be characterised by a degree of membership, which can be not only 1 or 0, but any 
number in [0,1]. Zadeh's paper proposed an alternative approach to probability theory, 
which had for a long time been accepted as the only way to deal with uncertain 
information. He proposed the conception of a fuzzy logic instead of the two-valued 
Aristotelian logic upon which probability theory is based. Fuzzy sets provide a method 
for describing the uncertainty that is usually present in natural languages, for instance.   

After the publication of Zadeh’s paper a number of non-probabilistic theories of 
uncertainty were introduced by various authors in the 1970s. In particular, several 
theories that generalise or complement probability theory were introduced, including a 
probability theory of fuzzy events  (Yager, 1984), a theory of Sugeno measures (Sugeno, 
1977), the Dempster-Shafer theory of evidence (Shafer, 1976) and a possibility theory 
developed on the basis of fuzzy set theory (Zadeh, 1978).  

The fundamental difference between possibility and probability was formulated by 
Zadeh (1978) in terms of the possibility/probability consistency principle, according to 
which an event should first be possible before being probable, i.e. a high degree of 
possibility does not imply a high degree of probability, nor does a low degree of 
probability imply a low degree of possibility. However, if an event is not possible, it is 
also improbable.  An example from the paper by L. Zadeh (1978) will illustrate the 
difference between probability and possibility better than any formal definition. Consider 
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the statement: “Hans eats X eggs for breakfast”, with X taking values in ,...}4,3,1{=U . A 
possibility distribution )(UXπ may be associated with the degree of ease with which 
Hans can eat u eggs, i.e. a possibility that he can eat 1,2,3 or 4 eggs for breakfast can be 
assumed to be 1. But observing Hans over a period of time, 100 days, for example, we 
may find that he usually eats only 1-2 eggs for breakfast. That makes it possible to 
associate the probability distribution )(UPX  with X, which takes the values 

5.0)1( =XP and 5.0)2( =XP . 
All theories of uncertainty are similar to the classical probability theory in the sense 

that they describe a type of uncertainty and use the interval [0,1] for their measures. The 
differences appear mainly in the way in which these measures are formulated. The 
concept of a fuzzy measure introduced by Sugeno (1977) and developed by Wang and 
Klir (1992) and Klir and Yuan (1995) provides a universal framework within which 
various special classes of measures can be formulated, including the classical probability 
measures.  The brief description of the main types of fuzzy measures is given in 
Appendix 1. 

The variety of theories of uncertainty follows from the empirical fact that uncertainty 
in real problems can differ in nature. Klir (1990) classified all the uncertainty types into 
two main groups, fuzziness and ambiguity, which can in turn be subdivided into discord 

(or strife) and non-specificity. Fuzziness results from a lack of definite or sharp 
distinctions, i.e. from imprecise boundaries of fuzzy sets. This type is treated in fuzzy set 
theory and is estimated by a measure of fuzziness. Ambiguity is associated with any 
situation in which it remains unclear which of several alternatives should be accepted as 
the genuine one. Discord or strife expresses conflicts among the various sets of 
alternatives and can be measured by classical Shannon entropy in information theory. The 
corresponding uncertainty measure in possibility theory is called possibilistic strife. Non-
specificity (or imprecision) is connected with the sizes (cardinalities) of relevant sets of 
alternatives and is treated in various theories, including classical set theory, fuzzy set 
theory and possibility theory (see Klir and Yuan 1995 for a more detailed description of 
the variety of uncertainty measures addressed in these theories).  

 As follows from their mathematical properties, possibility, necessity, probability and 
other fuzzy measures do not overlap and each is suitable for modelling certain types of 
uncertainty. Probability theory is an ideal tool for formalising uncertainty in situations 
where evidence is based on the outcomes of a sufficiently long series of independent 
random experiments, i.e. it is capable of describe the uncertainty in experimental data. 
Possibility theory is very useful for formalising incomplete information expressed in 
terms of fuzzy propositions, and can be effectively used to present the a-priori 
information involved in geophysical inverse problems. Thus, two types of uncertainty 
described via different fuzzy measures with different mathematical properties are present 
in geophysical inverse problems, so that their unification in one inversion scheme needs 
special consideration.    

The probability-possibility consistency principle formulated by Zadeh (1978) can be 
expressed mathematically as 
 

            )()( APosAPro ≤ ,                                                            (1.38) 
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where Pro(A) and Pos(A) denote the probability and possibility of event A, respectively. 
This consistency condition is called weak (Klir and Yuan, 1995). The strongest 
consistency condition would require that any event with non-zero probability must be 
fully possible, i.e. 
 

1)(0)( =⇒> APosAPro .                                                (1.39) 

Equations (1.38) and (1.39) represent the lower and upper limits for the other probability-
possibility consistency conditions that can be formulated. The probability-possibility 
consistency principle is the main demand for any possibility-probability transformation. 
In agreement with this principle, the possibility and necessity measures are regarded in 
the papers by Klir and Yuan (1995) and Dubois and Pride (1997) as the upper and lower 
bounds of ill-known probabilities.  

One possible method accepted in decision-making theory for combining possibilistic 
and probabilistic information in one decision-making scheme is to formulate the problem 
as a purely probabilistic or possibilistic one using probability-possibility transformation. 
The main requirement for this was formulated by Klir (1990) as a set of three main 
principles for treating uncertainty: the principle of minimum uncertainty, the principle of 
maximum uncertainty and the principle of uncertainty invariance. These principles were 
derived from the fundamental fact that any type of uncertainty is uniquely connected with 
a given type of information deficiency. As Klir (1990) pointed out, uncertainty in any real 
problem is a consequence of information deficiency, which may arise for different 
reasons, i.e. the information may be incomplete, imprecise, contradictory, not fully 
reliable etc.  This in turn results in different types of uncertainty in real problems, which 
can be formally described by different measures of information.  

The principle of minimum uncertainty is used in general for narrowing down solutions 
that involve uncertainty (simplification problems), and states that the amount of 
information that is lost in the simplification process must be minimal. This principle is 
sometimes ignored in geophysical inverse problems, especially in cases where 
regularisation methods involving smoothing of a solution are applied. Another example of 
a situation in which the principle of minimum uncertainty is violated is the case when a 
Gaussian distribution is assumed for experimental data with a clearly non-symmetric 
histogram.  

The principle of maximum uncertainty is important for any problem that involves 
ampliative reasoning, in which the conclusions are not entailed in the given premises 
(Klir and Yuan, 1995). It must be applied to any problem in which a prediction is made 
from a pre-defined model, including geophysical data inversion. The principle can be 
formulated as the following requirement: in any ampliative inference, use all the 
information available but make sure that no additional information is added. The principle 
of maximum uncertainty in classical information theory is expressed as the well-known 
principle of maximum entropy, or more generally, the principle of minimum cross-
entropy. This approach provides the main tool for constructing unknown 
multidimensional PDFs from constraints on model parameters. The disadvantage of the 
maximum entropy/minimum cross-entropy approach arises from the fact that the 
Shannon entropy used to estimate uncertainty in information theory is a non-linear 
function. If the number of constraints is large enough, the maximisation of Shannon 
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entropy becomes a complicated non-linear optimisation problem. For this reason the 
maximum entropy approach is seldom used to estimate an unknown PDF in practical 
geophysical investigations. 

When we approximate one model with another formalised in terms of a different 
mathematical theory, this basically means that we want to replace one type of information 
with an equal amount of information of another type: no information should be added or 
eliminated solely by converting from one type to another. This requirement is called the 
uncertainty invariance principle (Klir, 1990). Klir and Yuan (1995) analysed various 
possibility-probability transformations known in the literature from the point of view of 
uncertainty invariance and demonstrated that there exists a class of uncertainty invariant 
transformations that are unique in both directions. Unfortunately, the majority of these 
were developed for problems with a finite and relatively small number of alternative 
solutions and cannot be applied directly to geophysical inverse problems with a 
multidimensional parameter space in which the number of possible solutions is relatively 
large. 

 An alternative approach to combining the two types of uncertainty in one inversion 
scheme that satisfies all three uncertainty transformation principles described above is 
proposed in Paper I. This utilises the definition of Pareto optimality that was considered 
in the previous section. Thus the combining of various types of uncertain information in 
one decision-making scheme can be an additional area of application for multiobjective 
optimisation techniques.   
 



  

2 Joint interpretation of seismic and gravity data using the 

relationship between rock density and seismic velocity 

2.1  The density-velocity relationship as the main condition for joint 

interpretation of seismic and gravity data 

The main condition for the joint interpretation of experimental seismic and gravity data is 
the established dependence between seismic velocity and rock density. This relationship, 
a consequence of elasticity theory, states that the velocity of seismic body wave 
propagation in an elastic medium depends on the elasticity tensor and the material 
density. As the elasticity tensor in its most common form has 81 components, 21 of which 
are independent, direct application of relationships from elasticity theory to the joint 
interpretation of seismic and gravity data is difficult.  

The traditional way of performing joint interpretation of seismic and gravity data is 
based on the well-known correlation between rock density and seismic velocity 
established as a result of numerous laboratory measurements and approximated by a 
linear regression curve on a density-velocity diagram. The correlation between rock 
density and compressional wave velocity was analysed by Birch (1961) under the 
assumption that the latter in an isotropic medium depends primarily on the mean atomic 
mass and material density. In its most common form, the Birch equation connecting 
compressional wave velocity V

p
 with rock density ρ can be written as  

 
ρbaVp += ,                                                              (2.1) 

where a and b are empirical constants. The main conclusion reached by Birch was proved 
theoretically by Anderson (1967). Since then many researchers have investigated the 
density-velocity relationship under laboratory conditions and calculated linear and more 
sophisticated non-linear regressions for it. Numerous relationships between density and 
V

p
 have been compiled from measurements made under laboratory conditions and in 

boreholes for various types of rocks from different geological provinces and at different 
pressures and temperatures. Detailed analyses of these results have been provided by 
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Barton (1986), Krasovsky (1981) and Schön (1998), for example. One of the most 
popular correlation curves used in the joint interpretation of seismic and gravity data is 
the Nafe-Drake curve (Ludvig et al., 1970), while more recently, Christensen and 
Mooney (1995) described both linear and non-linear relations linking compressional 
wave velocity and density in crustal and upper mantle rocks. A non-linear relationship 
connecting density with both compressional and shear wave velocities was obtained by 
Khalevin et al. (1986): 
 

)3333.1(0463.0026.00535.0107.066.2 22
spspsp VVVVVV −++−−=ρ .    (2.2)  

This large amount of information on the density-velocity relationship is usually used for 
the joint interpretation of gravity and seismic data in a standard manner. The area under 
study is divided into blocks in which density is assumed to be constant, and the density in 
each block is calculated from the velocity in accordance with an a-priori density-velocity 
relationship. The initial geometry of the blocks is defined from seismic data and then 
more precise values are obtained for the block densities and their boundaries by inverting 
measured gravity data, or more often by trial-and-error fitting of the calculated and 
observed gravity fields. Such an approach requires a detailed knowledge of the structure 
and velocity distributions in the region, which can be provided by seismic wide-angle 
reflection and refraction experiments, for example. This is why joint interpretation of 
gravity and seismic data with block parameterisation and a pre-defined density-velocity 
relationship is fairly popular in deep lithospheric investigations. It is used in the recent 
paper by Nielsen and Jakobsen (2000), for example, who present an algorithm for the 
joint inversion of wide-angle reflection and refraction travel times and gravity data that 
uses the density-velocity relationship of Christensen and Mooney (1995). 

In spite of its popularity, the approach described above entails a number of problems. 
Those connected with the block parameterisation of the density model are analysed in 
Papers II and III. Another important problem is that the empirical density-velocity 
relationships for all types of lithospheric rocks demonstrate significant scattering around 
the mean value, so that the density-velocity relation must be regarded as a statistical 
dependence rather than as a functional relationship. But this statistical nature is very 
difficult to take into consideration in algorithms with a pre-defined density-velocity 
function.  

The problem of adequate presentation of the density-velocity relationship for the 
purpose of joint interpretation of seismic and gravity data was investigated by Krasovsky 
(1981), who demonstrated that the linear density-velocity regression curves compiled for 
different types of rocks from various geological provinces and units could differ from the 
average regression and proposed that appropriate corrections should be introduced into 
the average density-velocity regression prior to interpretation. Christensen and Mooney 
(1995) also pointed out deviations in the density-velocity relationships compiled for 
different geological provinces.   
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2.2  Formulation of the inverse gravity problem using the density-

velocity relationship 

The alternative approach to joint interpretation of seismic and gravity data described in 
Papers II and III is an effort to treat the density-velocity relationship as a case of 
statistical dependence. The idea of the method was proposed in the book by Karatayev 
and Pashkevich (1986) and then developed in the paper by Karatayev and Kozlovskaya 
(1997). The method is based on the concept of a multiresponse geophysical body 
described in Section 1.1, i.e. the whole geological section under study is considered as a 
single multiresponse geophysical body T for which there exists an unknown dependence 
between seismic velocity and density that depends mainly on the PT (pressure and 
temperature) conditions existing within the section, the rock composition and the geology 
of the region concerned.  If only the compressional wave velocity is known, from wide-
angle reflection and refraction experiments, the equation may be 
  

),,(,,,,),,( zyxVzyxbzyxazyx p)(+)(=ρ ,
                  

(x,y,z)⊂ T,             (2.3) 

where ),,(),,,( zyxbzyxa  are unknown non-linear functions depending on pressure and 
temperature, rock composition and tectonic differences within the body T, ),,( zyxVp  is 
compressional wave velocity and ),,( zyxρ  is rock density. In other words, we assume 
that density depends linearly on velocity at each point in the body T, i.e. Birch's linear 
relationship is valid, but the coefficients of this dependence can vary from point to point 
in a manner defined by pressure and temperature, rock composition and tectonic 
differences.  

Suppose that we have additional information about the region that was obtained 
independently by other methods (observed magnetic field, electromagnetic sounding data, 
heat flow data, depth of main reflecting interfaces etc.) and can be formulated as a finite 
set of continuous, bounded functions kizyxX i ,..,1),,,( = .  

As the body T is regarded as a multiresponse one, it can be assumed that information 
about variations in ),,( zyxa  and ),,( zyxb  within it will also be reflected in other 
geophysical and geological data, i.e. that ),,( zyxa  and ),,( zyxb  can be presented as: 
 

∑∑ ==
j

jj
i

ii zyxXdzyxbzyxXczyxa ),,(),,(),,,(),,( ,                  (2.4) 

where  ),,(),,,( zyxXzyxX ji  are continuous, bounded functions calculated from a-
priori information using statistical, spectral or other methods, and c

i
 and d

j
 are unknown 

coefficients. The main requirement for selecting of these functions is that they have to 
differ between the various geological units in the region. The other requirement is that 
they have to contain both long-period and short-period functions to represent density 
variations of different scale in equation (2.3). The set of functions used in Paper II was 
selected on the basis of previous investigations into the relation between potential field 
anomalies and deep lithosphere structures revealed by deep seismic sounding in the 
Ukrainian Shield and in the Belarus - Baltic region (Karatayev and Pashkevich, 1986). 
The functions demonstrated that the regional gravity and magnetic field patterns and the 



 40

depths of the main seismic boundaries that could be recognized in the deep seismic 
sounding data do in fact different between the geological units in the region. These 
boundaries are usually the upper boundary of the crystalline basement, the boundary 
between the upper and lower crust and the Moho boundary, the values of which, together 
with the regional magnetic field and the derivatives of all of these, are used in Paper II to 
construct the long-period and short-period functions ),,(),,,( zyxXzyxX ji in (2.4).  

When both the compressional and shear wave velocities are known from the seismic 
data, the density-velocity relation can be composed based on eq. (2.2), as proposed in 
Paper III, i.e. it can be presented as a linear combination of non-linear functions of both 
V

p
 and V

s
 complemented with other data. 

Substituting (2.4) into (2.3) and performing all the necessary algebraic operations, we 
obtain a basic approximation for the density distribution within the body T: 
  

  }),,({),,( ∑=
k

kk zyxUAzyxρ ,                                       (2.5) 

where U
k
(x,y,z) are continuous, bounded functions, calculated from a-priori information 

represented by functions ),,( zyxX i  and the seismic wave velocity, and A
k
 are unknown 

coefficients. Equation (2.5) can then be substituted into the forward problem operator for 
the gravity field. To calculate the gravity effect caused by the body T in the observation 
area Q=(x

0
,y

0 
,z

0 
), we have: 
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where G is the gravitational constant and dxdydzdT = . 
After substituting (2.5) into (2.6), and after all the necessary simplification and 

numerical integration, we obtain a simple linear expression for the gravity effect V
z
(x,y) 

caused  by the density distribution (2.5) within the body  T: 
    

 Kk(x,y)}W{A(x,y)V k
k

kz ,...,0, =∑= ,                              (2.7) 

where }, z)y,mx,j(i(x,y)U{Ly)(xW k

m

ijm

i j

k ∆∆∆= ∑∑∑  and the coefficients A
k 
are unknown. 

The function (x,y)Lijm  denotes the gravity effect of a rectangular 3-d prism with unit 
density, ρ(x,y,z)=1. The centre of the prism is located at a node on a regularly spaced grid 
defined in the area T to calculate the integral (2.6) numerically. The symbols x∆ , ∆y 
and z∆  denote steps on the grid along the x, y and z-axes, respectively. In this case the 
coordinates of the prism centre are ( zy ,mx,ji ∆∆∆ ) and the sizes of the prism along the x, 
y and z-axes are ∆x, ∆y and ∆z, respectively. The values ∆x, ∆y and ∆z have to be small 
enough to ensure presentation of the velocity distribution in the equation (2.3) with the 
same spatial resolution as was obtained for the seismic data interpretation and the 
necessary accuracy of the gravity effect calculation.  

The functions W
k
(x,y) in (2.7) need to be calculated only once before the inverse 

problem is solved, i.e. the forward gravity problem calculation is performed only once. 
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The edge effects in the calculated theoretical gravity effect are eliminated by continuation 
of the area T to infinity. A positive offset in the calculated gravity effect due to the use of 
absolute values for the density in (2.6) is corrected by adding an unknown constant A

0 
to 

equation (2.7). The corresponding function to be included in equation (2.7) is then 
1),(0 ≡yxW .  This correction results in one additional unknown parameter in the inverse 

problem.  
The parameter vector of the inverse gravity problem m consists of the set of 

coefficients A
k
. This can be obtained by minimising the difference between the gravity 

field ∆g(x,y) observed in the area Q and the calculated model gravity field V
z
(x,y) in the l

2
 

norm, i.e. under the assumption of a Gaussian PDF for the error in the observed data: 
 

                               
kAlz yxVyxg min),(),(

2
→−∆ .                                       (2.8) 

The proposed approach makes it possible to formulate the inverse gravity problem as a 
linear one with a fixed and relatively small number of model parameters: 
 

                     dGm = ,                                                              (2.9) 

where KkAAA k ,...,0),,...,,( 10 ==m , G is the matrix composed of the values of 
functions W

k
(x,y) calculated at the points of observation of the gravity data, and 

),...,,( 21 N
ddd=d is the vector of the observed gravity data. 

An equation approximating the unknown density-velocity relationship is then obtained 
as a solution to the linear least squares problem and used to calculate the unknown 
density distribution (2.5). The model field (2.7) is the effect of the gravity sources for 
which the density-velocity relationship (2.5) is satisfied.  

It should be noted that an approximation of the density models with predefined 
orthogonal functions (Legendre polynomials, trigonometric functions etc.), aiming at 
linearisation of the inverse gravity problem, has also been used by other authors, among 
them Bott (1973) and Zidarov (1990), who have demonstrated that these functions 
correspond to density distributions producing the same gravity effect as the true one but 
are often geologically meaningless. Approximation of the density distribution by 
sinusoidal signals, or other orthogonal functions can be a useful tool for formal analysis 
of the gravity field, but the possibilities for representing real density distributions in this 
way are limited. It is known that any signal, including a seismic boundary, can be 
expanded into a Fourier series, but one needs a large number of terms to represent a 
signal of arbitrary form by trigonometric functions. Thus real geophysical information, 
i.e. velocity distribution, seismic boundaries and additional geophysical fields, are more 
useful for the approximation of density distributions, i.e. they simply contain the 
information in a more compact form. A similar approach is used in factor analysis, for 
example, where the experimental data are expressed via a linear combination of known 
factors that are usually selected from real data sets.  

It can be concluded from the above that the main difference between the proposed 
procedure of graviseismic modelling and the traditional approach with an a-priori defined 
density-velocity relationship is that the density-velocity relationship is used for 
parameterisation of the unknown density model and then obtained as a solution to the 
inverse gravity problem. An important advantage of such parameterisation is that the 
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number of model parameters remains the same for 3-D and 2-D models. The method does 
not require a-priori knowledge of any density-velocity relationship and can be used to 
interpret data from different geological provinces.   

2.3  Treatment of non-uniqueness of the inverse gravity problem 

Although a least square solution to the inverse gravity problem (2.9) always exists and is 
unique for a given set of functions U

k
(x,y,z), the fundamental non-uniqueness of the 

problem (Skeels, 1947) cannot be avoided, and this can result in a geologically 
meaningless solution. The different subsets of functions in (2.8) can correspond to 
entirely different density distributions that produce very similar effects in the observation 
area. Errors in the observed data also contribute to the non-uniqueness of the problem. As 
demonstrated in Chapter 1, the non-uniqueness of the inverse problem can be reduced if 
the set of feasible solutions is constrained by a-priori information. This information is 
introduced into the present algorithm in a manner that can be called "interactive". The 
problem (2.8) is solved with different subsets of functions U

k
(x,y,z) giving different 

equations (2.5) and different density sections. The final solution is selected on the basis of 
a visual analysis of the density section in accordance with several qualitative criteria 
representing a-priori knowledge about the unknown density distribution: 

a) The density section must be meaningful. Examples of meaningless solutions are 
density distributions that look like a chessboard or alternation of vertical lines, or a 
density distribution in which density decreases systematically with depth. 

b) It must not differ very much from the initial velocity distribution, i.e. it must preserve 
the main features revealed by the seismic data modelling. 

c) The density values in the upper part of the section must be in agreement with the a-
priori petrophysical data on the density of the uppermost crystalline basement and 
sedimentary cover. 

d) The density values for the upper mantle below the Moho boundary must be in 
agreement with petrophysical data regarding the density of the upper mantle rocks.    

The a-priori conditions c) and d) can in principle be formulated as constraints on density 
values, but their direct inclusion in the inverse problem (2.8) requires their re-formulation 
with respect to the coefficients A

k
, which is difficult to do. That is the reason why they are 

treated as qualitative in the present algorithm.  It would also be wrong to think that the 
condition c) requires the density section to be completely identical to the velocity section. 
It is known that data from wide-angle reflection and refraction experiments allow 
horizontal and sub-horizontal interfaces to be revealed but usually contain very little 
information about vertical or sub-vertical structures. Gravity data, on the other hand, are 
sensitive specifically to vertical structures, i.e. the calculated density section can contain 
information that is not present in the initial velocity section. Thus only qualitative 
analysis of the difference between the initial velocity section and the resulting density 
section is used in the present algorithm. In spite of some additional calculations that are 
necessary for proper qualitative analysis of possible solutions to problem (2.8), the 
approach allows a solution to be obtained that agrees not only with the seismic data but 
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also with the a-priori petrophysical information and our common understanding of the 
density distribution in the lithosphere.  

2.4  Application of the technique to the joint interpretation of gravity 

and wide-angle reflection and refraction data 

The approach and its application to joint interpretation of the seismic and gravity data 
obtained for the EUROBRIDGE'95 profile in Lithuania and the SVEKA profile in 
Finland are described in Papers II and III. The method has also been used to interpret the 
LT-7 and TTZ profiles in Poland (Kozlovskaya and Yliniemi, 1999) and 
EUROBRIDGE'96 in Belarus (Kozlovskaya et al., 1999). The seismic models developed 
by J. Yliniemi were used in the procedure of joint interpretation. The results of testing the 
algorithm with real data allow us to conclude that joint interpretation of seismic and 
gravity data by means of the above technique makes it possible to compile the density 
section with the same spatial resolution as can be achieved in velocity models obtained 
from wide-angle reflection and refraction data. The final density model selected from the 
set of possible solutions inherits the main features of the initial one. The joint 
interpretation of seismic model and gravity data also makes it possible to distinguish 
vertical and sub-vertical structures and discontinuities that cannot be recognised in 
seismic data alone.  

The density-velocity diagrams for the crust and upper mantle that were obtained from 
the density-velocity model of the EUROBRIDGE'95 and SVEKA profiles described in 
Papers II and III are presented in Fig. 2.1(a-f). It is seen that the calculated density values 
are scattered over the corresponding velocity values, i.e. the algorithm allows a non-
unique density-velocity relation to be modelled. The density-velocity diagrams obtained 
from the joint interpretation of seismic and gravity data are similar to those compiled 
from the laboratory measurements. The breaks in the density-velocity diagrams in Fig 2.1 
are due to velocity jumps at seismic boundaries in the initial seismic models. Comparison 
of diagrams for the EUROBRIDGE'95 and SVEKA profiles demonstrates that scattering 
of the density-velocity curve is much greater when both Vp and Vs are used to model 
density.  

A resolution analysis can be performed on the minimum least square problem (2.9) in 
the standard way (Menke, 1989), i.e. a covariance matrix can be calculated for the 
parameter vector estimates directly from the matrix G and the variance of the observed 
data vector: 

[ ] [ ] 12cov
−

= GGm T
dσ ,                                                  (2.10) 

where  [ ]mcov  is the covariance matrix for the vector m and 2
dσ  is the variance of the 

observed data under the assumptions that the components of the data vector are 
uncorrelated and all of equal variance and that the matrix G contains no error. The 
covariance matrices of the parameter estimates for the EUROBRIDGE'95 profile and the 
SVEKA profile are given in Tables 1 and 2, respectively. 
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Table 1. Covariance matrix of parameter estimates for the EUROBRIDGE'95 profile 

  
A0 

 
A1 

 
A2 

 
A7 

 
A12 

 
A17 

Parameter 
estimates 

A0 0.002013 9.28E-05 -0.0003 -1.25E-05 6.76E-07 -1.3825 -0.679 

A1 9.28E-05 4.84E-05 -5.99E-05 1.98E-07 4.83E-07 -0.0170 0.239 

A2 -0.0003 -5.99E-05 9.37E-05 9.84E-07 -1.01E-06 0.13556 -0.164 

A7 -1.25E-05 1.98E-07 9.84E-07 1.13E-07 9.23E-09 0.0107 0.002 

A12 6.76E-07 4.83E-07 -1.01E-06 9.23E-09 2.87E-07 0.0086 0.007 

A17 -1.3825 -0.0170 0.1355 0.01076 0.0086 1416.8 779.37 

   

Table 2. Covariance matrix of parameter estimates for the SVEKA profile  

  
A0 

 

 
A1 

 
A11 

 
A12 

 
A13 

 
A14 

 
A16 

 
A17 

Parameter 
estimates 

A0 5.0401 0.3384 0.0789 1.1325 -0.2813 -1.2083 -3.7284 -20.168 -1.087 

A1 0.3384 0.0466 0.0059 0.1789 -0.0497 -0.1716 -0.3039 -0.4927 0.127 

A11 0.0789 0.0059 0.0016 0.0200 -0.0051 -0.0210 -0.0603 -0.8490 0.134 

A12 1.1325 0.1789 0.0200 0.7603 -0.2141 -0.7156 -1.0658 0.6284 -0.011 

A13 -0.2813 -0.0497 -0.0051 -0.2141 0.0607 0.1999 0.2764 -0.3964 0.0034 

A14 -1.2083 -0.1716 -0.0210 -0.7156 0.1999 0.6797 1.0946 0.4217 0.012 

A16 -3.7284 -0.3039 -0.0603 -1.0658 0.2764 1.0946 2.8786 13.739 -0.039 

A17 -20.168 -0.4927 -0.8490 0.6284 -0.3964 0.4217 13.739 1307.7 966.73 

As matrix G in problem (2.9) is calculated from the a-priori data on the velocity 
distribution and seismic boundaries, a high quality initial velocity model is a necessary 
condition for successful gravity data interpretation. The full waveform inversion of wide-
angle reflection and refraction data that is capable of providing high velocity resolution is 
still not used very widely, as it results in a very large-scale problem, and for this reason 
the seismic models for the profiles considered here were obtained by the trial-and-error 
fitting of observed and calculated travel times complemented with comparisons of the 
amplitudes of synthetic and experimental seismograms. This additional seismogram 
analysis increases the velocity resolution of models compiled from wide-angle reflection 
and refraction data, and as a rule gives better results than inversion of travel times only 
(Morozova and Pavlenkova, 1995). The velocity uncertainty in parts of profiles with good 
ray coverage is estimated to be 0.1 km/s. The spatial vertical resolution of the velocity 
model and the resulting density model in this case is estimated to be 1 km for the 
uppermost crust and 2 km for the lower crust and upper mantle (EUROBRIDGE Seismic 
Working Group, 1999). The size of the lateral inhomogeneities that can be resolved by 
such an interpretation depends on the geometry of the experiment and is approximately 
10-30 km in the parts of the model with good ray coverage. As the velocity in the upper 
mantle and at the ends of the profiles is usually poorly recovered by wide-angle reflection 
and refraction data, the corresponding density values are less reliable than in the central 
part.   
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One important property of the proposed technique is that it allows bodies to be 
detected within the section under study for which the common density-velocity 
relationship is violated. The detection of such zones is based on analysis of the residual 
gravity field )()()( xVxgx z−∆=∆γ  in the manner described in Section 1.1.  

The integrated density-velocity model along the EUROBRIDGE'95 profile presented 
in Paper II is an example of a multiresponse body, because good fitting of the observed 
and model gravity field was achieved over the whole observation area, while the velocity-
density model along the SVEKA profile described in Paper III is an example of the 
combination of a multiresponse body for which the common relationship between 
density, Vp and Vs holds with two bodies for which this relationship is violated.  The 
latter correspond to two positive anomalies in the residual field that coincide spatially 
with the Kuhmo Greenstone belt and Svecofennian schists in the vicinity of the Lake 
Ladoga-Bothnian Bay Zone. In spite of the fact that petrophysical examinations of rocks 
from these areas demonstrate that the density at the surface is rather high (Elo et al., 
1978), the velocity sections along the SVEKA profile do not indicate high velocity 
corresponding to these geological structures. It can be concluded that these are the places 
where the common density-velocity relationship is violated, i.e. they can be regarded as 
single-response geophysical bodies. It is shown in Paper III how the residual )(xγ∆  can 
be interpreted separately, aiming at finding parameters for single-response bodies. 

Another example of violation of the density-velocity relationship was revealed in the 
EUROBRIDGE'96 profile, extending across one of the most important lithospheric 
discontinuities in the East European Craton, the Fennoscandia-Sarmatia junction zone. 
Interpretation of the EUROBRIDGE'96 seismic refraction and wide-angle reflection 
profile revealed a high P-wave velocity zone at a shallow depth beneath the southeastern 
part of the Central Belarus belt (SECB) which was explained by presence of mafic rocks 
(EUROBRIDGE Seismic Working Group, 1999).  This explanation apparently 
contradicts the gravity data observations, which do not indicate any pronounced positive 
Bouguer anomaly in this place. One possible explanation of this disagreement can be that 
the high velocity beneath the SECB is caused by seismic anisotropy. This hypothesis 
explains not only the high velocity, but also the absence of a positive gravity anomaly 
(Kozlovskaya et al., 1999). 
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Fig. 1. Density-velocity diagrams: a) Density-Vp diagram for the crust obtained for the 
EUROBRIDGE'95 profile; b) Density-Vp diagram for the upper mantle obtained for the 
EUROBRIDGE'95 profile; c) Density-Vp diagram for the crust obtained for the SVEKA 
profile;  d) Density-Vs diagram for the crust obtained for the SVEKA profile; e) Density-Vp 
diagram for the mantle obtained for the SVEKA profile; e) Density-Vs diagram for the 
mantle obtained for the SVEKA profile.   
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2.5  Seismic anisotropy as the reason for violation of the density-

velocity relationship 

The proposed explanation for the violation of the common density-velocity relationship 
agrees with the results of recent investigations into the physical properties of crustal and 
uppermost mantle rocks, which have demonstrated that all of these are more or less 
seismically anisotropic (Babushka and Cara, 1991). For highly anisotropic rocks, the 
density-velocity relationship is violated due to the dependence of seismic velocity on the 
direction of propagation.  

In their recent investigation, Meissner and Rabbel (1999) pointed out that any 
geological ordering processes resulting in structural ordering of rocks and layering, such 
as sedimentation or ductile flow, should also cause seismic anisotropy. This conclusion is 
supported by the results of recent seismic and petrophysical investigations aimed at 
studying the continental lower crust. Regional-scale sub-horizontal layering accompanied 
by seismic anisotropy in the lower continental crust has been revealed by seismic surveys 
in many places (Rabbel and Mooney, 1996, Rabbel et al., 1998). Investigations into the 
exposed laminated lower crust in the Ivrea zone (Burke and Fountain, 1990) and beneath 
Urach  (Rabbel et al., 1998), supported by local xenolith studies, also demonstrated that 
the laminated reflecting pattern in the lower crust can be accompanied by seismic 
anisotropy caused mainly by the preferred orientation of anisotropic minerals. Thus, 
information on seismic anisotropy can be used as an additional constraint in the 
geological interpretation of geophysical models. 

The existence of similar regional-scale reflecting and anisotropic structures in the 
brittle middle and upper crusts of old, cold regions is not so obvious. Meissner and 
Rabbel (1999) pointed out that any previous lower crustal lamellae transferred into the 
brittle regime might have been destroyed and deformed by tectonic stresses. This 
conclusion is partly supported by experimental results from the German Continental 
Deep Drilling programme (KTB), and seismic surveys in the same area have 
demonstrated numerous local variations in seismic anisotropy caused by preferred 
mineral orientation (Rabbel, 1994), but have not revealed any uniform regional pattern of 
anisotropy.  

One known example of regional-scale anisotropic structures in the brittle upper crust 
concerns the mylonitic shear zones that are often associated with high reflectivity (Jones 
and Nur, 1984, Kern and Wenk, 1990). Mylonitic zones are often several kilometres thick 
in surface exposures and consist of multiple undulating bands of variable fabric, 
composition and intensity of deformation. Jones and Nur (1984), investigating the 
mylonitic rocks of the Wind River thrust in Wyoming, found that the rock fabrics are 
mainly parallel or near parallel to the regional trend of the fault zone.  This example 
demonstrates that seismic anisotropy on a rather large scale can also exist in the brittle 
crust, but it is not formed everywhere and it is associated with zones of tectonic contacts 
where structural ordering of rocks takes place. Meissner and Rabbel (1999) pointed out 
that the main condition for the long-term survival of such structures is that no new 
thermal event should have taken place since their formation.  

The results of seismic refraction and wide-angle reflection experiments are usually 
interpreted in terms of isotropic velocity models in which velocity variations are 
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explained only by differences in rock composition. The possible influence of seismic 
anisotropy on seismic velocity is usually ignored. As a result, a number of the seismic 
models interpreted contain details that are in contradiction with the gravity data. Such 
unexplained details are very often located in the zones of important tectonic boundaries, 
i.e. in places, which are targets of seismic experiments. One such unexplained 
phenomenon is the famous “Erbendorf body” in the vicinity of the KTB drilling site. This 
is a zone of high reflectivity accompanied by a thin layer of high velocity in the middle 
crust detected in the central part of the DEKORP 4 profile (Gebrande et al., 1989). The 
authors pointed out that such high velocity in the middle crust could have a density 
contrast of about 0.3 g/cm3 with the surrounding crust, which could result in an additional 
gravity anomaly of 14 mgal. It was proposed that the laminar structure with its smaller 
average density contrast may explain both the high velocity and the reflectivity of the 
“Erbendorf body”.  Such a laminated structure can also result in weak transverse 
anisotropy.  

A second similar example was revealed by geophysical investigations within the Saxo-
Thuringian belt and is connected with the unexplained origin of the Saxonian high-
pressure granulites (DEKORP and Orogenic Processes Working Groups, 1999). Seismic 
reflection and refraction profiling revealed a broad, dome-like reflective zone in the 
middle crust that simultaneously had very high P-wave velocities (up to 7.0 km/s). The 
zone can be seen in several near-parallel seismic profiles, i.e. it is laterally persistent over 
a broad area. Although high P-wave velocities were detected, no corresponding gravity 
maximum was observed. As in the previous example, the origin of this phenomenon 
cannot be explained in terms of isotropic velocity. 

The above examples demonstrate that zones with exposed disagreement between 
velocity and density in the lithosphere, where the common density-velocity relationship is 
violated, can provide important information for the correct geological interpretation of 
seismic models. The ability to reveal these zones can be considered an important 
advantage of the proposed technique for joint interpretation of seismic and gravity data. 
 



  

3 Relationship between elastic and electrical properties of 

rocks as a base of joint interpretation of seismic and EM 

data 

3.1  Problem formulation 

Joint quantitative interpretation of electromagnetic and seismic experimental data sets can 
be performed only if we can suppose that they contain information about geological 
objects for which the dependence between electrical and elastic properties exists. That is 
why the first step to joint inversion of seismic and EM data must be establishing the 
common factors that affect both elastic and electrical rock properties and determination 
of the situations in which joint quantitative interpretation of seismic and electromagnetic 
data can be useful. 

The connection between elastic and electrical rock properties is not so obvious, as in 
the case of density-velocity relationship, although the results of some geophysical 
experiments demonstrate that there exists a correlation between high conductivity and 
low velocity zones in the porous rocks saturated with water and in the partially molten 
rocks in the mantle. Thus, the solid-liquid rock systems can be a class of objects for 
which the quantitative relationship between electrical and elastic properties can be 
established and joint inversion of seismic and EM data can give better results than their 
separate inversion. In the present work the problem of relationship between elastic and 
electrical rock properties was considered from two different points of view:  

a) Using theoretical modelling of elastic and electrical properties of solid-liquid rock 
systems. 

b) Using analysis of petrophysical data of the German Continental Deep Drilling 
Program (KTB). 
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3.2  Factors influencing both elastic and electrical properties of 

lithospheric rocks revealed by previous theoretical modelling  

3.2.1  Theoretical modelling of elastic properties of solid-liquid rock 

mixtures 

 It is known that fractures, cracks and other defects of the rock composing minerals 
change the elastic properties of rocks, i.e. the elastic wave velocity decreases due to 
defects. The other effect is dependence of elastic properties on pressure: seismic velocity 
increases with depth in the uppermost crust as cracks and fractures are closed due to 
lithostatic pressure. There exist a great amount of theoretical rock models describing the 
elastic properties of saturated porous rocks via their dependence on porosity that were 
developed mainly for sedimentary rocks.    

The simplest velocity-porosity relationship can be obtained from the fact that velocity 
is related to density. The former, in turn, is linearly related to porosity by the simple 
relationship: 221 φρφρρ +=  where the subscripts 1 and 2 refer to fluid and rock 
matrix, respectively, ρ is the wet bulk density, φ  is porosity and φφ −=12 . 

One of the simplest theoretical-empirical velocity-porosity relationships of such a kind 
was obtained by Nafe and Drake (1963) for marine sediments: 
 

[ ] ( ) 2
222221

2

1 /)/1( VVV
N

bb ϕρρφρρφ ++=                                    (3.1) 

where subscripts 1,2 and b represent property of pore fluid, dry solid material and bulk 
(combined) material, respectively. Setting N equal to 4 and 6 generates two functions that 
act as upper and lower bounds for most of the observed cases.  

The velocity-porosity dependence for magmatic and metamorphic rocks is more 
complicated and cannot be described by eq. (3.1) because many of the parameters in rock 
physics models are strongly dependent on the details of rock microstructure. 

A more precise relationship describing the influence of pore fluid on elastic properties 
can be found in the classical theory by Gassmann (1951) that describes elastic wave 
propagation in saturated porous rocks under the assumption that any relative motion 
between the solid rock matrix and the fluid in pores is negligible. Gassmann assumed that 
the pore fluid does not change the properties of the solid skeleton, i.e. shear modulus of 
saturated rock is equal to shear modulus of dry rock and the rock skeleton bulk modulus 
is the same for the dry and saturated case. The theory provides a simple expression 
relating the saturated rock elastic moduli to the dry rock elastic moduli: 
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drysat µµ =  

where Mdry KK , and pK  are the bulk moduli of dry rock, the mineral grains, and the 
pore fluid, respectively, and ϕ is the porosity. satK  is the predicted bulk modulus of the 
saturated rock.  

Then the correspondent relationship for the plane wave modulus defined by White 
(1983) as µ3/4+= KM  is: 
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P- and S-wave velocities for fluid saturated rock are then: 
 

 
ρ
µ

ρ
== sp V

M
V ,                                                             (3.4) 

Equations (3.2-3.4) demonstrate the non-linear dependence of elastic wave velocity on 
porosity.  

Gassmann's theory of elastic wave propagation in a fluid saturated solid was later 
developed by Biot (1956a,b). He included dynamic effects through connected pores in his 
theory and, additionally, introduced fluid viscosity and hydraulic skeleton permeability 
into his model. The viscous properties of the model result in attenuation and a frequency 
dependence of seismic wave velocities. Biot gave the relationship for a characteristic 
frequency f

c
 that divides the elastic behaviour of rock into two frequency ranges relating 

to the dominating effect of fluid motion: 
 

hydrf

f
c

k
f

ρπ
φη

2
=                                                                (3.5) 

where fη is the viscosity of the pore fluid, ϕ is the porosity, ρ
f
 is the density of the pore 

fluid, and k
hydr

 is the hydraulic permeability. In the “low frequency range” i.e. if f<<f
c
 the 
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motion in the rock-liquid system is controlled by viscous drag against the solid. In the 
“high frequency range”, i.e. f>>f

c
  , the inertia of fluid dominates. 

Due to its relative simplicity the Gassmann-Biot theory and its later developments are 
widely used for theoretical calculation of the dependence between porosity and seismic 
velocities. As Schön (1998) pointed out, the fundamental problem in the Gassmann-Biot 
theory is the unknown value of the skeleton bulk modulus K. Calculation of velocity 
requires determination of the skeleton bulk modulus either experimentally or 
theoretically, that, in turn requires knowledge of rock skeleton microgeometry.  

The other important class of solid-liquid rock models are inclusion models in which a 
homogeneous solid matrix containing isolated pores or cracks is modelled as an elastic 
solid containing inclusions of various shape and content. One important class of such 
models, namely, the model with ellipsoidal inclusions was initially proposed by Eshelby 
(1957) and later developed by Walsh (1965) for “penny shaped” cracks and by Mavko 
and Nur (1978) for non-elliptical cracks. The advantage of these models is that they allow 
to describe the seismic anisotropy in real rocks due to aligned pores and fractures. The 
so-called “self-consistent method” for calculation of elastic properties of a material with 
inclusions was developed by Budyansky and O’Connel (1976). This self-consistent 
method takes into consideration the effects caused by fluid flow mechanisms on the grain 
scale. Toksöz et al. (1976) proposed a method to calculate the average elastic and 
anelastic properties of a model with isolated spherical or spheroidal inclusions by 
studying plane wave scattering by inclusions. 

There exist also a class of theoretical rock models based on packing of spheres that 
suit well to describe properties of unconsolidated rocks. The detailed analysis of sphere 
packing models can be found in Schön (1998). 

The application of inclusion models and packing spheres models was always limited 
by their ability to model the properties of grain-to-grain contact in real rocks that can 
affects significantly the elastic properties. The effect of grain form and morphology of the 
liquid phase on elastic properties is especially strong in partially molten rocks. As Mavko 
(1980) pointed out, the estimate of melt fraction in partially molten rocks depends on the 
model used to approximate the melt geometry.  Schmeling (1985) demonstrated a strong 
influence not only of the melt fraction, but also of the melt geometry and degree of 
interconnection on seismic velocity and pointed out difficulties in the application of the 
ellipsoidal inclusion model to approximation of real melt geometries. He proposed a 
model with inclusions in the form of melt tubes along grain boundaries that can better 
approximate the real melt geometries than models with ellipsoidal inclusions. It is 
necessary to note that the model did not allow to take into consideration seismic 
anisotropy due to preferred orientation of melt inclusions.  

The effect of the model used to approximate the melt geometry on the estimated 
seismic velocity was demonstrated also by Faul et al. (1994) who used experimentally 
determined geometry of melt inclusions to calculate seismic velocities and found out that 
the estimates for penny-shaped melt inclusions and tubulous inclusions are different.  
Recent investigations of microstructure of real partially molten rocks by Mainprice 
(1997) and Lamoureux et al. (1999) demonstrated once again the effect of shape and 
orientation of melt inclusions on seismic anisotropy and one more time pointed out the 
difficulties connected with using traditional theoretical rock models for an approximation 
of real melt geometries.  
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The models with variable internal structure can be considered as possible candidates to 
model the realistic geometries of solid-liquid rock systems. Models of this class were 
developed in the papers by Schön (1983) and Spangenberg (1998). The latter model is 
based on the conception of fractal structure of grain-to-grain contact and can model such 
properties of solid-liquid rock system as non-ideal shape of grains and inclusions and 
elongated grains and pores that can result in the seismic anisotropy. The model was used 
in Paper 4 to calculate elastic properties of weakly porous crystalline rocks and partially 
molten rocks.    

3.2.2  Theoretical modelling of electrical conductivity of solid-liquid rock 

mixtures 

For porous or fractured water-bearing rocks, the electrolytic conductivity of the water 
itself and the interaction between solid and fluid components cause increment of 
conductivity. Therefore, conductivity differs for dry and saturated rocks of the same 
mineral composition.  

The electrical conductivity of a water saturated rock is controlled mainly by the 
properties of the water that is an electrolyte. The conductivity of the solid matrix is 
negligible in most cases except in the presence of ores, graphite or clay. The conductivity 
of water that is present in minerals depends on its saturation with salts and varies from 
5×10-6 (pure) to roughly 102  (saturated) S/m. Mixtures of these materials can have a 
range of resistivities from 10-8 to 1017 Ohm m. 

The situation in the partially molten rocks is not so simple because the rock bulk 
conductivity under high pressure and temperature depends also on the conductivity of the 
solid matrix, i.e. olivine conductivity. As it was demonstrated by the measurements of 
electric properties of polycrystalline olivine aggregates under high pressure and 
temperature (Roberts and Tyburczy, 1991), the geometry of grain-to grain contact also 
affects the bulk electrical conductivity in such aggregates. 

The simplest way to describe conductivity of solid-liquid rock system was proposed 
by G.E. Archie (Archie, 1942).  He suggested that the conductivity of brine saturated 
rocks is proportional to brine conductivity and, also, the specific resistivity of the water 
saturated rock ρ

0
 is proportional to the specific resistivity of the brine ρ

w
, i.e. that the 

brine conduction is only one conductive mechanism: 
 

ρ
0
=F ρ

w                                                           (3.6) 

where F is formation resistivity factor. It expresses the resistivity magnification related to 
the brine as a result of the presence of a non-conductive matrix (formation). In other 
words, it shows the correlation with connected porosity. The dependence between 
resistivity and porosity Φ then is expressed by the first Archie’s equation: 
 

ρ
0
 /ρ

w
=F=1/Φm

                                                    (3.7) 
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where m is an empirical quantity that can be different for various rocks. Archie noted that 
m has a value about 1.3 for unconsolidated sands and a range between 1.8 and 2.0 for 
many consolidated sandstones and called it “cementation exponent”. Archie’s equation 
gave the first practical relationship between a measurable property (resistivity) and an 
important reservoir property (porosity). Further studies showed that a better fit with 
experimental data has an expression in which  
 

ρ
0
 /ρ

w
=F=a/Φm                                                   (3.8) 

where a is a second empirical parameter depending on rock type. It is important to note 
that both empirical parameters a and m are controlled by the pore channel 
microgeometry. If the conducting pore channels are deformed by pressure, the rock 
conductivity decreases (resistivity increases), and the formation factor increases. The 
non-linear increase of F with increasing pressure results from the non-linear stress-strain 
behaviour of the rocks related to the reduction of the pore sizes. To a first approximation 
F ~ p

g where g is called a pressure exponent. For some types of sedimentary rocks the 
following equation was found empirically (Schön, 1998): 

 

F
p 
/ F

400
 =a +b log p                                                (3.9) 

where  p is the actual pressure, F
p  is actual formation factor at a pressure p, F

400
 is 

formation factor at a pressure 400 MPa, a and b are empirical constants. 
 Archie’s law was primarily obtained for reservoir rocks, but it has been also applied 

with success to fractured igneous rocks with very low porosity and to highly porous 
unconsolidated rocks. The modified Archie’s law was used by Hermance (1979) and 
Watanabe and Kurita (1993) to estimate the effective electrical conductivity of partially 
molten rocks. But as a whole, the dependence of electrical resistivity of igneous and 
metamorphic rocks upon porosity and pressure is more complicated. It is important to 
remember that application of Archie's law is limited to the case when rocks can be 
assumed as electrically isotropic and cannot be applied to model rocks with structural 
electrical anisotropy.  

Hashin and Shtrikman (1963) proposed another approach to estimate effective 
conductivity of a solid-liquid rock system in which the liquid phase is assumed to be 
present in idealized geometries. Each of the two phases is assumed to be homogeneous 
and isotropic and possible conduction effects along grain surfaces are not taken into 
consideration. The corresponding relationships give upper and lower boundaries of the 
effective conductivity of a two-phase system and are called Hashin-Shtrikman-bounds 
(H-S bounds): 
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where β is volumetric fraction of fluid and σ
0
, σ

f
 are the specific conductivities of the 

solid and the fluid, respectively. 
There exists also a number of theoretical conductivity models developed namely for 

the case of partially molten rocks in which the geometry of melt films is taken into 
consideration (Grant and West, 1965, Waff, 1974). 

A class of statistical models in which the variable degree of interconnection of the 
liquid phase is modelled by a general resistor network was proposed by Rink and 
Schopper (1968), Madden (1976) and some other authors. The resistor network approach 
was also used by Schmeling (1986) in his fundamental paper concerning calculation of 
electrical properties of partially molten rocks. He combined models with different melt 
geometries with resistor models and obtained correspondent dependencies of bulk 
resistivity on melt fraction for different pore geometries. The advantage of the model 
proposed by Schmeling is that both elastic and electrical properties were calculated for 
the same pore geometry (Schmeling, 1985,1986). The case of anisotropic rock structures 
was not investigated, i.e. the calculations were limited only to the case of isotropic melt 
geometries.   

The fractal random resistor networks were used in the paper by Bahr (1992,1997) to 
model electrical anisotropy in real rocks. Bahr introduced the statistical dimensionless 
parameter “connectivity” to describe the influence of grain and liquid phase geometry on 
bulk conductivity of solid-liquid rock mixtures that can depend on the direction of EM 
wave propagation.  

An analysis of the main results of the previous theoretical investigations of electrical 
and elastic properties of solid-liquid rock mixtures demonstrated that theoretical 
modelling of rock physical properties is a powerful tool to achieve a fundamental 
understanding of the main factors that affect both elastic and electrical parameters of 
rocks in the lithosphere. These main factors are the amount of liquid phase, rock 
microgeometry, pressure and temperature. They affect elastic and electrical properties in 
different manner, consequently, only simultaneous modelling of both elastic and electrical 
properties can give the answer to the question how they are connected.   

It was not so easy, indeed, to find a universal model capable to describe both elastic 
and electrical properties of solid-liquid rock mixtures for the purpose of the present 
investigation, as theoretical rock models have been developed separately for elastic and 
electrical properties for a long time. The fractal rock model proposed in the Paper 4 is a 
combination of two theoretical rock models developed separately by Spangenberg (1998) 
for calculation of elastic properties of porous rocks and by Bahr (1997) for calculation of 
electrical conductivity of solid-liquid rock mixtures.  The advantage of the fractal rock 
model is that it allows to model both isotropic and anisotropic elastic and electrical 
properties for rocks with different geometry of grain and liquid phase and gives estimates 
that agree well with those obtained by previously developed theoretical models.  

3.3  Fractal model of solid-liquid rock system 

The fractal model of porous rock was originally developed by Spangenberg (1998) for 
sedimentary rocks. The model belongs to a class of rock models with various 
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microstructure and allows to investigate the influence of rock microstructure on elastic 
properties. The main difference of the model from the other structural rock models is the 
use of a fractal approach to model the grain-to-grain contacts. The real rock is described 
by three main elements, i.e. matrix material, pore canals and contact region (Fig. 1 in 
Paper 4). The grain and pore size (l

i
 and a

i
, respectively, i=1,2,3) can differ in x

1
, x

2
 and x

3
 

directions. The grain-to-grain contact region can be filled by N generations of self-similar 
substructures. The basic model is then subdivided into rectangular components of matrix 
material, contact region and pore fill combined either on serial or parallel connections. 
Then the Voight-Reuss bounds of elastic moduli of the basic model can be calculated for 
the resulting equivalent network under the assumption of homogeneous stress (Reuss, 
1929) or of homogeneous strain (Voight, 1910).  If the contact region of the model is 
filled with self-similar structures, then the calculation of elastic moduli is an iterative 
process starting with the calculation of the moduli for the smallest substructure model. 
The moduli of the smallest substructure then give the moduli for the contact region of the 
models of the following substructure etc. A similar iterative procedure can be used to 
estimate porosity, density, internal surface and surface of grain-to-grain contact. 

Spangenberg (1998) pointed out two possible ways to subdivide the basic model into 
rectangular components that result in two different sets of equations for the calculation of 
elastic moduli. They are referred to as "horizontal subdivision" and "vertical subdivision", 
respectively. He also demonstrated that the main dependencies of elastic moduli on 
geometry, porosity, contact properties and rock composition are the same for both kinds 
of subdivision. That is why in the present work as well as in Paper 4 only relationships 
for the vertical subdivision of the basic model were used.   

The plane wave modulus M and shear modulus µ of the smallest substructure of the 
model with vertical subdivision are:  
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where M
p 
, M

M 
, µ

p
 ,µ

M
  are plane wave and shear moduli of pore and matrix materials, 

respectively, Mc and µc are the moduli of the contact area, respectively. P- and S-wave 
velocity are then calculated from eq. (3.4). 

As Spangenberg (1998) pointed out, the model provides a high frequency velocity if 
the modulus of the pore fluid is substituted directly into the equations. The combination 
of the fractal rock model with Gassmann's (1951) theory makes it possible to estimate the 
low frequency velocity of fluid saturated rocks with different pore geometry. The elastic 
moduli of dry skeleton and porosity can be calculated for the basic model with fractal 
microstructure and then substituted into equations (3.2-3.4).  
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The contact conditions of the model are characterized by a contact parameter χ 
defined as a ratio of the solid contact faces and the surface of the base model. 
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A similar fractal rock model was used by Bahr (1997) to investigate the effect of 
interconnected pores on electrical conductivity by Monte-Carlo simulation using the 
resistor random network approach and percolation theory. The bulk electrical 
conductivity σ

eff
 of a mixture of high conductivity material with conductivity σ

m
 and low 

conductivity material with conductivity σ
s
 can be presented as 

 

( ) ( ),3/2 pCmseff βσσσ +=                                           (3.13) 

where C(p) is the connectivity that depends on the probability density p of certain pore 
geometry realisation, C=1 corresponds to a perfectly interconnected high conducting 
phase. 

Effective conductivity in the case when σ
m
 >>σ

s
 , i.e. for crustal rocks, is 

 

( ) ( ),3/2 pCmeff βσσ =                                               (3.14) 

It can be postulated that C(p) decreases with increasing contact region, i.e. the contact 
parameter in (3.12) defines the connectivity of the model: the larger it is, the smaller is 
the connectivity in (3.13-3.14). As the fractal contact parameter of the base model can 
vary in all three directions, the connectivity also can vary in all three directions, i.e. 

 

ii pC χ−=1)(                                                            (3.15) 

Equations (3.11-3.15) can be used to calculate elastic constants and conductivity of rocks 
with fractal pore structure and describe rocks with isotropy as well as with transverse or 
orthorhombic anisotropy of physical properties. The results of Monte-Carlo simulations 
of elastic and electric properties of weakly porous crustal rocks and of partially molten 
rocks with the use of this model are presented in Paper 4.  

The fractal rock model can also be used to demonstrate the combined effect of rock 
composition and pore microstructure on Vp, Vs and Vp/Vs ratio in the upper crust. For 
this purpose Monte-Carlo calculations of elastic properties of four selected rock samples 
with different mineral composition have been carried out. The rock samples from the 
KTB drill hole were described by Popp and Kern (1994). The main characteristics of the 
investigated rocks are given in Table 3.1. The elastic constants and intrinsic seismic 
velocity or rock matrix were calculated from modal mineralogy. No preferred mineral 
orientation was assumed. The modelling was performed for water saturated solid rock at 
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T=200C and P=600MPa. The elastic constants of pore content (saline water) were 
assumed to be M=2.3 GPa and µ=0. The grain and pore sizes were varied in all three 
directions, but they were restricted to ensure porosity less than 3%. Calculations were 
performed for 10000 different random pore configurations with different numbers of self-
similar substructures in the contact area N. The simulation results are shown in Fig.3.1, 
Fig 3.2, Fig. 3.3 and Fig. 3.4. The apparent lines in the region of high contact parameter 
correspond to different number of sub-structures in the contact region N that is discrete. 
The case N=1 corresponds to fully isolated pores. 

Table 3. Description of investigated rock samples (after Popp and Kern, 1994) 

 

Sample 

 

Rock description 

 

Density 

(g/cm3) 

 

Modal analysis (Vol %) 

Intrinsic 

Vp 

(km/s) 

Intrinsic 

Vs 

(km/s) 

 

M 

(GPa) 

 

m(GPa) 

KTB 61C9b Garnet 

Amphibolite 

3.09 55%am, 17% plg., 10% 

gt., 18% acc. 

6.52 3.83 131.36 45.33 

KTB 99D5r Biotite-Gneiss 2.75 42%qz, 27% plg, 

24%bt, 4% ky, 3% gt 

6.26 3.72 107.68 38.13 

KTB 

H003B6a 

Amphibolite/gneiss 2.84 45% fsp, 28% am, 15% 

qz, 12% acc. 

6.42 3.81 117.05 41.23 

KTB H014 

G38a 

Metagabbro 2.95 52%fsp, 36% am, 12% 

acc. 

7.01 3.96 144.96 46.26 

Abbreviations: fsp-feldspar, am-amphibole, gt-garnet, plg-plagioclase, qz-quartz, bt-
biotite, ky-kyanite, acc-accessory minerals 

The results demonstrate that the effect of microcracks on seismic macroproperties can 
be significant even in the case of low porosity. The ranges of possible values of seismic 
parameters of the samples KTB61C9b, KTBH003B6a and KTB99D5r overlap, although 
these rocks can be clearly discriminated by their density and intrinsic seismic velocity.  It 
is interesting to note that microcracks have the strongest effect on Vp/Vs  ratio. 

Figure 2 demonstrates the results of Monte Carlo simulation of Vp for sample 
KTB99D5r in the high and low frequency ranges, i.e. with the use of fractal rock model 
and by combining of the fractal model with Gassmann’s theory. The result demonstrates 
that the difference between the estimates given by the two methods is statistically 
insignificant.  
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a)                                                                          b)  

Fig. 2.  Results of Monte-Carlo simulation of Vp of sample KTB99D5r for low porosity and 
various pore configurations; (a)- calculated from combination of fractal rock model and 
Gassmann’s theory; (b)- calculated from fractal rock model. N denotes the number of 
substrucures in the contact area.  



  

4 Inversion of magnetotelluric impedance tensor data by 

means of multiobjective optimisation 

4.1  Problem formulation 

The problem of magnetotelluric impedance tensor inversion with the aim of obtaining the 
3-D resistivity structure of a region can be regarded as an example of a non-linear 
problem that cannot be effectively solved in the traditional Gaussian formulation. The 
practice of inverting the complex impedance tensor or apparent resistivity in the 
frequency domain instead of the EM fields in the time domain is based on the fact that the 
MT field observed on the surface is the sum of a primary field and a scattered secondary 
field caused by conductivity inhomogeneities. Using impedance instead of the spectra of 
the electric and magnetic components solves the problem of unknown amplitude of the 
primary field. 

When the current encounters a region of discrete or permanent resistivity change, it 
sets up and maintains a charge distribution in the inhomogeneity region. These charges in 
turn produce their own electric fields, which must satisfy the boundary conditions (the 
current density normal to a boundary must be continuous across it). The electric field of 
the resulting charge distribution adds vectorially to the fields induced by the incident 
field. Thus the induced charges are responsible for the secondary EM fields of 2-D and 3-
D structures.  

When the incidence field is a plane wave, then the horizontal components of the EM 
field on the surfaces of non-homogeneous media are related by linear relationships: 
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where 
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Z is the complex impedance tensor. In a uniform or horizontally 

layered Earth, xyyxyyxx ZZZZ −=== ,0 . In the case of a 2-D structure, if the x or y 
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axis is along the strike, then yxxyyyxx ZZZZ ≠== but  ,0 . If neither axis is along strike, 

then 0≠−= yyxx ZZ .  

The case of 3-D structures is more complicated because of the wide range of possible 
3-D objects, which can vary from small isolated conductivity anomalies to a regional 
anomalous distribution of conductivity. The effect of 3-D bodies on MT data has been 
studied by many authors, among others Wannamaker et al. (1984), who showed the 
effects of boundary charges on the MT apparent resistivity tensor, employing a MT 
theory for 3-D bodies in a layered Earth based on the assumption of a plane incident wave 
and 3-D inhomogeneity buried in the layered host. They obtained the following 
relationships for the components of the impedance tensor at low frequencies when the 
wavelengths in the host layers are long compared with the observation distance from the 
body: 
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The scattered field tensors in (4.3) are subdivided into horizontal and vertical sub-tensors, 
denoted by the indices hs and vs, respectively.  

Equations (4.2-4.3) demonstrate that all the components of the impedance tensor at 
low frequencies are distorted by boundary charge effects and are related to the impedance 
of a layered host by positive constants. The values of Z

xy
 and Z

yx
 can be equal to, less than 

or larger than Z
l
 , depending on the sign of P

xx
 or P

yy
. Since P

ij

0 become real as the 
frequency approaches zero (Wannamaker et al., 1984), the phases of all impedance 
components are asymptotic to that of the layered host medium. The diagonal elements of 
the impedance tensor depend mainly on the 3-D structure, but non-diagonal elements are 
also affected by the 2-D layered model. Consequently, it is necessary to use all the 
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components of the complex impedance tensor in the inversion procedure in order to 
reconstruct the 3-D resistivity distribution. Using only one component (Zxy, for example) 
in the inversion procedure will increase the non-uniqueness of the inverse problem, 
because not all the information about the 3-D structure is taken into consideration.  

4.2  Why the traditional formulation of the inverse problem cannot be 

applied to inversion of impedance tensor data 

Let a 3-D resistivity structure within the Earth be described by a parameter vector 
m=[m1,m2,…,mk]∈ A⊂⊂⊂ ⊂ M, where M is the parameter space and A is a set of feasible 
solutions. Let the a-priori information on the unknown resistivity structure be expressed 
as a PDF )(mp . The new information on the vector m can be obtained by inverting data 
consisting of eight frequency-dependent components of the complex impedance tensor 
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Z at N observation points on the surface. These form the data vector 

),...,,( 21 Lddd=obsd . The complex impedance tensor is calculated from the observed 
time series of 4 components of the EM field. Maximisation of the a-posteriori conditional 
PDF of the vector m, expressed in standard form as (1.10), gives an estimate for the 
parameter vector m. 

Under the assumption of Gaussian PDFs, maximisation of (1.10) is equivalent to 
minimisation of the following objective function: 
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where g is an operator that allows calculation of theoretical values for the impedance 
tensor from known values of the model parameters, m0

 
is the a-priori model, C

M
 and C

D
 

are covariance matrices of the model and observed data, respectively, and |C
M
| and |C

D
| 

are the corresponding determinants. The first term in (4.4) is the difference between the 
observed and calculated model data in a weighted l

2
 norm, and the second term introduces 

the a-priori knowledge about model parameters into the inversion procedure.  
As was demonstrated in Chapter 1, there is no difference in principle between problem 

(4.4) and the Tikhonov regularisation scheme that was used recently in the procedure of 
3-D MT impedance inversion proposed by Newman and Alumbaugh (2000). The 
Tikhonov regularisation scheme explicitly assumes Gaussian PDFs for the model 
parameters and experimental data, an assumption which is not valid when one has to 
invert the impedance tensor for a 3-D structure, because this cannot be regarded as the 
observed data vector. The components of the complex impedance tensor in the frequency 
domain are estimated from the experimental data observed in the time domain by solving 
the equation system (4.1), i.e. the impedance tensor is an estimate. 

As pointed out by Menke (1989), using estimates instead of observations introduces a 
kind of distribution that differs from that of the original data.  The distribution depends 
on the procedure used to calculate auto-spectra and cross-spectra from the observed 
values of the EM field. 
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It is known that standard least square estimation of the impedance tensor, which 
assumes a Gaussian PDF for the observed data, is highly unstable in the presence of 
outliers. These are a serious problem for spectral estimation, even with long data series 
(Jones et al., 1989). As Tarantola (1987) proposed, long-tailed PDFs should be used to 
model uncertainty in experimental data if outliers are suspected. The maximum 
likelihood function derived from the long-tail symmetric exponential PDF p(x)=exp(-|x|) 
corresponds to the minimum l

1
 norm criterion that is known to be sufficiently insensitive 

to outliers (robust).  
 Jones et al. (1989) pointed out that there exist two types of error in magnetotelluric 

impedance estimation: statistical errors due to non-Gaussian effects (outliers and finite 
data) and bias errors due to noise power. They demonstrated that statistical errors can be 
removed, in principle, by applying robust estimates or by analyzing more data. The 
remote reference technology proposed by Goubau et al. (1978) and robust methods such 
as l

1
 norm estimation and M-estimates (Chave and Thomson, 1989) can be used to avoid 

the problem of outliers in data. Biases cannot be fully removed even by robust methods, 
however, so that coherent noise sources, for example, can produce biases in remote 
reference processing. There exists an extensive literature on problems concerning 
estimation of the magnetotelluric impedance tensor, a full review of which would lie 
outside the scope of the present work. 

One additional source of error exists in the problem of 3-D MT data inversion that is 
very seldom taken into consideration. A model EM field simulated with an integral 
equation or differential equation code may contain different types of numerical errors. 
The model impedance tensor components are then calculated from the model surface EM 
field. Mackie and Madden (1993) proposed the following relationships in order to 
calculate the model impedance tensor components from an EM field for two orthogonal 
source polarisations:  
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If the components of the calculated EM field contain numerical simulation errors, the 
resulting distribution of the calculated impedance tensor components will not be 
Gaussian, as the errors will not be additive with respect to the impedance tensor 
components.  

There also exist a number of additional sources of uncertainty in the problem of MT 
impedance tensor inversion that can affect the resolution of the inversion procedure, 
namely:  

a) The 3-D resistivity structure has different effects on the components of the 
impedance tensor, diagonal elements being more sensitive to this structure than non-
diagonal ones. 



 64

b)  The EM response depends on the geometry of the experiment, i.e. the location of the 
stations with respect to the 3-D object. The responses at different observation points 
will have different sensitivities to the variation in model parameters. 

c)  The MT response is frequency dependent, i.e. the resolution decreases with depth. 

It is obviously impossible to take the influence of all these factors into consideration in 
one common covariance matrix C

D
 in eq. (4.4).  

It is seen from the above that the traditional Gaussian inversion scheme with a l
2
 norm 

cannot be applied to invert the impedance tensor for a 3-D structure, even if robust 
methods are used to calculate the impedance from the experimental data. The other 
important conclusion is that standard testing of the inversion algorithm with synthetic 
data simulated by adding random noise to the impedance tensor components calculated 
for the model does not represent the real error distribution in the problem. This 
distribution can differ from a Gaussian one only due to non-additive errors produced by 
the forward problem calculation algorithm. 

As has already been mentioned in Section 1.4, one more problem in the traditional 
inversion procedure is connected with proper formulation of the a-priori information. It is 
known that such information in inversion algorithms based on Tichonov regularisation is 
often formulated according to the requirements that the conductivity distribution must be 
the smoothest one, or the simplest one. Although the a-priori information in such a 
formulation helps to regularise the solution, the assumption of smoothness or simplicity 
is not valid in the case of sharp resistivity contrast between background conductivity and 
an embedded 3-D structure. Moreover, one very often has more knowledge of the 
conductivity structure in the region, e.g. drilling data, laboratory measurements of rock 
conductivity etc. This a-priori information can be formulated, following the maximum 
entropy principle, as an a-priori PDF of the parameter vector. Another possible approach 
proposed in Paper I is formulation of the a-priori information via fuzzy sets.  

Summarising the above discussion, we can formulate the following requirements for 
the procedure of 3-D MT impedance inversion: 

a) It has to be non-sensitive to outliers caused not only by errors in the experimental 
impedance tensor, but also by noise produced by the forward problem calculation. 

b) It has to take into consideration the different sensitivities of the components of the 
impedance tensor to the variation in model parameters. This sensitivity can also 
depend on the geometry of the experiment and on the frequency. 

c) It must be able to include different types of a-priori knowledge about the model 
parameters in the inversion scheme. 

An algorithm for a 3-D impedance tensor inversion that satisfies the above requirements 
is described in the next section. 
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4.3  Algorithm for MT complex impedance tensor inversion based on 

the ideal point method of multiobjective optimization 

Consider a set of experimental MT data that consist of eight components of the complex 
impedance tensor calculated for n frequencies at m observation points. 

Assume that the data errors at each observation point are independent. In this case we 
can assume that the combined error due to noisy data, outliers and numerical errors in the 
forward problem calculation of each component of the complex impedance tensor at each 
frequency has a long-tail distribution that can be approximated by an exponential PDF. 
The corresponding maximum likelihood functions are then: 
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 (4.6) 

where Z and Ẑ  denote the impedances obtained from experimental data and calculated 
from the model parameter vector m, respectively (for simplicity, indices from 1 to 4 in 
the following correspond to real components of the complex impedance tensor and 
indices from 5 to 8 to its imaginary components).   

We can then consider that the purpose of the inversion is to minimize the difference 
between the eight observed and calculated components of the complex impedance tensor 
in a l

1
 norm for each frequency. In this case we have instead of one objective function a 

vector objective function with n x 8 components that maps the set of feasible solutions A 
from the parameter space into the vector objective space. 
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If we have a population of p points generated from the set of feasible solutions A, i.e. { }p21 mmm ,...,,=B , we can estimate maximum and minimum values for all the 
components of the vector misfit function on the set B, which form two vectors:  
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It is then possible to define the ideal point in the objective space with the components:  
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The estimate for the vector m in the parameter space will then be the point that minimises 
the distance between the vector objective function and the ideal point in the objective 
space in some norm: 
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The distance from the ideal point can be regarded as the maximum likelihood function of 
the generalised Gaussian PDF of order k of a random vector ),...,,( 8

1
2

1
1

nFFF=F  with the 
mean value  Fideal and with a variance approximately equal to kj

i
j

i FF ||
minmax

− /2. If the 
noise in the impedance data is produced by shallow small-scale inhomogeneities, for 
example, then its effect will be stronger at high frequencies, i.e. the components of vector 
F corresponding to these frequencies can be regarded as outliers. In this case use of the l

1
 

norm in (4.8) can be recommended.  
The normalising coefficient kj

i
j

i FF ||
minmax

−  in (4.8) is an estimate of the range of 
variation in each component of the vector F, i.e. the weights of the components of the 
vector objective function included in (4.8) are appointed in accordance with their 
sensitiveness to variation of the model parameters. It should be noted that the ideal point 
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estimated from the finite population of points is a pseudo-ideal, i.e. we need the number 
of points in the population p→∞ to find the “true” ideal point.   
The following algorithm of MT impedance tensor inversion can then be formulated: 

Step 1. Generate the initial population { }p21 mmm ,...,,=B  of models from the 
multidimensional parameter space in accordance with a-priori information on the model 
parameters. If the a-priori PDF of a vector m cannot be assumed to be Gaussian or 
uniform, the fuzzy set approach can be used to describe the a-priori information. 

Step 2. Calculate values of the vector objective function (4.7) at each point in the initial 
population B.  

Step 3. Estimate maximum and minimum values for each component of the vector 
objective function, i.e. 
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Step 4. Find the ideal point in the objective space ),...,,( 8
1
2

1
1

idealnidealidealideal FFF=F . 

Step 5. Find an estimate for the vector m in the parameter space that minimises the 
distance between the vector objective function and the ideal point in the objective space 
(4.8). 

Step 5 can be performed using the nearest neighbour algorithm of Sambridge  (1998, 
1999), a global optimisation algorithm that allows the information obtained in the 
previous steps to be use to reduce the number of forward problem calculations and 
concentrate the trial points in the area close to the global minimum. The initial population 
generated in Step 1 can be used for this purpose. The ideal point can be refined at this 
stage by taking account of information from the new trial points. A modification of the 
algorithm that allows trial points to be sampled in accordance with the membership 
function of a fuzzy set of feasible solutions is described in Paper I. 

The proposed algorithm has been tested with synthetic magnetotelluric impedance 
tensor data, but its application and testing with real data remains a topic for future 
research. 



  

5 Conclusions 

The main targets of the joint interpretation of multimethod geophysical data are 
geological bodies with an established dependence between various physical properties 
(geophysical multiresponse). This relationship is probabilistic in nature and can be 
formally described by a function of some kind, e.g. a probability density function, 
regression equation etc. Thus, a detailed analysis of petrophysical data concerning rock 
properties that is aimed at defining this relationship is a necessary first step for the joint 
interpretation of multimethod geophysical data.   

The parameters of geophysical multiresponse bodies can be estimated from joint 
inversion of the data, which can be effectively formulated within a Bayesian approach as 
a problem of maximisation of the joint a-posteriori probability density function of the 
observed data sets and a-priori information. Numerical optimisation of the joint a-
posteriori PDF can be problematic due to the non-uniqueness that is always present in 
real geophysical inverse problems. Another problem is non-linearity, which can result 
from experimental data having a non-Gaussian PDF and a forward problem with a non-
linear operator.  

The effectiveness of joint inversion of multimethod geophysical data in a non-linear 
formulation can be analysed using the definitions of Kolmogorov's ε-entropy and the 
lower limit of resolution of the inversion procedure. This analysis demonstrates that the 
lower resolution limit of any procedure of joint inversion of multimethod geophysical 
data corresponds to the value of lower limit of resolution of the method with the best 
resolution, but cannot be less than this. The analysis also shows that joint inversion can 
reduce non-uniqueness in real geophysical inverse problems, so that the solution is better 
then that obtained from separate inversion of data from only one method.  

The joint inversion of multimethod geophysical data can be regarded as a problem of 
multiobjective optimisation aimed at finding a set of Pareto optimal solutions. 
Multiobjective formulation allows the numerical methods of multiobjective optimisation 
to be applied for the purpose of geophysical data inversion and the development of 
computer algorithms capable of solving both linear and non-linear problems. An analysis 
of some well-known joint inversion techniques from the point of view of multiobjective 
optimisation theory demonstrates that they cannot be recommended in the case of non-
linear inverse problems for which convexity is not guaranteed. Magnetotelluric 
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impedance tensor inversion for obtaining a 3-D resistivity structure is an example of a 
non-linear problem with observed data having a non-Gaussian PDF that cannot be 
effectively solved in a linear formulation. A robust algorithm for MT impedance tensor 
inversion can be constructed on the basis of the ideal point method of multiobjective 
optimisation.   

The combination of various types of uncertain information into one inversion scheme 
can be an additional area of application for multiobjective optimisation techniques. Two 
types of uncertainty exist in geophysical inverse problems: the uncertainty attached to the 
observed data, which is probabilistic, as it results from random observation errors, and 
the uncertainty attached to the a-priori information, which can be called possibilistic, as 
it is connected with imperfect knowledge of the model parameters. This means that the 
use of measures of uncertainty other than probabilistic ones can be an efficient tool for 
the presentation of a-priori information in geophysical inverse problems. The two types 
of uncertainty can be combined into one common inversion scheme using the definition 
of Pareto optimality.    

A necessary condition for the joint interpretation of seismic and gravity data is the 
well-known density-velocity relationship, which can also be used for parameterising the 
density model and transforming the non-linear gravimetric inverse problem into a linear 
one. Joint interpretation of gravity and seismic data by means of a density-velocity 
relationship demonstrated that bodies for which the density-velocity relationship 
properties are violated are often associated with important tectonic boundaries and can be 
targets of separate interpretation.  

Statistical analysis of borehole data concerning velocity, density and electrical 
resistivity and the theoretical modelling of elastic and electrical properties of rocks allow 
the conclusion that solid-liquid rock mixtures can be a class of objects for which a 
quantitative relationship between electrical and elastic properties can be established.  
Theoretical modelling of the elastic and electrical properties of solid-liquid rock mixtures 
with a fractal microstructure has demonstrated the effect of rock microstructure on both 
elastic and electrical properties. This effect can reach significant values for water-
saturated porous rocks in the upper crust and partially molten rocks in the mantle.   

The main problem for the joint inversion of seismic and EM data is to separate the 
common factors affecting both seismic velocity and resistivity from factors that influence 
only elastic properties or only electrical properties. A multiscale presentation of the 
distribution of various physical properties can be used for this purpose. The geological 
medium under study can be presented as a superposition of random self-similar structures 
on different scales. The multiscale concept of a geological medium can provide the 
necessary theoretical background for the future development of methods for the joint 
inversion of multimethod geophysical data.  
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 Appendix 1 

Fuzzy measures 

The concept of a fuzzy measure was introduced by Sugeno (1977) and later developed by 
Wang and Klir (1992). It provides a broad framework for understanding the difference 
between various measures of uncertainty. 
Definition A1.1 (Klir and Yuan, 1995). Given a universal set X and a non-empty family 
P  of subsets of X, a fuzzy measure on P,X  is a function [ ]1,0: →Pg  that satisfies the 

following requirements: 
d) 1)( and 0)( ==∅ Xgg  (boundary requirements); 

e)  for all )()( then, if,, BgAgBABA ≤⊆∈ P  (monotonicity); 

f) for any increasing sequence  
∞

=
∈⊂⊂

1
21  if ,in ...

i

iAAA PP , then 

 
∞

=∞→
=

1

)()(lim
i

ii
i

AgAg (continuity from below); 

g) for any decreasing sequence  
∞

=
∈⊃⊃

1
21 , if ,in ...

i

iA AA PP  then 

 
∞

=∞→
=

1

)()(lim
i

ii
i

AgAg (continuity from above). 

Requirements (c-d) are applicable only to an infinite universal set. Fuzzy measures as 
defined by Definition A1.1 are a generalisation of probability measures obtained by 
replacing the additivity requirement by the weaker requirements of monotonicity and 
continuity.  
The number g(A) assigned to a set A by a fuzzy measure g signifies the total available 
evidence that a given element of X whose characterisation is deficient in some respect 
belongs to A. 
The evidence theory is based on dual non-additive measures, belief measures and 
plausibility measures.  
Definition A1.2 Given a universal finite set X, a belief measure is a function  
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[ ]1,0)(: →XBel Q   such that  1)(,0)( ==∅ XBelBel  and  
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for all possible families of subsets of X.  
For each )(XA Q∈ , Bel(A) is interpreted as the degree of belief (based on available 

evidence) that a given element of X belongs to the set A. The subsets of X can be viewed 
as answers to particular questions. 
When the sets nAAA ,...,2,1  in (A1.1) are pairwise disjoint, the inequality requires that the 

degree of belief associated with the union of sets is not smaller than the sum of the 
degrees of belief pertaining to the individual sets. This basic property of belief measures 
is thus a weaker version of the additivity property of probability measures. This implies 
that probability measures are special cases of belief measures for which the equality in 
(A1.1) is always satisfied. The fundamental property of belief measures, which follows 
from (A1.1), is that 
 

1)()( ≤+ ABelABel .                                            (A1.2) 

 
The plausibility measure associated with each belief measure is defined by the following 
equation: 

)(1)( ABelAPl −=                                                (A1.3) 

for all )(XA Q∈ . Similarly,  

)(1)( APlABel −= .                                              (A1.4) 

 
Belief measures and plausibility measures are therefore mutually dual. Plausibility 
measures can also be defined independently of belief measures. 
Definition 1.3. A  plausibility measure is a function 

[ ]1,0)(: →XPl Q  such that 1)(,0)( ==∅ XPlPl  and 
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for all possible families of subsets of X.   
From (A1.5) it follows that 
 

1)()( ≥+ APlAPl .                                             (A1.6) 

 
Belief and plausibility measures can conveniently be characterised by a function 
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[ ] ∑ ==∅→
∈ )(

1)( and 0)m( that such1,0)(:
XA

AmXm
Q

Q .                    (A1.7) 

 
This function is called a basic probability assignment. For each set )(XA Q∈ , the value 

m(A) expresses the proportion to which all available and relevant evidence supports the 
statement that a particular element of X belongs to the set A. The value m(A) is a 
characteristic only of set A. If there is some additional evidence that the element belongs 
to a subset of A, i.e. AB ⊆ , it must be expressed by another value m(B). The 

fundamental difference between probability distribution functions and basic probability 
assignments is that the former are defined on X while the latter are defined on )(XQ  It is 

not required for basic probability assignments that m(X)=1 or BABmAm ⊆≤ when )()( . 

From this it follows that basic probability assignments are not fuzzy measures.    
Given a basic probability assignment m, a belief measure and a plausibility measure are 
uniquely determined for all sets )(XA Q∈  by the equations 

 

∑

∑

∅≠∩

⊆
=

=

BAB

ABB

BmAPl

BmABel
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                                                 (A1.8) 

 
Equation (A1.8) means that while m(A) characterises the degree of evidence for the belief 
that some element examined belongs to the set A alone, Bel(A) represents the total 
evidence for the belief that the element in question belongs to set A as well as to various 
special subsets of A. The plausibility measure represents not only the total evidence that 
the element belongs to set A or to any other of its subsets, but also the additional belief 
associated with sets that overlap with A. From this it follows that 
 

)()()( XAABelAPl Q⊂∀≥ .                                       (A1.9)       

 
A basic probability assignment can be obtained from the corresponding belief and 
plausibility measures, i.e. each of the three functions m, Bel and Pl is sufficient to 
determine the other two. 
Every set )(XA Q∈ for which 0)( >Am  is usually called a focal element of m. The pair 

mF,  where F and m are a set of focal elements and associated basic assignments, 

respectively, is called a body of evidence.  
Total ignorance is expressed in terms of a basic assignment by the statement 

XAAmXm ≠==  allfor  0)( and 1)( . The expression of total ignorance in terms of a 

corresponding belief measure is the same: XAABelXBel ≠==  allfor  0)(  and  1)( , but 

in terms of the corresponding plausibility measure it is different: 
∅≠==∅ AAPlPl  allfor  1)(  and  1)( . 

A special branch of evidence theory that deals only with bodies of evidence whose focal 
elements are nested is referred to as possibility theory. Special counterparts of belief 
measures and plausibility measures in possibility theory are called necessity measures 
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and possibility measures, denoted as Nec and Pos, respectively. The general formulation 
of necessity and possibility measures is given by the following two definitions: 
Definition A1.4: Let Nec denote a fuzzy measure on Q,X . Then, Nec is called a 

necessity measure if and only if )(inf k
Kk

Kk

k ANecANec
∈∈

=








 for any family 

{ } Qin | KkAk ∈  such that Q∈
∈
 

Kk

kA , where K is an arbitrary index set. 

Definition A1.5: Let Pos denote a fuzzy measure on Q,X . Then, Pos is called a 

possibility measure if and only if )(sup k
KkKk

k APosAPos
∈∈

=








 for any family 

{ } Qin | KkAk ∈  such that Q∈
∈
 

Kk

kA , where K is an arbitrary index set. 

Since necessity and possibility measures are special cases of belief and plausibility 
measures, respectively, they satisfy conditions (A1.2-A1.4 ): 

 

                                                    1)()( ≤+ ANecANec , 

1)()( ≥+ APosAPos ,                                            (A1.10) 

                                                     )(1)( APosANec −= . 

 
It also follows from the definitions of Pos and Nec that 

 

[ ]
[ ] .1)(),(max

,0)(),(min

=

=

APosAPos

ANecANec
                                      (A1.11) 

 
It can also be proved (Klir and Yuan, 1995) that for every )(XA Q∈ , any necessity 

measure, Nec, on )(XQ  and the associated possibility measure, Pos, will satisfy the 

following conditions: 
a) ;1)(0)( =⇒> APosANec  

b) 0)(1)( =⇒> ANecAPos . 

An important property of possibility theory is that every possibility measure on a finite 
power set )(XQ  is uniquely represented by the associated possibility distribution 

function [ ]1,0: →Xr  via the formula 

 
)(max)( xrAPos

Ax∈
=                                            (A1.12) 

 
for each )(XA Q∈ . When X is not finite, (A1.12) must be replaced by the more general 

equation: 
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)(sup)( xrAPos
Ax∈

= .                                              (A1.13) 

 
Possibility theory can be formulated not only in terms of nested bodies of evidence but 
also in terms of fuzzy sets (see Appendix 2 for a fuzzy set definition), since fuzzy sets, 
like possibilistic bodies of evidence, are also based on families of nested sets, the 
appropriate α-cuts. Possibility measures are directly connected to fuzzy sets via the 
associated possibility distribution functions. 
As postulated by Zadeh (1978), a possibility that Xxux ∈= , is equal to the membership 

function of a fuzzy set defined in X, i.e. the possibility distribution function 
)(xrX associated with X is equal to a membership function of a fuzzy subset A defined on 

X, namely )(xAµ  (see Appendix 2 for more detailed description of fuzzy set theory).  

A probability measure, as a special class of fuzzy measures, must satisfy a requirement 
that is called the additivity axiom of probability measures: if nAAA ,..., 21  is any sequence 

of pairwise disjoint sets in )(XQ , then ∑=
==

n

i
i

n

i
i AProAPro

11
)()(  . This axiom is stronger 

than the superadditivity axiom of belief measures (A1.1), i.e. probability measures can be 
regarded as a special type of belief measures. The relationship between belief measures 
and probability measures can be characterised by the following theorem (proof to be 
found in Klir and Yuan, 1995): 
Theorem A1.1. A belief measure Bel on a finite power set )(XQ is a probability measure 

if and only if the associated basic probability assignment function m is given by 
{ }( ) { }( ) 0)( and == AmxBelxm  for all subsets in X that are not singletons.  

The main difference between probabilities and possibilities lies in the structure of the 
respective bodies of evidence. While probabilistic bodies of evidence consist of 
singletons, possibilistic bodies of evidence are families of nested sets. While possibility 
theory is based on dual measures, i.e. special cases of belief and plausibility measures, 
probability theory deals with the case when belief measures and plausibility measures are 
equal. 
Belief measures and plausibility measures may be interpreted as lower and upper 
probability estimates. In this interpretation, the dual measures Bel and Pl are used to form 
intervals which are viewed as imprecise estimates of probabilities.  



 

 Appendix 2 

Basic definitions of a fuzzy set theory 

Definition A2.1 (Zadeh, 1965):  Let X denote a universal set. Then a fuzzy subset A of X is 
defined by its membership function [ ]1,0: →XAµ , which assigns to each element 

Xx ∈  a real number )(xAµ  in the interval [0,1], where the value of )(xAµ  represents 
a grade of membership of A for x. Thus, the nearer the value of )(xAµ is to unity, the 
higher the grade of membership of A that applies to x. 
A fuzzy subset A can be characterized as a set of ordered pairs of an element x and a 
membership grade )(xAµ , and is often written ( ){ }XxxxA A ∈= |)(,µ . 

The following basic notions are defined for fuzzy sets (Sakawa, 1993). 
Definition A2.2. The support of a fuzzy set A on X, denoted by supp(A), is the set of points 
in X at which )(xAµ  is positive, i.e.,  

{ }0)(|)(supp >∈= xXxA Aµ . 

Definition A2.3. The height of a fuzzy set A on X, denoted by hgt(A), is the least upper 
bound of )(xAµ , i.e., 

)( sup)(hgt xA A
Xx

µ
∈

= . 

Definition A2.4. A fuzzy set A on X is said to be normal if its height is unity, i.e., if there 
is Xx ∈ such that 1)( =xAµ . If this is not the case, the fuzzy set is said to be subnormal. 

Definition A2.5. A fuzzy set A on x is empty, denoted by ∅ , if and only if 0)( =xAµ  for 

all Xx ∈ . The universal set X can obviously be viewed as a fuzzy set whose membership 
function is 1)( =xXµ . 

Certain set theory operations with fuzzy sets originally proposed by Zadeh (1965) are 
defined as follows.  
Definition A2.6. Equality: The fuzzy sets A and B on X are equal, denoted by ,BA =  if 

and only if their membership functions are equal everywhere on X: 
)()( xxBA BA µµ =⇔=  for all Xx ∈ . 
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Definition A2.7. Containment: The fuzzy set A is contained in B (or is a subset of B), 
denoted by BA ⊆ , if and only if its membership function is less than or equal to that of 

B everywhere on X: 
)()( xxBA BA µµ ≤⇔⊆  for all Xx ∈ . 

Definition A2.8. Complementation: The complement of a fuzzy set A on X, denoted by 

A , is defined by  
)(1)( xx AA

µµ −=  for all Xx ∈ . 

Definition A2.9. Intersection: The intersection of two fuzzy sets A and B on X, denoted by 
BA∩ , is defined by 

{ })(),(min)( xxx BABA µµµ =∩  for all Xx ∈ . 

Definition A2.10. Union: The union of two fuzzy sets A and B on X, denoted by BA ∪ , is 
defined by 

{ })(),(max)( xxx BABA µµµ =∪  for all Xx ∈ . 

As Zadeh (1965) pointed out, it is possible to extend many of the basic properties which 
hold for ordinary sets to fuzzy sets. The following properties for union, intersection and 
complementation hold for fuzzy sets in a similar manner to ordinary sets. 
Commutativity laws: 

ABBA ∪=∪ , ABBA ∩=∩ . 
Associativity laws: 

,)()( CBACBA ∪∪=∪∪   CBACBA ∩∩=∩∩ )()( . 

Distributivity laws: 
),()()( CABACBA ∪∩∪=∩∪  )()()( CABACBA ∩∪∩=∪∩ . 

De Morgan’s laws: 

( ) BABA ∩=∪ ,  ( ) BABA ∪=∪ . 

Involution: 

AA = . 
The concept of α-level sets or α-cuts is an important transfer between ordinary sets and 
fuzzy sets. It also plays an important role in the construction of a fuzzy set by a series of 
ordinary sets. 
Definition A2.11. (Sakawa, 1993): The α-level set or α-cut of a fuzzy set A is defined as an 

ordinary set αA  for which the degree of the membership function exceeds the level α: 

{ } [ ]1,0,)(| ∈≥= ααµα xxA A . 

The following evident property holds for α-level sets: 

2121 αααα AA ⊇⇔≤ . 

The following decomposition theorem can be proved for a fuzzy set (see Sakawa, 1993 
for proof). 
Theorem A2.1: A fuzzy set A can be represented by  

[ ]
 

1,0∈
=
α

αα AA , 

where αα A  denotes the algebraic product of a scalar α with the α-level set αA , i.e. its 

membership function (characteristic function) is given by 



 lxxxii

.),()()( XxxCxx AAA a
∈∀== αα αµαµα  

The extension principle introduced by Zadeh (1965) is a general method for extending 
non-fuzzy mathematical concepts to the fuzzy framework. 
Definition A2.12 (extension principle): Let YXf →:  be a mapping from a set X to a set 

Y. The extension principle then allows us to define the fuzzy set B in Y induced by the 
fuzzy set A in X through f as follows: 

( ){ }XxxfyyyB B ∈== ),(|)(,µ , 

with 








∅=

∅≠
==

−

−

=

)(0

)()(sup
)()(

1

1

)()(

yf

yfx
yy

A
xfyAfB

µ
µµ , 

where )(1 yf −  is the inverse image of y. 

The concept of a Cartesian product of fuzzy sets can be introduced as follows: 
Definition A2.13 (Cartesian product of fuzzy sets): Let nAA ,...,1  be fuzzy sets in 

nXX ,...,1  with the corresponding membership functions )(),...,( 11 nAA xx
n

µµ , 

respectively. The Cartesian product of the fuzzy sets nAA ,...,1 , denoted by nAA ×⋅⋅⋅×1 , is 

then defined as a fuzzy set in nXX ×⋅⋅⋅×1  whose membership function is expressed by  

( ))(),...,(min)( 1,...,1 11 nAAnAA xxxx
nn

µµµ =×⋅⋅⋅× . 
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