THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS

ANATOLY A. KILBAS Belarusian State University Minsk, Belarus

HARI M. SRIVASTAVA University of Victoria Victoria, British Columbia, Canada

JUAN J. TRUJILLO Universidad de La Laguna La Laguna (Tenerife) Canary Islands, Spain

Amsterdam – Boston – Heidelberg – London – New York – Oxford Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo

Contents

1 PRELIMINARIES

1.1	Spaces of Integrable, Absolutely Continuous, and Continuous Func-	
	tions	1
1.2	Generalized Functions	6
1.3	Fourier Transforms	10
1.4	Laplace and Mellin Transforms	18
1.5	The Gamma Function and Related Special Functions	24
1.6	Hypergeometric Functions	27
1.7	Bessel Functions	32
1.8	Classical Mittag-Leffler Functions	40
1.9	Generalized Mittag-Leffler Functions	45
1.10	Functions of the Mittag-Leffler Type	49
1.11	Wright Functions	54
1.12	The <i>H</i> -Function	58
1.13	Fixed Point Theorems	67
	RIVATIVES	69
2.1	Riemann-Liouville Fractional Integrals and Fractional Derivatives	69
2.2	Liouville Fractional Integrals and Fractional Derivatives on the Half-	00
	Axis	79
2.3	Liouville Fractional Integrals and Fractional Derivatives on the Real	
	Axis	87
2.4	Caputo Fractional Derivatives	90
2.5	Fractional Integrals and Fractional Derivatives of a Function with	
	Respect to Another Function	99
2.6	Erdélyi-Kober Type Fractional Integrals and Fractional Deriva-	
	tives	105
2.7	Hadamard Type Fractional Integrals and Fractional Derivatives	110
2.8	Grünwald-Letnikov Fractional Derivatives	121
2.9	Partial and Mixed Fractional Integrals and Fractional	
	Derivatives	123
2.10	Riesz Fractional Integro-Differentiation	127
9 1 1	Comments and Observations	132

3 ORDINARY FRACTIONAL DIFFERENTIAL EQUATIONS. EXISTENCE AND UNIQUENESS THEOREMS 135

3.1	Turkura d	uction and a Brief Overview of Results	195
			135
3.2	Equations with the Riemann-Liouville Fractional Derivative in the		
	-	of Summable Functions	144
	3.2.1	Equivalence of the Cauchy Type Problem and the Volterra	
		Integral Equation	145
	3.2.2	Existence and Uniqueness of the Solution to the Cauchy Type	
		<i>Problem</i>	148
	3.2.3	The Weighted Cauchy Type Problem	151
	3.2.4	Generalized Cauchy Type Problems	153
	3.2.5	Cauchy Type Problems for Linear Equations	157
	3.2.6	Miscellaneous Examples	160
3.3	Equat	ions with the Riemann-Liouville Fractional Derivative in the	
	-	of Continuous Functions. Global Solution	162
	3.3.1	Equivalence of the Cauchy Type Problem and the Volterra	
		Integral Equation	163
	3.3.2	Existence and Uniqueness of the Global Solution to the	
		Cauchy Type Problem	164
	3.3.3	The Weighted Cauchy Type Problem	167
	3.3.4	Generalized Cauchy Type Problems	168
	3.3.5	Cauchy Type Problems for Linear Equations	170
	3.3.6	More Exact Spaces	171
	3.3.7	Further Examples	177
9 A		-	111
3.4	-	ions with the Riemann-Liouville Fractional Derivative in the	100
	-	of Continuous Functions. Semi-Global and Local Solutions .	182
	3.4.1	The Cauchy Type Problem with Initial Conditions at the	100
		Endpoint of the Interval. Semi-Global Solution	183
	3.4.2	The Cauchy Problem with Initial Conditions at the Inner	
		Point of the Interval. Preliminaries	186
	3.4.3	Equivalence of the Cauchy Problem and the Volterra Integral	
		Equation	189
	3.4.4	The Cauchy Problem with Initial Conditions at the Inner	
		Point of the Interval. The Uniqueness of Semi-Global and	
		Local Solutions	191
	3.4.5	A Set of Examples	196
3.5	Equati	ions with the Caputo Derivative in the Space of Continuously	
	Differe	ntiable Functions	198
	3.5.1	The Cauchy Problem with Initial Conditions at the Endpoint	
		of the Interval. Global Solution	199
	3.5.2	The Cauchy Problems with Initial Conditions at the End and	
		Inner Points of the Interval. Semi-Global and Local	
		Solutions	205
	3.5.3	Illustrative Examples	209

Contents

	3.6	Equations with the Hadamard Fractional Derivative in the Space of Continuous Functions
4		THODS FOR EXPLICITLY SOLVING FRACTIONAL FERENTIAL EQUATIONS 221
	DIF	FERENTIAL EQUATIONS 221
	4.1	Method of Reduction to Volterra Integral Equations 221 4.1.1 The Cauchy Type Problems for Differential Equations with
		the Riemann-Liouville Fractional Derivatives 222 4.1.2 The Cauchy Problems for Ordinary Differential Equa-
		4.1.3 The Cauchy Problems for Differential Equations with the
		Caputo Fractional Derivatives 230 4.1.4 The Cauchy Type Problems for Differential Equations with Hadronger Exception 200
	4.0	Hadamard Fractional Derivatives
	4.2	Compositional Method
		4.2.1 Preliminaries
		4.2.2 Compositional Relations
		4.2.3 Homogeneous Differential Equations of Fractional Order with Riemann-Liouville Fractional Derivatives
		4.2.4 Nonhomogeneous Differential Equations of Fractional Or- der with Riemann-Liouville and Liouville Fractional Deriva-
		tives with a Quasi-Polynomial Free Term 245
		4.2.5 Differential Equations of Order $1/2$ 248
		4.2.6 Cauchy Type Problem for Nonhomogeneous Differential Equations with Riemann-Liouville Fractional Derivatives and
		 with a Quasi-Polynomial Free Term
		Type Functions $\ldots \ldots 257$
	4.3	Operational Method2604.3.1Liouville Fractional Integration and Differentiation Opera-
		tors in Special Function Spaces on the Half-Axis 261 4.3.2 Operational Calculus for the Liouville Fractional Calculus
		Operators2634.3.3Solutions to Cauchy Type Problems for Fractional Differen-
		tial Equations with Liouville Fractional Derivatives 266 4.3.4 Other Results
	4.4	Numerical Treatment
5		EGRAL TRANSFORM METHOD FOR EXPLICIT JUTIONS TO FRACTIONAL DIFFERENTIAL
	EQU	JATIONS 279
	5.1 5.2	Introduction and a Brief Survey of Results
		tions with Liouville Fractional Derivatives

		5.2.1	Homogeneous Equations with Constant Coefficients	283
		5.2.2	Nonhomogeneous Equations with Constant Coefficients	295
		5.2.3	Equations with Nonconstant Coefficients	303
		5.2.4	Cauchy Type for Fractional Differential Equations	309
	5.3	Laplac	e Transform Method for Solving Ordinary Differential Equa-	
		tions v	vith Caputo Fractional Derivatives	312
		5.3.1	Homogeneous Equations with Constant Coefficients	312
		5.3.2	Nonhomogeneous Equations with Constant Coefficients	322
		5.3.3	Cauchy Problems for Fractional Differential Equations	326
	5.4	Mellin	Transform Method for Solving Nonhomogeneous Fractional	
		Differe	ential Equations with Liouville Derivatives	329
		5.4.1	General Approach to the Problems	329
		5.4.2	Equations with Left-Sided Fractional Derivatives	331
		5.4.3	Equations with Right-Sided Fractional Derivatives	336
	5.5	Fourie	r Transform Method for Solving Nonhomogeneous Differen-	
		tial Eq	quations with Riesz Fractional Derivatives	341
		5.5.1	Multi-Dimensional Equations	341
		5.5.2	One-Dimensional Equations	344
6	PA]	RTIAL	FRACTIONAL DIFFERENTIAL EQUATIONS	347
	6.1		iew of Results	347
	0.1	6.1.1	Partial Differential Equations of Fractional Order	347
		6.1.2	Fractional Partial Differential Diffusion Equations	351
		6.1.2	Abstract Differential Equations of Fractional Order	359
	6.2		on of Cauchy Type Problems for Fractional Diffusion-Wave	000
	0.2		ions	362
		6.2.1	Cauchy Type Problems for Two-Dimensional Equations	362
		6.2.2	Cauchy Type Problems for Multi-Dimensional Equations	366
	6.3		on of Cauchy Problems for Fractional Diffusion-Wave Equa-	000
	0.0	tions .	-	373
		6.3.1	Cauchy Problems for Two-Dimensional Equations	374
		6.3.2	Cauchy Problems for Multi-Dimensional Equations	377
	6.4		on of Cauchy Problems for Fractional Evolution Equations .	380
		6.4.1	Solution of the Simplest Problem	380
		6.4.2	Solution to the General Problem	384
		6.4.3	Solutions of Cauchy Problems via the H-Functions	388
_				-
7			FIAL LINEAR DIFFERENTIAL EQUATIONS OF NAL ORDER	г [.] 393
	7.1	-	ntial Linear Differential Equations of Fractional Order	394
	7.2		on of Linear Differential Equations with Constant Coef-	100
			3	400
		7.2.1	General Solution in the Homogeneous Case	400
		7.2.2	General Solution in the Non-Homogeneous Case. Fractional Green Function	403
			GICCH TWHCHUH	100

7.4.1 General Theory	407
puto Derivatives7.4.1General Theory7.4.2General Solution for the Case of Constant Coefficients. Frac-	100
7.4.2 General Solution for the Case of Constant Coefficients. Frac-	409
	409
tional Green Vectorial Function	412
7.5 Solution of Fractional Differential Equations with Variable Coef-	
ficients. Generalized Method of Frobenius	415
7.5.1 Introduction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	415
7.5.2 Solutions Around an Ordinary Point of a Fractional Differ-	
ential Equation of Order α	418
7.5.3 Solutions Around an Ordinary Point of a Fractional Differ-	
ential Equation of Order 2α	421
7.5.4 Solution Around an α -Singular Point of a Fractional Differ-	
	424
7.5.5 Solution Around an α -Singular Point of a Fractional Differ-	
ential Equation of Order 2α	427
7.6 Some Applications of Linear Ordinary Fractional Differential	
Equations	433
7.6.1 Dynamics of a Sphere Immersed in an Incompressible Vis-	
cous Fluid. Basset's Problem	434
7.6.2 Oscillatory Processes with Fractional Damping	436
7.6.3 Study of the Tension-Deformation Relationship of Viscoelas-	
tic Materials	439
8 FURTHER APPLICATIONS OF FRACTIONAL MODELS	449
8.1 Preliminary Review	449
	450
8.1.2 Complex Systems	452
	456
8.1.3 Fractional Integral and Fractional Derivative Operators	
8.2 Fractional Model for the Super-Diffusion Processes	458
 8.2 Fractional Model for the Super-Diffusion Processes	458 462
 8.2 Fractional Model for the Super-Diffusion Processes	
 8.2 Fractional Model for the Super-Diffusion Processes	462