THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS

ANATOLY A. KILBAS
Belarusian State University
Minsk, Belarus
HARI M. SRIVASTAVA
University of Victoria
Victoria, British Columbia, Canada
JUAN J. TRUJILLO
Universidad de La Laguna
La Laguna (Tenerife)
Canary Islands, Spain

Amsterdam - Boston - Heidelberg - London - New York - Oxford
Paris - San Diego - San Francisco - Singapore - Sydney - Tokyo

Contents

1 PRELIMINARIES 1
1.1 Spaces of Integrable, Absolutely Continuous, and Continuous Func- tions 1
1.2 Generalized Functions 6
1.3 Fourier Transforms 10
1.4 Laplace and Mellin Transforms 18
1.5 The Gamma Function and Related Special Functions 24
1.6 Hypergeometric Functions 27
1.7 Bessel Functions 32
1.8 Classical Mittag-Leffler Functions 40
1.9 Generalized Mittag-Leffler Functions 45
1.10 Functions of the Mittag-Lefller Type 49
1.11 Wright Functions 54
1.12 The H-Function 58
1.13 Fixed Point Theorems 67
2 FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES 69
2.1 Riemann-Liouville Fractional Integrals and Fractional Deri- vatives 69
2.2 Liouville Fractional Integrals and Fractional Derivatives on the Half- Axis 79
2.3 Liouville Fractional Integrals and Fractional Derivatives on the Real Axis 87
2.4 Caputo Fractional Derivatives 90
2.5 Fractional Integrals and Fractional Derivatives of a Function with Respect to Another Function 99
2.6 Erdélyi-Kober Type Fractional Integrals and Fractional Deriva- tives 105
2.7 Hadamard Type Fractional Integrals and Fractional Derivatives 110
2.8 Grünwald-Letnikov Fractional Derivatives 121
2.9 Partial and Mixed Fractional Integrals and Fractional Derivatives 123
2.10 Riesz Fractional Integro-Differentiation 127
2.11 Comments and Observations 132
3 ORDINARY FRACTIONAL DIFFERENTIAL EQUATIONS. EXISTENCE AND UNIQUENESS THEOREMS 135
3.1 Introduction and a Brief Overview of Results 135
3.2 Equations with the Riemann-Liouville Fractional Derivative in the Space of Summable Functions 144
3.2.1 Equivalence of the Cauchy Type Problem and the Volterra Integral Equation 145
3.2.2 Existence and Uniqueness of the Solution to the Cauchy Type Problem 148
3.2.3 The Weighted Cauchy Type Problem 151
3.2.4 Generalized Cauchy Type Problems 153
3.2.5 Cauchy Type Problems for Linear Equations 157
3.2.6 Miscellaneous Examples 160
3.3 Equations with the Riemann-Liouville Fractional Derivative in the Space of Continuous Functions. Global Solution 162
3.3.1 Equivalence of the Cauchy Type Problem and the Volterra Integral Equation 163
3.3.2 Existence and Uniqueness of the Global Solution to the Cauchy Type Problem 164
3.3.3 The Weighted Cauchy Type Problem 167
3.3.4 Generalized Cauchy Type Problems 168
3.3.5 Cauchy Type Problems for Linear Equations 170
3.3.6 More Exact Spaces 171
3.3.7 Further Examples 177
3.4 Equations with the Riemann-Liouville Fractional Derivative in the Space of Continuous Functions. Semi-Global and Local Solutions 182
3.4.1 The Cauchy Type Problem with Initial Conditions at the Endpoint of the Interval. Semi-Global Solution 183
3.4.2 The Cauchy Problem with Initial Conditions at the Inner Point of the Interval. Preliminaries 186
3.4.3 Equivalence of the Cauchy Problem and the Volterra Integral Equation 189
3.4.4 The Cauchy Problem with Initial Conditions at the Inner Point of the Interval. The Uniqueness of Semi-Global and Local Solutions 191
3.4.5 A Set of Examples 196
3.5 Equations with the Caputo Derivative in the Space of Continuously Differentiable Functions 198
3.5.1 The Cauchy Problem with Initial Conditions at the Endpoint of the Interval. Global Solution 199
3.5.2 The Cauchy Problems with Initial Conditions at the End and Inner Points of the Interval. Semi-Global and Local Solutions 205
3.5.3 Ilustrative Examples 209
3.6 Equations with the Hadamard Fractional Derivative in the Space of Continuous Functions 212
4 METHODS FOR EXPLICITLY SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS 221
4.1 Method of Reduction to Volterra Integral Equations 221
4.1.1 The Cauchy Type Problems for Differential Equations with the Riemann-Liouville Fractional Derivatives 222
4.1.2 The Cauchy Problems for Ordinary Differential Equa- tions 228
4.1.3 The Cauchy Problems for Differential Equations with the Caputo Fractional Derivatives 230
4.1.4 The Cauchy Type Problems for Differential Equations with Hadamard Fractional Derivatives 234
4.2 Compositional Method 238
4.2.1 Preliminaries 238
4.2.2 Compositional Relations 239
4.2.3 Homogeneous Differential Equations of Fractional Order with Riemann-Liouville Fractional Derivatives 242
4.2.4 Nonhomogeneous Differential Equations of Fractional Or- der with Riemann-Liouville and Liouville Fractional Deriva- tives with a Quasi-Polynomial Free Term 245
4.2.5 Differential Equations of Order 1/2 248
4.2.6 Cauchy Type Problem for Nonhomogeneous Differential Equations with Riemann-Liouville Fractional Derivatives and with a Quasi-Polynomial Free Term 251
4.2.7 Solutions to Homogeneous Fractional Differential Equations with Liouville Fractional Derivatives in Terms of Bessel- Type Functions 257
4.3 Operational Method 260
4.3.1 Liouville Fractional Integration and Differentiation Opera- tors in Special Function Spaces on the Half-Axis 261
4.3.2 Operational Calculus for the Liouville Fractional Calculus Operators 263
4.3.3 Solutions to Cauchy Type Problems for Fractional Differen- tial Equations with Liouville Fractional Derivatives 266
4.3.4 Other Results 270
4.4 Numerical Treatment 272
5 INTEGRAL TRANSFORM METHOD FOR EXPLICIT SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS 279
5.1 Introduction and a Brief Survey of Results 279
5.2 Laplace Transform Method for Solving Ordinary Differential Equa- tions with Liouville Fractional Derivatives 283
5.2.1 Homogeneous Equations with Constant Coefficients. 283
5.2.2 Nonhomogeneous Equations with Constant Coefficients 295
5.2.3 Equations with Nonconstant Coefficients 303
5.2.4 Cauchy Type for Fractional Differential Equations 309
5.3 Laplace Transform Method for Solving Ordinary Differential Equa- tions with Caputo Fractional Derivatives 312
5.3.1 Homogeneous Equations with Constant Coefficients 312
5.3.2 Nonhomogeneous Equations with Constant Coefficients 322
5.3.3 Cauchy Problems for Fractional Differential Equations 326
5.4 Mellin Transform Method for Solving Nonhomogeneous Fractional Differential Equations with Liouville Derivatives 329
5.4.1 General Approach to the Problems 329
5.4.2 Equations with Left-Sided Fractional Derivatives 331
5.4.3 Equations with Right-Sided Fractional Derivatives 336
5.5 Fourier Transform Method for Solving Nonhomogeneous Differen- tial Equations with Riesz Fractional Derivatives 341
5.5.1 Multi-Dimensional Equations 341
5.5.2 One-Dimensional Equations 344
6 PARTIAL FRACTIONAL DIFFERENTIAL EQUATIONS 347
6.1 Overview of Results 347
6.1.1 Partial Differential Equations of Fractional Order 347
6.1.2 Fractional Partial Differential Diffusion Equations 351
6.1.3 Abstract Differential Equations of Fractional Order 359
6.2 Solution of Cauchy Type Problems for Fractional Diffusion-Wave Equations 362
6.2.1 Cauchy Type Problems for Two-Dimensional Equations 362
6.2.2 Cauchy Type Problems for Multi-Dimensional Equations 366
6.3 Solution of Cauchy Problems for Fractional Diffusion-Wave Equa- tions 373
6.3.1 Cauchy Problems for Two-Dimensional Equations 374
6.3.2 Cauchy Problems for Multi-Dimensional Equations 377
6.4 Solution of Cauchy Problems for Fractional Evolution Equations 380
6.4.1 Solution of the Simplest Problem 380
6.4.2 Solution to the General Problem 384
6.4.3 Solutions of Cauchy Problems via the H-Functions 388
7 SEQUENTIAL LINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER 393
7.1 Sequential Linear Differential Equations of Fractional Order 394
7.2 Solution of Linear Differential Equations with Constant Coef- ficients 400
7.2.1 General Solution in the Homogeneous Case 400
7.2.2 General Solution in the Non-Homogeneous Case. Fractional Green Function 403
7.3 Non-Sequential Linear Differential Equations with Constant Co- efficients 407
7.4 Systems of Equations Associated with Riemann-Liouville and Ca- puto Derivatives 409
7.4.1 General Theory 409
7.4.2 General Solution for the Case of Constant Coefficients. Frac- tional Green Vectorial Function 412
7.5 Solution of Fractional Differential Equations with Variable Coef- ficients. Generalized Method of Frobenius 415
7.5.1 Introduction 415
7.5.2 Solutions Around an Ordinary Point of a Fractional Differ- ential Equation of Order α 418
7.5.3 Solutions Around an Ordinary Point of a Fractional Differ- ential Equation of Order 2α 421
7.5.4 Solution Around an α-Singular Point of a Fractional Differ- ential Equation of Order α 424
7.5.5 Solution Around an α-Singular Point of a Fractional Differ- ential Equation of Order 2α 427
7.6 Some Applications of Linear Ordinary Fractional Differential Equations 433
7.6.1 Dynamics of a Sphere Immersed in an Incompressible Vis- cous Fluid. Basset's Problem 434
7.6.2 Oscillatory Processes with Fractional Damping 436
7.6.3 Study of the Tension-Deformation Relationship of Viscoelas- tic Materials 439
8 FURTHER APPLICATIONS OF FRACTIONAL MODELS 449
8.1 Preliminary Review 449
8.1.1 Historical Overview 450
8.1.2 Complex Systems 452
8.1.3 Fractional Integral and Fractional Derivative Operators 456
8.2 Fractional Model for the Super-Diffusion Processes 458
8.3 Dirac Equations for the Ordinary Diffusion Equation 462
8.4 Applications Describing Carrier Transport in Amorphous Semicon- ductors with Multiple Trapping 463
Bibliography 469
Subject Index 521

