THEORY AND APPLICATIONS
OF FRACTIONAL DIFFERENTIAL
EQUATIONS

ANATOLY A. KILBAS
Belarusian State University
Minsk, Belarus

HARI M. SRIVASTAVA
University of Victoria
Victoria, British Columbia, Canada

JUAN J. TRUJILLO
Universidad de La Laguna
La Laguna (Tenerife)
Canary Islands, Spain
Contents

1 PRELIMINARIES

1.1 Spaces of Integrable, Absolutely Continuous, and Continuous Functions ... 1
1.2 Generalized Functions ... 6
1.3 Fourier Transforms ... 10
1.4 Laplace and Mellin Transforms ... 18
1.5 The Gamma Function and Related Special Functions ... 24
1.6 Hypergeometric Functions ... 27
1.7 Bessel Functions ... 32
1.8 Classical Mittag-Leffler Functions ... 40
1.9 Generalized Mittag-Leffler Functions ... 45
1.10 Functions of the Mittag-Leffler Type ... 49
1.11 Wright Functions ... 54
1.12 The H-Function ... 58
1.13 Fixed Point Theorems ... 67

2 FRACTIONAL INTEGRALS AND FRACTIONAL DERIVATIVES ... 69

2.1 Riemann-Liouville Fractional Integrals and Fractional Derivatives ... 69
2.2 Liouville Fractional Integrals and Fractional Derivatives on the Half-Axis ... 79
2.3 Liouville Fractional Integrals and Fractional Derivatives on the Real Axis ... 87
2.4 Caputo Fractional Derivatives ... 90
2.5 Fractional Integrals and Fractional Derivatives of a Function with Respect to Another Function ... 99
2.6 Erdélyi-Kober Type Fractional Integrals and Fractional Derivatives ... 105
2.7 Hadamard Type Fractional Integrals and Fractional Derivatives ... 110
2.8 Grünwald-Letnikov Fractional Derivatives ... 121
2.9 Partial and Mixed Fractional Integrals and Fractional Derivatives ... 123
2.10 Riesz Fractional Integro-Differentiation ... 127
2.11 Comments and Observations ... 132
3 ORDINARY FRACTIONAL DIFFERENTIAL EQUATIONS.
EXISTENCE AND UNIQUENESS THEOREMS 135

3.1 Introduction and a Brief Overview of Results 135
3.2 Equations with the Riemann-Liouville Fractional Derivative in the
Space of Summable Functions 144
 3.2.1 Equivalence of the Cauchy Type Problem and the Volterra
 Integral Equation 145
 3.2.2 Existence and Uniqueness of the Solution to the Cauchy Type
 Problem 148
 3.2.3 The Weighted Cauchy Type Problem 151
 3.2.4 Generalized Cauchy Type Problems 153
 3.2.5 Cauchy Type Problems for Linear Equations 157
 3.2.6 Miscellaneous Examples 160
3.3 Equations with the Riemann-Liouville Fractional Derivative in the
Space of Continuous Functions. Global Solution 162
 3.3.1 Equivalence of the Cauchy Type Problem and the Volterra
 Integral Equation 163
 3.3.2 Existence and Uniqueness of the Global Solution to the
 Cauchy Type Problem 164
 3.3.3 The Weighted Cauchy Type Problem 167
 3.3.4 Generalized Cauchy Type Problems 168
 3.3.5 Cauchy Type Problems for Linear Equations 170
 3.3.6 More Exact Spaces 171
 3.3.7 Further Examples 177
3.4 Equations with the Riemann-Liouville Fractional Derivative in the
Space of Continuous Functions. Semi-Global and Local Solutions 182
 3.4.1 The Cauchy Type Problem with Initial Conditions at the
 Endpoint of the Interval. Semi-Global Solution 183
 3.4.2 The Cauchy Problem with Initial Conditions at the Inner
 Point of the Interval. Preliminaries 186
 3.4.3 Equivalence of the Cauchy Problem and the Volterra Integral
 Equation 189
 3.4.4 The Cauchy Problem with Initial Conditions at the Inner
 Point of the Interval. The Uniqueness of Semi-Global and
 Local Solutions 191
 3.4.5 A Set of Examples 196
3.5 Equations with the Caputo Derivative in the Space of Continuously
Differentiable Functions 198
 3.5.1 The Cauchy Problem with Initial Conditions at the Endpoint
 of the Interval. Global Solution 199
 3.5.2 The Cauchy Problems with Initial Conditions at the End and
 Inner Points of the Interval. Semi-Global and Local
 Solutions 205
 3.5.3 Illustrative Examples 209
4 METHODS FOR EXPLICITLY SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS

221

4.1 Method of Reduction to Volterra Integral Equations

221

- **4.1.1 The Cauchy Type Problems for Differential Equations with the Riemann-Liouville Fractional Derivatives**

222

- **4.1.2 The Cauchy Problems for Ordinary Differential Equations**

228

- **4.1.3 The Cauchy Problems for Differential Equations with the Caputo Fractional Derivatives**

230

- **4.1.4 The Cauchy Type Problems for Differential Equations with Hadamard Fractional Derivatives**

234

4.2 Compositional Method

238

- **4.2.1 Preliminaries**

238

- **4.2.2 Compositional Relations**

239

- **4.2.3 Homogeneous Differential Equations of Fractional Order with Riemann-Liouville Fractional Derivatives**

242

- **4.2.4 Nonhomogeneous Differential Equations of Fractional Order with Riemann-Liouville and Liouville Fractional Derivatives with a Quasi-Polynomial Free Term**

245

- **4.2.5 Differential Equations of Order 1/2**

248

- **4.2.6 Cauchy Type Problem for Nonhomogeneous Differential Equations with Riemann-Liouville Fractional Derivatives and with a Quasi-Polynomial Free Term**

251

- **4.2.7 Solutions to Homogeneous Fractional Differential Equations with Liouville Fractional Derivatives in Terms of Bessel-Type Functions**

257

4.3 Operational Method

260

- **4.3.1 Liouville Fractional Integration and Differentiation Operators in Special Function Spaces on the Half-Axis**

261

- **4.3.2 Operational Calculus for the Liouville Fractional Calculus Operators**

263

- **4.3.3 Solutions to Cauchy Type Problems for Fractional Differential Equations with Liouville Fractional Derivatives**

266

- **4.3.4 Other Results**

270

4.4 Numerical Treatment

272

5 INTEGRAL TRANSFORM METHOD FOR EXPLICIT SOLUTIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS

279

5.1 Introduction and a Brief Survey of Results

279

5.2 Laplace Transform Method for Solving Ordinary Differential Equations with Liouville Fractional Derivatives

283
5.2.1 Homogeneous Equations with Constant Coefficients. 283
5.2.2 Nonhomogeneous Equations with Constant Coefficients. 295
5.2.3 Equations with Nonconstant Coefficients. 303
5.2.4 Cauchy Type for Fractional Differential Equations 309
5.3 Laplace Transform Method for Solving Ordinary Differential Equations with Caputo Fractional Derivatives 312
5.3.1 Homogeneous Equations with Constant Coefficients. 312
5.3.2 Nonhomogeneous Equations with Constant Coefficients 322
5.3.3 Cauchy Problems for Fractional Differential Equations . 326
5.4 Mellin Transform Method for Solving Nonhomogeneous Fractional Differential Equations with Liouville Derivatives 329
5.4.1 General Approach to the Problems. 329
5.4.2 Equations with Left-Sided Fractional Derivatives 331
5.4.3 Equations with Right-Sided Fractional Derivatives 336
5.5 Fourier Transform Method for Solving Nonhomogeneous Differential Equations with Riesz Fractional Derivatives 341
5.5.1 Multi-Dimensional Equations. 341
5.5.2 One-Dimensional Equations. 344
6 PARTIAL FRACTIONAL DIFFERENTIAL EQUATIONS 347
6.1 Overview of Results. 347
6.1.1 Partial Differential Equations of Fractional Order 347
6.1.2 Fractional Partial Differential Diffusion Equations 351
6.1.3 Abstract Differential Equations of Fractional Order 359
6.2 Solution of Cauchy Type Problems for Fractional Diffusion-Wave Equations. 362
6.2.1 Cauchy Type Problems for Two-Dimensional Equations 362
6.2.2 Cauchy Type Problems for Multi-Dimensional Equations 366
6.3 Solution of Cauchy Problems for Fractional Diffusion-Wave Equations. 373
6.3.1 Cauchy Problems for Two-Dimensional Equations 374
6.3.2 Cauchy Problems for Multi-Dimensional Equations 377
6.4 Solution of Cauchy Problems for Fractional Evolution Equations. 380
6.4.1 Solution of the Simplest Problem. 380
6.4.2 Solution to the General Problem. 384
6.4.3 Solutions of Cauchy Problems via the H-Functions. 388
7 SEQUENTIAL LINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER 393
7.1 Sequential Linear Differential Equations of Fractional Order. 394
7.2 Solution of Linear Differential Equations with Constant Coefficients. 400
7.2.1 General Solution in the Homogeneous Case. 400
7.2.2 General Solution in the Non-Homogeneous Case. Fractional Green Function. 403
7.3 Non-Sequential Linear Differential Equations with Constant Coefficients .. 407
7.4 Systems of Equations Associated with Riemann-Liouville and Caputo Derivatives 409
 7.4.1 General Theory ... 409
 7.4.2 General Solution for the Case of Constant Coefficients. Fractional Green Vectorial Function 412
7.5 Solution of Fractional Differential Equations with Variable Coefficients. Generalized Method of Frobenius 415
 7.5.1 Introduction ... 415
 7.5.2 Solutions Around an Ordinary Point of a Fractional Differential Equation of Order α 418
 7.5.3 Solutions Around an Ordinary Point of a Fractional Differential Equation of Order 2α 421
 7.5.4 Solution Around an α-Singular Point of a Fractional Differential Equation of Order α 424
 7.5.5 Solution Around an α-Singular Point of a Fractional Differential Equation of Order 2α 427
7.6 Some Applications of Linear Ordinary Fractional Differential Equations .. 433
 7.6.1 Dynamics of a Sphere Immersed in an Incompressible Viscous Fluid. Basset’s Problem 434
 7.6.2 Oscillatory Processes with Fractional Damping ... 436
 7.6.3 Study of the Tension-Deformation Relationship of Viscoelastic Materials .. 439

8 FURTHER APPLICATIONS OF FRACTIONAL MODELS 449

 8.1 Preliminary Review ... 449
 8.1.1 Historical Overview .. 450
 8.1.2 Complex Systems .. 452
 8.1.3 Fractional Integral and Fractional Derivative Operators .. 456
 8.2 Fractional Model for the Super-Diffusion Processes ... 458
 8.3 Dirac Equations for the Ordinary Diffusion Equation .. 462
 8.4 Applications Describing Carrier Transport in Amorphous Semiconductors with Multiple Trapping 463

Bibliography ... 469

Subject Index ... 521