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Abstract

This paper introduces a general framework for market models, named
Market Model Approach, through the concept of admissible sets of for-
ward swap rates spanning a given tenor structure. We relate this concept
to results in graph theory by showing that a set is admissible if and only if
the associated graph is a tree. This connection enables us to enumerate all
admissible models for a given tenor structure. Three main classes are iden-
tified within this framework, and correspond to the co-terminal, co-initial,
and co-sliding model. We prove that the LIBOR market model is the
only admissible model of a co-sliding type. By focusing on the co-terminal
model in a lognormal setting, we develop and compare several approxi-
mating analytical formulae for caplets, while swaptions can be priced by
a simple Black-type formula. A novel calibration technique is introduced
to allow simultaneous calibration to caplet and swaption prices. Empirical
calibration of the co-terminal model is shown to be faster, more robust
and more efficient than the same procedure applied to the LIBOR market
model. We then argue that the co-terminal approach is the simplest and
most convenient market model for pricing and hedging a large variety of
exotic interest-rate derivatives.
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1 Introduction

In recent years, market models of interest rate dynamics have attracted much
attention among academics, and have become increasingly popular among prac-
titioners. These models look more appealing than classical short-term rate based
approaches from both a theoretical and a practical point of view since they are
built by directly specifying arbitrage-free dynamics on a set of forward LIBOR
or swap rates. Several issues on the implementation side do however exist be-
cause of the high dimensionality of the associated Markovian dynamics. Despite
this, market models have recently gained an undisputed popularity thanks to
the availability of new approximation and model calibration techniques.
Historically, two different (yet mathematically similar) approaches have been

introduced. In the LIBOR market model (LMM) developed by Brace, Gatarek
and Musiela (1997); Goldys (1997); Miltersen, Sandmann and Sondermann
(1997); Musiela and Rutkowski (1997); arbitrage-free dynamics are assigned to
a set of non-overlapping forward LIBOR rates while in the swap market model
(SMM), first introduced by Jamshidian (1997), similar dynamics are assigned to
a family of forward swap rates. Nonetheless, most of the available literature on
the subject has focused on the LMM only. Many authors rely on the convenient
assumption that consists of assigning dynamics to forward LIBOR rates driven
by a d-dimensional Itô diffusion process with deterministic volatility. In this set-
ting, Glasserman and Zhao (2000) study arbitrage-free discrete-time approxima-
tions of the LMM, while Jäckel and Rebonato (2003) and Hull and White (2000)
introduce methods to approximate true LIBOR dynamics by high-dimensional
lognormal processes. Schoenmakers and Coffey (1999) propose parameterised
instantaneous correlation structures that simplify model implementation, while
model calibration issues for LMM are extensively studied in Rebonato (2003),
Brigo and Mercurio (2001), Schoenmakers and Coffey (2003), and d’Aspremont
(2003). Andersen and Andreasen (2000) introduce a LMM where the instanta-
neous volatility of the LIBOR rates is allowed to be nonlinearly state-dependent
(more precisely, of a CEV type), while stochastic volatility extensions are dis-
cussed in Andersen and Brotherton-Ratcliffe (2001), Joshi and Rebonato (2003),
and Wu and Zhang (2002). In this respect, it is also worth mentioning the work
of Jamshidian (1999) who studies possible extensions of the standard diffusion-
based approach to general semimartingale processes, as well as Glasserman and
Kou (2003), Glasserman and Merener (2003), for LMM with jumps. A vast em-
pirical study dedicated to stochastic volatility and jump LMM is given in Jarrow,
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Li, and Zhao (2003), while one-factor and two-factor versions of LMM and SMM
are compared in De Jong, Driessen, and Pelsser (2000). Finally, Hunter, Jäckel,
and Joshi (2001) and Pietersz, Pelsser, and Van Regenmortel (2004) introduce
efficient Monte-Carlo methods to simulate a set of correlated LIBOR rates.
Despite the extensive literature available on the LMM, very little has been

published on its swap rate counterpart until now. Models based on dynam-
ics assigned to forward swap rates are often considered less tractable than the
LMM both in theory and in the applications, although the two approaches are
remarkably close in their mathematical construction (Rebonato (2003)). On the
practical side, many authors seem to prefer the LMM by claiming that LIBOR
rates are “more fundamental” financial quantities than swap rates. This view is
sometimes justified by noticing that, to a good degree of accuracy, forward swap
rates may be thought of as deterministic linear combinations of forward LIBOR
rates (Brigo and Mercurio (2001)).
In this paper we challenge these claims although our results are, in fact, more

general. Our goal is threefold.
First, we consider a general specification of a model that concentrates on

observable market rates directly. We assign arbitrage free dynamics to a generic
family of forward swap rates, and aim at finding the weakest condition under
which this construction yields a unique specification in all equivalent pricing
measures. In this respect, the concept of admissibility of a set is introduced,
and its theoretical and practical implications are discussed. The Market Model
Approach is introduced next. It is the most general modelling framework where
arbitrage-free dynamics are assigned to an admissible set. The cornerstone of
this approach is the direct modelling of forward swap rates such that absence
of arbitrage and market completeness are both satisfied with respect to the
chosen tenor structure. This is in contrast to a construction in the spirit of
Heath-Jarrow-Morton (1992) where one starts by assigning dynamics to a set of
instantaneous forward rates or a family of discount bond prices. Correspond-
ingly, we determine the necessary and sufficient conditions for this to hold. We
argue below that our approach is preferable in pricing and risk-management ap-
plications. Interestingly, we show that properties of admissible sets can be best
understood with the use of graph theory. This mapping allows us to graphically
characterise all admissible sets in a simple and intuitive way and, moreover, to
determine the number of distinct models that are admissible for a given tenor
structure. Our study shows that the class of admissible market models is very
large, and contains all “standard” ones (Brace, Gatarek, and Musiela (1997),
Jamshidian (1997)) as special cases. We identify three major subclasses called
co-initial, co-sliding and co-terminal according to the nature of the family of
forward swap rates. As an important corollary, we prove that the LMM is the
only admissible model of a co-sliding type.
Second, we concentrate on the co-terminal SMM (ctSMM, in short), and dis-

cuss market situations where the use of this approach is most relevant. In partic-
ular, we demonstrate that it enjoys the same degree of mathematical tractability
as the LMM. For instance, drift approximations for the pricing of vanilla options
work equally well in comparison to a standard LMM framework. Obviously, this
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contradicts the current widespread perception about the computational burden
of the SMM.
Third, we focus on the calibration of the ctSMM, and show how a joint

calibration on market prices of caplets and swaptions can be achieved in a faster,
more robust and more transparent way than in the LMM. We provide numerical
and empirical results supporting this claim. These findings indicate that the
ctSMM is a fundamental pricing and risk-management tool for a large variety of
exotic interest-rate (IR) derivatives.
The rest of the paper is organised as follows. In Section 2 we introduce some

notation, and define the Market Model Approach by assigning arbitrage-free dy-
namics to a set of admissible (in a sense to be later defined) forward swap rates.
We discuss connection with graph theory in Section 3. There, we show that a
set of forward swap rates is admissible if and only if the associated graph is a
tree. By borrowing results from graph theory on labelled trees we enumerate all
admissible market models for a given tenor structure. In Section 4 three major
subclasses of admissible models are unveiled, and a different use for each type is
identified and discussed. We argue that a subclass is more appropriate to price a
particular category of IR derivatives if it is directly built from the forward swap
rates underlying the pay-off structure. In that way the chosen market model
should be able to exploit the most relevant information for pricing and hedging
purposes. From Section 5 on we concentrate on the ctSMM class, and discuss
the utility of co-terminal models in the context of commonly traded exotic IR
derivatives. Section 6 is dedicated to the pricing of plain-vanilla IR derivatives
such as swaptions and caplets. For caplet pricing, we explore several analyti-
cal approximation methods. In Section 7 we concentrate on the calibration of
the ctSMM. There, we introduce a parametric recursive approach, often called
“bootstrap” algorithm by practitioners. This new methodology allows us to eas-
ily calibrate the model to market quotes of caplets and co-terminal swaptions
associated to the same tenor structure. Section 8 contains all numerical results,
namely a numerical comparison of the different approximation and calibration
schemes developed in Sections 6 and 7. We also examine how the calibration
procedure based on the parametric recursive algorithm performs empirically on
weekly quotes of caplets and swaptions ranging from May 17th, 2004, to May
16th, 2005. Section 9 gathers some concluding remarks.

2 Market Model Approach

We assume that we are given a pre-specified collection of reset/settlement dates
T := {T1, · · · , TM}, referred to as the tenor structure, with Tj < Tk, 1 ≤
j < k ≤ M . Starting time is assumed to be T0 = 0 with T0 < T1. The
year fraction between any two consecutive dates is denoted by δj = Tj − Tj−1,
for j = 1, · · · ,M . Throughout the paper, we will assume that a day-count
convention has been assigned, with no loss of generality.
We write B(t, Tj), j = 1, ...,M, to denote the price at time t of a discount

bond that matures at time Tj > t. The forward swap rate S (t, Tj, Tk) is defined
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through

(2.1) S (t, Tj , Tk) =
B (t, Tj)−B (t, Tk)

G (t, Tj , Tk)
, G (t, Tj , Tk) =

kX

l=j+1

δlB (t, Tl) ,

for t ∈ [0, Tj ].
For a generic forward swap rate, we will refer to Tj (resp. Tk) as the swap

start (resp. end) date. Here we have introduced the price process of the annuity
numéraire G (t, Tj , Tk). From (2.1) it is easily seen that a forward swap rate is
built on ratios of discount bond prices:

S (t, Tj , Tk) =

µ
B (t, Tj)

B (t, Tk)
− 1
¶
/

kX

l=j+1

δl
B (t, Tl)

B (t, Tk)
.

We denote the set of all forward swap rates associated to the tenor structure T
by ST := {S (t, Tj, Tk) ;Tj , Tk ∈ T , j < k}, or simply by S if no confusion arises.
Let (Ω,F ,P) be a probability space and W a d-dimensional Wiener process.

Throughout this paper, F will be assumed to be the natural filtration generated
by W , i.e.

©
FW
t

ª
= σ (Ws, s ≤ t), so that W is adapted to F . A probabil-

ity measure PTj ,Tk , equivalent to the historical probability measure P, is said
to be the forward swap probability measure associated with the dates Tj and
Tk, or simply the forward swap measure, if for i = 1, ...,M , the relative bond
price B (t, Ti) /G (t, Tj , Tk), ∀t ∈ [0, Ti ∧ Tj+1], follows a local martingale process
under PTj ,Tk . Here, G (t, Tj , Tk) is the price of the numéraire so that the for-
ward swap rate S (t, Tj , Tk) is a P

Tj ,Tk -martingale. We denote the corresponding
Brownian motion under PTj ,Tk by WTj ,Tk .
Since S (t, Tj , Tk) is a P

Tj ,Tk -martingale, we postulate that, under PTj ,Tk :

(2.2)
dS(t, Tj , Tk)

S(t, Tj , Tk)
= λ(t, Tj , Tk)

0

dWTj ,Tk(t), ∀t ∈ [0, Tj ] ,

where the vector-valued volatility function λ(t, Tj , Tk) is left unspecified. Here
we rule out the possibility of forward swap rates with identical paths, namely
with identical volatility functions and initial conditions. Since λ(t, Tj , Tk) is
deterministic, S(t, Tj , Tk) will be lognormally distributed, but we point out that
our results hold true even when λ(t, Tj , Tk) is stochastic.
As we show below, however, there is no guarantee that the above dynamics

are in general well-defined in their natural martingale measure for a completely
generic choice of the set of forward swap rates. Therefore, there is no guar-
antee that these dynamics yield a unique specification in all equivalent pricing
measures. For this to hold, we would need to prove the existence of a complete
family of discount bond prices spanning the tenor structure. This property is
however not guaranteed a priori. For a moment we will then assume that this
set exists so that dynamics (2.2) are well-defined.
We remark that, at least in principle, a solution could rely on building mar-

ket models as particular specifications of the framework of Heath, Jarrow, and
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Morton (1992) (HJM) as done, for instance, in Brace, Gatarek, and Musiela
(1997), within the LMM class. The problem with this “indirect” approach is
that dynamics (i.e. instantaneous volatility functions) must be assigned on un-
observable rates, as opposed to LIBOR or swap rates which are the natural state
variables in market models. These are in fact the quantities one is willing to di-
rectly model and control. This also explains why we depart from a standard
HJM construction in this paper.
We observe that the forward LIBOR rate L (t, Tj) , j = 1, ...,M − 1, defined

as

L(t, Tj) =
B(t, Tj)−B(t, Tj+1)

δj+1B(t, Tj+1)
, ∀t ∈ [0, Tj ] ,

is itself a forward swap rate S(t, Tj , Tk) corresponding to k = j + 1, whose
volatility function is denoted by λ(t, Tj). Accordingly, we denote by P

Tj the cor-
responding forward probability measure associated to the discount bond price
B(t, Tj), and byW

Tj a Brownian motion under PTj . Then, for every i = 1, ...,M,
the relative bond price B (t, Ti) /(δj+1B(t, Tj+1)), ∀t ∈ [0, Ti ∧ Tj+1], follows
a local martingale under PTj+1 . To simplify the exposition, we will often use
the following compact notations: Bj (t) := B (t, Tj), Gjk (t) := G (t, Tj , Tk),
Sjk (t) := S(t, Tj , Tk), λjk (t) := λ(t, Tj , Tk), Lj (t) := L(t, Tj), λj (t) := λ(t, Tj).
Sometimes, we will also omit specifying calendar-time t dependence, if no con-
fusion arises.
A generic arbitrage-free model is then specified by assigning arbitrage-free

dynamics to a given set of forward swap rates spanning the tenor structure.
Obviously, there are many possible choices regarding the selection of forward
swap rates. Only a few among them are meaningful from a modelling perspective.
To this aim, we introduce the following concept

Definition 2.1 Let T be a generic tenor structure, and S its associated set
of forward swap rates. A collection {D,SD} of reset/settlement dates D =
{Ta, · · · , Tb} and forward swap rates SD := {S(t, Tj , Tk);Tj , Tk ∈ D, j < k} as-
sociated with D is called degenerate if the following conditions are satisfied

1. {D,SD} ⊆ {T ,S}.

2. For any date Tj, j = a+1, · · · , b−1, there exist in SD at least one forward
swap rate starting at Tj and one forward swap rate ending at Tj.

3. There exist in SD at least two forward swap rates starting at Ta and two
forward swap rates ending at Tb.

The thinnest configuration that is associated to a degenerate subset is de-
picted in Figure 1a. We can see that every element of SD has both start and
end date contained in D. The picture shows that the set SD yields a closed loop
(or cycle) as opposed to a tree. We defer the description of the link between
degenerate subsets and graph theory as well as the mathematical definitions
of a cycle and a tree to the next section. The set SD is made of two disjoint
subsets SD =

©
Su
D,S

d
D

ª
with Su

D := {Su
i }D (upper path of the graph) and
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Sd
D :=

©
Sd
j

ª
D
(lower path of the graph) such that Hu = {Tu

1 , T
u
2 , · · · , T

u
m} and

Hd =
©
T d
1 , T

d
2 , · · · , T

d
n

ª
with Tu

1 = T d
1 = Ta, and Tu

m = T d
n = Tb. In particular,

every date at the tip of the arrows in Figure 1a corresponds to a forward swap
rate ending at that date. As a consequence, the set Su

D (resp. Sd
D) is charac-

terised by the following graphical property: starting from date Ta, it is possible
to “reach” the end date Tb by means of a unique path following arrows between
dates belonging to Su

D (resp. Sd
D) only. From a financial point of view, this

property corresponds to the following investment strategy: if an amount N0 is
invested at time Ta, there exist two distinct sequences of dates such that i) at
any date the notional principal is redeemed and immediately reinvested at the
current interest rate, and ii) the principal N0 is redeemed at time Tb.

PLEASE INSERT
Figure 1. Degenerate set and example of a tree.

Let A be the set of all degenerate subsets {D,SD} for a given tenor structure
T and family of forward swap rates S. The concept of an admissible set of
forward swap rates can then be formulated.

Definition 2.2 A set S := {S(t, Tj , Tk);Tj , Tk ∈ T , j < k} of forward swap
rates given a tenor structure T is said to be admissible if

1. The cardinality of the set is equal to the number of dates in the tenor
structure minus one, i.e. |S| =M − 1.

2. Any date Tj , j = 1, · · · ,M , in the tenor structure must coincide with a
reset/settlement date of at least one forward swap rate in S.

3. The set A is empty, i.e. |A| = 0.

Assume that we are given forward swap rates belonging to an admissible set.1

The following result holds:

Proposition 2.1 For all t ∈ [0, T1), if the set S is admissible, then a set of

deflated discount bond prices
n

B(t,Tk)
B(t,Ti)

o
k=1,...,M

relative to B(t, Ti), i = 1, . . . ,M ,

exists and is uniquely defined P-a.s. Conversely, if for all t ∈ [0, T1) a set of
deflated discount bond prices

n
B(t,Tk)
B(t,Ti)

o
k=1,...,M

relative to B(t, Ti), i = 1, . . . ,M ,

exists and is uniquely specified P-a.s. by S, then S is admissible.

Proof. See Appendix A.
Proposition 2.1 states that from an admissible set of forward swap rates it is

possible to uniquely determine sets of deflated discount bond prices, relative to
a given discount bond, spanning the entire tenor structure 2 . More explicitly, if

1Here, we implicitly assume that the dynamics of discount bond prices are associated to
Equation (2.2) .

2As a side remark, we note that the tenor structure and its associated family of forward
swap rates at t < T1are different from the corresponding sets at t > T1, and need to be
redefined in each interval.
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the set is not admissible, three situations may occur. If |S| < M − 1, there exist
multiple choices of discount bond prices that are all compatible, at any time,
with the given set of forward swap rates. In this situation, dynamics (2.2) cannot
be uniquely specified. Depending on the choice of the family of discount bond
prices associated to S, multiple choices of LIBOR rate dynamics (and associated
pricing measures) are possible. The model is then incomplete. If |S| > M − 1 it
is not possible to determine a family of discount bond prices that are compatible
with S, and dynamics (2.2) are not well-defined. In this case, the market model
is not arbitrage free. Finally if |S| =M −1 but the set A is not empty, then it is
not possible to guarantee the existence of a set of deflated discount bond prices
for any choice of B(t, Ti), i = 1, . . . ,M , as numéraire, as shown in Appendix A.
If the set S is admissible, Proposition 2.1 shows that it is possible, in prin-

ciple, to build market models by assigning the joint dynamics of S in any mar-
tingale measure that is associated to the tenor structure, and to rely on the
construction of Jamshidian (1997) to price LIBOR and swap derivatives by ar-
bitrage. Examples of admissible and non-admissible sets of forward swap rates
are given in Figure 2 for M = 5.

PLEASE INSERT
Figure 2. Examples of admissible and non-admissible sets of forward swap rates.

The following proposition further shows that in any admissible model all
deflated discount bond prices are well-behaved and, consequently, changes of
numéraire are well defined.

Proposition 2.2 If the set S := {S(t, Tj , Tk)} is admissible, all deflated dis-

count bond prices
n

B(t,Tk)
B(t,Ti)

o
k=1,...,M

relative to B(t, Ti), i = 1, . . . ,M , are dif-

ferent from zero for all t ∈ [0, T1), P-a.s..
Proof. See Appendix B.
Combining Propositions 2.1 and 2.2, we deduce that the choice of an ad-

missible set of forward swap rates is a necessary and sufficient condition for the
associated market model to admit a unique specification in any equivalent prob-
ability measure associated to a discrete tenor structure. Correspondingly, we
introduce the following concept.

Definition 2.3 A Market Model Approach (MMA) is specified through assigning
arbitrage free dynamics of the type (2.2) to a set of admissible forward swap rates.

We observe that Proposition 2.2 does not exclude the possibility that discount
bond prices might take values larger than 1. Thus, absence of arbitrage is
guaranteed in the MMA in the weak form only, after Musiela and Rutkowski
(2004). The MMA is the most general framework for market models of interest
rate dynamics where the starting point is the direct modelling of observable state
variables. For practical purposes, however, the class of admissible sets of forward
swap rates is still too large (see Proposition 3.3). In Section 4 we will select,
among all admissible models, those being the most relevant from a pricing and
risk-management point of view.
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3 Connection with graph theory

The above considerations suggest an interesting way to simplify the concept of
admissibility of a set of forward swap rates through the mathematical theory of
graphs. Let us first recall some useful concepts related to that theory. We follow
the standard text by Diestel (2000).
Let Gr := (V,E) be a graph made of a given set V of vertices (or points) and

a set E of edges (or lines). A generic edge e is a line connecting two adjacent
vertices. If x and y are adjacent vertices, the edge connecting them will be
indicated by the set e = {x, y} := xy. Pair-wise, non-adjacent vertices are called
independent. A vertex v is incident with and edge f if v ∈ f , e.g. x and y are
incident with e. Let Gr0 ∩Gr := (V ∩ V 0, E ∩E0) the intersection between two
graphs. If Gr0 ∩ Gr = ∅, then Gr and Gr0 are disjoint graphs. Two disjoint
graphs are graphically unconnected, i.e., there are no edges linking a vertex of
Gr with one of Gr0. We say that Gr0 ⊆ Gr is a spanning subgraph of Gr if
V 0 spans all vertices of Gr, that is if V = V 0. The degree d(v) of a vertex v
is the number |E(v)| of edges at v. A path is a non-empty graph P = (V,E)
of the form V = {x0, x1, · · · , xk}, E = {x0x1, x1x2, · · · , xk−1xk}. For ease of
notation, a path is usually defined by the sequence of its vertices. If P is a path
with k ≥ 3, then the graph C = P + xk−1x0 is called a cycle. From a graphical
point of view, a cycle is a sequence of lines joining adjacent vertices where every
vertex is simultaneously the start and the end of the path. A non-empty graph
is called connected if any two of its vertices are linked by a path. A connected
graph with no cycles (or acyclic graph) is called a tree (see Figure 1b). Spanning
subgraphs that are also trees are called spanning trees. A labelled tree is a tree
with its nodes labelled.
A simple link exists between sets of forward swap rates associated to a tenor

structure and a graph. To this aim, we observe that, by defining T := V and
S := E, the set Gr = {T ,S} is a graph. In this formulation, a degenerate subset
is equivalent to the presence of a cycle in Gr. More generally, it is possible to
recast Definition 2.2 by means of graph theory as follows.

Definition 3.1 A set S is said to be admissible if

1. The graph Gr has M vertices and M−1 edges, i.e., |S| = |T |−1 =M−1,
2. The graph Gr is connected.

The following result states the equivalence between Definitions 2.2 and 3.1.

Proposition 3.1 Definition 2.2 and Definition 3.1 are equivalent.

Proof. See Appendix C.
Definition 3.1 allows us to translate the concept of admissibility in terms of

graph properties. A further step in this direction can be achieved by recalling a
fundamental result in graph theory.

Theorem 3.1 A connected graph with M vertices is a tree if and only if it has
M − 1 edges.
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Proof. See Diestel (2000).
As a consequence, the simplest characterisation of admissibility of a set of

forward swap rates reads as follows.

Proposition 3.2 A set S is admissible if and only if Gr is a tree.

Proposition 3.2 allows determining, by simple graphical inspection, whether
a set of forward swap rates is admissible or not. Besides, the mapping to graph
theory allows us to enumerate all admissible market models for a given tenor
structure.

Proposition 3.3 For a given tenor structure T := {T1, · · · , TM} there are
MM−2 admissible sets.

Proof. See Appendix D.
TheseMM−2 admissible sets can be characterised via the Prüfer code (Prüfer

(1918)). This well-known algorithm is an encoding which provides a bijection
between the MM−2 labelled trees on M nodes and strings of M − 2 integers
chosen from an alphabet of the numbers 1 to M . Symbolic calculus packages
such as Mathematica provide routines which can convert a Prüfer code to a
labelled tree, and vice-versa.

4 Model selection

As Proposition 3.3 shows, the number of admissible models becomes rapidly
extremely large at increasing M . The first few values are in fact
1, 1, 3, 16, 125, 1296, .... In a typical market configuration with annual re-
set/settlement dates and a 10-year maturity, one can introduce 108 different
admissible market models. Thus, the choice of the set of forward swap rates that
underlie model dynamics must be driven by practical considerations. Usually,
dynamic IR models are used to price and hedge exotic IR derivatives for which
no direct market information exists. To ensure meaningful hedging, a model
should be made consistent with the term structure of interest rates as well as
the volatility information provided by a set of quoted plain-vanilla derivatives.
These are typically caps and swaptions. Depending on the type of exotic option
to be priced, however, some of these “market” instruments may be more relevant
than others. As an example, we consider a Bermudan swaption. If the option
gives the holder the right to enter at times T1, T2, · · · , TM−1, into a plain-vanilla
swap maturing at TM , the only relevant European swaptions from a pricing and
hedging perspective are those whose expiry dates are T1, T2, · · · , TM−1, and with
underlying swap maturity TM . In this case, the natural choice is to introduce a
MMA where the relevant set coincides with the co-terminal forward swap rates.
The spanning set underlying the dynamics is shown in Figure 3a. In this case, all
forward swap rates share the same terminal date TM but have a variable initial
date. In summary, we can introduce the following model.

Definition 4.1 A co-terminal swap market model (ctSMM) is built from

10



1. An admissible set {SjM}, j = 1, · · · ,M − 1, of forward swap rates with
different start dates and equal end date TM .

2. A collection of mutually equivalent probability measures PTj ,TM , j =
1, · · · ,M − 1.

3. A family WTj ,TM of processes such that: (i) for any j = 1, · · · ,M − 1,
WTj ,TM follows a d-dimensional Brownian motion under the forward swap
probability measure PTj ,TM , (ii) for any j = 1, · · · ,M − 1, the forward
swap rate satisfies the SDE, for all t ∈ [0, Tj ]:

dSjM (t) = SjM (t)λjM
0

(t)dWTj ,TM (t), SjM (0) =
Bj (0)−BM (0)
PM

l=j+1 δlBl (0)
.

European-style derivatives give the holder the right to exercise an option at
a single future date T . Therefore, the option payoff, no matter how complex, is
by definition FT -measurable. Qualitatively speaking, a set of admissible forward
swap rates sharing the same initial date T contains all the information needed to
evaluate the payoff, the latter being in fact a function of a set of admissible “co-
initial” forward swap rates at time T . Hence, a MMA built on a set of co-initial
forward swap rates provides a powerful tool to price and hedge a large variety of
European style derivatives including forward-start, amortising and zero-coupon
swaptions as well as cross-currency swaptions. These issues are further discussed
in Galluccio and Hunter (2004). As opposed to the ctSMM, all forward swap
rates in the co-initial SMM share the same initial date T1 but have a variable
terminal date (see Figure 3b). We therefore arrive at the following description.

Definition 4.2 A co-initial swap market model (ciSMM) is built from

1. An admissible set {S1j}, j = 2, · · · ,M , of forward swap rates with equal
start date T1 and variable end dates.

2. A collection of mutually equivalent probability measures PT1,Tj , j =
2, · · · ,M .

3. A family WT1,Tj of processes such that: (i) for any j = 2, · · · ,M, WT1,Tj

follows a d-dimensional Brownian motion under the forward swap prob-
ability measure PT1,Tj , (ii) for any j = 2, · · · ,M, the forward swap rate
satisfies the SDE, for all t ∈ [0, T1]:

dS1j(t) = S1j(t)λ1j
0

(t)dWT1,Tj (t), S1j (0) =
B1 (0)−Bj (0)Pj

l=2 δlBl (0)
.

PLEASE INSERT
Figure 3. Sets of co-terminal, co-initial and co-sliding forward swap rates.

A third common class of products is that of IR derivatives, such as constant
maturity swaps (or CMS), whose pay-off functions depend on a set of fixed-
maturity instruments. In this case, an efficient choice consists of introducing a
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family of admissible forward swap rates having variable start and end date, but
sharing the same period interval between tenor dates or time-to-maturity. We
call this type of model “co-sliding” (see Figure 3c).

Definition 4.3 A co-sliding swap market model (csSMM) is built from

1. An admissible set {Sj,j+1}, j = 1, · · · ,M − 1 of forward swap rates.

2. A collection of mutually equivalent probability measures PTj ,Tj+1 , j =
1, · · · ,M − 1.

3. A family WTj ,Tj+1 of processes such that: (i) for any j = 1, · · · ,M − 1,
WTj ,Tj+1 follows a d-dimensional Brownian motion under the forward swap
probability measure PTj ,Tj+1 , (ii) for any j = 1, · · · ,M − 1, the forward
swap rate satisfies the SDE, for all t ∈ [0, T1]:

dSj,j+1(t) = Sj,j+1(t)λ
0
j,j+1(t)dW

Tj ,Tj+1(t), Sj,j+1 (0) =
Bj (0)−Bj+1 (0)Pj+1

l=j+1 δlBl (0)
.

In fact Definition 4.3 introduces the LMM, since non-overlapping forward
swap rates of the form {Sj,j+1}, j = 1, · · · ,M − 1, are indeed forward LIBOR
rates. Remark that other co-sliding type models can be obtained by generalising
the above equations to arbitrary families of overlapping and non-overlapping
forward swap rates, like i) those in the form {Sj,j+n}, j = 1, 2, . . . ,M − n, with
n = 2, . . . ,M − 1; ii) those in the form {Sj,j+m}, j = 1,m+ 1, . . . , (km+ 1) ∧
(M −m), with m = 2, . . . ,M − 1, and k ∈ N. However, these alternative
co-sliding models are not admissible, after Propositions 2.1 and 2.2. A direct
consequence of the above is the following

Corollary 4.1 The LMM is the only admissible model of a co-sliding type.

Another subclass of admissible models is that of “mixed” models obtained by
assigning dynamics on admissible sets of forward swap rates where some swaps
are co-sliding and some others are co-terminal. This case has been recently
studied in Pietersz and Van Regenmortel (2004).
In conclusion, the MMA constitutes the most general framework to price

and hedge IR derivatives where the starting point is the modelling of financial
observable quantities like forward swap rates. Note, finally, that Definitions
4.1 to 4.3 can be easily extended to far more general classes of processes, see
Jamshidian (1999).

5 The co-terminal SMM

The co-terminal class, first introduced by Jamshidian (1997), is the one we con-
centrate from now on. In our opinion, its relevance has been largely overlooked
in the literature until now.
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We start by stressing that the underlying of many Over-The-Counter (OTC)
interest rate derivatives are indeed swap (as opposed to LIBOR) rates. The
simplest and most important example is the Bermudan swaption. Apart from
plain-vanilla caps and swaptions, Bermudan swaptions are the most liquid IR
derivatives. The owner of such a contract at a generic time t has the right to
enter into a plain-vanilla swap maturing at a date TM at any date among those in
the set {T1, · · · , TM−1}. The optimal exercise boundary can be found by using
a standard optimal control approach, and the pricing formula can be formally
decomposed into a hierarchical sequence of European swaptions (Jamshidian
(1997)). At any time Ti, i < M − 1, the exercise decision will depend on the
assessment of the volatility that will drive future swap rate dynamics, prevailing
at that particular time. To price (and hedge) a Bermudan option at any time t <
Ti we need an arbitrage-free model for the evolution of the underlying rates. This
simple example shows that a sound pricing methodology must concentrate on
evolving swap rates, as they constitute the natural underlying of the Bermudan
option.
The usual way, within the LMM setting, consists of trying to force the

LIBOR-based dynamics to be consistent with the market information provided
by the price of European swaptions. However, a perfect match of all cap and
swaption prices is difficult to achieve without introducing strong assumptions in
the model (Brigo and Mercurio (2001)), so that global minimisation algorithms
are often the preferred choice. In this case, however, only a selection of options is
considered for calibration (see for instance Rebonato (2003)). As pointed out in
a similar context by Cont and Tankov (2004), unconstrained global optimisation
algorithms are in general slow, and may suffer from both accuracy and robust-
ness problems. For these reasons, achieving a (quick and robust) simultaneous
calibration to caplet and swaption prices within their bid/ask volatility spread
can be problematic in the LMM setting 3 .
On the opposite, a ctSMM can be easily calibrated to a selection of caplets

and “diagonal” swaptions, as shown below. These diagonal swaptions corre-
spond to options written on co-terminal forward swap rates. The volatility risk
associated to a large fraction of exotic IR derivatives is almost entirely “cap-
tured” by these two sets only. In this respect, apart from the aforementioned
Bermudan swaptions, we mention Callable Cap and Reverse Floaters, Ratchet
Cap Floaters and LIBOR Knock-in/out swaps. We deduce that the most appro-
priate framework for these complex IR derivatives is indeed the ctSMM. On the
other side of the spectrum, products that are written on CMS rates, like callable
CMS swaps, are better handled within a co-sliding model (i.e., the LMM).
Finally, it is worth mentioning that LIBOR rates are not directly quoted

by the market, while swap rates are. Typically, forward LIBOR rates enter
the valuation of forward rate agreements (FRAs). These simple instruments
allow at some time t locking-in the discretely compounded interest rate that
will be paid between two future dates. FRAs are OTC derivatives, and only
LIBOR futures and plain-vanilla swaps are quoted on a daily basis in the market.

3As many authors have emphasised, caplet and swaption markets show some degree of
“inconsistency” when we try to fit a LMM to both.
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As a consequence, the forward LIBOR rates must be derived (or “stripped”)
from market instruments, i.e., LIBOR futures and swaps. In Section 6 we show
that a forward LIBOR rate can be formally written as a weighted sum of two
consecutive forward swap rates, pretty much the same as a forward swap rate
can be formally interpreted as a weighted sum of forward LIBOR rates. In this
sense, the claim that LIBOR rates are “more fundamental” financial quantities
than swap rates is problematic.

6 European option pricing

Model calibration is a reverse engineering procedure aimed at identifying the rel-
evant model parameters from a set of liquid instruments quoted in the market.
In the IR derivatives context, these instruments are plain-vanilla options written
on forward swap and LIBOR rates, i.e., swaptions and caplets respectively. To
achieve a fast and stable model calibration, and avoid slow numerical procedures
we should be able to express plain-vanilla option prices in closed or quasi-closed
form. In this section, we address the problem of the pricing of European options
within the ctSMM. When closed-form solutions are not available, namely for
caplet prices, we introduce several approximation procedures. Speed and accu-
racy of these different approaches are analysed through numerical examples in
Section 8.
For simplicity, we consider dynamics driven by deterministic volatility struc-

tures as in, e.g., Rutkowski (1998). The extension to more general classes of
processes and the implications relating to the pricing and risk management of
IR derivatives are left to future research.
To get compact notations we will make extensive use of the follow-

ing auxiliary processes as in Jamshidian (1997): νij(t) := νij,M (t) :=PM−1
k=j δk+1

Qk
l=i+1 (1 + δlSlM (t)), νi(t) := νii(t). Note also that the following

relations hold: (i) GjM (t)/BM (t) = νj(t), (ii) Bj(t)/BM (t) = 1 + νj(t)SjM (t).

6.1 Swaption pricing

Under a deterministic volatility structure, the co-terminal forward swap rates
are lognormally distributed, so that the corresponding swaption can be priced
via a Black formula (Black (1976)). The price of a European swaption, giving
the right to enter at time Tj into a swap maturing at TM , is given at time t by

(6.7) Swn (t, Tj ,K) = GjM (t) [SjM (t)N (d1)−KN (d2)] ,

where, as usual, d1 = (ln(SjM (t) /K) + 1
2σ

2
jM (Tj − t))/(σjM

p
Tj − t), d2 =

d1 − σjM

p
Tj − t, with σ2jM = 1

Tj−t

R Tj
t

λ0jM (s)λjM (s)ds.

We use σ to indicate Black implied volatilities. Similarly to the notation used
for instantaneous volatilities, σjM is the Black implied volatility of the swaption
written on SjM , and σj is the Black implied volatility of the caplet written on
Lj .
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6.2 Caplet pricing

We consider the price of a caplet at time t giving the right to buy a forward
LIBOR rate between Tj and Tj+1:

Cpl (t, Tj+1,K) = δj+1B (t, Tj+1)E
Tj+1
t

h
(Lj (Tj)−K)+

i
,

where the expectation is taken with respect to the forward measure PTj+1 such
that the forward LIBOR rate Lj (t) follows a martingale process: dLj (t) =
Lj (t)λ

0
j (t) dW

Tj+1(t).
In the ctSMM forward LIBOR rates are not lognormally distributed, and

we cannot price caplets using the Black formula directly. In the LMM setting a
similar situation exists: caplets can be priced in closed-form using Black formula
while swaptions cannot. Quick and accurate approximation techniques to price
swaptions in the LMM have been proposed by Rebonato (1998), Hull and White
(2000), and Brace, Gatarek and Musiela (1997). Their construction and accuracy
are reviewed in detail in Brigo and Mercurio (2001). Here we will parallel these
suggestions in the context of the ctSMM, and provide similar approximated
formulae for caplet prices. In addition, we suggest a new approximation based
on a spread option approach, which leads to a Margrabe-type formula (Margrabe
(1978)) that has no counterpart in the LMM setting.

6.2.1 Rebonato approach

This method is similar to the one first advocated by Rebonato (1998) for the
LMM. The starting point consists of observing that a forward LIBOR rate can
be written as a weighted sum of two consecutive co-terminal forward swap rates:

(6.8) Lj(u) = wjj(u)SjM (u) + wj,j+1(u)Sj+1,M (u),

where wjj(u) = νj(u)/(νj(u) − νj+1(u)), wj,j+1(u) = −νj+1(u)/(νj(u) −
νj+1(u)), with wjj(u) + wj,j+1(u) = 1.
The two weights can also be expressed as wjj(u) = GjM (u)/(δj+1Bj+1(u))

and wj,j+1(u) = −Gj+1,M (u)/(δj+1Bj+1(u)). Note that they sum to one but
wjj(u) is positive whereas wj,j+1(u) is negative. This is at difference with the
LMM where all weights are positive in interpreting a forward swap rate as a
weighted sum of forward LIBOR rates.
The two steps underlying the Rebonato approach consist of a) “freezing” the

weights at their initial value (at time t) in Equation (6.8), and then differentiate
both sides; b) “freezing” the remaining random forward LIBOR and swap rates
in the volatility function. This approach provides a lognormal approximation
of the LIBOR rate dynamics, and is accurate if the variability of the weights is
much smaller than the variability of the forward swap rates. This hypothesis can
be tested both historically and through Monte Carlo simulations (Section 8.2).
The validity of the approximation can be intuitively understood by recalling that
the weights are ratios of linear combinations of discount bond prices. Hence the
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volatility of the weights is small by construction since weight dynamics derive
from ratios of highly correlated processes.

6.2.2 Hull and White approach

A slightly more sophisticated version of the above procedure follows the path
of Hull and White (HW) (2000). It consists of a) differentiating Equation (6.8)
without an initial freezing of the weights; b) freezing the remaining random
forward LIBOR and swap rates in the volatility function. We finally get then
the lognormal dynamics:

dLj(u)

Lj(u)
≈

M−1X

l=j

bwjl (t)λlM (u)
0dWTj+1(u),

with bwjl (t) = wjl (t)SlM (t)/Lj(t), and wjl(t) is equal to

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νj(t)/(νj(t)− νj+1(t)), l = j,

−δj+1νj+1(t) (1 + νj+1(t)SjM (t)) / (νj(t)− νj+1(t))
2 , l = j + 1,

δlδj+1νj+1,l(t) (SjM (t)− Sj+1,M (t)) /[(νj(t)− νj+1(t))
2 (1 + δlSlM (t))],

j + 2 ≤ l ≤M − 1,
0, otherwise.

The volatility parameter to plug into the Black caplet price can be derived
from the expression

(Tj − t)σ2j =
M−1X

l=j

M−1X

k=j

bwjl (t) bwjk (t)

Z Tj

t

λ0lM (u)λkM (u)du.

Once more, the approximation is accurate provided weights bw do not vary
too much. Numerical experiments (Section 8.2) show that the variability of the
weights is small when compared to the variability of forward swap and LIBOR
rates. Besides, it is worth noticing that the first two weights are much larger
than the others by a factor of about 1000 in absolute terms. Hence, the price or
the implied volatility of a caplet should only change marginally if other weights
apart from the two first ones are neglected (Section 8.1). This further approx-
imation results in a “truncated” HW approach, which will be instrumental in
the recursive calibration approach of Section 7.

6.2.3 Rank-one approach

The rank-one approach has been suggested by Brace, Gatarek and Musiela
(1997). In the LMM it starts from recognizing that a swaption can be viewed
as a sum of caplets whose exercise regions depend on the forward swap rate
instead of the forward LIBOR rate. The approximation then relies on freezing
the drift in the forward LIBOR rate dynamics and on a rank-one approximation
of the covariance matrix of the forward LIBOR rates. A similar approach can
be adopted in an SMM framework since a caplet can be viewed as a sum of
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swaptions whose exercise regions depend on the forward LIBOR rate instead of
the forward swap rate.

6.2.4 Spread-option approach

Recall that the forward LIBOR rate can be written as a basket of two consecutive
co-terminal forward swap rates from Equation (6.8). Hence, once the weight
factors have been frozen at their initial values at t, the caplet can be viewed as
an option on a spread between two consecutive forward swap rates. Here we
use the same freezing technique as in the Rebonato approach but we do not rely
on the approximation of the basket of two lognormally distributed variables by
means of a single lognormal variable (which is necessary to get a Black formula).
The caplet price is then akin to the formula given in Margrabe (1978).

7 Model calibration

The problem of the calibration of the LMM has attracted much interest recently,
see for instance Brigo and Mercurio (2001), Rebonato (2003), Schoenmakers and
Coffey (2003) and Wu (2002). Yet, no similar results are currently available
in the ctSMM, despite the mathematical similarities existing between the two
approaches.
When dealing with calibration, it is convenient to use the following scalar

specification of the co-terminal forward swap rates SjM for j = 1, ...,M − 1,
under their appropriate forward swap measures:

dSjM (t)

SjM (t)
= ΛjM (t)dW

Tj ,TM
(t),

where ΛjM (t) := kλjM (t)k is a scalar time-inhomogeneous function equal
to the Euclidean norm of the corresponding instantaneous volatility vector

λjM (t) and dW
Tj ,TM

(t) = λ0jM (t)dW
Tj ,TM (t)/kλjM (t)k. Here W

Tj ,TM
is a one-

dimensional Brownian motion under the forward measure PTj ,TM associated with
the numéraireGjM . Since forward swap rate SjM is undefined at times t > Tj , we
can extend all dynamics up to TM by requiring that ΛjM (t) 6= 0 at t ∈ [0, Tj−1],
and ΛjM (t) = 0 at t > Tj . The instantaneous correlation between the scalar
Brownian motion is denoted by ρij(t). This specification of a ctSMM is com-
plete once the correlation matrix (ρij(t)) and the scalar instantaneous volatility
functions ΛjM (t) have been both assigned. To simplify model calibration and
avoid data overfitting, we will assume that the correlation matrix (ρij) is time
independent and leave alone the functions ΛjM (t) to completely specify the time
dependence in the covariance matrix.
The choice of the model calibration instruments must be driven by practical

(in particular hedging) considerations. If a model is calibrated to a finite set A
of plain-vanilla options then it will show no risk sensitivity against any other set
B disjoint from A. Thus, the choice of A must be associated to that portion
of the volatility matrix that we consider the most informative in capturing the
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volatility risk. Below we show that our ctSMM can be easily and efficiently
calibrated to a set A made of all caplets and co-terminal swaptions associated to
the tenor structure. This set is indeed optimal for a large fraction of all exotic IR
derivatives, as above mentioned. This is a crucial property of the ctSMM since,
in comparison, a LMM must in general be calibrated to a larger set even in
situations where some calibration instruments are redundant as far as volatility
risk is concerned.
The main idea to calibrate the ctSMM consists of using a parametric re-

cursive procedure. This choice has three main advantages. First, it ensures
that the model is simultaneously consistent with a set of co-terminal swaptions
and caplets spanning the same tenor structure. Second, it provides smooth cal-
ibrated instantaneous volatility functions, and avoids the overfitting problem.
Third, the algorithm is extremely fast and accurate, and solves the robustness
problems often associated to global minimisation techniques.
For illustrative purpose, we adopt a parametric form for the instantaneous

volatility of the forward swap rates. The methodology is similar in spirit to the
one advocated by Rebonato (2003) in the context of the LMM, although other
choices are in principle possible. We thus look for shapes that replicate the
initial term structure of Black implied swaption volatilities, and are (as much as
possible) time stationary. The last constraint is driven by the observation that,
to a large extent, the global shape of the term structure of at-the-money (ATM)
volatilities tends to be preserved in time. We thus introduce the following generic
form of the scalar instantaneous volatility:

(7.13) ΛjM (t) := φj(t)ψj(Tj − t), j = 1, · · · ,M − 1.

The stationary factor ψj(Tj − t) is meant to reproduce the well-known
“hump” of the implied volatility of the swaption with underlying SjM , while the
calendar-time dependent function φj(t) represents a perturbation mode around
the stationary solution. A simple and effective parameterisation of ψj(Tj − t) is
provided by

(7.14) ψj(Tj − t; θj) := (aj(Tj − t) + bj)e
−cj(Tj−t) + dj , j = 1, · · · ,M − 1,

where {θj := (aj , bj , cj , dj), j = 1, · · · ,M − 1} is a set of real parameters. This
specification of ψj(Tj − t) is usually suggested in the LMM literature (see Brigo

and Mercurio (2001), Rebonato (1998)). The factor e−cj(Tj−t) is used to model
the decreasing shape of the term structure at the long end while aj(Tj − t) + bj
models the upward shape at the short end. Put together, they reproduce the
observed hump as a function of time-to-maturity. Finally, the parameter dj sets
a global level. Note that θj is indexed by j since different co-terminal swaptions
have in general different shapes of implied volatility term structures.
Ideally, if φj(t) were unitary functions for any j, model dynamics would be

perfectly stationary. Unfortunately, the constraint of perfect consistency with
the initial term structure of swaption volatilities is usually too strong to allow
for the model being simultaneously consistent with the cap/floor market as well.
Therefore a perturbation around the stationary solution ψj(Tj − t) is needed,
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and the goal will be to keep perturbation φj(t) as close to unity as possible in
the calibration process.
The calibration is performed in two sequential steps. First, we fit ψj(Tj − t)

to the humped shape of market implied volatility of co-terminal swaptions in-
dexed by j = 1, · · · ,M − 1, by adjusting the set {θj}. Second, for a given
instantaneous correlation matrix (ρij), we calibrate φj(t) on both caplet and
swaption market volatilities via a recursive algorithm. The correlation matrix
can be statistically estimated from historical data or further modelled according
to suitable parametric forms, as we discuss below. If the correlation structure
is taken as an input, the only freedom left is the first component of the instan-
taneous volatility of forward swap rates. However, forcing (ρij) to match its
historical estimate is in general too restrictive, as we show below. Therefore, an
alternative method will be introduced.
Assume that ψj(Tj − t; θj) has already been identified. We may

then proceed as follows in order to make our ctSMM consistent with the
caplet volatilities. Consider the following objects: the forward swap rates
SjM (t), Sj+1,M (t), the forward LIBOR rate Lj(t) and their associated Black
volatilities σj,M , σj+1,M , σj . In the scalar representation of the dynamics it is
straightforward to show that

(Tj − t)σ2j,M =

Z Tj

t

Λj,M (s)
2ds,

(Tj+1 − t)σ2j+1,M =

Z Tj+1

t

Λj+1,M (s)
2ds,(7.15)

(Tj − t)σ2j = bwj (t)
2
Z Tj

t

Λj,M (s)
2ds+ bwj+1 (t)

2
Z Tj

t

Λj+1,M (s)
2ds

+2 bwj (t) bwj+1 (t) ρj,j+1

Z Tj

t

Λj,M (s)Λj+1,M (s)ds,(7.16)

where the coefficients bwj (t) , bwj+1 (t) can be those provided by either the Re-
bonato or the truncated HW approximation of Section 6.2. Factor φj(t) is then
introduced as a smooth perturbation around the stationary solution. In partic-
ular, it will be defined as follows:

(7.17) φj(t) = φjfj(t) =

½
φaj /(1 + αjt), t ∈ [0, Tj−1),
φbj/(1 + αjt), t ∈ [Tj−1, Tj ],

where αj , φ
a
j and φ

b
j are positive constants. This choice for φj(t) is only one of

the possible parametric forms, but it yields very satisfactory results since it does
not introduce dramatic alterations of the initial shape associated to ψj(Tj−t; θj).
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Equation (7.16), in terms of φj(t) and the Black volatility σjM , reads

(Tj − t)σ2j = bwj (t)
2 σ2jM (Tj − t) + bwj+1 (t)

2 ¡φaj+1
¢2
Z Tj

t

f2j+1(s)ψ
2
j+1ds

+2 bwj (t) bwj+1 (t) ρj,j+1φ
a
j+1

"
φaj

Z Tj−1

t

fj(s)ψjfj+1(s)ψj+1ds

+φbj

Z Tj

Tj−1

fj(s)ψjfj+1(s)ψj+1ds

#
.(7.18)

On the other hand, we have from Equation (7.15):

(Tj+1 − t)σ2j+1,M =
¡
φaj+1

¢2
Z Tj

t

f2j+1(s)ψ
2
j+1ds

+
³
φbj+1

´2 Z Tj+1

Tj

f2j+1(s)ψ
2
j+1ds.(7.19)

Note that, if the scalar instantaneous volatility function Λj,M (s), s ∈ [t, Tj ], of
the jth forward swap rate were known and if we used the above functional form of
the volatility function of the (j + 1)

th
forward swap rate Λj+1,M (s), s ∈ [t, Tj+1],

then it would be possible to determine uniquely Λj+1,M (s), s ∈ [t, Tj+1], from
the knowledge of: i) the three Black volatilities σj,M , σj+1,M , σj and, ii) the
correlation ρj,j+1. Mathematically, this stems from the observation that the
only unknown in Equation (7.18) is φaj+1. Assume now that φaj+1 has been

determined from Equation (7.18), then Equation (7.19) can be solved for φbj+1,
and the volatility Λj+1,M (s) is then uniquely identified. This procedure can
thus be repeated step-by-step, i.e., by “bootstrap”, until the last co-terminal
swaption and caplet. In detail, the procedure goes as follows for j = 0, ...,M−2:

1. Select αj , for j = 1, ...,M − 1. We need to initialise αj to large values in
order for solutions to exist.

2. Set φa1 = 0, and solve Equation (7.19) when j = 0 for φ
b
1.

3. After
³
φaj , φ

b
j

´
is known, the only remaining unknown in Equation

(7.18) is φaj+1. φbj+1 can then be solved from Equation (7.19). Re-
peat this procedure from j = 1 to j = M − 2. We note that
Equation (7.18) is a quadratic algebraic equation in x := φaj+1,

namely ax2 + bx + c = 0, with a := bw2j+1 (t)
R Tj
t

f2j+1(s)ψ
2
j+1dt,

b := 2 bwj (t) bwj+1 (t) ρj,j+1φ
a
j

³R Tj−1
t

fj(s)ψjfj+1(s)ψj+1ds+ φbj
R Tj
Tj−1

fj(s)ψjfj+1(s)ψj+1ds
´
, and c :=

£
bw2j (t)σ2jM − σ2j

¤
(Tj+1 − t). The
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real-valued solutions are given by

φaj+1 =
−b−

√
b2 − 4ac
2a

,

φbj+1 =

⎛
⎝σ2j+1,M (Tj+1 − t)−

¡
φaj+1

¢2 R Tj
t

f2j+1(s)ψ
2
j+1dsR Tj+1

Tj
f2j+1(s)ψ

2
j+1ds

⎞
⎠
1/2

.

We recall that a > 0, b < 0 and c > 0, so there are two positive roots of
Equation (7.18). We favour the smaller one since it improves the stability
of the recursive algorithm. It also reduces the likelihood that a real-valued
φbj+1 does not exist

4 .

4. If we go through steps 1 to 3 successfully, repeat steps 1 to 3 with smaller
αj .

5. Stop when we have the set of smallest αj for which the solution of a set

of
³
φaj , φ

b
j

´
exists.

Finally we remark that Equation (7.16) holds for caplets written on the 12-
month (12M) forward LIBOR rate. If only caplets written on the 3M or 6M
forward LIBOR rate are available in the market, we can easily adapt to our case
the approach introduced in Brigo and Mercurio (2001) for the LMM.
In practical applications it is also sometimes preferable to reduce the number

of factors driving the dynamics of the set of co-terminal forward swap rates. All
above considerations apply with little modification to the case where WTj ,TM (t)
is a d-dimensional Brownian motion with d < M − 1.

8 Numerical results

The numerical tests below are conducted in the EUR market using a family of
co-terminal annual swaptions over a 10-year tenor structure and a family of 1-
year LIBOR caplets (T0 = 0 < T1 = 1 < · · · < TM = 10). The market forward
swap rates and Black implied volatilities correspond to data in the EUR market
observed weekly from May 17th, 2004, to May 16th, 2005. They have been
extracted from BNP Paribas proprietary databases. Empirical tests performed
in USD and GBP markets, not reported here, provided qualitatively similar
results to those in EUR.

8.1 Caplet pricing approximations

In order to evaluate the efficiency of the caplet pricing approximations introduced
in Section 6.2, we run several Monte Carlo simulations using 100,000 paths, a
Euler scheme, and 16 steps per period (one year) to compute the benchmark

4 In all our empirical tests we have not found any complex-valued φbj+1. However we cannot
rule out such a possibility in general. We advocate to check the data inputs if it does happen.
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caplet prices. These benchmark results serve as a reference against which we can
compare the Rebonato, the HW, the truncated HW, the spread-option, and the
rank-one analytical approaches. Our Monte Carlo approach follows the method-
ology of Glasserman and Zhao (2000), and provides accurate results in terms of
swaption prices and distribution of forward swap rates. To improve convergence
of the simulation algorithm, these authors suggest to simulate quantities derived
from the chosen set of forward swap rates, rather than the forward swap rates
themselves, and then recover the forward swap rates from those quantities. Here
we consider Yj = νj − νj+1− δj+1, j = 0, ...,M − 2, to handle irregularly spaced
tenors. Since νj is a martingale under the terminal (or forward) measure, Yj is
also a martingale, and no drift adjustment is needed. In practice, we simulate the
process lnYj to guarantee positiveness. It can be proved that the discretisation
is arbitrage-free, and the recovered forward swap rates are positive martingales
under their forward swap measure (Glasserman and Zhao (2000), Theorem 3).
The simulated forward swap rates are then injected in (6.8) to get the simulated
forward LIBOR rates.
In our tests, we use a simple correlation parameterisation of the form ρjk =

e−ξ|j−k|. More complex parameterisations have provided similar results. We set
ξ = 0.01, φj = 1, αj = 0, and (aj , bj , cj , dj) = (a, b, c, d), and use four different
volatility shapes that are meant to represent real market scenarios. These are
plotted in Figure 4.

PLEASE INSERT
Figure 4. Instantaneous volatility term structures used in the simulations.

In Table 1 we report the Mean Absolute Relative Errors (MARE) of a 2Y
maturity against 12M LIBOR caplet implied volatilities and prices. The average
is computed on the nine maturities for the four different shapes. Results indicate
that all approaches, except the rank-one, give rather good approximations with a
maximum MARE of 2.23%. The HWmethod seems to be the one to be preferred
in practice since it outperforms all three others in most cases. As previously
anticipated, using only the first two weights in the HW approximation has a
marginal impact on the accuracy of the method but has the major advantage
of downsizing the expression of a caplet to a simple spread of two forward swap
rates. This will enable us to exploit the full facility of a fast and accurate
recursive calibration algorithm.

PLEASE INSERT
Table 1: Accuracy of the different caplet pricing approximations for different

volatility term structures.

Whereas the rank-one approach performs reasonably well in the LMM (see
Brigo and Mercurio (2001)), it gives unsatisfactory results in the ctSMM, espe-
cially for short maturity caplets. Indeed, whereas the weights of the swaption
approximation in the LMM are always positive and much smaller than 1 for
short maturity swaptions, the weights involved in the LIBOR representation as
a spread of two forward swap rates have different signs, and are much larger
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than 1 for short maturity caplets. This phenomenon leads to intrinsic numerical
problems that can be best illustrated by a simple example. To fix the ideas, as-
sume that the volatilities λj(t) = λ are constant so that the jth caplet variance
reads

σ2j ≈ ( bwj |λ|+ bwj+1|λ|)
2 − 2 bwj bwj+1|λ||λ|(1− ρj,j+1)

≈ λ2 − 2 bwj bwj+1λ
2(1− ρj,j+1),(8.20)

with bwj > 0, bwj+1 < 0 and bwj + bwj+1 ≈ 1. The first term in Equation (8.20) is
recognised as the result of the rank-one approximation whereas the second term
is interpreted as a perturbation around it. This second term cannot be neglected
for short maturity caplets since it has the same order of magnitude of the first
one unless all forward swap rates are perfectly correlated. A consequence of
the above equation is that the rank-one approach systematically overprices the
caplet volatility.

8.2 Weight stability and distributional characteristics

In this section we study the stability of the weights involved in the caplet
pricing approximations through numerical simulations. We use an instanta-
neous volatility of the form ΛjM (t) = φjfj(t)ψj(Tj − t), where (aj , bj, cj , dj) =

(0.08, 0.10, 0.45, 0.06), and a correlation structure given by ρjk = e−0.01|j−k|, for
simplicity. As above mentioned, different and more consistent correlation matrix
parameterisations are also possible (Schoenmakers and Coffey (2003)), but the
qualitative picture is not altered by this choice. The behaviour of averages and
standard deviations of relative changes (wjj(t) − wjj(0))/wjj(0) are plotted in
Figures 5 and 6. Results indicate that the weights present very stable averages
across paths. This is similar to what is observed in the LMM. In terms of proba-
bility distribution, we have further noticed that long-term forward LIBOR rates
are very close to lognormal densities whereas short-term ones do not result in
such a good fit. This does not come as a surprise since all pricing approximations
are much more accurate for long-term caplets than from short-term ones. We
have measured a positive probability for the LIBOR rate to be negative but this
probability is usually very small and negligible for practical purposes. In ad-
dition, empirical results based on historical data instead of simulations confirm
these findings 5 .

PLEASE INSERT
Figures 5 and 6. Mean and standard deviation of relative changes of weights.

Results are obtained from 400,000 Monte Carlo.

8.3 Calibration

We calibrate the ctSMM to swaption and caplet ATM volatilities by using a
truncated HW method for caplet formulae. Recall that the generic form of the

5All results not explicitly reported here are available from the authors upon request
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scalar instantaneous volatility for each forward swap rate SjM is (7.13), with
ψj (Tj − t; θj) and φj(t) parameterised as in Equations (7.14) and (7.17). We
anticipate that these functional choices, in conjunction with the aforementioned
recursive algorithm, guarantee that the following objectives can be achieved. i)
The calibration algorithm is extremely fast and robust between any two consec-
utive dates. ii) Caplet and co-terminal swaption volatilities are matched within
their market bid-ask spread. iii) The resulting instantaneous forward volatili-
ties Λj,M (s), s ∈ [t, Tj ], are smooth in t for a given Tj . iv) The perturbation
functions φj(t) do not dramatically alter the stationary solutions associated to
ψj (Tj − t; θj). To the best of our knowledge, it is virtually impossible to match
all above targets within a single calibration procedure in the LMM.
The first step of the calibration is to keep φj (t) = 1, and to find a set

of parameters {θj} := (aj , bj , cj , dj) to achieve a “best fit” of the initial term
structure of swaption volatilities. This technique implies M − 1 independent
least square minimisations, and is therefore fast and straightforward to achieve.
We end up with a scalar instantaneous volatility ΛjM (t) which exhibits a shape
consistent with the market hump and also matches the ATM volatilities of the
set of co-terminal swaps, see Figure 7. Interestingly, we found that the calibrated
set {θj} is rather stable with time so that one does not need to re-adjust it too
often, see Table 2. The next logical step is to input a correlation structure¡
ρij
¢
in Equations (7.18) and (7.19), and to determine φj (t) = φjfj(t) using

the recursive algorithm to match the Black implied volatility of caplets and
swaptions, as explained in Section 7.
At this stage, a few considerations are worth. As many authors have ob-

served (see for instance Brigo and Mercurio (2001), Rebonato (2003)) the LMM
seems to be inconsistent with the market quotes of caplet and swaption volatili-
ties in the sense that it is impossible to achieve exact calibration of both markets
once an input correlation matrix has been assigned. It is often claimed that this
feature is due to a “misalignment” between different swaption volatilities due
to liquidity reasons. Besides, typical bid/ask spreads range between 0.25% and
0.75% in lognormal units, at least on the two most liquid markets, i.e., EUR and
USD. They are therefore relatively narrow. A model that is unable to reprice
vanilla options within the market bid-ask volatility spread is in principle liable
to generate arbitrage in hedging exotic derivatives. Usually, the LMM is cali-
brated on a selection of swaption volatilities in the ATM matrix that correspond
to liquid instruments and that are meant to capture, for the problem at hand, a
large portion of the actual volatility risk. In this way simultaneous calibration
to caplets is possible while still keeping meaningful (i.e., smooth) instantaneous
volatility functions. However, since these approaches are usually based on non-
linear global minimisation algorithms (Rebonato (2003), Wu (2002)), they are
relatively slow. Robustness is also an issue, as above mentioned, and there is
no guarantee that all selected instruments can be matched within their bid/ask
spread, in general. On the other hand, full nonparametric approaches, like the
one proposed in Brigo and Mercurio (2001), are aimed at matching the whole set
of caplet and swaption volatilities. Nevertheless they do not allow achieving con-
vergence unless the input swaption volatilities are artificially shocked from their
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mid-market values, often beyond their bid/ask spread. Even when convergence
can be achieved, one has no direct control on the shape of the resulting instan-
taneous volatility term structures, and usually they are too rough to be used for
robust and meaningful risk-management. Volatility “misalignment” problems
are often advocated as the origin of the problem. However, these misalignments
do not indicate that caplet/swaption arbitrage opportunities may be detected
through the LMM, as already pointed out in Rebonato (2003). Instead, they
show that the LMM has a rigid mathematical construction, and is not entirely
consistent with the market.
In the context of the ctSMM we are faced with the same issue. In this case,

however, these misalignment problems are less dramatic, and a simultaneous
calibration within bid/ask spread is more easily achievable. In other words,
the ctSMM is less “rigid” than the LMM. To understand the origin of this
asymmetry between the two approaches, we recall that in the context of the
LMM a forward swap rate can be formally decomposed as a linear combination
of M − 1 forward LIBOR rates, while in the ctSMM a forward LIBOR can
be formally written as a weighted difference between two consecutive forward
swap rates. As a consequence, while the price of a swaption within the LMM
depends on a correlation matrix among LIBOR rates of dimension M − 1, the
price of a caplet within the ctSMM depends on a single correlation factor. Thus,
calibrating the LMM to a set of caplets and swaptions is more problematic since
any algorithm has to face the issue of coupling simultaneously M(M − 1)/2
correlations and volatilities. On the opposite, our parametric recursive algorithm
for the ctSMM is essentially unidimensional since for any new maturity only one
new correlation is needed and thus it only involves M − 1 steps.
We now describe an approach that works well in practice. The approach

is based on a small perturbation of the correlation matrix around its historical
estimate and a small shift of the volatilities around their mid-market values by
keeping them within their bid-ask spread. The choice of slightly shocking the
input matrix from the historical level can be easily justified by observing that a
generic d-dimensional Itô martingale is fully specified by its covariance structure.
In our case, we need to calibrate the model to the market-implied volatility.
Thus, once the volatility structure is implied from caplets and swaptions quotes,
the instantaneous correlation matrix needs not be consistent with its historical
estimate. By slightly shocking the input correlation from historical levels, we
are indirectly inferring some information from the market on the correlation
itself, although a direct implied calibration of the whole correlation matrix is
impossible. On this last point, we refer to Rebonato (2003).
In Table 2 we report the average and standard deviation of the calibrated

parameters of the volatility curves over the 53 weekly observations from May
17th, 2004, to May 16th, 2005. The calibrated values seem to be stable as
indicated by their standard deviations and, therefore, the calibration algorithm
is robust. Notice, in particular, that calibration can be achieved with values of
αj always smaller than 0.035 on average, which implies that the calibrated model
is almost stationary. We have also checked that differences between market and
calibrated Black volatilities are never larger than the bid/ask spread (0.25% in
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lognormal units).
Figure 7 shows the shape of the instantaneous volatility functions for the

different swap rates as a function of t with fixed maturity Tj after calibration
to the initial term structure of swaption Black volatilities. In Figure 8 we plot
the same functions after performing a joint calibration on caplets and swaptions.
Both figures are based on the averages reported in Table 2. It is worth noticing
that the initial order of the curves and their shapes (consistent with a full sta-
tionary model) are still preserved to a large extent after calibration. In addition
they are smooth, which is good news on the risk-management side.

PLEASE INSERT
Table 2. Results of the calibration methodology.

Figure 7. Instantaneous volatility curves before calibration to caplets.

Figure 8. Instantaneous volatility curves after calibration to caplets.

9 Concluding remarks

In this paper we have studied a general approach suitable to price IR deriva-
tives. This “Market Model Approach” gives birth to three major classes: the
co-terminal, co-initial and co-sliding SMM. The Market Model Approach is based
on the concept of admissibility of a set of forward swap rates. We have presented
and analysed the link between these concepts and graph theory. In particular,
we have shown that the LMM is the only admissible model of a co-sliding type.
By further developing the important example of the co-terminal SMM, we

have shown that accurate and fast approximations are available in that setting.
Besides user-friendly calibration algorithms work efficiently in terms of speed
and stability properties. They further lead to smooth and meaningful shapes
for the instantaneous forward volatility of forward swap rates, while delivering
an almost perfect match of both swaption and caplet implied Black volatili-
ties. Some important theoretical extensions (and the associated calibration al-
gorithms) related to the inclusion of stochastic volatility or the generalisation to
multicurrency underlying are left to future research.
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A Appendix : Proof of Proposition 2.1

Consider the tenor structure depicted in Section 2, namely T := {T1, · · · , TM}.
Assume that a generic family S := {S(t)} of forward swap rates is given. In
general, the set S comprises N elements. We use Greek letters to indicate
start/end dates of each forward swap rate belonging to the set, i.e.,

Sα1β1(t) :=
B(t, Tα1)−B(t, Tβ1)

Gα1β1(t)
, · · · , SαNβN (t) :=

B(t, TαN )−B(t, TβN )

GαNβN (t)
.

We start by proving the sufficient part. Definition 2.2 implies thatN =M−1.
Therefore, the following linear homogeneous system

B(t, Tα1)−B(t, Tβ1) = Sα1β1(t)

β1X

k=α1+1

δkB(t, Tk),(A.21)

· · ·

B(t, TαM−1)−B(t, TβM−1) = SαM−1βM−1(t)

βM−1X

k=αM−1+1

δkB(t, Tk),
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comprisesM−1 equations in the n unknowns B(t, Tα1), · · · ,B(t, Tβ1); B(t, Tα2),
· · · , B(t, Tβ2); · · · ; B(t, TαM−1), · · · , B(t, TβM−1). To simplify the notation, we

introduce the set of dates U := ∪i=1,...,M−1
©
Tαi , · · · , Tβi

ª
.

The number n of independent unknowns is fixed by Definition 2.2, and the
fact that all dates must be in the tenor structure. If every date in the tenor
structure coincides with at least one reset/settlement date of a swap rate in
S, then U ⊇ T . At the same time, since by construction the set S is defined
in relation to the above tenor structure, the inclusion U ⊆ T must also hold.
Therefore, we have that T = U identically. Since |U| = |T | = M , we deduce
that the above linear system L(M − 1,M) comprises M − 1 equations in M
independent unknowns. Let C be the rectangular (M − 1)×M matrix associated
to (A.21). In a more compact notation,

(A.22) CB = 0, B := (B(t, T1), · · · , B(t, TM ))
0 .

If, for instance, we consider the equation B(t, Tα1) − B(t, Tβ1) =

Sα1β1(t)
Pβ1

k=α1+1
δkB(t, Tk), then the corresponding row of C reads as

³
· · · 0, 1, −δα1+1Sα1β1(t), · · ·− δβ1−1Sα1β1(t), −(1 + δβ1Sα1β1(t)), 0 · · ·

´
,

the 1 entry being in column α1.
Consider the set of deflated discount bonds relative to B(t, Ti), that

is eBi(t, ·) := B(t, ·)/B(t, Ti). Since by construction Ti ∈ T , by divid-
ing both sides of all equations in (A.22) by B(t, Ti), we obtain a new
set of M − 1 linear equations in the M − 1 deflated discount bond prices
eBi(t, T1), · · · , eBi(t, Ti−1), 1, eBi(t, Ti+1), · · · , eBi(t, TM ). For any (M − 1)×M ho-
mogeneous system (A.22) there exists an associated (M − 1) × (M − 1) non-
homogeneous system on the corresponding deflated discount bond prices, i.e.,

D eB = Ψ,(A.23)

eB : =
³
eBi(t, T1), · · · , eBi(t, Ti−1), eBi(t, Ti+1), · · · , eBi(t, TM )

´0
,

where vector Ψ entries are either zero or one, with at least one non-vanishing
entry.
A necessary and sufficient condition for this system to possess a unique

solution is that matrix C has full rank. In fact, if rank(C) = M − 1, then
rank(D) =M −1 as well, for any choice of B(t, Ti), i = 1, . . . ,M , as numéraire.
In this case, the existence of a unique set of discount bond prices is guaranteed
by elementary theorems of linear algebra. On the opposite, if two or more rows
of C are linearly dependent, then rank(C) < M − 1. In this case, depending on
the choice of the numéraire, i.e., B(t, Ti) i = 1, . . . ,M , matrix D might not have
full rank, and therefore there is no guarantee that a solution exists for any choice
of the numéraire. In other words, the existence and uniqueness of solutions is
reduced to the study of the linear dependence among the rows of C.
We therefore analyse the structure of C when the set of forward swap rates

is admissible. By construction, D is not block-diagonal, and none of the rows of
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C contains only zero elements 6 . Furthermore the first column of C, namely the
column made of the coefficients associated to the shortest discount bond B(t, T1),
contains either a single 1 entry (corresponding to a single swap starting at T1)
or multiple 1 entries (corresponding to many swaps starting at T1). In the first
case the remaining M − 2 elements of the first column entries are all zeros.
Hence, it is impossible to find a linear combination of the rows reducing to a
zero vector. If there are multiple 1 entries then, once again, the remaining entries
of the column must fill in with zeros. Unlike before, it is possible to find linear
combinations of the rows which will annihilate the first entry of the resulting
vector. However, once such a combination is held fixed, it cannot annihilate the
other entries and yield a zero vector for any realisation of the diffusion processes
Sα1β1(t), · · · , SαM−1βM−1(t). Note, however, that this argument does not exclude
the possibility that a zero vector is indeed obtained by a linear combination of
the rows for one particular realisation of the set of forward swap rates, but this
event occurs with probability 0 with respect to P only. In summary, if the set
of forward swap rates is admissible, we have P[detD 6= 0] = 1, and the system
(A.23) admits a unique solution in terms of deflated discount bond prices, P-a.s.
This holds for any t in the specified time interval. This ends the proof of the
sufficient part.
The proof of the necessary part is as follows. If a system of M − 1 deflated

discount bond prices admits a unique solution as a function of a set of for-
ward swap rates, then necessarily it must be a linear non-homogeneous system
L(M − 1,M − 1). This in turn implies that T = U and that |S| =M − 1. Con-
dition 1 in Definition 2.2 is then satisfied. Then, inclusions U ⊇ T and U ⊆ T
must simultaneously hold. The former constraint is equivalent to Condition 2 in
Definition 2.2.
To prove that Condition 3 is also satisfied, we proceed by contradiction.

Assume that set S is not admissible. Given that Conditions 1 and 2 are
already satisfied, this is equivalent to assume that Condition 3 is not, i.e.,
there exists at least one degenerate subset C in T . Now recall the definitions
of Hu and Hd given in the main text. For every pair of consecutive dates
Tu
i−1, T

u
i in H

u the following equation holds by absence of arbitrage opportuni-
ties Su

i−1,i(t)G
u
i−1,i(t) = B(t, Tu

i−1)−B(t, Tu
i ) with obvious notations. A similar

result holds for all dates in the set Hd. The following two identities:

mX

i=2

£
B(t, Tu

i−1)−B(t, Tu
i )
¤
= B(t, Tu

1 )−B(t, Tu
m),

nX

i=2

£
B(t, T d

i−1)−B(t, T d
i )
¤
= B(t, T d

1 )−B(t, T d
n),

imply that
Pm

i=2

£
B(t, Tu

i−1)−B(t, Tu
i )
¤
=
Pn

i=2

£
B(t, T d

i−1)−B(t, T d
i )
¤
, since

B(t, Tu
1 ) = B(t, T d

1 ) = B(t, Ta) and B(t, T
u
m) = B(t, T d

n) = B(t, Tb). By absence

6 If the matrix were block-diagonal, then the graph associated to the tenor structure would
be made of two separate subgraphs. Proposition 3.1 shows that this is incompatible with the
notion of admissibility since the graph should be connected.
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of arbitrage opportunities, we deduce that

mX

i=2

Su
i−1,i(t)G

u
i−1,i(t) =

nX

i=2

Sd
i−1,i(t)G

d
i−1,i(t).

This identity implies that one equation in the system (A.22), among those as-
sociated to Hu and Hd, is redundant. Therefore, the M − 1 equations in the
system do not form a linearly independent set, and rank(C) < M − 1. In that
case there is no guarantee that a solution exists for a generic choice of B(t, Ti),
i = 1, . . . ,M , as numéraire. This contradicts the hypothesis.

B Appendix : Proof of Proposition 2.2

If the set S is admissible then, after Proposition 2.1, there exists a unique
set of deflated discount bond prices eBi(t, T1), · · · , eBi(t, Ti−1), 1, eBi(t, Ti+1),

· · · , eBi(t, TM ) relative to B(t, Ti). This set is the unique solution of a non-
homogeneous linear system

D eB = Ψ,(B.24)

eB : =
³
eBi(t, T1), · · · , eBi(t, Ti−1), eBi(t, Ti+1), · · · , eBi(t, TM )

´0
,

and vector Ψ entries are either zero or one, with at least one non-vanishing
entry. The solution can be easily found by means of the Cramer’s rule: the j-th.
solution eBi(j) to (B.24) can be symbolically expressed as

eBi(j) =
det[D

(j)
i ]

det [D]
; j = 1, · · · ,M − 1,

where D(j) is the square matrix obtained from D by replacing its j-th. column

with vector Ψ. A sufficient condition for eBi(j) to be non zero is that det[D
(j)
i ] 6=

0. A necessary and sufficient condition for a determinant to be zero is that
its rows are linearly independent. By assumption, matrix C (associated to the
homogeneous system (A.22)) has rank r = M − 1. This implies that its rows
are linearly independent. Also, we notice that −1×Ψ coincides with one of the
columns of C. Thus, the columns of D

(j)
i coincide with the M − 1 columns of

C, apart from an irrelevant sign in one of the columns. From a general property

of linear spaces, we deduce that the rows of matrix D
(j)
i must necessarily be

linearly independent, too. For the same reason as above, it might happen that
for a given realisation of the set of forward swap rates, two (or more) rows of
D(j) are linearly dependent. This event, however, occurs with probability 0 with
respect to P.

C Appendix : Proof of Proposition 3.1

We need to prove that Conditions 1, 2 and 3 in Definition 2.2 are necessary and
sufficient for Gr to be connected and have M vertices linked by M − 1 edges.
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We start by proving the necessary part. We observe that Condition 2 in
Definition 2.2 means that the graph Gr has no isolated vertices. In particular
all vertices of Gr have a minimum degree of 1. Since a connected graph has a
minimum degree of 1 by definition, Condition 2 of Definition 3.1 implies Condi-
tion 2 of Definition 2.2. The following result can be found in Diestel (2000): If
Gr is a connected graph, then Gr has a spanning tree subgraph Gr0. Thus Gr0

has M vertices and M − 1 edges. By Condition 1 of Definition 3.1 this implies
that Gr is itself a tree. Since a tree is acyclic, this implies that Condition 3 of
Definition 2.2 is satisfied too. Conditions 1 of the two definitions are trivially
the same. This ends the first part of the proof.
To prove the sufficient part we assume, by contradiction, that Gr is not

connected. In this case, let Gr = {Gr1, Gr2, · · · , Grl} be its decomposition in
disjoint subgraphs Gr1, Gr2, · · · , Grl. From Condition 2 of Definition 2.2, none
of them has an isolated vertex. From Condition 1 of Definition 2.2, we deduce
then that one among Gr1,Gr2, · · · , Grl is a graph with a number of edges equal
to the number of vertices minus 1. All other subgraphs, on the other side, must
be restricted to have an equal number of edges and vertices. This is the only
partition that is compatible with the total number of edges, M−1, and vertices,
M . We assume, with no loss in generality, that graph Gri = {Vi, Ei} has ni − 1
edges and ni vertices. Since it is connected then, from the same argument as
before, Gri is a tree. Thus, it is acyclic. We next consider one among the
remaining l − 1 graphs Grj = {Vj , Ej} with nj edges and vertices. Since it
is connected, let Gr0j be its spanning tree subgraph having nj − 1 edges. The
following result can be found in Diestel (2000): a tree H is maximally acyclic.
This means that a tree H contains no cycle but H + xy does, for any two
non-adjacent vertices x and y ∈ H. Since Grj is obtained by the tree Gr

0
j by

adding one edge between non-adjacent vertices 7 , it must contain a cycle which
is in contrast with Condition 3 in Definition 2.2. The contradiction comes from
having assumed that Gr is not connected. This ends the second part of the
proof.

D Appendix : Proof of Proposition 3.3

From Proposition 3.2 we know that a set is admissible if and only if its graph
is a tree. Since a tenor structure is made of ordered dates, we must attach date
labels {T1, · · · , TM} to all nodes of the tree. In this way, isomorphic trees are
considered distinct for the purpose of enumeration. Such a graph is known in
graph theory as a “labelled” tree. The number of labelled trees on M nodes is
known to be MM−2 after Cayley (1889), which yields the stated result.

7This is a direct consequence of the hypothesis on the set S comprising distinct swap rates.
In fact, if all swap rates are distinct, two vertices cannot be both incident on two different
edges.
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Figure 1.a: Degenerate set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.b: Example of a tree. 

 

 

Figure 1. Degenerate set and example of a tree. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.a: Example of an admissible set. 

 

 

 

 

 

 

 

 

 

Figure 2.b: Example of a non-admissible set. 

 

 

Figure 2. Examples of admissible and non-admissible sets  

of forward swap rates. 
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Figure 3. Sets of co-terminal, co-initial  

and co-sliding forward swap rates. 
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Figure 4. Instantaneous volatility term structures used in the simulations. 
 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Accuracy of the different caplet pricing approximations for 

different volatility term structures. 

T0=0        T1             T2                                       Tk          Tk+1                                                   TM-1     TM

T0=0        T1             T2                                       Tk         Tk+1                                                   TM-1     TM

T0=0        T1             T2                                       Tk          Tk+1                                                   TM-1     TM

Figure 3.a: Co-terminal forward swap rates. 

Figure 3.b: Co-initial forward swap rates. 

Figure 3.c: Co-sliding forward swap rates. 

Implied Vol HW Truncated HW Rebonato Spread Option Rank One 

Dec. 0.27% 0.43% 1.15% 0.74% 9.25% 

Bump 0.64% 0.35% 1.59% 1.03% 17.02% 

Inc. 0.79% 0.90% 1.31% 2.23% 38.73% 

Hump 0.79% 1.25% 0.67% 1.40% 33.50% 

Prices HW Truncated HW Rebonato Spread Option Rank One 

Dec. 0.26% 0.42% 1.12% 0.73% 9.09% 

Bump 0.63% 0.35% 1.56% 1.02% 16.84% 

Inc. 0.79% 0.89% 1.30% 2.21% 38.64% 

Hump 0.79% 1.24% 0.66% 1.39% 33.40% 
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Figures 5 and 6. Means and standard deviations of relative changes of 

weights. Results are obtained from 400,000 Monte Carlo simulations. 

 
 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Results of the calibration methodology. 
 

 
Forward 

swap j 

a_j b_j c_j d_j phi1 phi2 Alpha 

1 0.0278 0.0412 0.4927 0.1097 0.0000 1.0023 0.0347 
2 0.0256 0.0472 0.4828 0.1043 1.0417 1.0002 0.0347 
3 0.0253 0.0538 0.4841 0.1002 1.0705 0.9859 0.0349 
4 0.0261 0.0616 0.4848 0.0965 1.1129 0.9245 0.0349 
5 0.0271 0.0701 0.4797 0.0928 1.1280 0.9373 0.0345 
6 0.0400 0.0700 0.5376 0.0918 1.1131 0.9976 0.0291 
7 0.0495 0.0720 0.5614 0.0923 1.0507 1.0454 0.0138 
8 0.0550 0.0764 0.5705 0.0953 0.9861 1.0852 0.0096 
9 0.0743 0.0825 0.7826 0.1050 0.9770 1.1274 0.0067 

Table 2.a : Means of calibrated parameters of the volatility curves. 

 
Forward 

swap j 

a_j b_j c_j d_j phi1 phi2 Alpha 

1 0.0165 0.0109 0.1593 0.0133 0.0000 0.0050 0.0094 
2 0.0157 0.0107 0.1474 0.0126 0.0238 0.0142 0.0094 
3 0.0153 0.0104 0.1281 0.0125 0.0196 0.0152 0.0092 
4 0.0158 0.0108 0.1178 0.0126 0.0228 0.0255 0.0092 
5 0.0168 0.0116 0.1149 0.0126 0.0329 0.0560 0.0096 
6 0.0169 0.0155 0.0847 0.0129 0.0492 0.0760 0.0128 
7 0.0187 0.0213 0.0773 0.0130 0.0498 0.0508 0.0101 
8 0.0251 0.0301 0.0989 0.0139 0.0287 0.0527 0.0047 
9 0.0343 0.0378 0.0481 0.0143 0.0257 0.0892 0.0019 

Table 2.b : Standard deviations of calibrated parameters of the volatility curves. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Instantaneous volatility curves before calibration to caplets. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Instantaneous volatility curves after calibration to caplets. 
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