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Soundfield analysis based on spherical harmonic decomposition has been widely used in various

applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In

this paper, a method to design two-dimensional planar microphone arrays that are capable of cap-

turing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-

directional and first order microphones, the proposed microphone array is capable of measuring

soundfield components that are undetectable to conventional planar omni-directional microphone

arrays, thus providing the same functionality as 3D arrays designed for the same purpose.

Simulations show that the accuracy of the planar microphone array is comparable to traditional

spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly

increases the feasibility of 3D soundfield analysis techniques in real-world applications.

VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4934953]
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I. INTRODUCTION

Three-dimensional (3D) soundfield decomposition

based on spherical harmonic analysis has become a popular

tool in the field of array signal processing. Applications of

this technique can be found in both acoustic and radio fre-

quency (RF) areas, such as spatial filtering and beamform-

ing,1–3 room acoustic modeling,4,5 soundfield analysis,6,7

source localization,4,8,9 active noise control,10,11 and phase

mode processing for antenna arrays.12 Spherical harmonic

analysis based 3D soundfield decomposition reveals the

underlying characteristics of the soundfield, thus allowing

high accuracy manipulation and analysis of the soundfield.

This requires a microphone array with 3D pick up capability

to detect the soundfield. To the best of our knowledge, all of

the previously developed microphone array structures

designed for this purpose have a 3D geometry.

A well-studied type of such array configuration is the

spherical array. Because its geometry coincides with the

spherical harmonics, the sound signal captured by a spherical

microphone array is well-suited for the spherical harmonic

transform.6,7 The existing spherical arrays can be catego-

rized into two major categories: the open sphere model and

the rigid sphere model. Both models are widely used in

research applications, such as room geometry inference13

and near field acoustic holography (NAH).14 An inherent

drawback of the open sphere model is the numerical ill-

conditioning problem, which is due to the nulls in spherical

Bessel functions, thus the diameter of the microphone array

has to be chosen carefully. It has been shown that such ill-

conditioning problem can be overcome via methods such as

using concentric spheres15,16 or co-centered rigid/open

spheres17 or by measuring the radial velocity.7

The placement of microphones on a spherical array has

to follow a strict rule of orthogonality of the spherical har-

monics,18,19 which limits the flexibility of the array configu-

ration. The spherical shape of the array also pose difficulties

on implementation as well as practical usage.

Non-spherical microphone arrays have also been pro-

posed for the purpose of 3D soundfield recording, such as

the conical microphone array aperture proposed by Gulpta

et al.20 and the multiple circular microphone array proposed

by Abhayapala et al.21 These microphone arrays offer

greater geometrical flexibility compared to spherical micro-

phone arrays, thus allowing easier implementation of larger

microphone arrays. However, these apertures still occupy a

3D space, which hinders the development of compact micro-

phone arrays for practical applications.

On the other hand, microphone arrays featuring 2D ge-

ometry are easy to implement, yet existing 2D microphone

arrays are incapable of capturing complete 3D soundfield in-

formation. Meyer et al. has shown that a 2D microphone

array can be used to measure certain vertical component of a

3D soundfield.22 However, due to inherent properties of the

spherical harmonics, some spherical harmonic modes are in-

visible to omni-directional pressure microphones on the x-y

plane, which explains why previously proposed 2D micro-

phone arrays fail to extract full 3D soundfield information.

Measurement of these soundfield components on the x-y

plane calls for additional types of sensors; no such technique

has been proposed to our best knowledge.

First order microphones, such as differential micro-

phones and cardioid microphones, are known to have the

capability of detecting acoustic velocity in a certain direc-

tion.23 Kuntz et al. have shown that through using cardioida)Electronic mail: hanchi.chen@anu.edu.au
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microphones pointed in the radial direction to replace omni-

directional microphones in a circular array, the numerical ill-

conditioning problem can be solved for a 2D soundfield

analysis system.24

In this work, we investigate using first order micro-

phones to aid the detection of 3D soundfields and propose a

new method for 3D soundfield recording using a 2D planar

microphone array. In our approach, we use first order micro-

phones in conjunction with omni-directional microphones to

measure the “invisible” component of a 3D soundfield on

the x-y plane. Also we propose a method of using multiple

co-centered circular arrays of omnidirectional/first order

microphones to compute the soundfield coefficients associ-

ated with the spherical space enclosing the planar array aper-

ture. We show that the proposed planar microphone array

offers the same functionality as spherical/multiple circular

arrays designed for soundfield analysis.

This paper is arranged as follows: Sec. II briefly reviews

the soundfield analysis technique and derives the wave do-

main expression of soundfield measured by the general first

order microphone. We show that the full 3D soundfield can

be observed on a plane with the aid of first order micro-

phones by exploiting a property of the associated Legendre

functions. Section III introduces the co-centered hybrid cir-

cular microphone array for soundfield recording and shows

how the soundfield coefficients can be calculated using the

data measured by different components of the hybrid array.

We also provide a step-by-step design procedure for deter-

mining parameters of an array based on system require-

ments. Section IV provides an analysis on the accuracy

performance of the proposed array. Two primary causes of

error are identified, and their impact on each soundfield coef-

ficient is discussed. Section V gives a hypothetical design

example of the proposed microphone array as well as an ex-

perimental microphone array built for validation of the

theory. Detailed simulation results are provided for the hypo-

thetical design example and the test results of the experimen-

tal array is compared with corresponding simulation results

for performance evaluation.

II. FIRST ORDER MICROPHONES FOR SOUNDFIELD
ACQUISITION

In this section, we derive the general velocity of the

pressure field at a point along a direction and the wave do-

main expression of the received signal of a general first order

microphone. We also show that the 3D soundfield coeffi-

cients can be divided into even and odd components; while

the even modes can be measured by omnidirectional micro-

phones, the odd components of the soundfield can be

observed on a plane by using a recurrent relationship of asso-

ciated Legendre functions.

A. Spatial soundfield decomposition

A soundfield within a source free region of space at a

point ðr; h;/Þ with respect to an origin O of the spherical

coordinate system can be written as25

Pðr; h;/; kÞ ¼
X

1

n¼0

X

n

m¼�n

CnmðkÞjnðkrÞYnmðh;/Þ; (1)

where CnmðkÞ are soundfield coefficients, k ¼ 2pf=c is the

wave number, f is the frequency, c is the speed of sound prop-

agation, jnðkrÞ is the nth order spherical Bessel function of the
first kind, Ynmðh;/Þ are the spherical harmonics, defined by

Ynmðh;/Þ ¼ Pnjmjðcos hÞEmð/Þ; (2)

where

Pnjmj cos hð Þ¢
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1ð Þ
4p

n� jmjð Þ!
nþ jmjð Þ!

s

Pnjmj cos hð Þ (3)

and

Emð/Þ¢ð1=
ffiffiffiffiffiffi

2p
p

Þejm/ (4)

are the normalized associated Legendre functions and nor-

malized exponential functions, respectively; Pnjmjðcos hÞ are
the associated Legendre functions. In literature, the represen-

tation Eq. (1) is referred to as spherical harmonic expansion,

wave-domain representation, modal expansion, or multi-pole

expansion of a wavefield.

For the case of soundfields, Pðr; h;/; kÞ is the pressure

at a point as a function of frequency (wavenumber). The

problem of soundfield acquisition is to extract the soundfield

coefficients CnmðkÞ by sampling the soundfield over space

and time. The specific problem we consider in this paper is

to devise a method to extract 3D soundfield coefficients by

sampling the field within a 2D plane.

1. Wave domain expression of pressure gradient

For reasons that will become clear later in the paper, we

consider pressure gradient of a soundfield along the direction

of h. That is, we consider either differential or velocity

microphones placed in such a way that they measure pres-

sure gradient in the direction of h at a given point ðr; h;/Þ.
We define the pressure gradient along the direction of h

at a point ðr; h;/Þ as

Ph r; h;/; kð Þ¢ @P r; h;/; kð Þ
@h

: (5)

By substituting Eq. (1) into Eq. (5) and taking the partial de-

rivative with respect to h, the pressure gradient can be

expressed as

Phðr; h;/; kÞ ¼ � sin h
X

1

n¼0

X

n

m¼�n

CnmðkÞjnðkrÞ

� P0
njmjðcos hÞEmð/Þ; (6)

where

P0
njmj uð Þ ¼

dPnjmj uð Þ
d uð Þ
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is the first order derivative of the normalized associated

Legendre function.

B. General expression for first order microphones

The pick-up pattern of any first order microphone can

be considered as a weighed sum of an omni-directional pat-

tern and a differential pattern. Using Pðr; h;/; kÞ to repre-

sent the omnidirectional component of the measured sound

pressure and Phðr; h;/; kÞ for the differential component in

the h direction at point ðr; h;/Þ, the total sound pressure

measured by an arbitrary first order microphone can be

written as

Pcðr; h;/; kÞ¢bPðr; h;/; kÞ þ ð1� bÞPhðr; h;/; kÞ;
(7)

where b is a weighing factor and has a range of ½0; 1Þ.
When b¼ 0, Pcðr; h;/; kÞ contains only the differential pat-

tern, which is considered as a special case of first order

pick-up patterns. In this paper, differential microphones are

regarded as one type of first order microphones; when b

¼ 0:5; Pcðr; h;/; kÞ becomes the pick-up pattern of a

“standard” cardioid microphone. Substituting Eqs. (1) and

(6) into Eq. (7) yields the wave domain representation of

the signal received by a general first order microphone as

Pcðr; h;/; kÞ ¼
X

1

n¼0

X

n

m¼�n

CnmðkÞjnðkrÞðbPnjmjðcos hÞ

� ð1� bÞ sin hP0
njmjðcos hÞÞEmð/Þ: (8)

C. Sampling on a plane

Without loss of generality, let us place the coordinate

system such that the plane of interest for sensor placement is

the x-y plane. In the spherical coordinate system, h ¼ p=2
(i.e., cos h ¼ 0), for all points on the x-y plane. Thus the out-

put of an omni-directional sensor place on the x-y plane is

Pðr; p=2;/; kÞ ¼
X

1

n¼0

X

n

m¼�n

CnmðkÞjnðkrÞPnjmjð0ÞEmð/Þ:

(9)

Observe that when nþ jmj is an odd integer, the value of

Pnjmjð0Þ is equal to zero.21 Consequently, the spherical har-

monics associated with these associated Ledengre functions

are equal to zero. This property makes the odd mode spheri-

cal harmonics “invisible” on the h ¼ p=2 plane, which is

why extraction of the complete 3D soundfield information

cannot be done through sampling on a single plane using

omni-directional microphones.

On the other hand,

P0
njmj cos

p

2

� �

¼
a non-zero value; when nþ jmj is an odd integer;
0; when nþ jmj is an even integer:

(

Observe that the expression for the pressure gradient in Eq.

(6) has the terms P0
njmjð�Þ. Hence the “odd” components

of the pressure gradient along the direction of h is non-zero

on the x-y plane. Thus the pressure gradient measurements

contain odd CnmðkÞ (i.e., nþ jmj odd) coefficients. We use

this property in this paper to propose a method to extract 3D

soundfield components by sampling the field on the x-y plane

using differential (or first order) and omni-directional micro-

phones together.

A recurrent relationship between the associated

Legendre function and its first order derivative is given by26

x2 � 1ð Þ dPnjmj xð Þ
dx

¼ nxPnjmj xð Þ � jmj þ nð ÞP n�1ð Þ;jmj xð Þ:
(10)

When x ¼ cosðp=2Þ ¼ 0, (10) reduces to

P0
njmjð0Þ ¼ ðjmj þ nÞPðn�1Þ;jmjð0Þ: (11)

By taking the derivative of Eq. (3) and setting cos h ¼ 0,

expressing P0
njmjð0Þ using Eq. (11) and expressing

Pðn�1Þ;jmjð0Þ with Pn�1jmjð0Þ using Eq. (3), we derive the fol-

lowing relationship for the normalised associate Legendre

functions:

P0
njmj 0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1ð Þ n2 � m2ð Þ
2n� 1ð Þ

s

P n�1ð Þjmj 0ð Þ: (12)

By substituting Eq. (12) into Eqs. (6) and (8), we can

write the output of the differential and general first order

microphones placed at a point ðr; p=2;/Þ on the x-y plane

along the direction of h (i.e., perpendicular to the x-y plane)

as

Ph r;
p

2
;/; k

� �

¼ �
X

1

n¼0

X

n

m¼�n

Cnm kð Þjn krð Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1ð Þ n2 � m2ð Þ
2n� 1ð Þ

s

� P n�1ð Þjmj 0ð ÞEm /ð Þ (13)

and
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Pc r;
p

2
;/; k

� �

¼
X

1

n¼0

X

n

m¼�n

Cnm kð Þjn krð Þ bPnjmj 0ð Þ � 1� bð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1ð Þ n2 � m2ð Þ
2n� 1ð Þ

s

P n�1ð Þjmj 0ð Þ

0

@

1

AEm /ð Þ; (14)

respectively.

III. ARRAY CONFIGURATION

In this section, we outline possible geometric configura-

tions of first order and omni-directional sensors on the x-y

plane to extract both the even and odd spherical harmony

components of the soundfield.

A. Calculation of harmonic coefficients

1. Even coefficients: Omni-array

Consider a circle placed on the x-y plane such that an ar-

bitrary point on the circle is given by ðRq; p=2;/Þ. Then the

output of a omni-directional microphone on the circle at

ðRq; p=2;/Þ is given by

P Rq;
p

2
;/;k

� �

¼
X

1

n¼0

X

n

m¼�n

Cnm kð Þjn kRqð ÞPnjmj 0ð ÞEm /ð Þ:

(15)

Because soundfields over a spherical region of finite radius

are mode limited,25 the infinite summation on right hand

side of Eq. (15) can be approximated by a finite sum,

P Rq;
p

2
;/;k

� �

�
X

N

n¼0

X

n

m¼�n

Cnm kð Þjn kRqð ÞPnjmj 0ð ÞEm /ð Þ;

(16)

where N denotes the maximum harmonic order at the array’s

radius Rq and the highest operating frequency.27 Multiplying

both sides of Eq. (16) by Emð�/Þ and integrating with

respect to / over ½0; 2pÞ yields the total sound pressure

received by the ring, as

amðRq; kÞ¢
ð2p

0

PðRq; p=2;/; kÞEmð�/Þ d/ (17)

¼
X

N

n¼jmj
CnmðkÞ jnðkRqÞPnjmjð0Þ: (18)

Note that only the even mode harmonics are present in Eq.

(18) because Pnjmjð0Þ ¼ 0 for nþ jmj odd. Let there be a

total of Q circles placed at different radii but all on the h

¼ p=2 plane (x-y plane). Thus for q ¼ 1;…;Q, the relation-

ship between the even mode soundfield coefficients of mode

m and the azimuth sound pressure harmonics amðRq; kÞ on

each circle can be expressed as

amðkÞ ¼ UmðkÞCeven
m ðkÞ; (19)

where amðkÞ ¼ ½amðR1; kÞ; amðR2; kÞ;…; amðRQ; kÞ�T ,

C
even
m ðkÞ ¼

½CmmðkÞ;Cðmþ2ÞmðkÞ;…;CNmðkÞ�T ; if m andN are both even=odd

½CmmðkÞ;Cðmþ2ÞmðkÞ;…;CðN�1ÞmðkÞ�T ; otherwise

(

(20)

is the vector of the even mode coefficients of mode m and

UmðkÞ ¼

jmðkR1ÞPmjmjð0Þ jmþ2ðkR1ÞPðmþ2Þjmjð0Þ � � � jNðkR1ÞPNjmjð0Þ
jmðkR2ÞPmjmjð0Þ jmþ2ðkR1ÞPðmþ2Þjmjð0Þ � � � jNðkR2ÞPNjmjð0Þ

.

.

.
.
.
.

.

.

.
.
.
.

jmðkRQÞPmjmjð0Þ jmþ2ðkRQÞPðmþ2Þjmjð0Þ � � � jNðkRQÞPNjmjð0Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; (21)

for the case with both N and m are either odd or even [other-

wise replace N in Eq. (21) by N – 1].

We can estimate the even mode coefficients from Eq.

(19), provided UmðkÞ is not singular, as

C
even
m ðkÞ ¼ U

†
mðkÞamðkÞ; (22)

where U†
m ¼ ðUT

mUmÞ�1
U

T
m is the pseudo inverse of Um.

Note that the calculation of even harmonic coefficients

are similar to the work reported in Ref. 21. However, we

show in Sec. IIIA 2 how to extract odd harmonic coefficients

by placing the differential microphones on the x-y plane,

which is a method not reported elsewhere to the best of our

knowledge.

2. Odd coefficients: Differential microphone array

Consider a circular array of differential microphones

with radius Rq placed on the x-y plane with all differential

microphones pointed perpendicular to the x-y plane (i.e., h
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¼ p=2 plane). Then the output of a differential microphone

on the circle at ðRq; p=2;/Þ is given by Eq. (13). Using the

properties of the spherical Bessel functions, we can show

that the infinite summation of Eq. (13) can be truncated to a

finite number [similar to the case of Eq. (16)]. The resulting

equation is given in the following text:

Ph Rq;
p

2
;/; k

� �

¼ �
X

N

n¼0

X

n

m¼�n

Cnm kð Þjn kRqð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1ð Þ n2 � m2ð Þ
2n� 1ð Þ

s

P n�1ð Þjmj 0ð ÞEm /ð Þ: (23)

By multiplying both sides of Eq. (23) by Emð�/Þ and inte-

grating with respect to / over ½0; 2pÞ, we obtain the response

of the differential microphone array, named as azimuth pres-

sure gradient harmonics

a dð Þ
m Rq; kð Þ¢

ð2p

0

Ph Rq;
p

2
;/; k

� �

Em �/ð Þd/ (24)

¼�
X

N

n¼jmj
CnmðkÞjnðkRqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2nþ1Þðn2�m2Þ
ð2n�1Þ

s

�P n�1ð Þjmj 0ð Þ: (25)

Note that only the odd mode harmonics are present in Eq.

(25) because Pðn�1Þjmjð0Þ ¼ 0 for nþ jmj even.
By evaluating Eq. (25) for q ¼ 1;…;Q, the relationship

between the odd soundfield coefficients of mode m and

aðdÞm ðRq; kÞ on each circle can be expressed as a matrix

equation:

aðdÞm ðkÞ ¼ VmðkÞCodd
m ðkÞ; (26)

where aðdÞm ðkÞ ¼ ½aðdÞm ðR1; kÞ; aðdÞm ðR2; kÞ;…; aðdÞm ðRQ; kÞ�T ,

C
odd
m ðkÞ ¼

½Cðmþ1ÞmðkÞ;Cðmþ3ÞmðkÞ;…;CðN�1ÞmðkÞ�T ; if m andN are both even=odd

½Cðmþ1ÞmðkÞ;Cðmþ3ÞmðkÞ;…;CNmðkÞ�T ; otherwise

(

(27)

and

VmðkÞ ¼

V
ð1Þ
ðmþ1Þjmj V

ð1Þ
ðmþ3Þjmj … V

ð1Þ
ðN�1Þjmj

V
ð2Þ
ðmþ1Þjmj V

ð2Þ
ðmþ3Þjmj … V

ð2Þ
ðN�1Þjmj

.

.

.
.
.
.

.
.

.
.
.
.

V
ðQÞ
ðmþ1Þjmj V

ðQÞ
ðmþ3Þjmj … V

ðQÞ
ðN�1Þjmj

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

(28)

with

V
qð Þ
njmj ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1ð Þ n2 � m2ð Þ
2n� 1ð Þ

s

jn kRqð ÞP n�1ð Þjmj 0ð Þ

(29)

for the case with both N and m are either odd or even [other-

wise replace N – 1 in Eq. (28) by N].

We can estimate the odd harmonic coefficients from Eq.

(26), provided VmðkÞ is non-singular, as

C
odd
m ðkÞ ¼ V

†
mðkÞaðdÞm ðkÞ; (30)

where V†
m ¼ ðVT

mVmÞ�1
V
T
m is the pseudo inverse of Vm.

Thus the complete set of soundfield coefficients can be

derived through solving for the even and odd harmonics

coefficients separately using the signal received from omni-

directional microphones [Eq. (19)] and differential micro-

phones [Eq. (26)], respectively.

3. Cardioid or general first order microphone arrays

Alternatively, the even and odd harmonic coefficients

may be calculated together in one matrix operation. This

method is especially suitable for planar arrays that utilize

cardioid microphones (or general first order) instead of dif-

ferential microphones. According to Eq. (14), a first order

(e.g., cardioid) microphone placed on the x-y plane picks up

both the even and odd components of the soundfield. For a

set of finite radii circular arrays of first order microphones

placed on the x-y plane, we can write a matrix equation using

Eq. (14) and following similar steps as in Secs. III A 1 and

III A 2,

aðfÞm ðkÞ ¼ bUmðkÞCeven
m ðkÞ þ ð1� bÞVmðkÞCodd

m ðkÞ (31)

where aðfÞm ðkÞ ¼ ½aðfÞm ðR1; kÞ; aðfÞm ðR2; kÞ;…; aðfÞm ðRQ; kÞ�T with
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a fð Þ
m Rq; kð Þ¢

ð2p

0

Pc Rq;
p

2
;/; k

� �

Em �/ð Þ d/; (32)

and C
even
m ðkÞ; UmðkÞ; Codd

m ðkÞ and VmðkÞ are given by Eqs.

(20), (21), (27), and (28), respectively.

If we have both omni-directional and first order circular

arrays of microphones, then we can combine Eqs. (19) and

(31) to obtain

amðkÞ
aðfÞm ðkÞ

� �

¼ UmðkÞ 0

bUmðkÞ ð1� bÞVmðkÞ

� �

C
even
m ðkÞ

C
odd
m ðkÞ

� �

:

(33)

Equation (33) can be solved to calculate both the even and

odd harmonics coefficients given by C
even
m ðkÞ and C

odd
m ðkÞ.

B. Discrete sensor placement: Sampling
of continuous aperture

In Sec. III A 3, we assumed that the pressure

PðRq; p=2;/; kÞ, pressure gradient PhðRq; p=2;/; kÞ and the

first order microphone output PcðRq; p=2;/; kÞ are readily

available over a continuous circular aperture in Eqs. (17),

(24), and (32), respectively. However, in practice, we only

have a finite set of microphones and hence a discrete set of

samples on the circular aperture. Thus for an equally spaced

microphone arrays, we approximate the integration in Eqs.

(17), (24), and (32) by summations,

am Rq; kð Þ � 2p

Nq

X

Nq

s¼1

P Rq; p=2;/s; k
� �

Em �/sð Þ; (34)

a dð Þ
m Rq; kð Þ � 2p

Nq

X

Nq

s¼1

Ph Rq;
p

2
;/s; k

� �

Em �/sð Þ; (35)

a fð Þ
m Rq; kð Þ � 2p

Nq

X

Nq

s¼1

Pc Rq;
p

2
;/s; k

� �

Em �/sð Þ; (36)

where Nq are the number of microphones placed in a circle

and /s denotes the azimuth angle of the location of the sth

microphone.

1. Number of sensors per circle

Due to the spatial sampling of the soundfield, one can

only extract a limited number of harmonic orders by each

array. To sample a set of circular harmonics of maximum

order N, the number of microphones required is given by

nmic � 2N þ 1. Due to inherent properties of the spherical

Bessel functions, the circular harmonics that exists within a

certain radius is order limited. A rule of thumb for deciding

the maximum active harmonic order is given by

N � dekr=2e, where k is the wave number and r is the radius

of the region of interest.27 The exact amount of microphones

to be used for each circular array thus depends on the radius

of the array as well as the target frequency band.

The truncation of spherical harmonics leads to errors,

which will be discussed in Sec. IV. The “rule of thumb” N

� dekr=2e gives a sufficiently high precision for most

applications.27 For applications that require less accuracy, an

alternative truncation number is given by N � dkRe.25 The

former rule is used in this paper for higher accuracy.

Because the number of microphones on each circular

array is directly linked to the wave number k, which can then

be translated into the wavelength k, the number of micro-

phones needed can be easily derived from the target fre-

quency of the application as

nmic ¼ 2N þ 1 ¼ 2
ekR

2

	 


þ 1 ¼ 2
epR

k

	 


þ 1

¼ 2
epfR

c

	 


þ 1; (37)

where c is the speed of wave propagation, for audio applica-

tions, c¼ 340m/s. Thus one can directly calculate the num-

ber of sampling points (microphones) for a given array

radius and a target frequency band. For example, a circular

array of 0.4m radius, designed for audio signals up to

1500Hz, would need 33 microphones.

2. Configuration(s)

The array system can be configured to have multiple cir-

cular microphone arrays placed on a plane with half of the

arrays using omni-directional microphones, the other half

using first order microphones placed perpendicular to the

plane. The number of microphones on each array is decided

by the target wave number and the radius of the array, there-

fore smaller arrays may have a lower amount of micro-

phones. Figure 1 illustrates such a configuration.

An alternative configuration is to use closely placed

omni-directional microphone pairs to realize differential

microphones. In this way, each microphone pair is used in

two different ways: the two microphone output signals are

differentiated to create the bi-directional pick up pattern,

which is used for calculation of odd numbered coefficients;

in the mean time, one of the two microphone outputs is used

to calculate the even-numbered coefficients. Figure 2 shows

an example of such array arrangement.

FIG. 1. (Color online) Example of omnidirectional (dot) and first order (tri-

angle) microphone arrangement on a 2D plane for 3D soundfield analysis.
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The two microphone array configurations require the

same number of microphones for the same design target,

although the second option uses half the number of circular

arrays. However, it should be noted that the distance

between the two microphones in each microphone pair

should be small compared to the array radius, so as to best

approximate Phðr; h;/; kÞ in Eq. (5).

C. Array design procedure

A general guidance for designing the planar array is pro-

vided in this section. This procedure illustrates the basic

steps in setting the parameters of the microphone array.

Step 1: Determine the desired frequency band and the

radius R of the region of interest.

Step 2: Calculate the maximum order of the soundfield

using N ¼ dekR=2e.
Step 3: Based on the maximum order N, decide the num-

ber of circular arrays to be implemented. For first order

microphone configuration, at least Nomni ¼ dN=2e omnidir-

ectional sensor arrays and Nfirst ¼ N � Nomni first order

arrays are needed. For differential microphone configuration,

no less than Ndiff ¼ dN=2e arrays of microphone pairs are

required.

Step 4: Determine the radius of each circular array.

Choose the radius such that the spherical Bessel zeros for the

target frequency band are avoided. Ensure that the radii of

the circular arrays have a good diversity.

Step 5: For each circular array, decide the maximum

spherical harmonic order Ni and estimate the number of

microphones to be placed on the array based on

nmic ¼ 2Ni þ 1.

After settling on a design, the parameters for soundfield

calculation can then be set based on the dimensions of the

array.

D. Comments

We make the following comments and observations

with the proposed array:

(1) The even spherical harmonics are symmetric about the

z¼ 0 (x-y) plane, while the odd modes are not. A planar

microphone array comprising only omnidirectional micro-

phones cannot distinguish the waves that are impinging

from either sides of the plane. This fact explains that why

this type of array is not capable of detecting the full 3D

soundfield.

(2) First order cardioid microphones that are placed perpen-

dicular to the array plane can pick up a combination of

even and odd mode harmonics but are unable to separate

the two components. However, if the even mode har-

monic coefficients are known (which can be provided by

an omnidirectional microphone array), then it becomes

easy to solve for the remaining odd mode coefficients.

Thus a hybrid array of both omnidirectional and first

order microphones is crucial for detecting full 3D sound-

field using a planar array aperture.

(3) The zeros in the spherical Bessel functions cause cer-

tain spherical harmonics to be “invisible” at some ra-

dius and frequency; this limits an array’s wide band

capabilities. The proposed array aperture samples the

soundfield at multiple radii, thus improving the array’s

redundancy against zero points in the spherical Bessel

functions. However, the user should carefully design

the array such that at each frequency, a sufficient num-

ber of circular arrays are unaffected by the Bessel zeros

and are available for calculating the coefficients. In

general, a properly designed planar array can avoid the

Bessel zero problem for all frequencies, and thus having

wideband capabilities, this is shown in Sec. V using a

hypothetical design example.

(4) Although the proposed array has a planar geometry, the

free space assumption still applies to our array system,

which requires that no sound source or scatterer should

exist within the spherical region enveloping the planar

array. For this reason, the array cannot be directly placed

on walls or tables to capture the surrounding sound.

However, a work-around to this problem is to place an

appropriate sound absorbing material between the rigid

surface (wall, table) and the planar array, which elimi-

nates all reflections from the surface, thus the setup no

longer violates the free-space assumption. Furthermore, if

the reflection characteristics of the surface is known, it is

possible to compensate for the reflection in the calcula-

tion. However, this is beyond the scope of this paper, and

we will investigate this in a future work.

IV. ERROR ANALYSIS

In this section, we discuss two primary sources of error,

and the impact they have on the acquisition accuracy of dif-

ferent soundfield coefficients.

A. Differential microphone approximation

As was mentioned in Sec. III, a differential microphone

can be realized using a pair of closely placed omni-directional

microphones. However, this implementation only approxi-

mates the ideal velocity sensor, using the approximation

FIG. 2. (Color online) Example of omni-directional microphone pair

arrangement on a 2D plane for 3D soundfield analysis.
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P xþ dxð Þ � P xð Þ
dx

� @P xð Þ
@x

¼ V xð Þ: (38)

By choosing sufficiently small value of dx, the error of

the approximation can be minimized. However, due to

implementation constraints such as physical dimension of

the microphone units, a very good approximation of Eq.

(38) may not be achievable. We recommend choosing

dx � 0:1=kmax, where kmax is the wave number corre-

sponding to the maximum operating frequency of the

microphone array, so as to minimize the error due to the

approximation.

Because this approximation only exists for the sampling

of the odd coefficients, the accuracy of the calculated odd

coefficients is expected to be slightly worse than that of the

even coefficients when the differential microphone approxi-

mation is used to implement the array. This phenomenon is

observed in the hypothetical design example.

B. Spatial sampling and spatial aliasing

One major source of error in the proposed array system

is spatial sampling. By comparing Eq. (17) and its discrete

approximation, Eq. (35), the error on each harmonic mode

due to spatial sampling can be defined as

DEmode¢

ð2p

0

P r; h;/; kð ÞEm �/ð Þd/

� 2p

nmic

X

nmic

u¼1

P r; h uð Þ;/ uð Þ; kð ÞEm �/ð Þ: (39)

The same approximation error can be defined for Eqs. (24)

and (32). Generally speaking, this error is small as long as

the Nyquist sampling criteria is met; however, using extra

microphones on each circular array can help to improve the

accuracy of the system.

The truncation of spherical harmonic modes mentioned

in Sec. III also leads to errors as the energy of the truncated

higher order harmonics are aliased into the observed har-

monics during calculation. The truncation error can be

expressed as

FIG. 3. (Color online) Reproduction error percentage for a point source of

frequencies 150–1150Hz, located at (1.6m, 60	, 90	).

FIG. 4. (Color online) Actual [(a), (c)]

and recorded [(b), (d)] soundfield due

to a 850Hz point source located at

h¼ 45	, R¼ 1.6m, reconstructed at

z¼ 0 [(a), (b)] and z¼ 0.2m [(c), (d)]

plane.
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DEtrunc¢
X

1

n¼jmj
CnmjnðkrÞPnjmjð0Þ

�
X

N

n¼jmj
CnmjnðkrÞPnjmjð0Þ

¼
X

1

n¼Nþ1

CnmjnðkrÞPnjmjð0Þ: (40)

Using the rule of thumb given in Ref. 27, the error is in the

order of 1%. It should be noted that the truncation error will

only be aliased into coefficients of the highest order due to

inherent properties of the spherical Bessel functions.

Due to the structure of the proposed design example and

the nature of the spherical Bessel functions, the lower order

spherical harmonic modes are sampled by multiple circular

arrays, whereas the highest order ones are only visible to one

or two circular arrays. As a result, when solving for the

soundfield coefficients using Eqs. (19) and (26), the lower

order coefficients are less affected by the approximation and

aliasing errors than the higher order coefficients. This trend

is shown in Fig. 6.

V. DESIGN EXAMPLES

In this section, we describe (i) a hypothetical design

example and (ii) an actual implementation of the proposed

array. The purpose of the hypothetical example is to illus-

trate the procedures to design an array and to theoretically

evaluate the array’s capabilities. Then the implemented

array is used to validate the technique through lab

experiments.

A. Hypothetical design example

We consider the case of recording the soundfield in a

spherical region with a diameter of approximately 1m, the

target frequency band is 50–850Hz. This design example

illustrates the use of pairs of omni-directional microphones

to realize differential microphones in the array. We chose

this array configuration because its accuracy is worse com-

pared to the design using both omni-directional and first

order microphones, due to the presence of differential pattern

approximation error mentioned in Sec. IV The radius of the

array is chosen to be 0.46m, which is close to the size of the

region of interest. Thus for the maximum frequency of

850Hz and a radius of 0.46m, the array can pick up sound-

field harmonics up to the order

N ¼ ekr

2

	 


¼ 10; (41)

which means that the outer ring of the array should have at

least 2N þ 1 ¼ 21 microphone pairs. Following this manner,

we place a series of circular arrays of different radii inside

the outer circle. Following the design procedure given in

Sec. III, the radii of the rings are set to be 0.46, 0.4, 0.34,

0.28, 0.22, 0.16, and 0.1m. Thus the number of microphone

pairs on each ring are 21, 19, 17, 13, 11, 9, and 7,

respectively.

To evaluate the performance of the proposed array sys-

tem, we place a single point source of frequency

150–1150Hz at ðR; h;/Þ¼ (1.6m, 60	, 90	). We use the

array to estimate the spherical harmonic coefficients and

then reconstructed the soundfield. We compare the recon-

structed soundfield to the original soundfield and calculate

the overall reproduction error of the system. Figure 3 depicts

the error for different frequencies. Note that the error is

small when the frequency is below 850Hz, which is the

desired maximum frequency for the array. Beyond the upper

FIG. 5. (Color online) Reproduction error percentage for a plane wave

source at 850Hz, moving from h¼ 0 to h¼ 180	.

FIG. 6. (Color online) Average coefficient error due to a 500Hz plane wave

impinging from different elevation angles.

TABLE I. Condition number of matrix Um of the hypothetical design example for frequencies 100, 200, 400, and 800Hz.

m¼ 0 m¼ 1 m¼ 2 m¼ 3 m¼ 4 m¼ 5 m¼ 6 m¼ 7 m¼ 8 m¼ 9 m¼ 10

100Hz 5.76 1.00 1.00 / / / / / / / /

200Hz 13.25 4.57 1.00 1.00 / / / / / / /

400Hz 46.30 19.38 15.97 6.33 1.00 1.00 / / / / /

800Hz 181.35 21.80 110.99 13.24 54.40 41.80 10.88 4.20 7.88 1.00 1.00
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frequency, the error percentage increases dramatically. The

reason is that as the frequency increases, the order of active

spherical harmonics also grows. At frequencies above

850Hz, the number of microphones needed to estimate the

higher frequency components are greater than the number of

the microphones on the array, thus causing aliasing. Also the

total number of coefficients for each mode m exceeds the

number of circular arrays available, as a result, the matrix

inversion problems shown in Eqs. (19) and (26) become

under-determined, resulting in significant errors.

We plot the original and reconstructed (using captured

spherical harmonic coefficients) soundfields in Fig. 4,

where plots (a) and (c) are the actual soundfield at planes

z¼ 0 and z¼ 0.2m, (b) and (d) are the recorded and recon-

structed soundfield at these two planes, respectively. We

observe that the captured soundfield over the region of in-

terest in both planes are similar to the actual soundfield in

the same area.

To evaluate the array performance for different imping-

ing angles, we move a plane wave source at frequency

850Hz over different elevation angles over [0, 180	] and the

corresponding reproduction error is given in Fig. 5. As seen

from Fig. 5, the error is less than 1.8% over all elevation

angles. Due to the symmetry of the array over the azimuth

angles, the performance are almost constant over different

azimuth angles.

To examine the array accuracy in terms of soundfield

coefficients, we move a plane wave source at frequency

500Hz over different elevation angles in the range of

[0, 180	] and calculate the average error for each coefficient,

where the theoretical coefficient response to a plane wave

impinging from ð#;uÞ is given by23

anm ¼
ffiffiffiffiffiffi

4p
p

inYnmð#;uÞ
: (42)

Figure 6 plots the normalized average error for each coeffi-

cient. It can be observed that the lower order coefficients are

more accurately measured compared to the higher order

ones; also, the even mode coefficients are more accurate

compared to the odd mode coefficients.

Table I shows the condition number of the matrix Um of

the designed array for various frequencies. Due to the sepa-

ration of the even and odd mode harmonic coefficients, the

coefficients CN;6N; CN;6ðN�1Þ and CN�1;6ðN�1Þ are solved

uniquely, therefore the matrices UN and UN�1 are in fact

vectors whose eigenvalues equal to 1. The size of Um grows

as the frequency increases, and the condition number for

lower modes increase correspondingly. The design example

consists of the minimum number of circular arrays. We

expect the condition numbers to be lower should additional

circular arrays be used in the system. Also, for high order

systems (N � 5), regularization should be applied when

inverting the matrix Um.

In general, we can see from the simulations that the

design example offers good accuracy, with its error in the

order of 1%. This is comparable to the performance of spher-

ical microphone arrays7 and other previously proposed array

configurations such as the multiple circular microphone

array21 and the double sided cone array20 of the same order,

assuming that a similar number of microphones have been

used in each array configuration.

B. Array implementation

To experimentally test the proposed array design and

the associated algorithms, we built a physical array of omni-

directional microphones (see Fig. 7). Due to hardware limi-

tations, we only use 16 microphones to build the array.

Therefore the array is designed to detect up to the second

order soundfield for up to 1000Hz frequency. Based on the

proposed design procedure, the system is built to have two

FIG. 8. (Color online) Comparison of

(a) recorded and (b) simulated sound-

field for a 850Hz source at

ðR; h;/Þ¼ (1.64m, 45	, 100	), recon-
structed at the z¼ 0.05m plane.

FIG. 7. (Color online) Implemented planar microphone array, using omni-

directional microphone pairs.
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co-centered circular arrays, the outer ring has the radius of

10 cm, consisting of five omnidirectional microphone pairs,

while the inner ring is 4 cm in radius, and consists of three

microphone pairs.

Testing of the microphone array was conducted in our

acoustic lab. A series of factors contribute to the errors in the

test results. First of all, although most rigid surfaces in the

lab are covered by acoustic foams to reduce reverberation,

the acoustic foams are relatively thin and thus reverberations

still exist. Second, the microphone capsules used have a sen-

sitivity variation of approximately 6 dB, and the calibration

process could not guarantee high uniformity among all the

microphone units. This factor has a significant impact on the

performance of the differential microphone pairs.

Furthermore, the position of each microphone unit has a

deviation of 1–2mm, which also leads to errors in the

acquired data.

In our experiment, the impinging soundfields are due to

two loudspeakers that play 850Hz sine waves. The loud-

speakers were placed at ðR; h;/Þ¼ (1.64m, 45	, 100	) and
(1.5m, 90	, 225	), respectively. To evaluate the results of

the experiments, the same loudspeaker-microphone array

setup is simulated using MATLAB. Figure 8 plots the recorded

soundfield (a) and the simulated soundfield (b) due to a point

source located at ðR; h;/Þ¼ (1.64m, 45	, 100	). It can be

seen from the figure that the recorded soundfield is very sim-

ilar to the simulated result.

Table II lists the spherical harmonic coefficients calcu-

lated from the recorded data as well as those acquired from

the simulation results. It can be seen that although rather sig-

nificant errors occur with some coefficients, the general pat-

terns match very well. The microphone data used are raw

recordings processed by microphone calibration data, which

were acquired before assembling the array, therefore all the

errors mentioned previously are present and have an impact

on the recorded coefficients. Further calibration to the sys-

tem, including microphone gain calibration, array geometry

adjustments, and modification of algorithm parameters can

be expected to greatly improve the accuracy of the system.

We would like to point out that our array system utilizes

16 microphones to capture second order soundfield, whereas

in theory, the minimum number of microphones required to

capture second order soundfield is nine. Therefore the pro-

posed array system does not reduce the number of micro-

phones required to sample the soundfield. The highlight of

our proposed array structure is that it reduces the physical

dimension of a higher order microphone array system with-

out compromising its functionality.

VI. CONCLUSION

This paper introduces a method of measuring complete

3D soundfield information on a 2D plane through the com-

bined use of omnidirectional microphones and first order

microphones. We provide two options for planar microphone

array implementation based on the proposed soundfield

measuring method. Both array configurations consist of mul-

tiple co-centered circular arrays with one option using both

omni-directional microphones and first order microphones,

while the other option using omni-directional microphones

only. The associated algorithms to calculate soundfield coef-

ficients are also given in the paper. We show in the simula-

tion example that the proposed 2D microphone array system

has good accuracy within its designed operating frequency

band, and both even and odd soundfield coefficients can be

accurately calculated. We also built an experimental planar

microphone array to further validate the proposed theory.
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