
476 IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-35, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, APRIL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1987 

Theory  and  Design of A4-Channel  Maximally 
Decimated  uadrature  Mirror  Filters  with  Arbitrary 

M ,  Having  the  Perfect-Reconstruction  Property 

Abstract-Based on the concept of losslessness in digital filter struc- 
tures, this paper derives a general class  of maximally decimated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM- 
channel quadrature mirror filter hanks that lead to perfect reconstrnc- 
tion. The perfect-reconstruction property guarantees that the recon- 
structed signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( a )  is a delayed version of the input signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(n), i.e., 
2 ( n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= n ( n  - a,,). It is shown that such a property can he satisfied if 
the alias component matrix (AC matrix for short) is unitary on the unit 
circle of the z plane. The number of channels M is arbitrary, and when 
M is two, the results reduce to certain recently reported 2-channel per- 
fect-reconstruction QMF structures. A procedure, based on recently 
reported FIR cascaded-lattice structures, is presented for optimal de- 
sign of such FIR M-channel filter banks. Design examples are included. 

I. INTRODUCTION 

Q UADRATURE  mirror filter (QMF) banks  have re- 
ceived considerable attention during  the past several 

years because of a wide variety of engineering applica- 
tions [ 11-[ 131. An  M-channel QMF bank is  shown in Fig. 
1, where H&), H , ( z ) ,  - * . , HM - , ( z )  are the  transfer 
functions of analysis bank filters, and Fo( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz), F,( z ) ,  

* * , FM- l (z )  represent the  synthesis filters. In  the  anal- 
ysis bank,  the incoming signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx( n )  is split into M fre- 
quency bands by filtering, and  each  subband signal is 
maximally decimated, i.e., decimated by a factor of M.  
The M decimated signals are then processed in  the  syn- 
thesis bank  by interpolating each  signal, filtering, and then 
adding the M filtered signals. In a typical application  of 
such a system,  the M decimated  signals  in  the  analysis 
bank are coded and  transmitted.  The motivation for  such 
signal splitting and coding before transmission is a well- 
understood topic,  and  is  covered well in the literature [1]- 

P I .  
A common requirement in  most applications is that the 

reconstructed signal 2 ( n )  should be “as close”  to x ( n )  
as possible, in a certain well-defined sense.  The recon- 
structed signal in general suffers from aliasing error  be- 
cause  the  analysis  bank filters Hk ( z )  that precede the de- 
cimators  are not ideal.  In  practice,  for a given  set  of 
analysis filters Hk ( z ) ,  the  synthesis filters Fk ( z )  can  be 
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Fig. 1.  The M-channel  maximally  decimated  parallel QMF bank. 

chosen so as to  reduce  the effect of this aliasing caused 
by the decimation operation. 

It is well known that  in two-channel QMP banks (i.e., 
M = 2 )  perfect  cancellation of aliasing  can be accom- 
plished  by a simple choice of the functions Fo( z )  and F1 (z ) 
[1]-[5]. For  the  case  of M channels, if M is a power of 
two,  tree structures with two-channel QMF  banks  can be 
built that are free  from  aliasing. For arbitrary M ,  approx- 
imate  cancellation of aliasing  can  be accomplished in an 
elegant manner [SI-[lo], whereas perfect cancellation of 
aliasing  can be accomplished with somewhat more  com- 
plicated synthesis  bank filters [ 1 11-[ 151. 

The most general expression for 2 ( z )  is of the  form 

[31, VI 

1 M - l  
M -  1 

g(Z) = - X ( 2 w - l )  H k ( Z w - ’ )   F k ( Z )  ( l a )  
M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1=0 k=O 

where W = e - J2p /M.  In (la), X (zW-’),  I # 0 represents 
the aliasing terms. Aliasing is cancelled if and only if the 
following set of relations holds: 

The  above M X M matrix has  been referred to as the  alias 
component matrix (AC matrix) in  the  literature [7]. Once 
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aliasing has been  cancelled,  the  structure of Fig. 1 is time 
invariant (and of  course  linear),  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  is related to 
X ( z )  by a transfer function T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2): 

Thus, T ( z )  represents the  “distortion” caused by the al- 
ias-free analysis-synthesis system. An alias-free system 
is said to  have no .amplitude distortion if T ( z )  is  a (stable) 
all-pass function,  whereas,  if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ( z  ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis a  linear-phase FIR 
function; then the  system is free from phase distortion. 
Depending upon the  application in hand,  it  is always pos- 
sible to choose the  set of filters { Fk ( 2 )  1 (for a given set 
of analysis filters { Hk ( z )  ] ) such  that  either  the  ampli- 
tude distortion is  zero  or  the phase distortion is  zero [ 1 I]- 

If an alias-free system is such that  the quantity T ( z )  is 
a  delay, then both amplitude and phase distortions are 
zero. Such QMF banks are called perfect-reconstruction 
banks and satisfy 

[131. 

2 ( z )  = cz-noX(z) ( 3 )  

for some positive integer no. Here c is  an arbitrary con- 
stant. 

In principle,  one can always set T ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - ~ O  in (lb) 
and invert the AC matrix  in  order to obtain  the synthesis 
filters Fk ( z )  that would lead to perfect reconstruction. 
This  approach,  however,  is of little  use  in  practice  as  it 
often leads  to  synthesis filters of very high order which in 
addition are typically unstable.  This motivates us to look 
at  the perfect-reconstruction problem from other points of 
view that do not involve  the  inversion of the AC’ matrix. 

A  simple way to  obtain perfect reconstruction is to 
choose the analysis and synthesis filters according  to- 

H k ( z )  = Z - k ,  Fk (2) = z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-(M- 1 - k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(4) 

It is easily verified that such a  choice satisfies (3 )  with no 
= M - 1. (See Appendix A.)  However,  the filtering func- 
tions Hk ( z )  are  trivial,  and  such  a structure has little prac- 
tical value. 

A fundamental result has recently been established by 
Smith and Barnwell [6] who showed that two-channel per- 
fect-reconstruction QMF  banks. can indeed be  con- 
structed, while at  the  same  time accomplishing nontrivial 
FIR filtering functions Ho( z), Hl’( z) . The result is based 
on an important property satisfied by linear-phase FIR 
half-band filters, and  the  ‘designs of H o ( z )  and Hl(z) are 
based on  the spectral-factorization of an appropriately 
conditioned half-band filter. This problem has also been 
recently addressed by Mintzer [ 161. 

One of the main aims of our  paper  here  is  the extension 
of these perfect-reconstruction results for  the  case of M 
channels, with arbitrary ‘M. Referring to  the maximally 
decimated QMF  structure of Fig. 1,  we show how the 
transfer functions { Hk ( z  ) ] and { Fk ( z  ) ] can be con- 
structed such that  aliasing is perfectly cancelled, and in 
addition (3) is exactly satisfied. Our solution is such that 

H k ( z )  and F k ( z )  are  FIR, for  all k ,  0 5 k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI M - 1. 
Moreover, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN - 1 is the  order of each of the filters 
Hk ( z ) ,  then the order of each of Fk ( z )  is also N - 1. 

The notion of polyphase networks in signal splitting and 
reconstruction 131, 1301 , [3 11 enables  one  to  address many 
theoretical and practical issues in a unified manner [I 13- 
[13]. In  this  paper,  we make further  use of this tool by 
defining generalized polyphase structures which can be 
useful even when the analysis-bank filters are entirely un- 
related to each other.  The role of all-pass functions and 
losslessness in signal splitting and reconstruction appli- 
cations has been noticed and analyzed by some authors in 
the past [ 111, [ 121, [ 3 2 ] ,  [34], thus leading  to IIR QMF 
banks with (no aliasing and) no amplitude distortion. Such 
IIR QMF banks do lead to  phase distortion (because T(  z )  
of (2) is an all-pass function in these examples) which can 
be compensated by an equalizer.  In  this  paper,  we  take 
advantage of the result that multivariable FIR lossless 
functions can be appropriately employed in a QMF bank 
in order to reduce all types of distortion to zero, thereby 
resulting in perfect reconstruction. 

Certain simple solutions to.  the perfect-reconstruction 
problem, which are of restricted use,  have recently been 
presented [11]-[13] and do not in general have FIR com- 
ponents.’ The question of existence of perfect-reconstruc- 
tion QMF banks for arbitrary M ,  with FIR analysis and 
synthesis filters, need not bother  us. A simple  example of 
such a system is obtained in Appendix A. More  examples 
can be found in [ 151. However,  our  purpose  here is to 
provide new solutions based on the observation that the 
concept of losslessness in digital networks 1171, [20] is 
closely related to the concept of signal reconstruction in 
maximally decimated QMF banks.  Our results are such 
that the FIR filters in the analysis bank have the same 
length as those in the synthesis bank.  In  order to render 
the paper readable in a self-contained manner, we define 
the notion of losslessness in Section 11. We then review 
the fundamental two-channel perfect-reconstruction re- 
sults 161 in order to place them in the context of the loss- 
less structural framework. Section I11 introduces  the gen- 
eral M-channel perfect-reconstruction circuit. This section 
derives a set of suflcient conditions  for perfect recon- 
struction with arbitrary M .  A set of necessary and sufl- 
cient conditions is also included in this section. 

When M is  a power of two,  it is well known that  tree 
structures based on the two-channel building blocks in [6] 
can be used in order  to  obtain perfect reconstruction. Sec- 
tion IV includes a proof that such Smith-Barnwell tree 
structures satisfy the set of sufficient conditions developed 
in Section 111. Such a proof is encouraging because it 
shows that  the sufficient conditions we  develop  are not 
unduly restrictive, and do not disable us from obtaining 
good stopband attenuation for  the  analysis filters. 

Since the design of the analysis bank in  the two-channel 

‘In  a  recent  conversation  with M. Vetterli at the  ICASSP’86 Tokyo Con- 
ference,  we  learned  that Dr. Vetterli  has  made  similar  observations 1141, 
~151. 



case [6], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 161 is based on factorization of a half-band fil- 
ter, a natural attempt in the  case of M channels is to try 
designing the analysis bank based on the factorization of 
FIR Mth band filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2 11. Surprisingly, this attempt does 
not work for all M (but works only for restricted M ,  viz. 
M = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ) ,  i.e., the resulting analysis filters do not have 
good frequency response. The theoretical reason for this 
is explained in Section V.  We feel that it is useful to be 
aware of this result. 

In Section VI we develop  a class of FIR lattice struc- 
tures for the analysis and synthesis banks based on some 
recent work [18]-[20] on FIR lattice filters. The purpose 
is to enable us to set up an optimization algorithm that 
designs Hk ( z )  so as to have good stopband attenuation. 
The  lattice structures are such that they automatically sat- 
isfy the set of sufficient conditions required for perfect 
reconstruction. Accordingly, if we  optimize  the parame- 
ters of this  lattice, it is equivalent to finding the best set 
of transfer functions { Hk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z) 1 by searching only among 
the  class of transfer functions that already satisfy condi- 
tions for alias-free perfect reconstruction. We feel that this 
is a major advantage of using the  lattice structures in the 
optimization.  A design example  is included here.  Finally, 
Section VI1 examines recursive QMF banks in the context 
of lossless matrices. 

A. Notations  Used  in the Paper 
Superscript T stands for matrix (or vector) transposi- 

tion, whereas superscript dagger ( t )  stands for transpo- 
sition followed by complex conjugation. Boldface italic 
letters indicate matrices and vectors. Superscript asterisk 
( * )  stands for complex conjugation, while subscript as- 
terisk denotes conjugation of coefficients of the function 
or  matrix.  The tilde accent on a function F ( z )  is defined 
such that, on the unit circle, P ( z )  = Ft (z). Thus,  for 
arbitrary z, &) = F z ( z - ' ) ,  and for functions with real 

coefficients, P ( z )  = ~ ~ ( z - ' ) .  
Since ouiwork was primarily motivated by the original 

contributions in [6],  these results are often referenced in 
this paper. For  ease of reference,  the perfect-reconstruc- 
tion two-channel structure in  [6] will be called the Smith- 
Barnwell structure (and abbreviated as the SB structure). 

11. THE  SMITH-BARNWELL QMF  BANK IN THE 

CONTEXT OF LOSSLESS STRUCTURES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A single-input single-output digital transfer function 

G (z) is said to be lossless [17] if it is  stable and satisfies 
I G (e'") 1 = 1  for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw .  Such a function is merely an all- 
pass function. An m-input p-output transfer function (i.e., 
a general matrix transfer function) T ( z )  is said to be loss- 
less if it is stable and satisfies Tt ( e J w )  T (  ej") = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ for all 
w or equivalently, by analytic continuation, 

p ( z )  T ( z )  = T ( z )  F ( z )  = Z, for all z. ( 5 )  

In essence,  a lossless function or matrix is stable and is 
unitary on the unit circle. Such a T (  z )  can be looked upon 
as a multiinput, multioutput all-pass  function. These con- 
cepts are discrete-time versions of the notions of lossless- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x ( n  )E . S ; ( n )  

Fig. 2 .  The two-channel QMF bank. 

ness in continuous-time passive network theory [22],  [23] 
and have been used in the past in  a completely different 
context,  viz.,  for low-sensitivity digital filter design [17], 

If G ( z )  is FIR and lossless, then it has to be a pure 
delay, i.e., G ( z )  = z - ~ ,  01 = integer.  However,  it is 
possible to have matrix-valued FIR functions T ( z )  that 
are more complicated than a delay. For  example, 

~ 1 ,  ~ 4 1 .  

r1 + z - l  1 - 
11 - z-1  1 f z-11 

T ( z )  = 
2 

is easily verified to be lossless, as it satisfies (5 ) .  

A.  Revisiting the  Perfect-Reconstruction Structure 
Now consider  the two-channel QMF  structure of Fig. 

2. Here Ho(z )  and H l ( z )  are low-pass and high-pass 
transfer functions, respectively. The signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ( z )  is given 

by 

R k )  = [HO(Z) FO(4 + H d z )  W ) ]  X ( z ) / 2  

+ [Ho( -4 F o ( 4  + Hl( -4 Fl(Z)]  X (  - z ) / 2 .  

(6) 

The term involving X ( -z) is the aliasing term and is re- 
quired to be made equal to zero. In the scheme due to 
Smith and Barnwell [6], the following relation between 
the transfer functions is enforced:* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H~(z) = * -w-  1 )  H o( -z -7  ( 7 )  

Fo(z) = 4 
" - ( N - l )  H ( -1 o z  1 (8 )  

F l ( z )  = z - ( N - ' )  H ( - 1  
1 z  1 (9) 

where N - 1 is the  order  of Ho(z) .  Here Ho(z)  and H l ( z )  
are constrained to satisfy 

~ ~ ( 2 - l )  Ho(zj + H,(z- ' )  H, (z )  = 1, for all z. 

( 10) 

Without loss of generality, N - 1 can be assumed to be 
odd. (See Section V.)  The conditions (7)-(9) are  sufficient 
to enforce the following condition: 

Ho( - z )  Fo(z) + H I (  -z) Fl(Z) = 0 (11) 

and thereby cancel aliasing.  The relation (6)  then be- 
comes 

'The relations (7)-(9) do not  appear  to  be  the  same  as  those  in [6 ]  be- 
cause we have displayed  a  causal  version of those  equations. 
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8 ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;z-(+l) [H,(z-')  H,(z) 

+ Hdz- ' )  Hl(Z)] X ( Z )  (12) 

which in view of (10) reduces to (3). In order to  ensure 
that condition (10) indeed  holds,  a  design  procedure is 
proposed in [6] based  on the spectral factorization of a 
linear-phase FIR half-band filter with positive amplitude 
response. 

The AC matrix  for  a  two-channel  QMF bank is 

It  can be verified that condition (7) implies that the col- 
umns of  (13) are  "orthogonal," that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H~(z-') H ~ ( z )  + Ho( -2- l )  H I (  -z) = 0. (14) 

Moreover,  each  column of (13) satisfies 

Hk(Z-l) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHk(Z) + H k (  - Z - ' )  Hk ( - Z )  = 1, k = 0, 1 

(15) 

as can  be verified by employing (7) and (10). Properties 
(14) and (15) are precisely equivalent to  the statement that 
H ( z )  is lossless, i.e., satisfies the condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(Z) H ( z )  
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

In contrast, consider the  more standard two-channel 
QMF  bank [1]-[5]. For  such  a filter bank,  the transfer 
function Ho(z )  is restricted to be  a linear-phase FIR filter 
of odd order N - 1 , and the remaining transfer functions 
are given by 

H ] ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHO( - 2 ) ~  FO(Z) HO(Z), 

F, (z )  = -H , (z ) .  (16) 

With  such  a  choice of transfer functions, aliasing, is can- 
celled and we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X ( Z )  [ H ; ( z )  - Hi( -z)] X ( Z ) / ~ .  (,17) 

It can  furthermore  be  shown that H ( z )  satisfies 

A(z) H ( z )  = [Ho(z- ' )  Ho(z) + Hl(z-') Hl(Z)] * 

( 18) 
which reduces to 

B(z)  H ( z )  = ~ ( ~ - ' ) [ H i ( z )  - Hi( -z)] . 1, (19) 

because of (16) and  the  fact that Ho( z )  is  an  odd-order 
filter with  symmetric  impulse response. In,order for H ( z )  
to be  lossless,  it  is again necessary to satisfy (10). But it 
is well known that two linear-phase FIR transfer functions 
Ho( z )  and H1( z )  cannot satisfy (10) unless they are trivial 
combinations of delays [29]. 

In  summary, the AC matrix in the  Smith-Barnwell per- 
fect-reconstruction structure is  lossless,  whereas  the AC 
matrix in the standard two-channel alias-free structures is 
not3 except in trivial situations. 

31n this  paper,  the  term  "standard  two-channel QMF bank"  stands  for 
a structure  as  in  Fig. 2, with  the  transfer  functions  satisfying (16) and with 
H,,(z) representing  an  odd  order ( = N - 1 ) linear-phase FIR filter,  with 

symmetric  impulse  response. 

B. Revisiting  Polyphase  Implementations of Two- 
Channel Structures 

Let the transfer functions H o ( z )  and H , ( z )  be written 
in the form 

Ho(z) = Eoo(z2) + z-'E01(z2) (20) 

H, (z )  = E1o(z2) + Z - ' E I I ( Z ~ ) .  (21) 

Clearly such  a representation is  always  possible.  We 
therefore have 

(22) 

Defining the2 X 2 matrixE(z) = [ E k l ( z ) ] ,  0 5 k ,  1 5 

1 ,  we obtain from (22) 

Thus , 

A(z) H ( z )  = 2E(z-2) E T ( z 2 )  (24) 

which  shows  that H (  z )  is lossless if and only  if &E( z )  
is lossless. In  view of our  earlier conclusions, it thus fol- 
lows that & E ( z )  is lossless  for  the  Smith-Barnwell 
scheme,  whereas it is not for  the standard QMF  scheme. 
For the standard QMF structure it can  be verified that 

Ekl ( z )  satisfy 

E,&) = El&), Eo,(z) = Z-m'EOO(Z-l), 

q z )  = --z -"'E,(z-') (25 1 
leading to the result 

E ( z )  E ( z )  = E ( z )  E ( z )  ~ E N ( z - ' )   E ~ ( z )  * 1. (26) 

In  order to develop  a physical feeling for these prop- 
erties, let us redraw Fig.  2 in terms of the E (  z 2 ,  matrix. 
For the SB structure, 

(27 1 
whence 

[F~(z) F,(z) ]  = [z-' 1 3  Z - ~ ~ ' E ~ ( Z - ~ )  (28) 

where ml = ( N  - 2 ) / 2 .  Thus,  Fig.  2 can  be  redrawn as 
in Fig. 3. For the standard QMF  structure,also,  it can be 
verified, based  on  the relations (25), that Fig. 2 can be 
redrawn as in Fig.  3. Based  on standard identities for mul- 
tirate systems [3], Fig.  3 can in turn be redrawn  as in Fig. 
4. For  the SB structure,  since &E(z)  is  lossless, the 
structure of Fig. 2 is therefore eventually equivalent to 
Fig.  5(a), whereas  for  the standard QMF structure, it is 
equivalent to  Fig.  5(b),  which clearly shows us that the 
standard structure is alias free  (see  Appendix  A),  while 
the SB structure, in addition to being alias free, has the 
perfect-reconstruction property. From  Fig.  5 it follows 
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>C( n )  

Fig. 3. An equivalent  structure for Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x (  n )-E-:y;la 
z-mi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc2 ?(n ) 

(a) 

1/2 

x( n ) -FEarn? , 
2-1 

2z-mlE00(Z)EOO(Z) c2 ;(n) 

(b) 

5. The  simplified  equivalent  structures'(a) for the SB QMF  bank,  and 
(b) for the  standard  QMF  bank. 

x ( n 1  

: I  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I :  

Fig. 7. Extension  to  M-channel  QMF  banks. 

"rJn--L3c'.' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2- I 

- > ? ( n )  

x(n) Z-ml E( 2 )  
(b) 

Fig. 8. (a) A structure  that is equivalent  to  Fig. 7. (b)  The  final  equivalent 

Fig. 6. "Polyphase"  implementation of Fig. 3. version of Fig. 7 .  

(Appendix A) that 

(SB structure) 
S(2) = (29) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 ~ - ( ~ - l )  E,(z-~) Em(z2) X ( z )  = 2z-'E,(z2)  Eo1(z2) X ( z )  (standard structure) 

which are, of course, well-known results. 

sults by redrawing Fig.  3  as in Fig. 6. This structure dif- analysis filters and synthesis filters are given by 
Notice finally that a ''polyphase" implementation re- which implies perfect reconstruction. Notice that  the 

fers from the more well-known polyphase structures [3] 
(which have diagonal E (  z )  matrices). 

111. MAXIMALLY DECIMATED M-CHANNEL PERFECT- 

h ( z )  = r:' ] = E ( z M )  I-' 1 (31a) The interpretation of the two-channel SB structure as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH M -  l (Z>  

RECONSTRUCTION STRUCTURES 

Fig.  3 immediately tells us  how the idea can be extended 
for  Mchannels.  Thus, consider Fig. 7 where B(zM)  stands 
for E T ( z P M )  (and more generally stands for EL ( z P M )  if 

the coefficients in E (  z )  can be complex). In  Fig. 7 r is f ( z )  = r'!; ] = z - r M E ( z - M )  

an integer  large enough i o  that z -%(z )  has no positive 
powers ,of z .  Fig. 7 is clearly equivalent to Fig. 8(a). If FM- d z )  
E (  z )  is  lossless, this in turn is equivalent to Fig.  8(b). 
For  Fig. 8(b) we can easily show that 

-(M- 1 + r M ) x  

z - (M- l )  

z-  (M- 1 )  

(31b) 

X ( z )  = z ( 4  (30) Thus, we can state  the following result. 
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Lemma 3.1: Let Ho(z), Hl(z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* * , H M -  '(z) be a set 

of analysis filters in the maximally  decimated structure of 
Fig.  1. Define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEkl (z )  for 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, E 5 M - 1 by 

M-  1 

H~(z) = C z-'Ekl(zM). (32) 
l = O  

If the matrix 

E ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 [Ekl(Z)]  (33) 

is lossless, then the set of synthesis filters { Fk(z)  1 de- 
fined according  to (31b) leads  to perfect reconstruction. 

Notice that the orders of the synthesis-bank filters and 
analysis-bank filters are the  same.  Notice also that if Hk(z) 
are IIR, then there does not exist finite r such that 
z-%(z) is causal and  stable,  hence,  the  above result is 
meant to  be  used  for  FIR  QMF  banks  alone.  Finally, no- 
tice that a polyphase  implementation of Fig. 7 can  im- 
mediately be drawn as shown in Fig. 9. Once  again, this 
differs from standard polyphase structures [3] that  have 
diagonal E ( z ) . 

The most important practical question is now the fol- 
lowing: how do  we construct a set of M FIR transfer func- 

tions Ho(z), Hl(z), * , H M  - '( z ) such that the FIR ma- 
trix E ( z )  defined above is lossless? A trivial solution, of 
course, is to take Hk (z )  as in (4) which  makes E(z) = Z 
which is clearly lossless.  We  would  like  to obtain nontri- 
vial solutions whereby Hk (z) are "good" band-pass fil- 
ters. Fortunately, such  a  design  scheme is rendered fea- 
sible because of certain recently reported FIR  lattice 
structures [18]-[20], and is the topic of Section VI. 

For  the rest of this section,  we study certain properties 
of QMF banks constructed based  on the lossless property. 
The first one pertains to  the AC matrix H(z ) given by 

H(z) = 

b Ho(zW 1. 
HO(Z ) Hdz) * H,-,(Z) 

Ho(ZW-') H1(zW- ' )  . ' ' HM-l (zW- ' )  

- M +  1 )  H ~ ( ~ w - M +  1 ) . . .  
H M -   I ( Z W  

- M +  1 

(34) 
From the definition of Ekl ( z )  as in (32), it follows that 

M- 1 

[H(z)],,~ = Hk(zW- ' )  C z-'WW'"Ekr(zM), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1=0 

- 0 1 s , k ~ M - l  (35 1 
whence N(z) can be written as 

H(z) '= WA(z) ET(zM) (36) 

where W is the M X M DFT matrix, and A ( z )  is a diag- 
onal matrix defined as 

A(z)  = 

This implies 

B(z) H ( z )  = M E ( z - ~ )  E T M  (z ) (37)  

establishing the following property. 
Property 3.1: H ( z )  is lossless if and  only if & E ( z )  

is lossless. 
The second property pertains to the relation between 

{ Hk (z)  ] and { Fk (z)  of any perfect-reconstruction QMF 
bank. Recall that perfect reconstruction implies 

Hlk) 

H,(zW-') 

Hl(zW-M+')  - * * 
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In general, by replacing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzWSk, 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 M - 1 

in (38), we arrive at a  set of M matrix-vector equations 
of the form in (40).  These can be put together into a com- 
pact equation: 

H ( z )  F( z )  = c C o  [ W2yy , 1 (41) 

where F ( z )  is defined by 

0 

W ( M - l ) n o  

The above argument therefore establishes the following 
result. 

Property 3.2: The maximally decimated M-channel 
QMF  structure of Fig. 1 gives rise to perfect reconstruc- 
tion if and only if (41) holds, where N ( z )  is the AC ma- 
trix and F ( z )  is defined as in (42). 

This property gives rise to an important corollary. Thus, 
let H ( z )  be lossless. Then 

H ( z )  HT,(z--') = I .  (43 1 

If, in addition, F k ( z )  are such that there is perfect recon- 
struction, then (41) holds; hence, 

rl 0 1  

LO 
which shows that Fk ( z )  must be of the form 

Fk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) = CZ-noHk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Z - ' ) .  (45) 

In fact,  we can state  the  following. 
Property 3.3: Let the AC matrix H ( z )  be lossless. 

Then the structure of Fig. 1 gives rise to perfect recon- 
struction if and only if Fk ( z )  are related to Hk ( z >  as in 
(45) where c is an arbitrary constant. 

Notice,  as  a verification, that for  the  case of M = 2, 
the SB structure satisfies property 3.3. The importance of 
this property is that, if  we  know  how to choose Hk (2) 

such that H ( z )  is lossless, then there exists a unique way 
to choose Fk ( z )  so that the reconstruction is perfect. No- 
tice also that if H ( z )  is lossless but Hk ( z )  not FIR, then 
Fk (2) in (45) are unstable (assuming Hk ( z )  are  stable, of 
course), and hence, there does not exist a  stable perfect- 
reconstruction technique. Thus, for IlR filters, the strat- 
egy would  be to avoid forcing H ( z )  to be  lossless.  Fi- 

(b) 

Fig. 10. Pertaining to lemma 3.2 

nally, it should be emphasized that (45) is a necessary 
condition for perfect reconstruction only if H ( z )  is loss- 
less. 

Next, let us assume that  Fig. 1 performs perfect recon- 
struction so that (41) holds. If in addition (45) holds, then 
by direct substitution into (41) we can verify that 

H ( z )  HT,(z- ' )  = I .  (46) 

In other  words,  we  have the following. 
Property 3.4: Let the structure of Fig.  1 be such that 

it performs perfect reconstruction. Furthermore,  let Fk ( z )  
be related to H k  (z)  as in (45). Then H (  z )  is necessarily 
lossless. 

The  above properties are essentially various useful 
manifestations of certain sets of  sufficient conditions for 
perfect reconstruction. A natural question that arises in 
this context is: what is a set of necessary and suflcient 
conditions? We now turn our attention to this issue. 

Given an arbitrary set of filters { H k  ( z )  } and { Fk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z) } , 
we can also express Hk ( z )  in the  form (32) and Fk ( z )  in 
the form 

M -  1 

(47) 

Letting 

R ( z )  ' [ R / k ( z ) ] ?  (48 1 
Fig. 1 can therefore be redrawn as in Fig.  10(a). Letting 
P ( z )  = R ( z )  E ( z ) ,  Fig. lO(a) can be redrawn as in Fig. 
10(b). What is a  set of necessary and sufficient conditions 
on P ( z )  so that (3) holds? In order  to answer this ques- 
tion, first note that k(z) can be expressed as 

2 
- ( M - l j  M - 1  M -  I 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 k = O  c X ( Z W k )  c W-k' 
/ = 0  

M - 1  

c 2 - ( w J , , , ( z M )  (49) 
s = o  
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPS,!  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  is the (s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 )th element of P ( z ) .  Perfect re- 
construction for arbitrary X ( z )  occurs if and only if 

M -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 M- 1 

for some constant a and some nonnegative integer ko. De- 
fining 

M-1 

q ( 1 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= C ~ - ( " " P , , l ( z ~ ) ,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 E 5 M - 1, 
s = o  

(51) 

equation (50) says  that  the  IDFT of the M-point sequence 
q( 1 ) must be  an  impulse. Accordingly, (50) is equivalent 
to the requirement 

M -  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G(n) 

Fig. 11. An example  where P ( z )  is  nondiagonal 

gives rise to perfect reconstruction, if  and only if the ma- 
trix P ( z )  defined as P ( z )  = R ( z )  E ( z )  is  of  the  form 
(60). Under such a condition we get 

Let the coefficients of PS,! ( z )  be denoted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps,l ( n ) ,  i.e., 2 ( z )  = - 2  ( 1. (61) 
a - ( k o + M - I ) x  

M 
m 

P S , l ( Z >  = c Ps, l  (n )z - " .  (53)  Fig.  11 shows a  example  where ko = 7, and M = 5 so 

p&) = 0 (54) nomial entries),  there  exists an FIR synthesis bank giving 

n = O  that koo = 2 and kol = 1. In  this  example, $ ( z )  = 

Equation (52) implies az-"X(z) / 5 .  
Given an FIR analysis bank (forwhich E ( z )  has poly- 

for  all n except when n satisfies rise to perfect reconstruction if R ( z )  given by 

E - s + nM = ko. (55) R ( 2 )  = P ( z )  E - ' ( z )  (62) 

For every s in 0 I s 5 M - 1, there is a unique 1 in 0 has polynominal entries.  This  in turn happens if E ( z )  has 
5 1 I M - 1 satisfying (55).  This E is given by a determinant equal to a-power of z . ~  This is equivalent 

to saying that  det H ( z )  is a power of z .  Notice  that if 
(56 j E ( z )  is lossless, then an obvious  choice  for R ( z )  in order 

where koo, which satisfies 0 5 koo I M - 1, is defined R ( z )  = z - w ( z - l )  (63) 

where p is a  large enough positive  integer such that the 

The  value of n for which I and s satisfy (56) is given by Finally,  consider  the  special  case when the analysis fil- 

n = [ : y + l ;  s > M - k a  (58) H k  ( 2 )  = Ho(ZWk). (64) 

s < M - k m  

s + koo - M ,  s 2 M - koo to obtain perfect reconstruction is 

by 

ko0 = ko mod M .  
(57' RHS of (63) has no positive powers of z .  

s < M - koo ters constitute a uniform DFT bank: 

where kol is such that Under this condition, with 

ko = koo + l o ,  M .  

In summary, P ( z  ) takes on the form 

M- 1 

l = O  

we have 

M -  I 

where Z, is the ( M  - koo) X ( M  - koo) identity matrix 
and Z, is the koo X koo identity matrix. If koo = 0, then 
P ( z )  is proportional to  the identity matrix,  but  more gen- whence 
erally,  a nondiagonal P ( z )  is permissible. We summarize 
these results as follows. 

Lemma 3.2: Consider  a maximally decimated M-chan- 

H, (z )  = c E*,(z') W-k'z-', (66) 
l = O  

Ekl(~)  = W-k'Eol(Zj.  (67) 

ne1 structure as in Fig. 1 with arbitrary M .  Let E (  z ) and , 4 S u ~ h  matrix  polynomials  are  commonly  referred  to as  "unimodular" 

R ( z )  be defined in terms Of { Hk ( z )  1 and { Fk ( z )  1, constant nonzero  determinant. The use  of  such  matrices in perfect-recon- 
in the  literature 1251. More strictly,  a  unimodular  matrix-polynomial  has  a 

cording to  (32)  and  (47), respectively. Then  the  structure struction  banks for arbitrary M has  also  been  independently  noted  in [ 151. 
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L O  

An obvious choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ( z )  in order  to get perfect recon- 
struction is 

R ( z )  = 

so that 

P ( z )  = R ( z )  E ( z )  = M * I .  (70) 

This  choice is indeed practicable, provided the numera- 
tors of EoI ( z  ) have minimum phase.  This observation has 
also been made in some earlier publications [11]-[ 151. 
However,  in this special case,  the synthesis bank in gen- 
eral is IIR, even with an FIR analysis  bank. 

IV. LOSSLESSNESS OF AC MATRIX IN TREE- 
STRUCTURED SB FILTER BANKS 

The two-channel SB circuit can be us’ed in a  tree  struc- 
ture [6] in order to generate perfect-reconstruction QMF 
banks with M channels when M is a  power of two.  Fig. 
12 is such a demonstration for M = 22 = 4. The quantities 
Ao(z) ,  Al(z )  are  the analysis filters,  and Bo(z) ,  B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z) are 
the synthesis filters for  the  basic two-channel prototype, 
and are related by 

A1(z) = z - ( N -  l )  A 0 ( - 8 )  (71) 

(72) 

B1(z) = z- (N- ’ )  A,@‘) (73 1 

Bo(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - W - 1 )  

where N - 1 (which must be  odd)  is  the  order of the low- 
pass filter A,( z ) .  Since the two-channel prototype has per- 
fect-reconstruction property, repeated application of this 
property shows that the  tree structure also has this prop- 
erty. It can be verified that 

q z )  = z (2) (74) 
- ( N -  1)(M- ‘)x 

for such tree structures. 
In Section I1 we saw that  the two-channel SB structure 

has a lossless AC matrix. In Section I11 we found that for 
arbitrary M ,  if H ( z )  is lossless, then there  exists  a unique 
way to choose F k  ( z )  so as  to obtain perfect reconstruc- 
tion. In this context, it is natural to raise the following 
question: does the tree structured SB QMF bank also ex- 
hibit a lossless AC matrix? The  answer  is  in  the affirma- 
tive as one might intuitively expect (but is not entirely 
obvious) and can be established as  follows. 

The  tree structure can be drawn in an equivalent par- 
allel form as in Fig. 1. Such a redrawing is demonstrated 

Fig. 12. The  tree  structure for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM = 4. 

x ( n 1  : 

Fig. 13. The  parallel  equivalent of Fig. 12. 

in Fig. 13 for M = 4, and is justified because of well- 
known equivalence relations for multirate systems [3, ch. 
31. It can be seen, in general, that the kth analysis filter 
Hk (z) of the equivalent parallel structure for M = 2L is 
given by 

~ k ( z )  = Aio(k)(z) Ai l ( k ) ( z2 )  * * AiL - - I ( k ) ( z ”2 )  (75 )  

where 

io(k) i l (k)  * * iL-,(k)  (76) 

is the “binary representation” of the integer k, i.e., 

L-1 

k = il(k)2L-1-1. (77) 

For  example, in Fig.  13, H 2 ( z )  = A , ( z )  Ao(z2).  Simi- 
larly, the kth synthesis filter Fk ( z )  of the equivalent par- 
allel structure is given by 

l = O  

~ k ( z )  = Bio(k)(z) B i l ( k ) ( Z 2 )  * * * B ; L - I ( k l ( z ” 2 ) .  (78) 

In view of the relations (72) and (73), we obtain from (75) 
and (78) the following relation: 

F k  (2) = z-’H~ ( z - ’ )  (79) 

where 

p = ( N - l ) ( l + 2 + 4 + . ” + 2 L - ’ )  (80)  

= ( N  - 1) ( M  - 1). 

Thus, the equivalent parallel structure’ satisfies the rela- 
tion (45).  Moreover,  we know that it has perfect-recon- 
struction property because (74) holds. So, by invoking 
property 3.4 of Section 111, it is immediately clear that the 
AC matrix H ( z )  is indeed lossless. 

V. RELATION  BETWEEN MTH BAND FIR FILTERS AND 

M-CHANNEL  PERFECT-RECONSTRUCTION  QMF  BANKS 

Smith and Barnwell [6] and Mintzer [16] have outlined 
elegant techniques for  the  design of the transfer function 
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Fig. 14. The  amplitude  response of a  linear-phase  half-band  filter. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H o ( z )  in  the two-channel SB structure, such that H o ( z )  
has prescribed stopband attenuation, while at the  same 
time satisfying (10) [where Hl( z )  in .(lo) is related to 
Ho( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz)  as  in (7)].  Their procedure is based on  the design 
of .a linear-phase half-band FIR (low-pass) transfer func- 
tion G ( z )  of order 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( N '  - 1 ) [where N - I is  the  order 
of Ho( z ) ] .  The frequency response of G ( z )  has  the form 

G(ej" )  = e - j w ( N - l ) ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,jw 
o( ) (81 1 

where Go( ej")  is the  amplitude response and is as shown 
in  Fig. 14. This response exhibits symmetry with respect 
to ?r /2; in particular, w, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa - wp, and A1 = 82 = 6. 
Accordingly, G ( z )  satisfies 

G ( z )  + ( - l )N- l  G ( - z )  = z - ( ~ - ' )  . (82) 

If we now construct G ,  ( z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk G ( z )  + & z - ( ~ -  I ) ,  then 

G+ ( z )  has  a positive-valued amplitude response and sat- 
isfies 

G + ( z )  + ( -l)N-l G+( -2) = ( 1  + 2 6 ) ~ - ( ~ - ~ ' .  

(83) 

Let Ho(z) be a  spectral  factor of G, ( z ) ,  and define H l ( z )  
as in (7). [Clearly, H l ( z )  is then a spectral factor of 
G, ( - z )  .] Then (10) is satisfied automatically (up to a 
scale  factor)  because of (83). The  order of G ( z )  can be 
estimated depending upon the required stopband attenua- 
tion of Ho(z) .  This  then  is  the  essence of the design pro- 
cedures described in [6] and [16]. The impulse response 
g ( n )  of G ( z )  satisfies the'condition g ( n )  = 0 if [ n  - ( N  
- l ) ]  is a (nonzero) even  number.  This follows from 
(82). Accordingly, if N - 1 is even, then g ( 0 )  = g ( 2  ( N  
- 1 ) )  = 0 anyway, and hence, N - 1 can be assumed to 
be odd without loss of generality. 

In. designing the analysis bank filters of an M-channel 
perfect-reconstruction QMF structure,  the above ap- 
proach based on half-band filters can be extended.  A dig- 
ital Mth band filter E211 

L - 1  

G ( z )  = g(n)z-" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n = O  

is a  linear-phase (low-pass) FIR filter with cutoff'  fre- 
quency nearly equal  to T / M ,  and satisfies 

L - 1  

2 
g ( n )  = 0,  n - - - - nonzero multiple of M. 

(84)  

We assume g ( n )  to be real for  all n. For convenience of 
discussion, define a zero-phase FIR filter 

Gl(z)  = z ' ~ - ' ) / ' G ( z ) .  (85) 

Because of (84), G l ( z )  satisfies the condition 
M -  1 

k = O  Gl(zW- k ) - - M  g zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y) (86) 

where W = e-i2n/M. Assume that Gl( eJ" )  (which is real) 
is also nonnegative for  all w (if this is not true, it can be 
ensured simply by adding to G ( z )  where E is 
sufficiently large).  We can now define (causal) spectral 
factors Hk ( z )  of Gl(zW-k ); for  each k: 

H k  ( Z )  H k , * ( Z - l )  = G I ( Z W - ~ ) ,  

0 5 k I M - 1.  (87) 

In view of (86), the spectral factors  therefore satisfy the 
condition 

This condition is  an  extension of (10) which was satisfied 
by the two-channel SB structure.  Accordingly, if we ne- 
glect the aliasing effects in an M-channel QMF bank, and 
design Hk ( z  ) in the above manner,  then  the  choice of syn- 
thesis filters as  in (45) ensures  perfect  reconstruction.  Per- 
fect-reconstruction results,  under  the assumption that al- 
iasing'is  negligible, can be found in [35] .  

Let us  now explore  the aliasing problem when the filters 
are chosen in this particular  manner. Replacing z with 
zW-', (88) implies 

Consider an M-channel QMF  bank  as  in  Fig.  1 with 
Hk ( z )  defined in  the above manner. If the corresponding 
AC matrix H ( z )  (34) can be forced to  be  lossless, then 
we can immediately obtain the synthesis bank  that would 
enable perfect reconstruction. Recall that  losslessness of 
H ( z )  is equivalent to 

H?Jz-') H ( z )  = I ,  (90) 

I.e., 

M - 1  

C Hk,*(z- 'WS)  H[(zW-') = 6(k - I ) .  (91) 
s = o  

Since Hk ( z )  have been constructed by spectral  factori- 
zation of an Mth band filter, they satisfy (89). Hence, (91) 
is automatically satisfied fork = I! (except for  a scale fac- 
tor of  no consequence).  Now, if (91) holds  for  all k ,  I! with 
0 5 k, 1 I M - 1, perfect reconstruction is possible. Let 
us next examine  the  side effects of satisfying (91) for k # 
1. For  example,  let k = 1, 2 = 0,  then (91) implies 

M -  1 

c H1+*(z-lWs) HO(zW-') = 0. (92) 
s = o  
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Fig. 15. Pertaining  to  design  based on Mth-band  filters. 

The magnitudes of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz), H I  (z), and H I ,  * (z- l )  Ho( z) on 
the unit circle  are  sketched  in  Fig.  15. In Fig. 15(c) is 
shown the typical appearance  of  the magnitudes of the 
quantities appearing in the  summation of (92). It is  clear 
that if H o ( z )  is a good  low-pass filter with  cutoff n / M ,  
then there is hardly an  overlap  between  the  successive 
waveforms  in Fig.  15(c),  unless M = 2. Accordingly,  for 
M > 2, it is not possible to satisfy (92), unless H,(z) is 
a “poor”  low-pass function which  would permit overlap 
between adjacent spectral shapes in Fig. 15(c). But for 
subband coding applications,  the stopband rejection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Hk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) is of crucial importance [3]. 

In conclusion, if we design Hk (z) by spectral factoriz- 
ing an  Mth band filter, and if Ho( z )  is a sharp-cutoff filter 
with reasonably large stopband attenuation, then H (z) 
cannot  be made lossless unless M = 2. Now, property 3.4 
says that if (45) holds,  then  losslessness  of H ( z )  is a nec- 
essary condition for  perfect  reconstruction.  Accordingly, 
if (45) holds,  and if Hk (z) are  “good” filters obtained as 
above, then since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN (z) cannot  be  lossless, we cannot 
have perfect reconstruction either.  In conclusion, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHk (z) 
are  designed based on Mth band filters, and if Fk (z) are 
chosen as in (45), we cannot  have perfect reconstruction 
unless Hk (z) are poor filters (or  unless we choose  to  ig- 
nore  aliasing). 

Finally, notice that the  spectral  factors Hk (z) defined 
in (87)  will have  complex coefficients except when k .  = 
0, and hence,  the subband signals for such a scheme would 
be complex,  even  for real signals.  This would not always 
be  desirable. 

In the next section we turn our attention to better design 
procedures which ensure that H (z) is  lossless  (hence  per- 
mitting perfect  reconstruction),  at  the  same time permit- 
ting H,(z) to  have arbitrarily sharp cutoff and  large stop- 
band  attenuation. In addition, all transfer functions Hk (z) 
have real coefficients. 

Fig. 16. A simple  means of obtaining  an  M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX M lossless  matrix E (z) .  

VI. DESIGN BASED ON NUMERICAL OPTIMIZATION OF 

LOSSLESS FIR LATTICE STRUCTURES 

A technique  has recently been proposed [ 18]-[20] for 
the implementation of FIR filters and filter banks based 
on lossless building  blocks.  The  basic  ideas of such a 
technique can be exploited in  order to design the  analysis 
(and synthesis) bank filters  of the perfect-reconstruction 
QMF  structure.  We  include here a self-contained but brief 
description of the  procedure  for  doing  this. 

Consider again the  QMF  structure of Fig. 7. According 
to  the results of Section 111, if  the M-input M-output sys- 
tem E (z) is  FIR  and lo s~ le s s ,~  then Fig. 7 represents a 
perfect-reconstruction QMF bank.  From  the definition of 
losslessness, it is  clear that a cascade of lossless systems 
is  lossless.  For  example, if E (z) = E , ( z )  E 2 ( ~ ) r  and if 
E , ( z )  and E2(z )  are  lossless, then 

E E ( z )  = &(z) E , ( z )  E, (z )  E*(Z) = &(z) E,(z) = 1. 

A simple  means,  therefore, of obtaining an M X M loss- 
less system E (z) is indicated in  Fig. 16, which is a cas- 
cade  of  two kinds of lossless building blocks. The build- 
ing blocks K j  are  constant unitary matrices, i.e., 

K ~ ~ K ~  = I ,  1 5 i 5 L - I .  (93 1 
In this section we consider QMF banks with  real  coeffi- 
cients,  hence, Kj  have real coefficients (i.e., they are or- 
thogonal matrices). 

The second type of building blocks Ai  (z) which sepa- 
rate  successive Kj  are diagonal matrices with delay ele- 
ments.  The  diagonal nature ensures that Ai (z) are  loss- 
less.  For  example, a typical Ai (z) for M = 3 could be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A,(z) = 0 1 0 . [::-I (94) 

This choice  of Ai (z) is clearly not the only possible di- 
agonal matrix of delay elements, and is meant to  serve as 
an  example.  Our numerical example will be based on (94) 
because the form (94) has been used  in an  earlier  paper 
[20] under a different  context.  The  “best”  choice of the 
diagonal matrix Ai (z) that maximizes attenuation pro- 
vided by & ( z )  is not clear  at  this point in  time. 

51n the  case of FIR  filters,  the  term  “lossless” is synonymous  with “un- 
itary on the  unit  circle of z-plane”  because  stability  is  automatically  guar- 
anteed. 
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If we employ the M-input M-output system of Fig. 16 
in place of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  in  Fig. 7, then perfect reconstruction is 
guaranteed! It only remains to  adjust  the parameters’ of the 
matrices Ki such  that Hk ( z )  will have good attenuation 
characteristics. This can be accomplished by nonlinear 
optimization techniques, and some details  are included in 
this section. It should be noticed that  once H k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( z )  are 
computed in this  fashion,  the  designer has the  choice of 
either using the  structure of Fig.  7 (with E (z )  as  in  Fig. 
16),  or simply implementing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) in direct form and 
obtaining the  structure of Fig. 1 [the filters Fk ( z )  can be 
obtained from Hk ( z )  as  in (45)]. In  either  case,  the re- 
construction is perfect (as long as signal rounding effects 
and coefficient quantization are small enough to  be ig- 
nored). 

A. An  Optimization  Procedure 

Ki is as a sequence of planar  rotations. For example, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA simple way to  generate an M X M orthogonal matrix 

Ki = sin O l i i  -cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- 

0 

F M - 1  
0 1  . . .  cos OM- sin OM- 

sin OM- 1.i -COS OM- I , i  1 
(95) 

where Zk are identity matrices of appropriate dimensions 
(not necessarily equal to the subscript k ). It should be 
realized that (95) does not represent a most general M X 
M orthogonal matrix (which would involve more than M 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 rotational angles  [26]),  and  is merely intended as  a 
possibility. Assuming that each Ki in Fig.  16 has the above 
form,  an  objective function 4 can be formulated which 
measures the filtering accuracy of Hk ( z )  (such as stop- 
band attenuation).  Such  a  function depends upon &;, 1 
5 k I ’ M  - 1, 1 5 i 5 L - 1 in a nonlinear fashion, 
and can be optimized by employing standard gradient al; 
gorithms . 

We now demonstrate  this  procedure with an example 
for  the  case of three channels. 

A  Design  Example: Let M = 3. In this  example, we 
constrain E (z)  to  be  as in Fig.  17, so that R i ( z )  are  as 
in (94).  We restrict K, to be  as  in (99,  i .e. ,  
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Fig. 17. The  3 X 3  lossless E ( z )  for the  design  example. 

. . 
/ r > 

. > 
- k ~ ,  i 

. 
r > 

Fig. 18. The  lattice  structure  implementing Ki. 

H ~ z )  

Fig. 19. The  analysis  bank for the  3-channel  case. 

01,i  01,i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Ki = sin -cos 

(96) 

The  lattice  structure implementing Ki is  shown in Fig.  18, 
where k l , i  = cos el,;, kl , i  = sin O l , i ,  k2,i = cos OZ,;, kz,i 
= sin f 3 2 , i .  The three  transfer  functions H o ( z ) ,   H l ( z ) ,  and 
H 2 ( z )  of the analysis bank (Fig. 19) are automatically 
guaranteed to satisfy the condition 

because the  losslessness of E (z) [induced by the orthog- 
onality of (96)] ensures that  the AC matrix H ( z )  is loss- 
less.  We wish the frequency responses to  be of the form 
in Fig. 20 and accordingly formulate  an  objective func- 
tion 
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Fig. 20. The  magnitude  responses  desired  in  the  analysis  bank. 

Fig. 21, The  structure  for  the  optimization of analysis  filters. 

The quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE depends on the desired stopband edges. 
The function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 involves only the stopband energies of the 
various transfer functions. However, if we minimize 4 ,  it 
automatically ensures good passband responses,  since  the 
constraint (97) is enforced by the  structure of Fig.  17.  For 
example, in the frequency region (0, 7r / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 - E ) ,  

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHl(  ej") I and I Hz( e'") I are  "small,"  since 4 is min- 
imized. Accordingly, I Ho( e J W )  I is  close to unity, because 
of (97). 

The minimization of 4 can be accomplished by invok- 
ing a nonlinear optimization software package. We  em- 
ployed a routine (called ZXMWD) of the  IMSL  software 
package [27] , which is based on a modified quasi-Newton 
technique [28]. In order to invoke this routine,  the  user 
supplies a subroutine that computes #I for  a given set of 
values of &. (The user is not required to supply the gra- 
dient.) Such a subroutine should first compute the coeffi- 
cients of the polynomials H o ( z ) ,  H l ( z ) ,  Hz( z ) ,  and then 
evaluate 4. The computation of the polynomial coeffi- 
cients can be done recursively as follows (see Fig.  21). 

Recursion: 

p m ( z )  = k I , m p m - l ( z )  + b , r n k l , m Q m - ~ ( z )  

+ ~ - ~ k 2 , m k l , m ~ m -  1(z) ( 99a 1 

Q m ( z >  = iZ-1,mf'rn-1(~> - k 2 , m k l , m Q m - 1 ( ~ )  

- ~ - ~ h , r n k l , m ~ m -  l ( z>  ( 99b 1 

% ( z )  = & 2 , m Q m - 1 ( ~ >  - Z - ~ ~ ~ , , R ~ - I ( Z ) .  ( 9 9 ~ )  

Initialization: 

p l ( ~ >  = (k1,1 + z-'kz,lk1,1 + z-'&,Ik1,1)/d5 (100a) 

Ql(z>  ( l 1 , 1  - z-'kz,l kl,1 - z-' kz, lk1,1)/d5 (100b) 

R,(z )  = (z-lk2,1 - z-2k2,,)/&. (10Oc) 

In the  above  equations, ki,m = cos 8i,rn and ki,,, = sin Bi,m. 
At the end of the recursion we obtain the polynomials 

Fig. 22. Magnitude  response  plots for the  optimized  analysis  filters. 

H&) = P L - I ~ ) ?  H I ( z )  Q L - ~ ( z ) ,  H ~ ( z )  = RL- l ( z )  

( 101 1 
which enables us to compute 4 in (98). The  order of H k  ( z )  
is N - 1 = 3 ( L  - 2 )  + 2.  Fig.  22 shows the magnitude 
response plots of the three optimized analysis filters 
Hk ( z ) ,  for an example where L - 1 = 5 .  The number of 
theta parameters is 10, and the orders of I i k  ( z )  are N - 
1 = 3 X ( L  - 2)  f 2 = 14. Table I shows the parameters 
ki,m and f i i , , ,  whereas Table I1 shows the impulse response 
coefficients of Hk ( z ) .  The synthesis filters can be taken 
to be Fk ( z )  = z -  14Hk ( z - l ) ,  in  order to obtain perfect 

reconstruction. (Note that Fk ( z )  have the same  order  as 
the analysis filters.)  Even though the'attenuation in Fig. 
22 is not sufficient for standard QMF  applications, this 
can be improved by increasing the number of stages L - 
1 in Fig.  17 so that the analysis bank has a higher order. 

The way in which the objective function is defined in 
(98) is such that, upon convergence of the optimization 
algorithm, I Hz( e'") I is the  image of I Ho( ej") I with re- 
spect to ~ / 2 ,  and moreover, 1 HI(  e;") I is symmetric with 
respect to K /2 .  This can also be seen from Fig. 22. Ac- 
cordingly, once  the optimization converges, we will have 
I H2( ej") I = I Ho( - ej") I. This does not necessarily im- 
ply H 2 ( z )  = +Ho( - z ) ,  and the fact that this is (approx- 
imately) the case in Table I1 is only a coincidence. In fact, 
the  lattice structure itself does not even impose the restric- 
tion I H2( ej") I = I No( -ej") I. Next, from Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 we 
see  that I H2(ej") I is only approximately equal to 
I Ho( -e;") 1, but this relation can be  made- more exact 
simply by requesting a more stringent convergence crite- 
rion for optimization. We wish to emphasize,  however, 
that perfect-reconstruction property will be exactly satis- 
fied even if the optimization is  inaccurate, simply by vir- 
tue of the  fact that the transfer functions are derived from 
the lattice structure. Thus, perfect reconstruction is struc- 
turally induced. The values of d j , j  determine only the 
shapes of the individual Hk ( z  )'s. 
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TABLE I 

BANK. NUMBER OF SECTIONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL - 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ;  FILTER ORDER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN - 1 = 14 
THE VALUE  OF  THE LATTICE COEFFICIENTS IN THE  OPTIMIZED ANALYSIS 

2 
1 -0.7092217Od+00 0.70498552d+00  -0.93600000d-04 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0.10000000d+01 

3 
0.95631350d+00 0.2923431Od+Oo  -0.3586523Od+CQ -0.933471221+00 
0.1570929Od+00 0.987583834+00 -0.99999990d+00 0.447213584-03 

4 
5 -0.11370000d-03 0.999999994+00 -0.7070823Od+oi) 0.70713126d+OO 

0.3281612Od+00 -0.94462174d+00 -0.1589664Od+00 -0.987283994+00 

TABLE I1 
IMPULSE RESPONSE COEFFICIENTS  OF  THE  OPTIMIZED ANALYSIS BANK 

FILTERS 

0 
1 
2 
3 
4 
5 
6 
7 
8 

10 
9 

11 
12  
1 3  
14 
- 

-0.42975335986199d-01 
0.139380125842114-04 

0.29711060779911d+0O 
0.14891039020466d+00 

0.35375400443686d+00 
0.267330229207534+00 

-0.521220333413214-01 
0.87062827411073d-OX 

-0.87593136078151d-01 
-0.42709632397534d-01 
0.47426369238237d-01 
0.42961831070467d-01 
0. 

-0.23276534497969d-01 
0.21786836385535d-05 

d+OO 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 
IMPULSE RESPONSE OF THE COMPOSITE SYSTEM 

-0.92770412381267d-01 
0.82043979687156d-06 

-0.89793582734887d-05 
0.87653824068124d-02 

-0.43884653241662d-04 
0.186402572240?2d+CC 

-0.354330356251684+00 
-0.21534684870289d-03 

-0.48560852349886d-05 
0.356459509647144+00 

-0.19310826169468d+W 

0. 
0.22960198324688d-04 

-0.26465419895258d-05 
d+OO 

0.24771633130473d-09 

The sequence ?(n) 

n for x ( n ) = 6 ( n )  f o r  x(n)=&(n-l) f o r  x ( n ) = 6 ( n - 2 )  

0 
1 
2 
3 
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 
5 

7 
8 
9 

10 
11 
1 2  
13 
14 
15 
16 
17 
16 

20 
19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 2  
21 

23 
24 
25 
26 
27 
26 
23 
30  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0.000000000 
0.000000000 

-0.000300000 
0.000000000 

-0.000300000 
-0,000000030 

-0.000000000 
0.000000000 

0.000000000 
0.000000000 

-0.000000000 
-0.000000030 

-0.3000(XXXX, 
0.000000000 

-0.001MOOOX 
1 .caxxxcm 

0.000000000 
0.000030003 

-0.00COX000 
0.003000000 

-0.000000000 
-0.OYXOXKI 
0.000000300 

-0.cXOXXXO 
-0 .cKoxmoo 
0.0000C0000 

-C.O#JXOXb 
O . X O X X C C O  
0 .  
0 .  

0 .~y.X3002 

0 .  
0.000000000 

-0.000000000 
-0.000000000 

-0.000000000 
0.000000000 

-0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.o 
0.000000000 

-0.000000000 
0.- 

-0.000300000 
0.00C00000i) 

"0.000000000 
0.WXKXXW 

-0.000000000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.000000000 

"0.000000000 
0.000000000 

-0.000000000 
0.000000000 

-0 000000000 
0,000000000 

-o.cco%xxm 
9.000000003 

--0.- 
-0.ccCmaYx 

0.000000000 
0.003000000 

-0.000000000 
0.000000000 
0. 

0 .  

0.000000000 
0.  

-0.- 
-0.000000000 

0.000000000 
-0.000000000 
-0.000000000 

-0 .ccmaxml 
0.00000001X, 

0 . c x 3 x m m o  
0.000000000 

-0 .ocxxmxm 
-0.000000WX) 

-0.- 
0.OWWXOXl 

-0.000000000 
1 . ( x x m m x o  

0.0000CYXYX) 

-0,000000000 
0.KCCCWCO 

-0.003000000 
O . W X O X W 3  

-0.00000CICXX) 
0.ocEaxom 

-0.0000WXXX) 
-3.000000030 

0.003000000 
0.00CXXW000 

-0. L X X X X X X X X )  

0.000000000 

In  order  to  demonstrate  the perfect-reconstruction prop- 
erty of the QMF  bank characterized by the parameters in 
Tables I and 11, the  complete  system of Fig. 7 has been 

-0.139390709146034-04 
0.4298886023821ld-01 

-3.148921697153244+00 
0.29732024389502d+00 

-0.35374966894441d+00 
0.267097284013564+00 

-0.8?0638352228004-01 
-0.52084419980068d-01 

-0.42706675473313d-01 
0.87579833045549d-01 

-0.474717831446984-01 
0.429677388454954-01 
0. 

-0.23274922989163d-01 
0.21785328013287d-05 

d+W 

TABLE IV 
AN ARBITRARY INPUT SEQUENCEX ( n )  AND THE RECONSTRUCTED SEQUENCE 

f ( n )  FOR THE DESIGN EXAMPLE.  HERE Z ( n  + N - 1 )  IS SHOWN, IN 

ORDER TO ALIGN THE  SAMPLES 

n x(n) Q n + N - l )  

1 1.000000000 
2 

1.000000000 

3 
0.500000000 
0.600000000 

0.500000030 
0.600000000 

4 0.300000000 
5 -0,300000000 

0.300000000 

6 
-0.300000030 

0.400000000  0.400000000 
7 
8 

0.350000000 0.350000000 
3.12CQOOXO 

9 
3.120000000 

1.003000000 1 .OX030030 
10 ' -0.45cmxoq -0 450003000 

simulated on  a  computer.  With the input x ( n )  taken as an 
impulse function 6 ( n  - k ) with k = 0, 1, and 2, respec- 
tively, the response R (  n )  is  shown in the three columns 
of Table 111. This  response is clearly an  impulse (up to an 
accuracy of at least 10 significant decimal digits). Since 
the  columns  of  Table I11 are successively shifted versions, 
the time invariance of the  complete  system is demon- 
strated (thereby demonstrating alias cancellation). Table 
IV shows  an arbitrary input x(  n )  and the reconstructed 
signal R ( n ) .  It  is  clear that R ( n )  is  a  delayed version of 
x ( n ) .  These  two tables thus  demonstrate  the perfect-re- 
construction property. Finally,  Fig. 23 shows  a plot of 
1 T ( e j ' )  I = IHo(e jw)  l 2  + J H , ( e j " )  l 2  + IH2(e jw)  1 2 ,  
where T ( z )  is  the  composite  transfer function 
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Fig. 23. The  composite  response  in  decibels for the design  example. 

R ( z ) / X ( z ) .  Evidently, I T(e j " ) I  = 1 for  all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, in ac- 
cordance with perfect-reconstruction property. 

B. Comments and Further  Generalizations 
In a practical implementation of a perfect-reconstruc- 

tion system,  there  are  three additional sources of error. 
First,  the elements characterizing the matrices Kj have to 
be quantized, which means they will not be exactly or- 
thogonal.  Second,  there is computational roundoff noise 
when the analysis and synthesis banks are digitally imple- 
mented. Finally,  since  the subband signals themselves are 
encoded before transmission (and subsequently decoded 
at  the synthesis end),  the coding error gets reflected in the 
reconstructedsignal.  These three errors  are ignored in this 
sequel,  as they require further study. 

A considerable amount of work remains to be  done in 
connection with improved optimal designs of Hk (2). First, 
the matrices in (95) and (96) are not the most general or- 
thogonal forms. (For  example,  a general 3 X 3 orthogo- 
nal matrix requires three planar  angles in order to be com- 
pletely characterized.) More general orthogonal forms can 
offer improved stopband attenuations for  the  same  order 
N - 1. Second, there is no reason in practice to restrict 
oneself to  the simplified form of Ai ( z )  as in (94).  Finally, 
losslessness of H ( z )  (which is  the basis of obtaining the 
above optimization procedure) is itself only a sufficient 
(rather than necessary) condition for perfection of recon- 
struction, and the question is whether we can obtain more 
efficient designs in other ways. 

As in most nonlinear optimization problems, it is pos- 
sible to have local extrema,  and it is judicious to try out 
several initial parameter estimates in order to obtain a so- 
lution that is (reasonably close to) the global minimum. 

Explicit computation of the  gradient of 4 (rather than 
gradient-approximation using differences) is  often pre- 
ferred 1281 in the procedure for optimization of 4. Gra- 
dient computation is rendered easy in the  case of our  ob- 
jective function because of the way in which the B k , i  
parameters enter (95) and (96). For  example, d4 /dBl , j  
can be found simply by replacing the matrix 

with the derivative 

COS 

cos  sin B l , i  (103) 

The objective function obtained by replacing (102) with 
(103) is precisely the gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 4 / d B , ,  i .  In the design ex- 
ample reported above, this gradient computation has not 
been utilized. 

Summarizing,  the design results presented in this sub- 
section are by  no means the best in the  sense that more 
general orthogonal matrices can be used during optimi- 
zation, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAi  ( z )  can be more general than in (94).  The 
example is meant only to demonstrate the basic result on 
perfect reconstruction in maximally decimated QMF 
banks for arbitrary M.  The scope for improvement is wide. 

VII. SIGNAL RECONSTRUCTION IN QMF BANKS WITH 

RECURSIVE FILTERS 

In Section I11 it was indicated that,  under certain (rather 
stringent) restrictions, it is possible to obtain perfect-re- 
construction IIR QMF banks. More useful solutions in the 
IIR case can be obtained if phase distortion in the recon- 
struction process can be tolerated. This can be accom- 
plished by forcing T ( z )  in (2) to be (stable) and all-pass. 
Examples can be found in [11]-[13], [32], and [34]. In 
this section we wish to indicate  a general means of ac- 
complishing this, based on the losslessness concept. 

The inverse of the AC matrix is 

H - ' ( z )  = 
Adj H ( z )  

where A ( z )  = det H (2). Clearly, A ( z )  is stable (assum- 
ing Hk ( z )  are stable) and the entries in Adj H ( z )  are  sta- 
ble, but H - ' ( z )  is not necessarily stable unless the zeros 
of A (z )  are restricted to be strictly inside  the unit circle. 
Let us now consider  the consequence of choosing the syn- 
thesis filters Fk (2) to be 

Such a  choice is clearly stable and satisfies (1 b) with T ( z )  
= A ( z )  = det H ( z ) .  It can be shown (Appendix B) that 
det H ( z )  is all-pass if H ( z )  is lossless. Hence, the choice 
(105) ensures that (2) holds with T ( z )  equal to an all-pass 
function. In other  words, aliasing and amplitude distor- 
tion have been completely eliminated. 

This observation can be reinterpreted in terms of Fig. 
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Fig. 24. Pertainin! to  Appendix  A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E- ’ (z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdj E ( z )  
B (2) 

and B ( z )  = det E (2). Then 

(107) 

P ( z )  = R ( z )  E ( z )  

= B ( z )  E - ’ ( z )  E ( z ) ’ =   B ( z )  * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. (108) 

With this choice of R ( z ) ,  Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 reduces to Fig.  24, 
where &!$ ( z )  = B ( z )  for all k .  Thus, by Appendix  A, 
aliasing is absent,  and T ( z )  = R ( z ) / X ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - ( ~ - ’ )  
B ( z  ) . Since &E ( z  is lossless , B ( z  j is again all-pass 
(except for  a scale factor) , and  thus,  amplitude distortion 
has been eliminated. 

In  summary,  because of the properties of the determi- 
nants of lossless matrices,  it is possible to eliminate (al- 
iasing and) amplitude distortion in IIR  QMF banks, when 
H ( z )  [or equivalently &E ( z ) ]  is  lossless. Specific in- 
stances of such reconstruction can  be  found in recent pub- 
lications [32]. 

VIII.  SUMMARY AND CONCLUSIONS 

In this paper  we  have considered maximally  decimated 
M-channel parallel QMF structures of the form  shown in 
Fig. 1. We showed in Section I11 how perfect reconstruc- 
tion can  be  accomplished by restricting E ( z )  to be .FIR 
and lossless (i.e., unitary on the unit circle).  This  is 
equivalent to forcing the AC ‘matrix H ( z )  to be  FIR  and 
lossless. A lossless AC matrix H ( z )  implies that the anal- 
ysis filters { Hk ( z )  ) satisfy the  “power-complementary’’ 
property, i.e., 

IHo(ejo)o + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Hl(ejw)IZ + * * + IHM- l ( k j “ ) I  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  
2 

( 109 ) 
Conversely, (109) does not imply that H ( z )  is lossless 
and is by no  means  a sufficient condition for perfect re- 
constructibility . In Section I11 several properties pertain- 
ing to perfect reconstruction were presented and, based  on 
some of these,  it  was  also verified in Section IV that the 
tree structured SB QMF  bank has a lossless AC matrix. 

We feel that for M > 2, the problem  of designing Hk ( z )  

should not be  approached  from the point of view of spec- 
tral factorization of Mth  band filters, because  such  an ap- 
proach  cannot lead to Hk ( z )  with  good  stopband atten- 
uation if H ( z )  is at the same  time forced to be lobsless. 
The results of Section VI place in evidence  one  method 
for obtaining a set of analysis filters which satisfy the suf- 
ficient conditions for perfect reconstruction. A  procedure 
has also.been presented whereby the coefficients of such 
an  FIR analysis bank  can  be  optimized in order  to  provide 
a  good  stopband attenuation for  each of Hk (2). The op- 
timization problem in Section VI  opens  up several possi- 
bilities for improving  the  design  algorithm,  and  some of 
thes,e are currently under study. 

APPENDIX A 
Consider  the  M-channel structure shown in Fig.  24. It 

is easily, seen that ( z )  in this figure is given by 
M -  1 

From here we  can  deduce  that  the structure is.free from 
aliasing if and only if Sk ( z )  is  independent of k ,  i.e., 

S, ( e )  = S(z) for all k .  ( A 4  

Under this condition, we  have ( z )  = z - ( ~ - ’ )  S ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz M  ) 
X ( z ) .  In particular, if S ( z )  = 1 then R ( z )  = z - ( ~ - ’ )  
X ( z )  , which in turn is also  clear by inspection of Fig.  24. 
This also provides a  simple  example of a perfect-recon- 
struction system. 

APPENDIX B ’ 

Let fi ( z )  be lossless. Then 

HT,(z-’) ~ ( z )  = I ,  for all z. (A.3) 

Taking the determinant  of (A.3) , 

det H:(z- I )  det H ( z )  = 1, for a11 z ,  (A.4) 

l.e., 

A , ( z - ’ )  A ( z )  = 1, for all z ( A S )  

where A ( z )  det H (2). This  shows  that‘ A ( z )  is  all- 

pass. 
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