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Theory and Design of Optimum
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Abstract—The problem of optimum FIR energy compaction
filter design for a given number of channelsM and a filter order
N is considered. The special cases whereN <M and N = 1

have analytical solutions that involve eigenvector decomposition
of the autocorrelation matrix and the power spectrum matrix,
respectively. In this paper, we deal with the more difficult case
of M <N <1. For the two-channel case and for a restricted
but important class of random processes, we give ananalytical
solution for the compaction filter that is characterized by its
zeros on the unit circle. This also corresponds to the optimal
two-channel FIR filter bank that maximizes the coding gain
under the traditional quantization noise assumptions. With a
minor extension, this can also be used to generate optimal
wavelets. For the arbitrary M -channel case, we provide a very
efficient suboptimal design method called thewindow method. The
method involves two stages that are associated with the above two
special cases. As the order increases, the suboptimality becomes
negligible, and the filter converges to the ideal optimal solution.
We compare the window method with a recently introduced
technique based on linear programming.

Index Terms—Energy compaction, Nyquist filters, orthonormal
filter banks, subband coding, wavelets.

I. INTRODUCTION

T HE DESIGN OF optimum energy compaction filters has
been of interest in the recent past because of their known

connection to optimal subband coding (SBC) and principal
component filter banks (PCFB’s) [1]–[9]. When there is no
order constraint on the filters, the optimization of uniform
orthonormal filter banks for given second-order statistics has
been solved [6], [7], [9]. The minimum mean-squared error
solution is such that each filter is an optimal compaction filter
corresponding to a power spectral density (psd) that is derived
from the input psd. In particular, the filter corresponding to
the largest subband variance has to be an optimal compaction
filter for the input psd itself.

Consider an -channel uniform orthonormal (or parau-
nitary) filter bank shown in Fig. 1. In terms of the filters,
we can express the orthonormality as

[10]. This, in particular, implies that each filter satisfies
the Nyquist property (see Section I-B for notations and
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Fig. 1. M -channel orthonormal filter bank.Fi(ej!) = H�

i
(ej!); and

jHi(ej!)j2 is Nyquist(M).

terminology)

(1)

Using the mean-squared error (mse) as the criterion, with high-
bit rate assumptions on the quantization noise sources, and
with optimal bit allocation, one can write the coding gain as
[11]

(2)

where is the variance at the output of , and
by the orthonormality.

The optimum orthonormal filter bank that maximizes (2) is
well known for the case where filter orders are constrained to
be less than This is the famous Karhunen–Loeve transform
coder (KLT), and it diagonalizes the autocorrela-
tion matrix of the input. The solution for the case where
the filter orders are unconstrained (ideal SBC) has recently
been established. The polyphase matrix [10] of the solution
diagonalizes thepsd matrixin the frequency domain. This, in
particular, implies the diagonalization of the autocorrelation
matrix (which was both necessary and sufficient condition
for the transform coding case). Diagonalization of the psd
matrix at each frequency, however, is not sufficient for the
unconstrained filter bank to be optimum [9]. There should be
an additional ordering of the eigenvalues of the psd matrix at
each frequency (spectral majorization) [9]. At a frequency,
these eigenvalues are

, where is the input psd.
For a uniform filter bank to be optimum, it is only required

that the product of the subband variances be a
minimum [see (2)]. It turns out that both in the transform coder
case and in the ideal SBC case, the optimal solutions achieve
a fascinatingmajorizationproperty described as follows. Let
us order the subband variances such that

(3)
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Among all orthogonal transform coders, the KLT has the
property that the partial sum is maximized for each

The same property holds for orthornormal subband coders
with no order constraints. That is, for each is
the largest for the optimal one. In particular, when ,
this says that should be maximized by the choice of

That is, should be anoptimum compaction
filter. A filter bank with this property was first constructed
by Tsatsanis and Giannakis [6] as a solution to a different
problem: Assume we keep only of the filters in Fig. 1,
and without quantizing the subbands, we try to reconstruct
the original input. What is the best filter bank that minimizes
the mse of the reconstruction for each The solution is
named to be a PCFB. PCFB’s have also been extended for the
multidimensional case [12]–[15].

A. Motivation for Compaction Filter Design

One can prove directly thata PCFB maximizes the coding
gain of uniform orthonormal filter banks. For this, let

be set of subband variances corresponding
to another orthonormal filter bank. Assume that

(4)

By orthonormality, we have equality for [10].
Then, by a well-known result from linear algebra (see [16, p.
199]), we have

(5)

Hence, the product of variances is minimized by a PCFB.
This was also independently shown in [15]. If we think of
the collection of the set of subband variances obtainable bya
certain class of orthonormal filter banks, then the PCFB has the
set of variances that majorizes every other set in the collection.
Hence, it has the minimum product and, therefore,
the maximum coding gain.

When some of the subband variances turn out to be smaller
than a certain threshold, the corresponding channels should be
dropped. In this case, the coding gain expression (2) is not
applicable, and the total error is the sum of the quantization
error and the error due to dropping. This is the case when
high bit-rate assumption on the quantization noise sources is
not satisfied. Recently, it has been shown that thePCFB’s
are optimal for subband coding for all bit rates and for all
bit allocation strategies[17]. Furthermore, the optimality of
PCFB’s carries over to the nonuniform case as well [18].
Hence, designing an energy compaction filter is a right step in
any subband or wavelet-based coding scheme.

If the class in the definition of a PCFB is the class of
orthonormal block transforms (filter orders less than) or
the orthonormal filter banks with unconstrained filters, the
existence of a PCFB is assured by its very construction. In the
intermediate case (i.e., finite-order filter banks), unfortunately,
the existence of such a filter bank is not always guaranteed.
Refer to [19] for examples where no FIR PCFB of a given

degree exists for a particular input psd. However, if it exists,
then designing an optimum FIR compaction filter is
the first step of finding such a filter bank. In that case, Moulin
et al. [20] uses a result due to Vaidyanathan [21] to optimally
complete the filter bank. This is based on the fact that if one
filter in an FIR orthonormal filter bank of a given
degree is known, then the number of freedoms available for
the design of the remaining filters is limited. This remaining
freedom can, in fact, be captured with a simple constant unitary
matrix Essentially, the last rows of are free and
should be chosen to maximize the coding gain. The optimum

is the KLT corresponding to its input vector, which is
determined by the first filter and the original input
As we will see, the optimality of a compaction filter depends
only on its magnitude-squared frequency response. Hence, for
an optimum magnitude-squared frequency response, one has
the choice of selecting a particular spectral factor. It turns out
that this choice affects the coding gain [19], and one has to
choose the best spectral factor.

For the two-channel case, the existence of a PCFB is assured
even if the filters are order constrained. To see this, note that
a two-channel PCFB maximizes only , corresponding to

By orthonormality, the sum is constant.
Once one order-constrained filter that maximizes is found,
all that remains is to find another filter such that the two
filters form an orthonormal filter bank. It is very well known
that the second filter is determined from the first filter by
simple flipping and sign changes [see (30)]. Hence, in the
two-channel case, designing an optimal FIR compaction filter
is the same as designing an optimal FIR orthonormal filter
bank for subband coding. By a recent result in [17], the
optimality of this filter bank is independent of the bit rates
involved. In the high-bit rate case, the coding gain expression
becomes
In this case, we can write ,
where is the compaction gain defined more
precisely in Section II.

In this paper, we focus on the design of an optimum FIR
compaction filter when the order is such that
As we discussed, for , this is equivalent to the design
of optimum orthonormal filter banks for subband coding and,
with trivial extensions, to the design of optimal wavelet
generating filters. For arbitrary , the design in [20] can
be used to obtain a good orthonormal filter bank using the
compaction filter. The usefulness of signal-adapted designs in
image coding with the mse as the criterion is demonstrated
in [4], [12], and [22]. We are currently working on image
compression algorithms to see the extent of improvement by
our optimal filter designs.

Other Applications of Compaction Filters:In view of prin-
cipal component analysis, in addition to subband coding and
data compression, other immediate applications of compaction
filters are signal modeling and model reduction, low-resolution
data representation (multimedia databases), and classifica-
tion. Two other interesting applications of compaction filters
are adaptive echo cancellation [23] and time-varying system
identification [24]. Consider the design of zero intersymbol-
interference (ISI) transmitter and receiver filters for data
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transmission over bandlimited communication channels. Let
and be the transmitter and receiver filters,

respectively. To maximize SNR in the presence of addi-
tive white noise, matched filtersshould be used, that is

With this, the zero ISI property becomes
, which is nothing but a Nyquist

property. Such optimally designed filters are used, for example,
in voiceband data modem applications [25].

B. Notations and Terminology

1) The notation denotes the transform of ,
where stands for complex conjugation. If is real,
then Notice that
and the FT of is

2) The symbols and denote -fold decimation
and expansion, as defined in [10]. The notation
denotes the transform of the decimated sequence

3) Nyquist Property: A sequence is said to
be Nyquist if or, equivalently,

This can be rewritten in the form [10]
, where

4) The notation stands for a periodic sequence with
periodicity If there is a reference to a finite sequence

as well, then it is to be understood that
is the periodical expansion of , i.e.,

The Fourier series coefficients (FSC)
of is denoted by For a multiple of ,
a periodic sequence is said to be Nyquist

if , where

5) Positive Definite Sequences: Let a sequence
be given, and let be the Hermitian Toeplitz

matrix whose first row is
The sequence is called positive definite if
is positive definite. Let denote
an eigenvector corresponding to the maximum eigen-
value of Then, the filter is
called amaximal eigenfilterof The definitions for
negative definite sequences and minimal eigenfilters are
analogous.

C. New Results and Outline of the Paper

In Section II, we formulate the optimum FIR energy com-
paction problem and present a brief review of existing work.
The remaining sections contain new results. In Section III, we
give an extension of the technique in [26] for the analytical
solution of the FIR energy compaction problem in the two-
channel case. This is equivalent to the problem of the optimal
two-channel orthonormal filter bank that maximizes the coding
gain and with a trivial extension (constraining some zeros at

) to the optimum wavelet generating filter problem.
The method involves Levinson recursion and two spectral
factorizations of half the filter order. We will see that the
analytical methodis related to the well-known line-spectral
theory in signal processing [27].

Fig. 2. M -channel compaction filter.jH(ej!)j2 is Nyquist(M).

We develop a new technique called thewindow method
for the design of FIR compaction filters for the -channel
case (Section IV). The window method has the advantage
that no optimization tools or iterative numerical techniques
are necessary. The solution is generated in a finite number of
elementary steps, the crucial step being a simple comparison
operation on afinite frequency grid. In Section V, we briefly
review the linear programming (LP) method and mention some
of its drawbacks. Comparison of the window and LP methods
is done in Section IV-B.Matlab programs can be found at our
webpage [28] for the algorithms described in this paper.

The three techniques (the analytical method, the window
method, and the LP method) are complementary rather than
in competition with each other. For the two-channel case,
the analytical method should be the choice whenever it is
successful. If it is not or if , for high filter orders,
the window method should be preferred. If the filter orders
are low, then linear programming should also be considered,
although sometimes, the window method performs as well as
LP, even for low filter orders (see Example 12).

II. THE FIR ENERGY COMPACTION PROBLEM

An FIR filter of order will be called a validcom-
paction filterfor the pair if is Nyquist ,
that is, Let We
will call the product filter corresponding to
Conversely, is the product filter of a valid compaction
filter for the pair if it is of symmetric order , that
is , and satisfies the following two
conditions:

Nyquist condition and

non-negativity (6)

Now, consider Fig. 2, where is applied to a zero-
mean WSS input with psd , and the output is
decimated by The optimum FIR compaction problem is to
find a valid compaction filter for the pair such
that the variance of is maximized. Since decimation
of a WSS process does not alter its variance, we have

(7)

We define thecompaction gainas

(8)

The aim therefore is to maximize the compaction gain under
the constraints (6).
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Two Extreme Special Cases:Let us consider the two spe-
cial cases:

a) the case where ;
b) the ideal case

In the first case, the condition is the same
as This is equivalent to saying that has
unit energy. Let be vector formed by ,
and let be the autocorrelation
matrix of Then, the problem is to maximize
subject to the condition By Rayleigh’s principle
[16], the optimum is the maximal eigenvectorof In
other words, is the maximal eigenfilter of Let the
maximum eigenvalue of be denoted by ,
where is the input autocorrelation sequence. Then, the
optimum compaction gain is The second
case has the following solution [6], [7], [9]: If we write

in polyphase form [10],
and if denotes the psd matrix of ,
then for each is
the maximal eigenvectorof Equivalently, for each

, let be the maxi-
mum of the set
Then, , and

for Note that the eigenvalues of are
Let

denote the corresponding compaction gain. We can write
, where is the

passband of
In the th-order FIR compaction problem, we do not have

the flexibility of assigning values to independently
for each This is because is determined by its

frequency samples. For , the problem is not
an eigenfilter problem either, as the condition
implies more than the simple unit-energy condition. In Section
IV, we will introduce a suboptimal method called the window
method. Interestingly enough, the method involves two stages
that can be associated with the above special cases. Although
the method is suboptimal, it produces compaction gains that
are very close to the optimum ones, especially for high filter
orders.

Upper Bounds on the Compaction Gain:We have the fol-
lowing bounds for the compaction gain.

and (9)

For the first inequality, let be an integer such
that From the first special case above,
we have Since
Nyquist property implies Nyquist property,

The second inequality
follows because For
the last inequality, first observe that
Hence,

The equality holds
if and only if for all for which
If is not line spectral, this requires to

be identically zero for some region of frequency that is
impossible since the order is assumed to be finite. Hence,
for a process that is not line spectral, the last inequality is
strict. That is, For we will derive
another upper bound for in Section III-B [see
(23)] for a class of random processes. Whenever the analytical
method of Section III succeeds, this bound is in fact achieved.

A. Previous Work

Here is a brief review of the existing methods for FIR
compaction filter design.

1) Lattice Parametrization: Two-channel real-coefficient
orthonormal filter banks can be completely parametrized
by a lattice structure [10]. Each stage in the lattice has an
angle parameter The objective function, however,
is highly nonlinear function of these angles. Delsarte
et al. [4] propose an iterative algorithm called the
ring algorithm to optimize the lattice stage by stage.
Taubman and Zakhor [22] propose an algorithm aimed
at finding a globally optimum solution for small filter
orders. They extend the results to two-dimensional (2-D)
nonseparable filters as well.

2) Quadratically Constrained Optimization: One can for-
mulate the problem in terms of the compaction filter
impulse response Maximize subject to

, where is an appropri-
ately chosen singular matrix, and Here,
is the input autocorrelation matrix, andis the vector
of filter coefficients. The authors in [29] and [30] use
Lagrangian techniques to solve the problem for the two-
channel case and for small filter orders. Chevillat and
Ungerboeck [25] provide an iterative projected gradient
algorithm for the -channel case and for moderate filter
orders.

3) Eigenfilter Method: In [21], the authors design one
filter of an -channel orthonormal filter bank using
the so-called eigenfilter method. The objective in their
design is to have a good frequency response. However,
one can modify the technique to incorporate the input
statistics. This can be done by using the psd
as a weighting function in the optimization. The paper
also discusses how to design a good orthonormal filter
bank using the remaining degrees of freedom. In [20],
Moulin et al.show how to use this idea for the statistical
optimization of orthonormal filter banks.

4) Linear Programming: The objective is a linear function
of the impulse response of
The Nyquist property can be trivially achieved.
However, we need to impose for all This
can be written as a linear inequality for eachin terms
of Hence, the problem is a linear programming
(LP) problem with infinitely many inequality constraints,
hence, we have the name semi-infinite programming
(SIP). Although we used LP independently to design
compaction filters at the early stages of this project, it
was first proposed and examined in depth by Moulinet
al. [20], [31], [32].
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5) Analytical Methods: Aaset al. [26] worked on a closely
related problem for the two-channel case. They have
constructed a Nyquist(2) real filter that maxi-
mizes the baseband energy
Based on the fundamentals of Gaussian quadrature, the
authors were able to obtain an analytical method to
identify the unit-circle zeros of that uniquely de-
termine it. In our paper, this method will be referred to as
analytical method. In Section III, we present extensions
of the analytical method. Although the original method
primarily addresses conventional half-band filter design,
we will show how to adapt the idea for the case of
FIR compaction filter design for a given input psd.
Interestingly enough, we shall show that the analytical
method is related to the well-known line-spectral theory
in the signal processing community [27]. An analytical
expression for the compaction gain for is
presented in [33]. See also [34] for

The major disadvantage of the first three methods is that
they are iterative and that there is a possibility of reaching
a locally optimum solution. Nonlinearity of the objective is
very severe in the first technique. A milestone in the design
approaches is the formulation of the problem in terms of
the product filter. This is done in the last two methods
above. In this paper, we also design the product filters. A
spectral factorization step is necessary to find the compaction
filter coefficients in contrast with the first three methods.
In a newly developed technique, Tuqan and Vaidyanathan
[35] use state space theory to cast the problem into a semi-
definite programming problem. The formulation is such that
the spectral factorization is automatically achieved within the
algorithm. In [36], we consider the design of FIR compaction
filters in multiple stages. This is efficient both in terms of
design and implementation complexity. Some of the results of
this paper have been presented at recent conferences [37], [38].

III. A NALYTICAL METHOD FOR

In this section, we consider the special case of two channels
and assume that the input is real so that

the compaction filter coefficients can be assumed to
be real. For this two-channel case, we will show that the
optimal product filter can sometimes be obtained using
an analytical method instead of going through a numerical
optimization procedure. We will also present a number of
examples that demonstrate the usefulness of the method.
Examples where the analytical method can be shown to fail
are also presented. As in [26], one can modify the algorithms
of this section to constrain the filters to have specified number
of zeros at to generate optimal wavelets.

The analytical method is motivated by the fact that un-
der some conditions to be explained, the objective function
(7) can be conveniently expressed as a summation over a
finite number of frequencies determined by the psd
The summation involves the samples of a modified polyhase
component of This will allow us to optimize the
modified polyphase component and, hence , essentially
by inspection. Using these observations, we come up with

Fig. 3. Coefficients of the polyphase componentE1(z) of the product filter
G(z): Because of the symmetryg(n) = g(�n), we haveE1(�1) = 0:

an algorithm that determines the unit-circle zeros of the
compaction filter. Using the Nyquist(2) condition, this in turn
determines the filter itself.

The inspiration for our work in this section comes from
the recent contribution by Aaset al. [26], where the Gaussian
quadrature technique is cleverly used to address the problem of
maximizing the baseband energy of halfband filters. Our work
in this section differs in a number of respects. First, we do
not use Gaussian quadrature but take advantage of an elegant
representation for positive definite sequences that results from
the theory of line-spectral processes. Second, we take into
account the knowledge of the input psd in the optimization
process. We give the analytical solutions for some practically
important classes of random processes.

Let us represent the product filter
in the traditional polyphase form [10] for

By the Nyquist(2) property, we have
For the real coefficient case, we have

, and it follows that the coefficients of the FIR filter
have the symmetry demonstrated in Fig. 3. This implies,

in particular, that for By factoring the zero
at , we can write , where
has symmetric real coefficients. Hence, we can write

i.e.,

(10)

Since Nyquist condition and nonnegativity of together
imply , the modified polyphase component

is bounded as

(11)
Notice that and can be determined from
each other uniquely. We shall express the output variance

in terms of so that we can see how to
optimize the coefficients of For this, write the
input psd in the traditional polyphase form as

Then, can be simplified into the
form , where

, or equivalently

(12)

Using Parseval’s relation, the objective can be written as

(13)
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where is the inverse transform of , which is
produced below explicitly for convenience.

(14)

and Our aim is to maximize the second
term in (13) for fixed (i.e., fixed input) by choosing

under the constraint (11) and the usual filter-order
constraint. Under the assumption that the input-dependent
sequence is positive or negative definite(see Section
I–B for definition), we will show how this can be done
analytically. The significance of this assumption on is
explained in Section III–D. We will need the representation
theorem of the next section for positive definite sequences.

A. Representation of Positive Definite Sequences

Theorem 1: Given a positive definite sequence of
complex numbers , there exists a

representation of the form

(15)

where and ’s are all distinct.
Comments:Note that this is different from the

Caratheodory representation theorem, which is the basis for the
Pisarenko method [39] for identifying sinusoidal signals under
noise: Given , there exists a representation
of the form , where ’s
are nonnegative. The frequencies’s are the angles of the
unit magnitude roots of the minimal eigenpolynomial of a
matrix The matrix is Hermitian Toeplitz
with the first row , where is
the positive number that makes the matrix singular. Here, the
number of distinct frequencies depends on the multiplicity
of the minimum eigenvalue of the so-obtained matrix. If
the multiplicity is 1, there are distinct frequencies. If we
start with a positive definite sequence , then
Caratheodory representation takes the form

(16)

This is obviously not the same as (15) and is not suitable
for our purposes. Although Theorem 1 turns out to be well
known in the literature [40], we include our proof below for
two reasons.

1) It is elegant and uses the theory of line-spectral pro-
cesses.

2) It reveals us the algorithmic steps of the analytical
method.

Proof of Theorem 1:Let be the
Hermitian Toeplitz matrix whose first row is

Consider the extension of into
a singular Hermitian Toeplitz matrix

such that its principal submatrix is
This extension is merely augmenting an extra element

to the end of and forming the corresponding
Hermitian Toeplitz matrix. The number is chosen
to make singular. This can always be done because of
the following reason. For the positive definite matrix, one
can run the well-known Levinson recursion procedure [27] to
obtain the optimal th-order predictor polynomial If
one now considers the following continuation of the recursion

with , then this
corresponds to the singular predictor polynomial of a random
process with singular autocorrelation matrix The result
now follows from a well-established fact [27], which states
that a WSS process is line spectral with exactly lines
if and only if its autocorrelation matrix is
nonsingular and autocorrelation matrix is
singular. Applying this result to a process with autocorrelatiom
matrix , we get (15).

Remarks: It is clear that defined in the above proof
is also the minimal eigenfilter of The zeros of are
all on the unit circle and distinct. Let be
these zeros. The distinct frequencies are
referred to as the line-spectral frequencies, andis the power
at the frequency The representation (15) is not unique
because of the nonuniqueness of the unit-magnitude constant

in the proof.
Real Case:For real , the predictor polynomial

and the constantare real. Hence, we have two cases:
The case leads to a symmetric polynomial ,
whereas the case leads to an antisymmetric polynomial

It is a well-known fact that the distinct unit-circle
zeros of these two polynomials are interleaved. For simplicity,
assume that is odd. Then, has both of the zeros

and , and has none of them. Using ,
we have the following representation for a real positive definite
sequence :

(17)

where and ’s are all distinct,
and

B. Derivation of the Analytical Method

Assume for simplicity that is odd, and assume
that is positive definite. Ap-
plying the real form of the representation, we have

(18)
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The objective (13) can therefore be written as

(19)

From (11), the output variance (19) is maximized if

(20)

This implies , and by Nyquist(2) property

(21)

Notice that these zeros are all located in the region
Since , the derivatives of should
vanish at the above frequencies. Hence, we should have

In view of (10), this
in turn implies

(22)

From the two sets of constraints (20) and (22), is
determined uniquely. To see this, note that

is a polynomial in of
degree Since ’s are all distinct and ,
the constraints (20) and (22) translate into a similar set of
constraints for and and by simple Hermite
interpolation [41, p. 28], is determined uniquely. The
corresponding solution is necessarily nonnegative in
the frequency region (Appendix A). If it is nonneg-
ative in the region as well, then it is the optimum
compaction filter with the corresponding compaction gain

(23)

If, however, turns out to be negative at some fre-
quencies in , then it is not a valid solution, and the
above RHS is only an upper bound for Assume
that obtained by the method is indeed non-negative.
Then, it is the unique solution.To see this, assume there
is another optimal product filter Assume that
is its modified polyphase component. Then, there exists a
frequency among the line-spectral frequencies such that

Hence, the summation (19) for
is necessarily less than that for , resulting in

contradiction. Notice finally that , which is an arbitrary
spectral factor of the unique solution , is not unique.

C. Completion of the Optimal

Consider the following factorization of .

(24)

where contains the unit-circle zeros determined by the
above procedure. From (21), we have

(25)

Using the Nyquist(2) property, it is possible to determine
and, hence, For this, let and be

the impulse responses of and , respectively. The
product (24) in domain is equivalent to the convolution in
time domain. Using the convolution matrix and taking into
account the symmetries, we get

(26)

where the vectors have the components
, and is obtained

from the impulse response From the Nyquist(2)
property, it is clear that Hence, is the
first column of the matrix To see that is invertible, it
suffices to show that a unique solution to exists for a given

For this, write the Nyquist(2) condition for

(27)

The zeros of lie on the left half of the unit circle. Hence,
the zeros of lie on the right half of the unit circle. This
implies that and are coprime. It is now easy
to show that a unique solution to of symmetric degree
less than or equal to exists [26]. Actually, this is
an efficient way of determining (see [26] for details).

Efficient Determination of : We will show that we
can obtain from the singular predictor polynomial
without having to find its roots. For this, let us write
explicitly:

(28)

Now, consider the upsampled polynomial This can be
written in the form , where is
a polynomial in of order with all its zeros in
the left half plane. To be explicit

(29)

Hence, from (25), it follows that
Therefore, given the singular predictor polynomial , one
can apply a continuous-time spectral factorization algorithm
[42] to to obtain and, therefore, Since

can be determined from , we observe that there is
no need to find the roots of .
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Spectral Factorization:To find the compaction filter ,
we need to spectrally factorize It is clear that we can
write as

where and are the spectral factors of
and , respectively. We can deduce immediately:

Hence, all we need to do is to determine
, which is of order This can be done by a

discrete-time spectral factorization of [43]. Although
the phase of the compaction filter is immaterial for the
compaction gain, it is important in the design of an optimal
orthonormal filter bank for subband coding [19]. For some
applications like image coding, the linear-phase property might
be important. Although it is not possible to have linear-phase
compaction filter in the two-channel case [10], one can achieve
close-to-linear-phase response by a careful grouping of the
roots of

The case where is even can be treated in a very
similar manner. In this case, we use the singular polynomial

corresponding to , and one of the line-spectral
frequencies is 0, that is, is a root of The
resulting product filter continues to be non-negative
in We skip the details and give the summary of the
algorithm for both cases.

Summary of the Analytical Method:Given the autocorrela-
tion sequence , where is odd, let

First, obtain the sequence
using the relations (14).If this sequence is positive definite,
then go to Step 1.

Step 1: Calculate , which is the optimum predictor
polynomial of order corresponding to the sequence
and obtain from ,
where if is odd, and otherwise.

Step 2: Obtain the spectral factor, of us-
ing a continuous time spectral factorization algorithm, and
determine

Step 3: Calculate using (26) or (27), and find its
spectral factor The optimum compaction filter is

See our webpage [28] for a matlab program that implements
the algorithm.

Decorrelation in Optimal Subband Coding:Let us form a
two-channel orthonormal filter bank by letting the first filter
be the optimal FIR compaction filter designed above and
by having the second filter as [10]

(30)

Let be the cross spectral density of the subband
signals after decimation. Then, we have

(31)

Hence, we have

(32)

TABLE I
OPTIMUM COMPACTION FILTER COEFFICIENTSh(n) AND THE CORRESPONDING

COMPACTION GAINS FOR AR(1) PROCESS WITH� = 0:1; 0:5; AND 0.9. THE

FILTER ORDER IS N = 3, AND THE NUMBER OF CHANNELS IS M = 2

where ’s are the line-spectral frequencies (see Remarks after
Theorem 1). This is the form of decorrelation that takes place
in optimal subband coding with FIR filters.

Case where Is Negative Definite:From our devel-
opments for the positive definite case, and using the sequence

, it can be proven that the optimum compaction filter
is , where is the optimum compaction
filter for the positive definite sequence
However, it is easier to see this directly by looking at the
objective in time domain: First,
note that corresponds to the autocorrelation sequence

Let and be the product filter
coefficients for and , respectively. The objective
is then to maximize This has the solution

Hence, we have , and
therefore,

Example 1: AR(1) Process:Let the input process be
with the autocorrelation sequence This
is also called Markov-1 process and is a good model for many
of the practical signals including images and speech signals
[44]. Let the compaction filter order be Then, ,
which is odd. We have and The
Hermitian Toeplitz matrix corresponding to
is , which is positive definite. Hence, we
can apply the analytical method:

Step 1: Running the Levinson recursion, we have
and using is odd , we have

Step 2: By straightforward calculation
, and

Step 3: Using the Nyquist(2) constraint, we find
It is readily verified

that for all values of The spectral factor of
turns out to be , where

, and
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TABLE II
COMPACTION FILTER COEFFICIENTS AND CORRESPONDINGGAINS FOR MA(1) PROCESSES FORM = 2

Step 4: The optimum compaction filter is

(33)

The product filter is
If ,

then the optimum compaction filter is The optimum
compaction gain for both cases is

(34)

See Table I for the numerical values of the filter coefficients
and the compaction gains for various values ofWe have
found that the analytical method is successful for any filter
order for AR(1) processes.

Example 2—MA(1) Process:Let
, and The sequence is therefore

, which is positive
definite. Hence, applying the algorithm, we find

, and the com-
paction filter is

The product filter is
If , then the optimal filter

is The optimum compaction gain for both cases is

Example 3—MA(1) Process, Arbitrary Order: Follow-
ing the steps of the algorithm, we have

If is odd, then the zeros of are
Therefore, the

roots of and, hence, the unit-circle zeros of the optimum
compaction filter are

Similarly, if is even, the unit-circle zeros of the
optimum compaction filter are

The rest of the procedure
involves spectral factorization, and it is not easy to see what

will be in closed form. However, we note that the
algorithm successfully finds the optimum compaction filter for
any order Table II shows the compaction filters and the
corresponding compaction gains for various filter orders. The
optimum compaction filter for is Note that the
filters do not depend on the value ofbut only on the sign. The
optimum compaction gains, on the other hand, depend on

Example 4—KLT:If then the algorithm yields
if and

if Notice that these correspond
to the two-channel transform coder, which is known to be
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fixed. The corresponding compaction gain is
It is also true that the above filters and the

corresponding compaction gains are optimal for any psd and
for any number of channels . Hence

If is maximum of all where is not a multiple
of , then one can achieve the compaction gain of

by using the filter if
and the filter if

Case Where Is Semidefinite:Assume that is
positive semidefinite. Then, there exists an integer

such that is positive definite,
and is only positive semidefinite.
Then, we can replace in the above arguments
with and write the objective (19) in terms of
corresponding line-spectral frequencies. This enables us to
determine a product filter of symmetric order
If this resulting filter is nonnegative, then we have found
the unique minimum symmetric order product filter that is
optimum among the filters of symmetric order less than or
equal to . The case where is negative semidefinite is
similar, and the details are omitted.

Example 5—Case Where Is Positive Semidefinite:
Let and Then,

The associated Toeplitz matrix is , which
is positive semidefinite and singular. The number is 0
in this case, and the objective (19) is By
letting , the product filter of symmetric
order 1 can easily be seen to be , and it is
readily verified that In fact, this is the KLT
solution with the compaction filter
The corresponding optimum compaction gain is No
third-order solution can achieve better gain than this.

D. Characterization of Processes for Which the
Analytical Method Is Applicable for All

For the analytical method to be applicable for all, the
sequence has to be positive or negative definite for all

The sequence is positive definite for all if and
only if is not a line spectrum, and
Using (12), this is true if and only if is not a line
spectrum, and

(35)

We will say that the process is “lowpass” if its psd satifies
the above condition. A nonincreasing psd is an example of
this. However, a psd may not be nonincreasing but may
still be lowpass. In the ideal case, the optimum compaction
filter for that type of process is the ideal halfband lowpass
filter [4], [6], [8]. For the case where is negative
definite for all , the preceding is replaced with

This type of process will be
called “highpass” since the ideal halfband highpass filter is

optimum for such a process. Notice that for the algorithm
to be applicable for a particular , it is only necessary that

is positive or negative definite.
For a small order , this corresponds to a much broader class
than that of lowpass and highpass processes.

Cases Where the Algorithm Fails:Assume that the process
is such that the sequence is
positive definite, and therefore, the algorithm is applicable for
the filter order Assume, however, that one of the line-
spectral frequencies is close to The algorithm will
require to be a zero of Hence, will
have a zero close to However, this may be impossible if
the order is low. To see this, note that from
the Nyquist(2) property, and therefore, requiring to
have a zero close to the frequency is the same as requiring
a narrow transition band for , which is impossible if
the order is not sufficiently high. One can however, increase
the filter order to overcome the problem.

Example 6: Let and
Hence, , and

is positive definite. Using the algorithm, we find
from which it follows that

This has single
unit-circle zeros if , and therefore,
is not non-negative. Hence, the algorithm fails if the impulse
is within the neighborhood of We have designed
optimum compaction filters for the above autocorrelation
sequence using LP for various values of We have observed
that the optimum compaction filters agree with the above
analytical solution if For the complementary
case of , where the analytical method fails
for , LP yields the solution
regardless of the exact value of The factors and

of are , and
This

is the same as the previous solution, except thatin the
previous solution is replaced with a constant value equal to

As another example, let us fix and
find the optimal FIR compaction filter of order 5. The cor-
responding product filter is , and
the compaction gain is , which is the largest
possible gain for . Since the process is line spectral,
this is not surprising.The important point here is that while the
algorithm is not successful for the filter order 3, it is successful
for a higher order 5.

Example 7—Case Where the Process Is Multiband:Finally,
we will consider an example in which the input is neither
lowpass nor highpass, but rather, it is of multiband nature. Let

and The sequence
is positive definite for so that the algorithm

is applicable. There is more than one way to extrapolate
this sequence and find the corresponding psd. For example,
one can consider MA(3), AR(3), or line spectra(4). In all
three cases, we have verified that the psd is neither lowpass
nor highpass. Rather, it is of multiband nature. Applying the
algorithm steps, we have ,
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from which it follows that
This has single unit-circle zeros. Hence, is not non-
negative, and therefore, is not
non-negative either. The algorithm halts because
cannot be spectrally factorized.

IV. WINDOW METHOD

In this section, we will describe a new method to design FIR
compaction filters. The method is applicable for arbitrary filter
order , arbitrary number of channels , and for any given
psd (including complex and multiband spectra). The technique
is quite simple while the resulting compaction gains are very
close to the optimum ones especially for high filter orders.

A common practice in filter design is to approximate
ideal filter responses by windowing their impulse responses.
Consider the ideal compaction filter design. For each

, let be the maximum
of the set Then,

, and
for Let be the impulse response of ,
and consider for a given finite length
window Let be the FT of Then,

is no longer Nyquist Instead of
windowing , let us try to window the coefficients of
the product filter: Here, is the
impulse response of Then,
is Nyquist , but it may no longer be non-negative. The
non-negativity can also be assured by constraining the FT
of to be nonnegative. A compaction filter can then
be successfully obtained by spectrally factorizing
This can be considered to be the approximation of the ideal
compaction filter response.

In this section, we extend this idea to design compaction
filters that perform better than the abovead hocwindowing of
ideal compaction filters. We will replace with a periodic
sequence , which will be determined by applying the
ideal design algorithm at uniform DFT frequencies. If

, then we have , and the abovead
hoc method results as a special case. It turns out that the
experimentally optimum value of for the best compaction
gain is (see Section IV-B).

A. Derivation of the Window Method

To formalize the above ideas, let us write the product filter
coefficients in the form

(36)

where has the same length as , namely, , and
is a periodic sequence with period

for some (see Fig. 4). Let be the FT of
and be the Fourier series coefficients (FSC) of ,
that is, The first
period of is just the DFT of the first period of
We make the following observation.

Lemma 1: Consider (36). If

1) ;
2) ;

Fig. 4. Decomposition ofg(n) asw(n)fL(n), whereW (ej!) � 0 and
FL(k) � 0:

3) ;
4) is Nyquist ;

then is the product filter of a valid compaction filter.
That is, , and

Proof: It is readily verified that
Since

and , it follows that
If is Nyquist , then so is because

Assume the conditions of the lemma hold so that is
the product filter of a valid compaction filter. If and is
fixed, what is the best that maximizes the compaction
gain? To answer the question, first note the following lemma.

Lemma 2: A periodic sequence with period
is Nyquist , that is, if and only if

its FSC satisfy the following.

(37)

Proof: Let us find the FSC of the decimated
sequence
This can be written as

Using , we have
The FSC of are all 1. Hence,

if and only if

To obtain the best , let , and
let be the FSC of its periodic expansion For
simplicity, assume that The objective (7) becomes

Both and are real. Now, to incorporate the
Nyquist constraint, we write the preceding as

(38)

For a fixed , let be the maximum of the set
Then, by (37), and noting

that , the objective (38) is maximized if we assign

and

(39)

Repeating the process for each , the FSC
of the best is determined. The procedure is illustrated
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Fig. 5. Procedure to findFL(k): ŜL(0) is maximum amongfŜL(iK)g;
hence,FL(0) = M;FL(lK) = 0; l 6= 0: ŜL(1 +K) is maximum among
fŜL(1+iK)g; hence,FL(1+K) = M;FL(1+lK) = 0; l 6= 1, and so on.

in Fig. 5. The sequence is just the inverse DFT of

Summary of the Window Algorithm:Assume a window
of the same length as with non-negative FT has

been chosen. Let Then the algorithm steps
are as follows.

Step 1: Calculate , the -point DFT of the conjugate-
symmetric sequence (which is the same as
the FSC of the periodical expansion of ).

Step 2: For each , determine the index
for which is maximum, and assign

and
Step 3: Calculate by the inverse DFT. We need only

to determine for
Step 4: Form the product filter , and

spectrally factorize it to find
Real Case: If the input is real, the above algorithm can

be modified to produce real-coefficient compaction filters.
Consider the set for each

Since if the
process is real, this set is equivalent to

Hence,
in the comparison, we need to consider only ,
where if is even, and if it is
odd. Let be the maximum of this set for each

We need to be careful in the assignments. The
symmetric frequencies may end up in the same set, and we
cannot assign different values to them. There are two cases to
consider:i) The index is among the set

; ii) it is not. The first case happens if and only if
This happens if or We assign

if ,
and if In the second
case, we assign if

and if In either
case, we set the remaining values in the set to
zeros. This will maximize the objective (38). calculated
by the inverse DFT is the best sequence, and it is real.

Summary of the Window Algorithm for the Real Case:
Assume a real symmetric window of order , with non-
negative FT is given. Let , as before. Let
be as explained above. Then, Step 2 of the previous algorithm
should be replaced by the following two steps.

Step 2.1: For each , determine the index
for which is maximum.

Step 2.2: If or , then set
; else, if or , then

set ; else, set
Set the remaining

to zeros.
Optimization of the Window:The algorithm produces very

good compaction gains, especially when the filter order is high,
as we shall demonstrate shortly. However, one can get better
compaction gains by optimizing the window Consider
the representation (36) again, and let and satisfy
the conditions of Lemma 1. If we fix , what is the best
window ? The objective (7) can be written as

(40)

where is the FT of , and is the
FT of , where is one period of cen-
tered at Let , where

is the spectral factor of The only
constraint on is that it has to have unit energy in view
of Let be the

Hermitian Toeplitz matrix corresponding to the
sequence Then, by Rayleigh’s principle [16],
(40) is maximized if is the maximal eigenfilter of The
corresponding compaction gain is

Corollary—A Lower Bound on the Compaction Gain:Let
be any Nyquist sequence with non-negative FSC.

Assume Then

(41)

To see this, note that achieves that bound
by choosing as the optimum window for the sequence

If we replace by a positive definite Nyquist
sequence of order , the inequality continues to be
valid because is still a product filter of a valid
compaction filter. To see this, note that the sequence can
be extended to an infinite sequence (e.g., using autoregressive
extrapolation) such that its FT is non-negative. Hence, the
product has non-negative FT. The Nyquist
property of the product follows from that of

We have described how to optimize given ,
and vice versa. It is reasonable to expect that one can it-
erate and obtain better compaction gains at each stage. We
have observed that this is not the case. We started with a
triangular window and found that did not change after
the reoptimization of the window. Notice that the use of an
initial window is not necessary if one is willing to optimize the
window after finding However, in most of the design
examples we considered, using an initial window with non-
negative FT (in particular, the triangular window) and then
reoptimizing the window resulted in better compaction gains.
A matlab program that implements the window method can
be found at our webpage [28]. Here is a simple example to
illustrate how the window method works.

Example 8—MA(1) Process:Let
and Assume the process is real
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so that Let the window be triangular, i.e.,

elsewhere.
(42)

The FSC of in Step 1 are

(43)

Now, assume that so that and
Therefore, we have the following sets to consider in Step 2.

(44)

which are evaluated below, respectively.

(45)

First, assume The maximum of the first set is ,
and the maximum of the second set is Hence, applying
Step 3 of the algorithm, we have

(46)

Taking the inverse DFT of , we calculate in Step 4

(47)

Hence, the product filter has been found,
and

(48)

Next, consider the case Referring to (45), in the
first set and in the second set is maximum. Hence,

,
which is equal to , where is the previ-
ous solution. Hence, , and therefore,

By spectrally factorizing the product filter, an
optimum compaction filter is obtained. The compaction gain
is

Fig. 6. Compaction gain versus periodicityL:

Let us find the improvement we can get by optimizing the
window when we fix Since , the com-
paction gain is the maximum eigenvalue of the symmetric
Toeplitz matrix with the first row , which is

Using given in (47), the improved
compaction gain is With this optimum window
fixed, one can verify that in (47) is still the optimum
sequence.

B. Choice of the Periodicity

The window method will produce compaction filters as long
as is a multiple of and is greater than This choice
of will ensure that is Nyquist . The smallest such
period is , and the largest is The
choice leads to an additional symmetry in

, and according to our experience, the corresponding
compaction gains are not good. If we use , then
we get the ideal solution for The
corresponding compaction filter obtained after windowing is
not optimal either. If is chosen to be the smallest multiple of

such that , then we obtain very good compaction
gains. This choice can be compactly written as

If , then this choice reduces to In Example 8,
we increased from 12 to 16 and found that the compaction
gain decreased. When we used the ideal filter for , which
corresponds to , the compaction gain was better than
that of the case but worse than that of the case

Example 9—Dependence on L:We have designed com-
paction filters using the window method for an AR(5) process,
whose psd is shown in Fig. 8. We have chosen this psd because
it is multiband, and the capture of the signal energy can be
illustrated clearly. The number of channels is We
considered the filter orders and For
each order , we increased from to 100 in steps of
2. The resulting compaction gains are plotted in Fig. 6. From
the plot, we see that the best compaction gain is for
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V. LINEAR PROGRAMMING METHOD

The use of linear programming (LP) method in compaction
filter design was proposed by Moulinet al. [20], [31], [32]. We
briefly review the method and propose some improvements.
Assume that the input process is real. The output variance
is Let and be
the vectors formed by deleting every th coefficients of

and for Then, the objective can
be written as This incorporates the
Nyquist condition but not the nonnegativity constraint in

(6). Let
Then, Hence,

the problem is equivalent to

maximize

subject to (49)

This type of problem is typically classified as semi-infinite
linear programming (SIP) [32] because there are infinitely
many inequality constraints on finitely many variables. By
discretizing the frequency, one reduces this to a well known
standard LP problem.

Drawbacks of the Technique:No matter how dense the fre-
quency grid is, LP guarantees the nonnegativity of
only on this grid. Hence, one has to modify the solution to
have One can numerically determine the
unit-circle zeros of and merge the pairs of zeros
that are close to each other. Yet another way is to “lift”

by increasing relative to other coefficients. Since
has to be 1, in effect, we scale for by a

constant This can also be considered as windowing
with and In the next section,
we propose another windowing technique to modify
The advantage of this is to avoid having to locate any zeros
or the minimum of The non-negativity of
is guaranteed by that of as in Section IV-A. If the
filter order and the number of discrete frequenciesare
small, using an optimum window perfoms better than the
other techniques. In principal, as , the LP solution
approaches the optimal solution. However, as stated in [32],
there will be numerical problems if is too high. Another
drawback of LP is that the complexity is prohibitively high
for high filter orders. We should note here that the window
method that we proposed in Section IV does not have this
problem. The window method is very fast, even with very
high filter orders, and the resulting filters are very close to the
optimal ones.

A. Windowing of the Linear Programming Solution

Let uniform frequencies
be used in LP, and let be the periodical expan-

sion of the resulting product filter. Assume that
Linear programming assures that is non-negative at
the frequencies Hence, the FSC of are
non-negative. Now, consider the product

(50)

Fig. 7. Windowing of the linear programming solution.

where is a symmetric window of order
(length ) with non-negative FT (see Fig. 7); then,
from Section IV-A, we conclude that The
Nyquist property of is assured by that of In
contrast to the window method, here, we can have
This is because the LP solution already has the desired order.
For maximum compaction gain, the symmetric order of
is chosen to be maximum, namely, Note
that when , we have One can
use a fixed window like a triangular window, as depicted in
the figure, and get a satisfactory compaction gain. However,
one can always optimize the window as in Section IV-
A. If is very large, optimization should be avoided as
the performance loss becomes negligible. The loss can be
quantified as follows: Assuming , when a fixed window
is used, the compaction gain is , where
and are the vectors formed by the sequences and

If, for example, a triangular window
of symmetric order is used, we have

When the optimum window
is used, the compaction gain is
Hence, the loss is
As , and Hence,

Since , we see that
as well. Hence, as

Example 10: Let the input psd be as in Fig. 8, and let
and In the same figure, we plot the magnitude

square of the compaction filter designed by
LP. The number of frequencies used in the design process
was We have used triangular window of symmetric
order and found that the resulting
compaction gain is If we optimize the window,
the compaction gain becomes Hence, the loss is

One can verify that the compaction gain
of the ideal filter is

B. Connection Between the Linear Programming
and Window Methods

In both the LP and window methods, we use windows to
assure the nonnegativity of Consider the equations
(50) and (36). When is a multiple of , a periodic
sequence in the linear programming method and a
periodic sequence in the window method are found
such that they are Nyquist and their FSC are all non-
negative. For , the two problems are not the same
because is order constrained, whereas is not. If,
however, , then the two problems are exactly the same.
If windowing is done in the same way in both methods, then
we see that the resulting compaction gains should be the same.
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Fig. 8. Power spectral density of an AR(5) process and the magnitude square
of an optimal compaction filter forN = 65 andM = 2; designed by LP.
The parameterL is 512 and a triangular window is used.

Hence, one can view the window method as an efficient and
noniterative technique to solve an LP problem when
If is increased, we saw that the window method does not
necessarily yield better gains, whereas this is the case for the
LP method, provided the window order is increased as well.
However, optimization of the window in LP becomes costly
as the order increases. If one uses a fixed triangular window
(with highest possible order) in LP, and if the windows are
optimized in the window method, then the window method is
very close and sometimes superior to LP, as we demonstrate
in the following example.

Example 11: Comparison of Linear Programming and Win-
dow Methods:Let the input psd be as in Fig. 8. In Fig. 9(a),
the compaction gains of both the LP and the window method
versus the filter order are plotted for The number of
frequencies used in LP is , whereas the periodicity
used in the window method is The windows used in
LP are triangular windows with symmetric order
In the window method, the autocorrelation sequence is first
windowed by a triangular window of symmetric order
to find , and then, the window is reoptimized. From
the figure, we observe that if the order is high, one has
slightly better compaction gains using the window method.
This implies that if one optimizes the window, there is no need
to use large number of frequencies in LP. More importantly,
there is no need to use LP for high filter orders. However, it
should be emphasized that if the windows are optimized in LP,
one can get slightly better compaction gains than the window
method. In Fig. 9(b), we show the plots of the compaction
gains of the two methods for various values of for a
fixed filter order of 65. We observe that the window method
performs very close to LP, especially for low values of We
show the upper bounds on compaction gains in both plots. The
upper bound in the first plot is achieved by an ideal compaction
filter, and that in the second plot is achieved by a maximal
eigenfilter, as discussed in Section II.

Example 12: Let the input be AR(1) as in Example 1. For
and , we have designed compaction filters

(a)

(b)

Fig. 9. Comparison of the window and linear programming methods. The
input power spectrum is as shown in Fig. 8. (a) Compaction gain versusN

for M = 2. (b) Compaction gain versusM for N = 65:

using the window and LP methods. We present in Table I the
resulting filter coefficients and the corresponding compaction
gains for and 0.9. The analytically optimum
coefficients (33) and the corresponding compaction gains (34)
are also presented in the same table. We see in this case that
the compaction gain of the window method is not too far from
the optimal one and slightly worse than that of LP, even for
such a small order. The discrepancy between the window and
LP compaction gains is maximum when

VI. CONCLUDING REMARKS

We have presented two new techniques for the design of
optimum FIR compaction filters. First, we have proposed an
analytical method in the two-channel case. The technique
is applicable for a rather restricted but practically important
class of signals. The method involves Levinson recursion
and two spectral factorizations of half the filter order. As
examples, we have produced analytical expressions for the
compaction filter coefficients for AR(1) and MA(1) processes.
Next, we have proposed a method called thewindow method.
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It is applicable for any given spectra and for any given
number of channels. It is very efficient since it is noniterative
and involves only comparison of some DFT coefficients and
windowing. We have given its relation to the LP method. As
the filter order becomes higher, the computational complexity
of the LP method grows rapidly. The window method, on the
other hand, is very fast, even when the filter orders are very
high. Furthermore, the suboptimality of the window method
diminishes as the filter order increases.

Future work will incorporate these methods in the design of
optimal FIR orthonormal uniform and nonuniform subband
coders. In the two-channel case, the optimum compaction
filter already determines the optimum filter bank. Hence, the
algorithms in this paper can readily be used in applications like
wavelet-based image coding. In particular, it would be inter-
esting to investigate the performance of our filters in zero-tree
coding and wavelet-package coding. For such applications, we
expect that the analytical method of Section III will be quite
useful. In the -channel case, we mentioned one method [20]
that efficiently finds the rest of the filter bank if the first filter
is given. In speech and audio coding applications,-channel
uniform filter banks are commonly used, and the filters have
high orders. We expect that the window method of Section
IV will be very useful for such applications. Needless to say,
there are many other important applications of compaction
filters, some of which are mentioned in the last paragraph of
the introduction. Hence, our design algorithms can directly be
used in such applications as well. All the algorithms described
in this paper can be found at our webpage [28].

APPENDIX

PROOF OF NON-NEGATIVITY

We will show that obtained by the proce-
dure in Section III is necessarily nonnegative in the
region The Nyquist(2) property of implies

We therefore have
Now, by the

mean value theorem in calculus, we also have
for some

Notice that since ’s are all distinct and lie
in the open region , all of the above zeros are distinct.
The total number of such zeros is therefore Since

is a cosine polynomial of order is a sine
polynomial of order , and therefore, it can be written in the
form , where is a polynomial
of order Excluding the zeros at 0 and, the total
number of zeros can have in is Hence,

cannot have any other zero on the unit circle. If
has a zero at with multiplicity greater than 2, then

has at least double zero at that frequency, implying
that the total number of its zeros is more than , which is a
contradiction. If has a single zero in the region ,
which is different from all ’s, then by applying the mean
value theorem once more, has to have another zero,
which is again a contradiction. Hence, we have proved that

has double zeros at
and that it does not have any other unit circle zeros in

This, in particular, implies for The
proof for the case of even is similar; the details
are omitted.
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