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Theory and Design of Optimum
FIR Compaction Filters

Ahmet Kireg, Student Member, IEEEANd P. P. Vaidyanathamellow, IEEE

Abstract—The problem of optimum FIR energy compaction
filter design for a given number of channelsM and a filter order
N is considered. The special cases whe® < M and N = oo
have analytical solutions that involve eigenvector decomposition
of the autocorrelation matrix and the power spectrum matrix,
respectively. In this paper, we deal with the more difficult case
of M < N <oo. For the two-channel case and for a restricted
but important class of random processes, we give aanalytical
solution for the compaction filter that is characterized by its
zeros on the unit circle. This also corresponds to the optimal
two-channel FIR filter bank that maximizes the coding gain terminology)
under the traditional quantization noise assumptions. With a .
minor extension, this can also be used to generate optimal |H; (7)) 1 = 1. 1)
wavelets. For the arbitrary M-channel case, we provide a very ) o ) )
efficient suboptimal design method called thevindow methodThe  Using the mean-squared error (mse) as the criterion, with high-
method involves two stages that are associated with the above twobit rate assumptions on the quantization noise sources, and
special cases. As the order increases, the suboptimality becomesyith optimal bit allocation, one can write the coding gain as
negligible, and the filter converges to the ideal optimal solution. [11]

We compare the window method with a recently introduced

Fig. 1. M-channel orthonormal filter bankF;(e~) = H;(es“), and
|H;(e?*)|? is Nyquis{M).

technique based on linear programming. a 02 2
ding =~ _1/m
Index Terms—Energy compaction, Nyquist filters, orthonormal cotme M-1 /M
filter banks, subband coding, wavelets. H o2,
1=0

[. INTRODUCTION where 52 is the variance at the output d@f;(z), ando2 =

HE DESIGN OF optimum energy compaction filters hat/) Zizg" o3, by the orthonormality. o .

been of interest in the recent past because of their known! & Optimum orthonormal filter bank that maximizes (2) is
connection to optimal subband coding (SBC) and princip&ie" known for th_e case where filter orders are constrained to
component filter banks (PCFB's) [1]-[9]. When there is nBe less thad/. Th|s_|s t_he famqus Karhunen—Loeve transform
order constraint on the filters, the optimization of unifornfoder (KLT), and it diagonalizes thé/ x M autocorrela-
orthonormal filter banks for given second-order statistics h@n matrix of the input. The solution for the case where
been solved [6], [7], [9]. The minimum mean-squared errdpe filter orders are unconstrained (|dgal SBC) has recently
solution is such that each filter is an optimal compaction filtl@e€n established. The polyphase matrix [10] of the solution
corresponding to a power spectral density (psd) that is deriviiggonalizes th@sd matrixin the frequency domain. This, in
from the input psd. In particular, the filter corresponding tgarticular, implies the diagonalization of the autocorrelation

the largest subband variance has to be an optimal compac{fatrix (which was both necessary and sufficient condition
filter for the input psd itself. for the transform coding case). Diagonalization of the psd

Consider anM-channel uniform orthonormal (or parau_matrix at each frequency, however, is not sufficient for the
nitary) filter bank shown in Fig. 1. In terms of the filters Unconstrained filter bank to be optimum [9]. There should be

we can express the orthonormality H$(ejw)H;(ejw)|Ml _ an additional ordering of the eigenvalues of the psd matrix at

8(¢—7) [10]. This, in particular, implies that each filter satisfie§ach frgquency (spectral me(liosz(gf/?\?g) o) At & frequency
the NyquistM) property (see Section I-B for notations andn€S€ eigenvalues afes..(¢/ )k =0, M -
1}, where S,..(e’*) is the input psd.
For a uniform filter bank to be optimum, it is only required

that the product of the subband variandﬁfalagi be a
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Among all orthogonal transform coders, the KLT has thdegree exists for a particular input psd. However, if it exists,
property that the partial sul/L, o2 is maximized for each then designing an optimum FIR compaction filte(e’) is

K. The same property holds for orthornormal subband codéhe first step of finding such a filter bank. In that case, Moulin
with no order constraints. That is, for eadt, ¥/ 02 is etal.[20] uses a result due to Vaidyanathan [21] to optimally
the largest for the optimal one. In particular, wh&h= 0, complete the filter bank. This is based on the fact that if one
this says thatoZ should be maximized by the choice offiiter Hy(¢/) in an FIR orthonormal filter bank of a given
Hy(e*). That is, Ho(e/*) should be aroptimum compaction degree is known, then the number of freedoms available for
filter. A filter bank with this property was first constructedhe design of the remaining filters is limited. This remaining
by Tsatsanis and Giannakis [6] as a solution to a differefreedom can, in fact, be captured with a simple constant unitary
problem: Assume we keep only of the A filters in Fig. 1, matrix U. Essentially, the lasi/ — 1 rows of U are free and
and without quantizing the subbands, we try to reconstrustiould be chosen to maximize the coding gain. The optimum
the original input. What is the best filter bank that minimize¥ is the KLT corresponding to its input vector, which is
the mse of the reconstruction for ea¢gh? The solution is determined by the first filteH(z) and the original inpuk(n).
named to be a PCFB. PCFB'’s have also been extended for gwe will see, the optimality of a compaction filter depends

multidimensional case [12]-[15]. only on its magnitude-squared frequency response. Hence, for
an optimum magnitude-squared frequency response, one has
A. Motivation for Compaction Filter Design the choice of selecting a particular spectral factor. It turns out

that this choice affects the coding gain [19], and one has to
choose the best spectral factor.
For the two-channel case, the existence of a PCFB is assured
en if the filters are order constrained. To see this, note that
a two-channel PCFB maximizes onb;ﬁo, corresponding to
KX, K = 0. By orthonormality, the sunw2 + o2 is constant.
Z%i 2 Z%iv K=01,---M-1. (4)  Once one order-constrained filter that maximizéés is found,
=0 =0 all that remains is to find another filter such that the two
By orthonormality, we have equality falk = M — 1 [10]. filters form an orthonormal filter bank. It is very well known

Then’ by a well-known result from linear a|gebra (See [16’ H]a.t the Second f|lter iS determined from the fiI‘St flltel’ by

One can prove directly that PCFB maximizes the coding
gain of uniform orthonormal filter banks. For this, 16€ >
63 >---> 62 be setof subband variances corresponding,

L2
to another orthonormal filter bank. Assume that

199]), we have simple flipping and sign changes [see (30)]. Hence, in the
two-channel case, designing an optimal FIR compaction filter
ML M1 is the same as designing an optimal FIR orthonormal filter
IT <% < I 42 (5) - :
@ = @ bank for subband coding. By a recent result in [17], the
=0 1=0

optimality of this filter bank is independent of the bit rates
Hence, the product of variances is minimized by a PCFBivolved. In the high-bit rate case, the coding gain expression
This was also independently shown in [15]. If we think obecomesGeoding = 02/+/02,02, = 02/\/02 (202 — 02,).
the collection of the set of subband variances obtainabla byn this case, we can Writ€coding = 1/1v/Goomp(2 — Geomp),
certain class of orthonormal filter bankthen the PCFB has thewhere Geomp = 02, /02 is the compaction gain defined more
set of variances that majorizes every other set in the collectignmecisely in Section II.
Hence, it has the minimum prod ‘igl agi and, therefore, In this paper, we focus on the design of an optimum FIR
the maximum coding gain. compaction filter when the order is such that < N < oc.
When some of the subband variances turn out to be smales we discussed, foM = 2, this is equivalent to the design
than a certain threshold, the corresponding channels shouldb@ptimum orthonormal filter banks for subband coding and,
dropped. In this case, the coding gain expression (2) is neith trivial extensions, to the design of optimal wavelet
applicable, and the total error is the sum of the quantizatigenerating filters. For arbitrarg/, the design in [20] can
error and the error due to dropping. This is the case whbee used to obtain a good orthonormal filter bank using the
high bit-rate assumption on the quantization noise sourcesc@mpaction filter. The usefulness of signal-adapted designs in
not satisfied. Recently, it has been shown that B@FB’s image coding with the mse as the criterion is demonstrated
are optimal for subband coding for all bit rates and for allin [4], [12], and [22]. We are currently working on image
bit allocation strategied17]. Furthermore, the optimality of compression algorithms to see the extent of improvement by
PCFB’s carries over to the nonuniform case as well [18pur optimal filter designs.
Hence, designing an energy compaction filter is a right step inOther Applications of Compaction Filtersin view of prin-
any subband or wavelet-based coding scheme. cipal component analysis, in addition to subband coding and
If the class in the definition of a PCFB is the class oflata compression, other immediate applications of compaction
orthonormal block transforms (filter orders less thaf) or filters are signal modeling and model reduction, low-resolution
the orthonormal filter banks with unconstrained filters, theéata representation (multimedia databases), and classifica-
existence of a PCFB is assured by its very construction. In ttien. Two other interesting applications of compaction filters
intermediate case (i.e., finite-order filter banks), unfortunatelgte adaptive echo cancellation [23] and time-varying system
the existence of such a filter bank is not always guaranteédentification [24]. Consider the design of zero intersymbol-
Refer to [19] for examples where no FIR PCFB of a giveinterference (ISI) transmitter and receiver filters for data
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transmission over bandlimited communication channels. Let

H(e/*) and F(e/*) be the transmitter and receiver filters, " - [}

respectively. To maximize SNR in the presence of addi-

tive white noise, matched filtersshould be used, that is

F(e/*) = H*(e/*). With this, the zero ISI property becomes _ .

|H(¢™)2|, ;s = 1, which is nothing but a Nyquih/) We deve.lop a new technlqu_e ca_llled tiéndow method

property. Such optimally designed filters are used, for exampl@f the design of FIR compaction filters for th-channel

in voiceband data modem applications [25]. case (Section IV). The window method has the advantage
that no optimization tools or iterative numerical techniques
are necessary. The solution is generated in a finite number of

B. Notations and Terminology elementary steps, the crucial step being a simple comparison

then X(z) = X(z~1). Notice thatX(z) = X*(1/z*), Ofits drawbacks. Comparison of the window and LP methods

and the FT ofz*(—n) is X*(ei®), is done in Section IV-BMatlab programs can be found at our
2) The symbols| M and M denoteM-fold decimation webpage [28] for the algorithms described in this paper.

Fig. 2. M-channel compaction filtetH (e7«)|? is Nyquist{ M).

and expansion, as defined in [10]. The notathof)|, 1/ The three techniques (the analytical method, the window
z(Mn). in competition with each other. For the two-channel case,
3) NyquistA/) Property A sequencez(n) is said to the analytical method should be the choice whenever it is

be NyquistM) if z(Mn) = &(n) or, equivalently, successful. If it is not or ifA > 2, for high filter orders,
X(2)|,;m = 1. This can be rewritten in the form [10] the window method should be preferred. If the filter orders

224_61 X(zWk) = M, whereW = ¢—i27/M, are low, then linear programming should also be considered,
4) The notationz 7. (n) stands for a periodic sequence witrlthough sometimes, the window method performs as well as

periodicity L. If there is a reference to a finite sequenckP even for low filter orders (see Example 12).

z(n) as well, then it is to be understood that(n)
is the periodical expansion of(n), i.e., zr(n) = ll. THE FIR ENERGY COMPACTION PROBLEM

E72 o x(n+Li). The Fourier series coefficients (FSC) an FIR filter H(z) of order N will be called a validcom-

of z1(n) is denoted byX (k). For L a multiple of M,  paction filterfor the pair(M, N) if |[H(c*)|? is Nyquist M),

a periodic sequencer(n) is said to be Nyqui$t/) that s, |H(c™) 2, ar = 1. Let G(e/*) = [H(e*)]2. We

if zp(Mn) = éx(n) 2 Y2 _ 6(n + Ki), where will call G(z) the product filter corresponding toH(z).

K =L/M. Conversely,G(z) is the product filter of a valid compaction
5) Positive Definite Sequencdset a sequenc¢z(n),n = filter for the pair (M, N) if it is of symmetric orderV, that

0,---,N} be given, and leP be the Hermitian Toeplitz is G(z) = £2__ g(n)z~", and satisfies the following two

matrix whose first row isfz(0) = x(1) --- z(N)]. conditions:
The sequencegxz(n)} is called positive definite ifP B . .
is positive definite. Lefa(0) a(1) --- a(N)]? denote g(Mn) = &(n) (Nyquis{M) conditior) - and

an eigenvector corresponding to the maximum eigen- G(e’*) > 0 (non-negativity. (6)
value of P. Then, the filterA(z) = ¥_ja(n)z™" is
called amaximal eigenfilterof P. The definitions for
negative definite sequences and minimal eigenfilters

Now, consider Fig. 2, whered(z) is applied to a zero-
mean WSS input:(n) with psd S,.(e’*), and the output is
YE&cimated byi{. The optimum FIR compaction problem is to

analogous. find a valid compaction filteH (z) for the pair(M, N) such
that the variance? of y(n) is maximized. Since decimation
C. New Results and Outline of the Paper of a WSS process does not alter its variance, we have
In Section Il, we formulate the optimum FIR energy com- 2 /’T o2 ior dw
. : : o o, = |H(e?)|*Spz(e?*)—
paction problem and present a brief review of existing work. y _77 27
The remaining sections contain new results. In Section IIl, we & o o dw
give an extension of the technique in [26] for the analytical = / G(ejw)sm(dw)g- (7)
solution of the FIR energy compaction problem in the two- -
channel case. This is equivalent to the problem of the optimé&fe define thecompaction gairas
two-channel orthonormal filter bank that maximizes the coding T S dw
gain and with a trivial extension (constraining some zeros at o2 / G(GJ“)SW(C“)g
w = 7) to the optimum wavelet generating filter problem. Geomp(M, N) = =5 = = W ®
The method involves Levinson recursion and two spectral Tz / Sm(eiw)2—
factorizations of half the filter order. We will see that the - d

analytical methodis related to the well-known line-spectralThe aim therefore is to maximize the compaction gain under
theory in signal processing [27]. the constraints (6).
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Two Extreme Special Case&et us consider the two spe-be identically zero for some region of frequency that is

cial cases:

a) the case wherdV < M,

b) the ideal caseV = oc.
In the first case, the conditiop(Mn) = 6(n) is the same
as g(0) = 1. This is equivalent to saying thatf(c’*) has
unit energy. Leth be (IV + 1) x 1 vector formed byh(n),
and let R, be the (N + 1) x (N + 1) autocorrelation

impossible since the order is assumed to be finite. Hence,
for a process that is not line spectral, the last inequality is
strict. That is,Gop (M, N) < M. For M = 2, we will derive
another upper bound fof,,(2,V) in Section IlI-B [see
(23)] for a class of random processes. Whenever the analytical
method of Section Il succeeds, this bound is in fact achieved.

matrix of z(n). Then, the problem is to maximizk' R,.h A. Previous Work

subject to the conditiorh’h = 1. By Rayleigh’s principle
[16], the optimumh is the maximal eigenvectoof R.... In
other words,H (z) is the maximal eigenfilter oR,.,.. Let the
maximum eigenvalue of2,, be denoted by\,..{r(n)}Y,

wherer(n) is the input autocorrelation sequence. Then, the

optimum compaction gain i8,.x{r(n)}) /o2. The second
case has the following solution [6], [7], [9]: If we write
H(z) in polyphase form [101H(z) = Siiyt 2~ *Eyp(2M)
and if S,,(e’*) denotes theM x M psd matrix ofz(n),
then for eachw, e(e/) = [Eo(e?¥)- - En—1(e?)] is
the maximal eigenvectoof S, (¢’*). Equivalently, for each
w € [0,(2r/M)), let S, (e/(wtor/M)y pe the maxi-
mum of the set{S,, (/@ /M) = 0,1,..., M — 1}.
Then, H(e/@+0Qr/M)y — /M, and H(e/(wHi2r/M))y —
0 for i # 4. Note that the eigenvalues &,,(c’*) are
{84 (7 H /M)y 4 = 0,1, . M — 1}. Let Gigear(M)

denote the corresponding compaction gain. We can write

Gideal( M) = M [q Spu(e?)(dw/27) /0%, where Q is the
passband off (¢/*).

In the Nth-order FIR compaction problem, we do not have
the flexibility of assigning values td(¢’*) independently
for eachw. This is becauseH(c/*) is determined by its
N + 1 frequency samples. FaW > M, the problem is not
an eigenfilter problem either, as the conditigid/n) = é6(n)

implies more than the simple unit-energy condition. In Section

IV, we will introduce a suboptimal method called the window

method. Interestingly enough, the method involves two stage
that can be associated with the above special cases. Although
the method is suboptimal, it produces compaction gains that
are very close to the optimum ones, especially for high filter

orders.
Upper Bounds on the Compaction GaiWVe have the fol-
lowing bounds for the compaction gain.

GOPt (M7 N) < )‘Inax{T(”)}(Jva

Gopt(MvN)SGideal(M)v and Gopt(MvN)SM' (9)

For the first inequality, letk be an integer such
that kM >N. From the first special case above,
we have Gop(kM,N) = Idpax{r(n)}). Since

Nyquis{A{) property implies Nyquigkd/) property,

Gopt(M,N) < Gop(kM,N). The second inequality

follows becauseGop(M,N) < Gope(M,N + 1). For
the last inequality, first observe tha(c’~) < M.
Hence, o I G(e)See(e?)(dw/2m) <
M [T S..(¢™)(dw/27) = Mo2. The equality holds
if and only if G(e?*) = M for all w for which S,,,.(e/*) # 0.
If S..(c’*) is not line spectral, this require&/(c’*) to

Here is a brief review of the existing methods for FIR

compaction filter design.

1) Lattice Parametrization Two-channel real-coefficient
orthonormal filter banks can be completely parametrized
by a lattice structure [10]. Each stage in the lattice has an
angle parametef,. The objective function, however,
is highly nonlinear function of these angles. Delsarte
et al. [4] propose an iterative algorithm called the
ring algorithm to optimize the lattice stage by stage.
Taubman and Zakhor [22] propose an algorithm aimed
at finding a globally optimum solution for small filter
orders. They extend the results to two-dimensional (2-D)
nonseparable filters as well.

Quadratically Constrained OptimizatiorOne can for-
mulate the problem in terms of the compaction filter
impulse responsé(n): Maximize hR,.h subject to
RTA'h = 6(i),i = 0,---,K, where A is an appropri-
ately chosen singular matrix, and” = I. Here, R,

is the input autocorrelation matrix, ardis the vector

of filter coefficients. The authors in [29] and [30] use
Lagrangian technigues to solve the problem for the two-
channel case and for small filter orders. Chevillat and
Ungerboeck [25] provide an iterative projected gradient
algorithm for theM -channel case and for moderate filter
orders.

) Eigenfilter Method In [21], the authors design one
filter of an M-channel orthonormal filter bank using
the so-called eigenfilter method. The objective in their
design is to have a good frequency response. However,
one can modify the technique to incorporate the input
statistics. This can be done by using the &d (c/*)

as a weighting function in the optimization. The paper
also discusses how to design a good orthonormal filter
bank using the remaining degrees of freedom. In [20],
Moulin et al. show how to use this idea for the statistical
optimization of orthonormal filter banks.

Linear Programming The objective is a linear function
of the impulse responsg(n) of G(c/*) = |H (/%)%
The Nyquist)M ) property can be trivially achieved.
However, we need to impog&(c/~) > 0 for all w. This
can be written as a linear inequality for eachn terms

of g(n). Hence, the problem is a linear programming
(LP) problem with infinitely many inequality constraints,
hence, we have the name semi-infinite programming
(SIP). Although we used LP independently to design
compaction filters at the early stages of this project, it
was first proposed and examined in depth by Moelin
al. [20], [31], [32].

2)

4)
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5) Analytical MethodsAas et al. [26] worked on a closely g(=1) g(1)
related problem for the two-channel case. They have Deanl 1o’
constructed a Nyquist(2) real filtel (¢?«) that maxi- o7 o7)
mizes the baseband enerﬂf/2 |H (/)| (dw/2T).
Based on the fundamentals of Gaussian quadrature, the 4 -3-2-1 0 1

_aUth(_)rS were _abl_e to obtain an analytlcal method E’?g. 3. Coefficients of the polyphase componénht(z) of the product filter
identify the unit-circle zeros off(z) that uniquely de- G(:). Because of the symmetey(n) = g(—n), we haveE; (—1) = 0.

termine it. In our paper, this method will be referred to as

analytical methodIn Section Ill, we present extensions

of the analytical method. Although the original method" algor_ithm_ that d_etermines the unit-cirgl_e zer(_)s_of the
primarily addresses conventional half-band filter Olesig@ompactlon filter. Using the Nyquist(2) condition, this in turn

we will show how to adapt the idea for the case o etermllnes'thg filter itself. ) . )
FIR compaction filter design for a given input psd, The inspiration for our work in this section comes from

Interestingly enough, we shall show that the analyticéh1e (rjecent conthrlbutlon b% Aaeil: al. [ZS]’ thec;e thehGaussblfm f
method is related to the well-known line-spectral theor’%ua rafure tecnnigue Is cleverly used to address the problem o

in the signal processing community [27]. An analytical aximizing the baseband energy of halfband filters. Our work
expression for the compaction gain fo¥ = 3 is in this section differs in a number of respects. First, we do

presented in [33]. See also [34] foF = 3 not use Gaussian quadrature but take advantage of an elegant

. . . ... representation for positive definite sequences that results from
The major disadvantage of the first three methods is tr}ﬂtg P q

thev are iterative and that there is a possibility of reach theory of line-spectral processes. Second, we take into
y erativ . IS @ posSIbIity OF TeachiNg ., nt the knowledge of the input psd in the optimization
a locally optimum solution. Nonlinearity of the objective is

: : ) ! . . process. We give the analytical solutions for some practically
very severe in the first technique. A milestone in the des'i&portant classes of random processes.

approaches is the formulation of the problem in terms Let us represent the product filti(z) = SY__, g(n)z ="

the product filter. This is done in the last two methodﬁ_I the traditional polyphase form [10] fab/ — 2: G(z) =
above. In this paper, we also design the product filters. (22) + 2~1E,(2?). By the Nyquist(2) property'/ wé have

spectral factorization step is necessary to find the compacti _ . _

filter coefficients in contrast with the first three methods.o_(jl)) a nld Eofroﬁg\?v;et?laf ?ﬁg'i‘gg;iggsr% ng tﬁzygllli filter

{25? ur;zwsht/atiezzl;c%e?h;?Tc?%ZstT%qeagrgglgmv?ﬁga;zig i1(;:) have the symmetry demonstrated in Fig. 3. This implies,

definite programming problem. The formulation is such thrlatparncular, thatEl(z? = 0for z = —1. By factoring the zero
TR . . o z = =1, we can writeE (z) = (1 + 2)G1(z), whereG(z)

the spectral factorization is automatically achieved within t as symmetric real coefficients. Hence, we can write

algorithm. In [36], we consider the design of FIR compaction '

filters in multiple stages. This is efficient both in terms of G(2) =1+ (z + 2 HG1(22),

design and implementation complexity. Some of the results of

this paper have been presented at recent conferences [37], [38].

ie.,
G(ej‘“') =14 2cos wGl(Cﬂw)- (10)

Since Nyquist condition and nonnegativity @f¢’) together
I1l. ANALYTICAL METHOD FORM = 2 imply 0 < G(¢/*) < 2, the modified polyphase component

In this section, we consider the special case of two channgé(e]w) is bounded as

(M = 2) and assume that the inpufn) is real so that 1 , 1

. . .. - < G Jw < - - _ .
the compaction filter coefficientd(n) can b_e assumed to 2 cos(w/2) = 1(e%) < 2 cos(w/2)’ T<w<T
be real. For this two-channel case, we will show that the (11)

optimal product filterG(c?*) can sometimes be obtained usingyotice that G(z) and Gi(z) can be determined from
an analytical method instead of going through a numericghch other uniquely. We shall express the output variance
optimization procedure. We will also present a number @2 in terms of G1(¢/*) so that we can see how to
examples that demonstrate the usefulness of the methggtimize the coefficients ofGy(z). For this, write the
Examples where the analytical method can be shown to fgiput psd in the traditional polyphase form d.(2) =
are also presented. As in [26], one can modify the algorithrgg(;:?) + 27181 (2%). Then, 0-5 can be simplified into the
of this section to constrain the filters to have specified numbgym o2 = 7(0) + |7, G1 (7)Y, (e7%) (dw/2r), where
of zeros atw = 7 to generate optimal wavelets. U,(2) = (1+271)S;(2), or equivalently

The analytical method is motivated by the fact that un-
der some conditions to be explained, the objective functiony_ (/) = cos(w/2)(Spe(¢’“/?) = Spe(e?T=</2Y). (12)
(7) can be conveniently expressed as a summation over a
finite number of frequencies determined by the §sd(c/“).  Using Parseval’s relation, the objective can be written as
The summation involves the samples of a modified polyhase
component ofG(¢/*). This will allow us to optimize the , (N-1)/2
modified polyphase component and, heri@ég:), essentially op=r0)+ > gy (13)
by inspection Using these observations, we come up with n=—(N-1)/2
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where i,(n) is the inverse transform of,(z), which is Proof of Theorem 1:Let P be the (m + 1) x (m + 1)

produced below explicitly for convenience. Hermitian Toeplitz matrix whose first row igd? =
[¢(0) (1) --- ¢(m)]. Consider the extension aP into
$:(0) =27(1), a singular (m 4 2) x (m + 2) Hermitian Toeplitz matrix
(1) =7(1) +7(3),- - P such that its(m + 1) x (m + 1) principal submatrix is
N_1 P. This extension is merely augmenting an extra element
Vs <T) =r(N -2)+r(N) (14)  ¢(m + 1) to the end of® and forming the corresponding

Hermitian Toeplitz matrix. The numbej(m + 1) is chosen

and ¢,(n) = ,(—n). Our aim is to maximize the secondt© make P singular. This can always be done because of
term in (13) for fixedy,(n) (i.e., fixed input) by choosing the following reason. For th_e positive dt_efinite mat#x one
g1(n) under the constraint (11) and the usual filter-ordéan run the well-known Levinson recursion procedure [27] to
constraint. Under the assumption that the input-depend@®tain the optimainth-order predictor polynomiall,;,(z). If
sequence),(n) is positive or negative definitésee Section On€ now considers the following continuation of the recursion
I-B for definition), we will show how this can be donel=(z) = Am(2) + cz= (MDA, (2) with |¢] = 1, then this
analytically. The significance of this assumption pp(n) is Corresponds to the singular predictor polynomial of a random

explained in Section IIl-D. We will need the representatioRfocess with singular autocorrelation matdX The result

theorem of the next section for positive definite sequencesnow follows from a well-established fact [27], which states
that a WSS process is line spectral with exaetly- 1 lines

if and only if its (m + 1) x (m + 1) autocorrelation matrix is
_ N o nonsingular andm + 2) x (m + 2) autocorrelation matrix is
Theorem 1:Given a positive definite sequence of +  singular. Applying this result to a process with autocorrelatiom

A. Representation of Positive Definite Sequences

1 complex numbers{¢(n),n = 0,---,m}, there exists a matrix P, we get (15). n
representation of the form Remarks: It is clear thatP.(z) defined in the above proof

m is also the minimal eigenfilter aP. The zeros ofP.(z) are

P(n) = Z L n=0,-,m (15) all on the unit circle and distinct. Lt/ k = 0,---,m} be

P these zeros. The distinct frequencigsy, k. = 0,---,m} are

referred to as the line-spectral frequencies, apds the power

whereay, >0,k =0,---,m, andw;’s are all distinct. at the frequencyw;. The representation (15) is not unique

Comments:Note that this is different from the because of the nonuniqueness of the unit-magnitude constant
Caratheodory representation theorem, which is the basis for then the proof.
Pisarenko method [39] for identifying sinusoidal signals under Real Case:For realz(n), the predictor polynomial,,, ()
noise: Given{¢,,,n = 1, -- -, m}, there exists a representatiorand the constantare real. Hence, we have two cases: +1.
of the form¢,, = X", «,e/* ™. n = 1,...,m, wherea,,’s The casec = 1 leads to a symmetric polynomiaP;(z),
are nonnegative. The frequencigs’s are the angles of the whereas the case= —1 leads to an antisymmetric polynomial
unit magnitude roots of the minimal eigenpolynomial of &_,(z). It is a well-known fact that the distinct unit-circle
matrix Q. The matrix@ is (m+1) x (m+1) Hermitian Toeplitz zeros of these two polynomials are interleaved. For simplicity,
with the first row[¢g ¢1 -+ ¢n], Wheregy = X7,y is  assume thatn is odd. Then,P_;(z) has both of the zeros
the positive number that makes the matrix singular. Here, the= 1 andz = —1, and P, (z) has none of them. Using (z),
number of distinct frequencies depends on the multiplicitye have the following representation for a real positive definite
of the minimum eigenvalue of the so-obtained matrix. equencep(n):
the multiplicity is 1, there aren distinct frequencies. If we
start with a positive definite sequengg,n = 0,---m, then

m—1)/2
Caratheodory representation takes the form o(n) = ( z:)/ B coswin o a7
m k=0
(/)n = <¢0 - Z Oék> (5(71)
= wheref;, >0,k =0,---,(m—1)/2, andw,’s are all distinct,
+Zakejwkn7 n=0, -, m. (16) and0<wp<m k =0,---,(m—1)/2.
k=1

_ . _ .., B. Derivation of the Analytical Method
This is obviously not the same as (15) and is not suitable

for our purposes. Although Theorem 1 turns out to be well ASSume for simplicity tha{/V —1)/2 is odd, and assume

known in the literature [40], we include our proof below fofh@f{¥z(n),n = 0,---, (N — 1)/2} is positive definite. Ap-
two reasons. plying the real form of the representation, we have

1) It is elegant and uses the theory of line-spectral pro-
cesses. -

2) It reveals us the algorithmic steps of the analytical ¥=(n) = D fkcoswin, n=0-,——. (18)
method. k=0

(N-3)/4
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The objective (13) can therefore be written as whereéo(z) contains the unit-circle zeros determined by the
above procedure. From (21), we have
(N—3)/4 (N—-1)/2
oy =r(0) + Z B Z g1(n) coswyn (N—3)/4
k=0 n=—(N-1)/2 Go(z) = H (2 + 2cos(wi/2) + 2z~ 1)2. (25)
(N=3)/4 ' k=0
=r(0)+ Y. BGi(e!*). (19) _ _ o _ _
0 Using the Nyquist(2) property, it is possible to determine
) ) o ) Gh1(z) and, hence((z). For this, letgy(n) and g;:(n) be
From (11), the output variance (19) is maximized if the impulse responses 6f,(z) and G, (z), respectively. The
. 1 product (24) inz domain is equivalent to the convolution in
Gi(e"™) = 2 cos(w/2)’ k=0,---,(N=3)/4 (20) time domain. Using the convolution matrix and taking into

account the symmetries, we get
This impliesG(e?“+/2) = 2, and by Nyquist(2) property
o 9= Ag (26)
G /Dy =0,  k=0,---,(N=3)/4. (21)

where the vectorsg,g; have the componenty, =

9(2n), G1n = 1(n),n =0,---,(N —1)/2, and A is obtained
from the impulse responsgog(n). From the Nyquist(2)
Poperty, it is clear thay = [10 --- 0]*. Hence,g, is the
first column of the matrixA=*. To see thatd is invertible, it
suffices to show that a unique solutiongp exists for a given

i ) n). For this, write the Nyquist(2) condition fafz(z).
sin(wy/2) =0 (N —3)/4. (22) go(n) (2)

Notice that these zeros are all located in the rediofe, «).
Since 0 < G(¢/*) < 2, the derivatives ofG(c’) should
vanish at the above frequencies. Hence, we should h
G'(7*k/2) = 0,k = 0,---,(N — 3)/4. In view of (10), this
in turn implies

Gll (ejwk) = )
4cos?(wr/2) A A A A
Go(2)G1(7) + Go(—2)Gi(—2) = 2. (27)
From the two sets of constraints (20) and (22}, (z) is
determined uniquely. To see this, note tfac’*) = g1 (0)+ The zeros of7(z) lie on the left half of the unit circle. Hence,
2255:1)/2 gi(n)coswn is a polynomial inz = cosw of the zeros ofdy(—z) lie on the right half of the unit circle. This
degree(N —1)/2. Sincew,,’s are all distinct and) < wy, <7, implies thatGo(z) and Gy(—z) are coprime. It is now easy
the constraints (20) and (22) translate into a similar set tf show that a unique solution 16; (=) of symmetric degree
constraints forGy(z) and G(z) and by simple Hermite less than or equal toN — 1)/2 exists [26]. Actually, this is
interpolation [41, p. 28], () is determined uniquely. The an efficient way of determining+;(z) (see [26] for details).
corresponding solutior?(¢?*) is necessarily nonnegative in  Efficient Determination ofio(z): We will show that we
the frequency regiofir /2, 7] (Appendix A). If it is nonneg- can obtain7(z) from the singular predictor polynomia (=)
ative in the region[0, 7/2) as well, then it is the optimum without having to find its roots. For this, let us wrifg (z)
compaction filter with the corresponding compaction gain explicitly:

(N=3)/4

B (N-3)/4 ' |
2COS(wk/2) Pl(z) — dy—(N+1)/2 H (Z _ Cjw’“)(z _ G—ka)
Gopt(27 N) =1+ +=0 (23) k=0
7(0) (N—3)/4
) g —(N+1)/4 -1
If, however, G(¢/“) turns out to be negative at some fre- =dz~ (VY H (2 = 2coswp +277). (28)

quencies in[0,7/2), then it is not a valid solution, and the k=0

above RHS is only an upper bound f6f,(2, V). Assume . N .

that G(c’) obtained by the method is indeed non-negativz’e\l.o.w’ C(_)n5|der the upsz;\mEIed polynom’al(>*). This can _be

Then, it is the unique solutionTo see this, assume there  on " the formP (=) = £5(z)Fo(—2), wherey(z) is
] . y . . —1 . . .

is another optimal product filteK'(z). Assume thatk; () a polynomial inz"" of order (v + 1)/2 with all its zeros in

is its modified polyphase component. Then, there existstr}:le left half plane. To be explicit

frequencyw; among the line-spectral frequencies such that (N—3)/4

Ki(e/“*) <1/2cos(wy/2). Hence, the summation (19) for Po(z) = 2~ (N+D/4 H (2 + 2cos(wi/2) + 21). (29)

K;(e?*) is necessarily less than that 6% (¢?“’), resulting in i

contradiction. Notice finally that{(z), which is an arbitrary

spectral factor of the unique soluti@g#(z), is not unique. Hence, from (25), it follows that?o(z) = 2(N+T1/2P2(7).

Therefore, given the singular predictor polynom#al =), one

C. Completion of the Optima®(z) can apply a continuous-time spectral factorization algorithm

Consider the following factorization af(z). [42] to P1(2?) to obtain Py(z) and, therefore(7y(z). Since

G(z) can be determined from¥,(z), we observe that there is
G(z) = Go(2)G1(2) (24) no need to find the roots aP;(z).
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Spectral Factorization:To find the compaction filteH (z), TABLE |

we need to spectrally factoriz@(z). It is clear that we can ©PTiMUM ComPACTION FILTER COEFFICIENTS () AND THE CORRESPONDING
. CoMPACTION GAINS FOR AR(1) Process wiTHp = 0.1,0.5, AND 0.9. THE
write H(z) as

FILTER ORDER IS N = 3, AND THE NUMBER OF CHANNELS Is M = 2

H(z) = Ho(z)H1(2) p=01
where Hy(z) and Hi(z) are the spectral factors af(z) o e car programun
and (1 (z), respectively. We can dedudé,(z) immediately: 1 0.7789293967 |  0.7136056607 0.7658293099
Ho(z) = Py(z). Hence, all we need to do is to determine g g?gggggg;‘) 88232;32;2‘53 gf;ggggg‘l’?g
. o . -0. ) -0. -U.
H;(z), which is of order(N — 1)/2. This can be done by a smmmmon pce 11153 11078 11151

discrete-time spectral factorization 6f;(z) [43]. Although

the phase of the compaction filter is immaterial for the p=03

compaction gain, it is important in the design of an optimal n [ analytical method | window method [ linear programming
orthonormal filter bank for subband coding [19]. For some ! patvoppencod BN GR S
applications like image coding, the linear-phase property might 2 0.2411149862 |  0.0663296736 0.2047520302
be important. Although it is not possible to have linear-phase 3 -0.16074332d1 | -0.0623033026 -0.1490404954
. . . . compaction gain 1.5547 1.5283 1.5537
compaction filter in the two-channel case [10], one can achieve
close-to-linear-phase response by a careful grouping of the p=09
roots of Gl (Z ) . . n | analytical method | window method | linear programming
The case wheréN — 1)/2 is even can be treated in a very 0 04938954371 | 0.6550553981 0.5605331011
. H : H 1 0.8279263239 0.7510864372 0.8017336546
similar manner. |I’].thIS case, we use the smgul_ar polynomial 9 02281902949 | 0.0620160861 0.1699952390
P_,(z) corresponding te = —1, and one of the line-spectral 3 -0.1361269173 | -0.0540877314 -0.1188544843
i i i — i compaction gain 1.9222 1.9118 1.9207
frequencies is 0, that is; = 1 is a root of P_;(z). The

resulting product filterG(¢/*) continues to be non-negative

in [r/2,7]. We skip the details and give the summary of thwherew;’s are the line-spectral frequencies (see Remarks after

algorithm for both cases. Theorem 1). This is the form of decorrelation that takes place

Summary of the Analytical MethodSiven the autocorrela- N OPtimal subband coding with FIR filters.
tion sequence(n),n = 0,---, N, where N is odd, letm — Case where),.(n) Is Negative Definite:From our devel-
(N — 1)/2. First ;)btain 7the 7sec’1uenaﬁx(n) " — ’0 ... Opments for the positive definite case, and using the sequence
using the relations (14)f this sequence is positive definite __z/}“’(”)’ it can be proven that the opt|mu_m compact|0n_fllter
then go to Step 1. is H(z) = H(—z).,.where.H.(z) is the optimum compaction
Siep 1 Callt. 1), i s th optmum prcitr 17 [ 1 POSive cefnle seduenoty(n) < Sty
polynomial of orderm corresponding to the sequengg(n) objective in time domaina§ = 1(0) + 25N g(n)r(n). First,

and obtainP,(z) from P.(z) = A (2) + cz= MtV A4, (z71), N \
note thati,(n) corresponds to the autocorrelation sequence

wherec = 1 if m is odd, andc = —1 otherwise. N N -
Step 2: Obtain the spectral factorPy(z) of P.(z%) us- #(n) = —r(n),n # 0. Let g(n) andj(n) be the product filter

ing a continuous time spectral factorization algorithm, argPefficients forf(z) and H(z), respectively. The objective
:ﬂgterminecllol(Jr)u— L(m+1)r},2(7) 1zl gort S then to maximize-2_; —g(n)#(n). This has the solution
2 —_ v/\ 0 ) _ A _ Jal
Step 3: Calculate G (z) using (26) or (27), and find its —g(n) = g(n),n # 0. Hence, we havé:(z) = G(-z), and

- : - . therefore, H(z) = H(—=z).
tral factorH,(z). Th t tion filt .
2?8(; ri Pa((:;))lrﬁf ES) © opiimum. compaction fiter 1s Example 1: AR(1) Processtet the input process ha (1)
C T SOV IS ith the autocorrelation sequeneén) = p™,0< p < 1. This

theSzelzg(;l:irﬂ\]Nrﬁbpage [28] for a matlab program that Irnplemer?ssalso called Markov-1 process and is a good model for many

o . o of the practical signals including images and speech signals
Dei:]orrelaluonr:n OptlmIaIf.ISubEani f):odlmg_et l:]S ffqrm f? 44]. Let the compaction filter order b& = 3. Then,m =1,
two-channel orthonormal filter bank by letting the first filte{,.:-h is odd. We have.(0) = 2p andy, (1) = p(1+p2). The

be the optimal FIR compaction filtdf(») designed above and yarmitian Toeplitz matrix corresponding {@.,.(n),n = 0,1}

by having the second filter as [10] is P = p[lfp2 “5”2], which is positive definite. Hence, we
F(z)=2"NH(-2). (30) can apply the analytical method:

Step 1: Running the Levinson recursion, we hade(z) =

— (1 + p?/2)27% and usinge = 1 (m is odd, we have

Pi(z) =1-(1+p%)zt + 272

Let S,,», (z) be the cross spectral density of the subbarid
signals after decimation. Then, we have

Spozs (2) = [Sea(2) H(2)F(2)] 2 Step 2: By straightforward calculationFPo(z) = 1 +
=[N Sua(2)H(2) H(=2)],2 V34727t 4272 and Go(2) = (2 + 3+ pF +27)%
— [N S, (2)Pa(22) Hy (2 — Step 3: Using the Nyquist(2) constraint, we find;(z) =
[7N (Me() Hr (2 Ha (=2, —(1/2(3+ p2)?2)(z = 2/3 + p2 +21). Itis readily verified
=27 Saw (2)GL(2)]12Pe(2)- (31) that Gy (e/*) > 0, Vw for all values ofp. The spectral factor of
Hence, we have G1(2) turns out to bé1//2(3+p%)%*)(a4bz"1), whereq =

Spue () =0,  k=0,---,m (32) \/¢3+p2+ V2+p?, andb = —\/¢3+p2 -2+
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TABLE I
CoMPACTION FILTER COEFFICIENTS AND CORRESPONDINGGAINS FOR MA(1) PROCESSES FORM = 2
n N=3 N=9 N=15 N =21
0| 0.5502267080 | 0.3472380509 | 0.2619442448 | 0.2135948251
1| 0.7781380728 | 0.7212669193 | 0.6444985282 | 0.5837095513
2| 0.2473212614 | 0.5313628729 | 0.6197371546 | 0.6522949264
3 | -0.1748825411 | -0.0301418144 | 0.1178983343 | 0.2237822545
4 -0.2357012104 | -0.2498547909 | -0.2185003959
5 0.0008621669 | -0.1127984531 | -0.1849242462
6 0.1250275869 | 0.1367316336 | 0.1009864921
7 -0.0141611881 | 0.0800586128 | 0.1357184335
8 -0.0608205190 | -0.0879123348 | -0.0574793351
9 0.0292806975 | -0.0512638394 | -0.0996883819
10 0.0616834351 | 0.0386787054
11 0.0272577935 | 0.0732876341
12 -0.0441106561 | -0.0298852666
13 -0.0065141401 | -0.0529392251
14 0.0275486991 | 0.0255464898
15 -0.0111966480 | 0.0362662187
16 -0.0230508869
17 -0.0216340483
18 0.0206081274
19 0.0077883397
20 -0.0156868986
21 0.0057402527
p=01 1.1155 1.1244 1.1260 1.1266
compaction gains p = 0.3 1.3464 1.3732 1.3781 1.3798
p=0.5 1.5774 1.6220 1.6301 1.6330

Step 4: The optimum compaction filter is

H(Z) = Po(Z)Hl(Z)

1
:—M(a+(b+a\/3+p2)z_l

V2(3+ p?)

+(a+by/3+p2)z"2 4+ b272).

The product filter isG(z) = (1/2(3 + p?)/2)(=2% + 3(2 +
Pz + 23+ p2)32 +3(24 p?)z"t =27 If —1<p<0,
then the optimum compaction filter B (—z). The optimum

compaction gain for both cases is

(33)
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The product filter isG(z) = —(v/3/18)2% + (v/3/3)z + 1 +
(v3/3)z7r — (v/3/18)273. If p<0, then the optimal filter
is H(—z). The optimum compaction gain for both cases is
Gop(2,3) = 1+ (2/V3)lo].
Example 3—MA(1) Process, Arbitrary Ordaf: Follow-

P(2)=1—zt4272-...

ing the steps of the algorithm, we have

4 (= 1)V 2~ (N /2.

If (N —1)/2is odd, then the zeros @ (z) areeti“r wy, =
(2k — 1)27 /(N 4+ 3),k = 1,---, (N + 1)/4. Therefore, the

roots of Fy(z) and, hence, the unit-circle zeros of the optimum
compaction filterH(z) are

2
Gopt(27 3) - 1 + %|p2 (34)
; N+1
+5€% == (2k—1 T =1, — =
c k) Qk 7r (k )N+37 k ) k) 4

See Table | for the numerical values of the filter coefficients
and the compaction gains for various valuespofWe have s

found that the analytical method is successful for any filt%rlrtri]:]zﬁx’ (I:foséva_ctilc))é 2 fillie?}\ﬁn)’ t:ri unltﬁgr;ilegzer_os of_the
order N for AR(1) processes. P P ® € 188 = T

Example 2—MA(L) Processiet N = 3,7(0) = 1,7(1) = 2kn/(N+3),k=1,.---,(N—1)/4. The rest of the procedure
p>0, andr(n) = 0,n>1. The sequencéb (n) is t7herefore involves spectral factorization, and it is not easy to see what
12(0) = 2p.90,(1) = p. P = p[21], which is positive hlll(z?thwnl be in cf:l?lsefq ;ortmh. Hot\{vever, we no';g tr}?tt tr}e
definite. Hence, applying the algorithm, we fing (z) = &490rthm successiully finds the optimum compaction hiter for

—lyle=1P(2) = 1- 2t + 272 Pz) = 1+ any orderN. Table Il shows the compaction filters and the
2COS(27r/6)7_1 a2 = 143 4 22, Gl2) = (2 4 corresponding compaction gains for various filter orders. The
V3 + 21y él(z) _ —(\/3/18)(;: _ 2\/34;2_1) Hi(z) = optimum compaction filter fop < 0 is H(—z). Note that the

3_3/42_1/2(\/m— _ mz_l), and the com- filters do not depend on the valuebut only on the sign. The

paction filter H(z) is optimum compaction gains, on the other hand, depengd.on

Example 4—KLT:If N = 1, then the algorithm yields
3-3/49-12 (VB 1 VI (34 V6= \[VB- VDt H(z) = (VDA + 27 if r(1)>0 and H(-z) =
+(\/\/§+\/§—\/3—\/6)2_2—\/\/5—\/52_3).

(1/v2)(1 — z~1) if r(1) <0. Notice that these correspond
to the two-channel transform coder, which is known to be
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fixed. The corresponding compaction gain@5,:(2,1) = optimum for such a process. Notice that for the algorithm
1+ |r(1)|/r(0). It is also true that the above filters and theo be applicable for a particula¥, it is only necessary that
corresponding compaction gains are optimal for any psd agd(n),n = 0,---,(IN — 1)/2 is positive or negative definite.
for any number of channeld/. Hence For a small ordetV, this corresponds to a much broader class
than that of lowpass and highpass processes.
|r(1)] M2 Cases Where the Algorithm FailsAssume that the process
r(0)’ - is such that the sequende,.(n),n = 0,---,(N —1)/2} is
positive definite, and therefore, the algorithm is applicable for
If #(m) is maximum of allr(n) wheren is not a multiple the filter orderN. Assume, however, that one of the line-
of M, then one can achieve the compaction gainlof spectral frequencies); is close tox. The algorithm will
|r(m)|/(0) by using the filter1/v/2)(1 +2=™) if #(m)>0 requirec!"=<*/2) to be a zero ofF(z). Hence,G(c/*) will
and the filter(1/v/2)(1 — 2=™) if r(m) <0. have a zero close to/2. However, this may be impossible if
Case Where/,(n) Is Semidefinite:Assume thaty.(n) is the orderN is low. To see this, note thai(¢’™/?) = 1 from
positive semidefinite. Then, there exists an intefet (N — the Nyquist(2) property, and therefore, requiriti{c’<) to
1)/2 such that{s,(n),n = 0,1,---, P} is positive definite, have a zero close to the frequency? is the same as requiring
and{¢(n),n =0,1,---, P+1} is only positive semidefinite. a narrow transition band fo&(e’*), which is impossible if
Then, we can replacéN — 1)/2 in the above argumentsthe order is not sufficiently high. One can however, increase
with P and write the objective (19) in terms aP + 1 the filter order to overcome the problem.
corresponding line-spectral frequencies. This enables us tExample 6: Let N = 3 andr(n) = coswin,w; € [0,7/2).
determine a product filter of symmetric ord2P + 1 < N. Hence, 1,(0) = 2coswi,?,(1) = cos3w; + coswi, and
If this resulting filter is nonnegative, then we have foungjm(n) is positive definite. Using the algorithm, we find
the unigue minimum symmetric order product filter that ig‘;o(z) = (z + 2cosw; + z~1)2 from which it follows that
optimum among the filters of symmetric order less than @ (2) = —(1/16cos® wy )(z—4 coswy +2~1). This has single
elqu.al toN. The case .Wher%(n) is negative semidefinite is ,nit_circle zeros ifw; € (r/3,7/2), and therefore(y (¢«)
similar, and the details are omitted. ~_is not non-negative. Hence, the algorithm fails if the impulse
Example 5—Case Wheg,(n) Is Positive Semidefinite: js \yithin the /6 neighborhood ofr/2. We have designed
Let N =3,7(0) =1 ancﬁ(l) = 7’(3), =p>0. Thelnl,i/),;(())-z optimum compaction filters for the above autocorrelation
¥x(1) = 2p. The associated Toeplitz matrix 2|, ; ], which sequence using LP for various values.gf We have observed
is positive semidefinite and singular. The ”Umﬁioér's O that the optimum compaction filters agree with the above
in this case, and lthe objective (19) Is+ 2pG1(e”). BY - ahavtical solution ifw; € (0,7/3]. For the complementary
letting Gy (e”®) -2 the product f||terG(z)1 o_flsymm_etr_lc case ofw; € (n/3,7/2), where the analytical method fails
orde_r 1 caln. easily be §gen to Iée + 1+ 37 and it is for N = 3, LP yields the solutiorG(z) = 1841 1,8
readily verified thatG(e’*) > 0. In fact, this is the KLT 2 5,2
. . ;o= - _1 regardless of the exact value af. The factorsGy(z) and
solution with the'compa.ctlon filteH (2) = (1/@)(.1+z ). Gi(2) of G(z) are Go(z) = (2 + 2cos(n/3) + 212, and
The corresponding optimum compaction gainlis- p. No Gi(2) = —(1/16c08(n/3))(> — dcos(n/3) + 1), This

third-order solution can achieve better gain than this. ) : . .
is the same as the previous solution, except thatin the
o ) previous solution is replaced with a constant value equal to
D. Chqractenzatlon of Prqcesses for Which the /3.
Analytical Method Is Applicable for AV As another example, let us fiw;, = 2r/5>7/3, and
For the analytical method to be applicable for all the find the optimal FIR compaction filter of order 5. The cor-
sequence).(n) has to be positive or negative definite for alfesponding product filter is7(z) = 12> + 1 + $27°, and
N. The sequence’,(n) is positive definite for allV if and the compaction gain i€%,,:(2,5) = 2, which is the largest
only if ¥,(¢/*) is not a line spectrum, andfm(ej‘“) > 0. possible gain forM = 2. Since the process is line spectral,
Using (12), this is true if and only if,.(e’*) is not a line this is not surprisingThe important point here is that while the
spectrum, and algorithm is not successful for the filter order 3, it is successful
for a higher order 5.
Spa(€79) > Sy (€T, wel0,7/2]. (35) Example 7—Case Where the Process Is MultibaRahally,
we will consider an example in which the input is neither

We will say that the process is “lowpass” if its psd satifiewpass nor highpass, but rather, it is of multiband nature. Let
the above condition. A nonincreasing psd is an example of0) = 1,7(1) = &, 7(2) = 0 andr(3) = —%. The sequence
this. However, a psd may not be nonincreasing but maly.(n) is positive definite forV = 3 so that the algorithm
still be lowpass. In the ideal case, the optimum compactid® applicable. There is more than one way to extrapolate
filter for that type of process is the ideal halfband lowpagbis sequence and find the corresponding psd. For example,
filter [4], [6], [8]. For the case whera),(n) is negative one can consider MA(3), AR(3), or line spectra(4). In all
definite for all N, the preceding is replaced with,.(¢’~) < three cases, we have verified that the psd is neither lowpass
Spr(e?=)) w € [0,7/2]. This type of process will be nor highpass. Rather, it is of multiband nature. Applying the
called “highpass” since the ideal halfband highpass filter #gorithm steps, we havély(z) = (z + (1/v2) + z71)2,

Gopt (M, 1) =1+
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from which it follows thatGy(z) = —v2(z — v2 + z71).

This has single unit-circle zeros. Hgn@l(e{“) is not non- 1
negative, and thereforeG(c/*) = Go(e?*)G1(e?*) is not ATr. g
non-negative either. The algorithm halts becadsge’*) l| f;(n)\” h\/w(n) ‘
cannot be spectrally factorized. 5 I [ r 1 I NI ] ‘ :
L
IV. WINDOW METHOD Fig. 4. Decomposition ofy(n) asw(n)fr(n), where W (e/*) > 0 and

. : . : . (k) > 0.
In this section, we will describe a new method to design FIRL( )2

compaction filters. The method is applicable for arbitrary filter

order N, arbitrary number of channel®/, and for any given 3) Fr(k) > 0;

psd (including complex and multiband spectra). The technique) fr(n)is NyquistM);

is quite simple while the resulting compaction gains are vetiien G(z) is the product filter of a valid compaction filter.
close to the optimum ones especially for high filter orders. That is, g(Mn) = &(n), and G(¢’*) > 0.

A common practice in filter design is to approximate Proof: It is readily verified that G(c/*) =
ideal filter responses by windowing their impulse responsdd,/L) Xi—}Fr(k)W(/«=C@ /DRy Since Fr(k) > 0
Consider the ideal compaction filter design. For eaadnd W(e™*) > 0, it follows that G(¢/*) > 0.

w € [0,2n/M), let S,,(ciwto@r/M)) pe the maximum If fr(n) is NyquistM), then so is g(n) because
of the set{S,,(e/«ti/M)y i = 0,... M — 1}. Then, ¢g(Mn)=w(Mn)fr(Mn)=65(n). ]
H;(edotio@n/M)y = /M, and H;(e/@Hi/M))y = o Assume the conditions of the lemma hold so th4t) is
for i # 4io. Let h;(n) be the impulse response &f;(c’~), the product filter of a valid compaction filter.4f(n) and L is
and considerh(n) = w(n)h;(n) for a given finite length fixed, what is the besf;(n) that maximizes the compaction
window w(n). Let H(c/*) be the FT of A(n). Then, gain? To answer the question, first note the following lemma.
G(e’) = |H(e/*)|* is no longer Nyquigtd). Instead of  Lemma 2: A periodic sequencefz(n) with period L =
windowing h;(n), let us try to window the coefficients of KA is NyquistAf), that is, fr,(Mn) = 6k (n) if and only if
the product filter:g(n) = w(n)g;(n). Here, g;(n) is the its FSC I (k) satisfy the following.

impulse response of?;(¢/“) = |H;(¢’*)|?. Then, G(¢'*) M1

is NyquistM), but it may no longer be non-negative. The Z Fr(k+iK) = M, k=0, ,K—1. (37)
non-negativity can also be assured by constraining the FT (=5

of w(n) to be nonnegative. A compaction filter can then ) . .

be SEJc)cessfuIIy obtained by spectrally factorizififc’«). Proof. Let us find the FSCYK(k)Kgfl the deumgrtled
This can be considered to be the approximation of the id quencey (n) = f(Mn): Yi(k) = ¥, fr(Mn)Wi".
compaction filter response. Is can be Wm;fnl ?S . Nt

In this section, we extend this idea to design compaction 1 RS 1= Y
filters that perform better than the abcae hocwindowing of Ye(k) = 3; > 2 i+ K) Do W
ideal compaction filters. We will replagg(n) with a periodic =0 j=0 n=0
sequencefy,(n), which will be determined by applying theysing (1/K) S Wmn = §x(m), we haveYi (k) =
ideal design algorithm at. uniform DFT frequencies. If (1/M) ©M51 Fr(k+iK). The FSC of (n) are all 1. Hence,
L = o0, then we havef.(n) = g¢;(n), and the abovead L(Mn) = 65 (n) if and only if (1/M) SMot Fp(k+iK) =

hoc method results as a special case. It turns out that t &k =0,..., K — 1. -
experimentally optimum value of for the best compaction 1o optain the bestf(n), let #(n) = w*(n)r(n), and
gain is L = M[2N/M] (see Section IV-B). let Sr.(k) be the FSC of its periodic expansian (n). For
o ] simplicity, assume thaf. >2N. The objective (7) becomes
A. Derivation of the Window Method o2 = xil fL(Zl)f’E(”) = (1/L) ZEZY Fr(k)Sck).
To formalize the above ideas, let us write the product filt&oth F7,(k) and Si(k) are real. Now, to incorporate the
coefficientsg(n) in the form Nyquis{ M) constraint, we write the preceding as
g(n) = w(n)fr(n) (36) =& .
o2 = 1 SN Fu(k+iK)SL(k+iK).  (38)
wherew(n) has the same length gén), namely, 2N +1, and L= =

fr(n) is a periodic sequence with peridd = KM > 2N . . . .
for some K (see Fig. 4). LetiW(c) be the FT ofw(n) FOr a fixedk, let 5;(k 4 ioK) be the maximum of the set

and F(k) be the Fourier series coefficients (FSC)fof(n), 19z(k+ik),i=10,---,M —1}. Then, by (37), and noting
that is, Fy, (k) = SECE f(n)WEn Wy, = ¢=927/L_ The first  that Fi(k) = 0, the objective (38) is maximized if we assign
Wriod EthLh(k)f iﬁ jugt thebDFT ?f the first period of(n). Fr(k+i0K)=M, and
e make the following observation. L _
Lemma 1: Consider (36). If Fr(k+uK) =0, t=1l-,M-1 (39)
1) w(0) = 1; Repeating the process for eakh= 0,---, K — 1, the FSC
2) W(e*) > 0; of the bestf(n) is determined. The procedure is illustrated
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Step 2.2:1f k+ ioK = 0 or k + igK = L/2, then set
S (k) Fr(k + wK) = M; else, if k = 0 or & = K/2, then
ﬁ T T . TTT . set F(k + ioK) = F(L — k — i0K) = M/2; else, set
F(k 4+igK) = F(L — k —igK) = M. Set the remaining
to zeros.

Pk M Optimization of the WindowThe algorithm produces very
1) ces good compaction gains, especially when the filter order is high,
. e as we shall demonstrate shortly. However, one can get better

012 K 2K L=3k compaction gains by optimizing the window(n). Consider
Fig. 5. Procedure to find" (k): $7(0) is maximum among(S1(iK)};  the representation (36) again, anddefr) and fz(n) satisfy
hence,F7,(0) = M, FL(IK) = 0,1 # 0. 5.(1 + K) is maximum among the conditions of Lemma 1. If we fiYz(n), what is the best
{SL(1+iK)} hence FiL (1+ ) = M. F (1+1K) = 0.1 #1,and soon. yindow w(n)? The objective (7) can be written as

in Fig. 5. The sequencg.(n) is just the inverse DFT of 2 :/7T gm(ejw)W(ejw)d_w (40)
Fr(k): fr(n) = (1/L) SEZ5 Fr(k)W k. Y - 2m
Summary of the Window AlgorithmAssume a window
w(n) of the same length ag(n) with non-negative FT has where W (e/«) is the FT of w(n), and S,.(¢*) is the
been chosen. Let. = KM >2N. Then the algorithm steps FT of f*(n)r(n), where f(n) is one period off.(n) cen-
are as follows. tered atn = 0. Let W(c/*) = |A(e?%)|?, where A(z) =
Step 1: CalculateSy,(k), the L-point DFT of the conjugate- ¥1_, a(n)z™" is the spectral factor o#¥(z). The only
symmetric sequenc&n) = w*(n)r(n) (which is the same as constraint onA(¢*) is that it has to have unit energy in view
the FSC of the periodical expansiéia(n) of #(n)). of w(0) = [T |A(e’*)*(dw/27) = 1. Let P be the(N +
Step 2: For eachk = 0,---, K — 1, determine the index 1) x (V 4+ 1) Hermitian Toeplitz matrix corresponding to the
i for which Sp(k + i0K) is maximum, and assigh’,(k + sequence f;(n)r(n)}2. Then, by Rayleigh’s principle [16],

wK)=MandFr(k+4K)=0,l=1,---,M — 1. (40) is maximized ifA(z) is the maximal eigenfilter aP. The
Step 3: Calculatefr,(n) by the inverse DFT. We need onlycorresponding compaction gain ds,ax{ /7 (n)r(n)} /o2.

to determinef(n) forn = 1,---, N. Corollary—A Lower Bound on the Compaction Gaihet
Step 4: Form the product filterg(n) = w(n)fr(n), and f;(n) be any Nyquistd/) sequence with non-negative FSC.

spectrally factorize it to findH (z). AssumeL > N. Then
Real Case:If the input is real, the above algorithm can

be modified to produce real-coefficient compaction filters. Gopt (M, N) > Amax{ fr(n)r(n) }Y. (41)

Consider the se{Sy (k + iK),i=0,---,M — 1} for each
k = 0,---,K — 1. Since S;(k) = Sp(L — k) if the To see this, note thaf(n) = w(n)fr,(n) achieves that bound
process is real, this set is equivalent{t.(L — k — iK) = by choosingw(n) as the optimum window for the sequence
Sp(K—k+KM—-1-4),i =0,---,M — 1}. Hence, fr.(n). If we replacef.(n) by a positive definite Nyqui§i/)
in the comparison, we need to consider okly= 0,---,P, sequencef(n) of order N, the inequality continues to be
where P = K/2 if K is even, andP = (K — 1)/2 if itis valid becausew(n)f(n) is still a product filter of a valid
odd. LetS.(k + ioK) be the maximum of this set for eachcompaction filter. To see this, note that the sequefi{es can
k=0,--.-,P. We need to be careful in the assignments. THee extended to an infinite sequence (e.g., using autoregressive
symmetric frequencies may end up in the same set, and @drapolation) such that its FT is non-negative. Hence, the
cannot assign different values to them. There are two caseptoduct w(n)f(n) has non-negative FT. The Nyquis?)
consideri) The indexL.—k—iok is among the setk+iK,i = property of the product follows from that of(n).
0,---,M—1};ii) itis not. The first case happens if and only if We have described how to optimize(r) given fr(n),
2k mod K = 0. This happens ik = 0 or k = K /2. We assign and vice versa. It is reasonable to expect that one can it-
Frk+ioK)=Fr(L—k—ioK)=M/2if k+ioK # L/2, erate and obtain better compaction gains at each stage. We
and Fr,(k + 1K) = M if k+io0K = L/2. In the second have observed that this is not the case. We started with a
case, we assigl’y,(k + oK) = Fr(L — k —icK) = M if triangular window and found that,(n) did not change after
k+ioK #0andlp(k+iok) = M if k+ioK = 0. In either the reoptimization of the window. Notice that the use of an
case, we set the remaining values in the{gét(k +:A{)} to initial window is not necessary if one is willing to optimize the
zeros. This will maximize the objective (38fj.(n) calculated window after findingfz(n). However, in most of the design
by the inverse DFT is the best sequence, and it is real. examples we considered, using an initial window with non-
Summary of the Window Algorithm for the Real Casealegative FT (in particular, the triangular window) and then
Assume a real symmetric window(r) of order NV, with non- reoptimizing the window resulted in better compaction gains.
negative FT is given. LeL = KM > 2N, as before. LetP A matlab program that implements the window method can
be as explained above. Then, Step 2 of the previous algoritive found at our webpage [28]. Here is a simple example to
should be replaced by the following two steps. illustrate how the window method works.
Step 2.1: For eachk = 0,---, P, determine the indexo Example 8—MA(1) Procesdet N = 5, M = 4,7(0) =
for which Sg(k + ¢ K) is maximum. 1,7(1) = p, andr(n) = 0,7 > 1. Assume the process is real
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so thatr(—n) = r(n). Let the window be triangular, i.e., Compaction gain versus L, M =2
T L S TQp N=31 '
w(n) = p BETEL I (42) : _N=31
0, elsewhere. 1.8F '
. .E1 7+
The FSCS. (k) of #(n) in Step 1 are S :
sie |
Sp(k) :S(Cjw)|w=(27r/L)k §1.57 : M5 - :
5 27 E : T
:1+§pcosfk, k=0,---,L—1. (43) 81.4r
1.3} ™~ N=3
Now, assume that, = 12> 10 so thatK = 3 and P = 1. \/W N=1
Therefore, we have the following sets to consider in Step 2. ' _ _
. . . . 1610 ez 100
{52(0),51(3),52(6),5(9)} periodicity, L
{8.(1), S1(4), SL.(7),5.(10)} (44) Fig. 6. Compaction gain versus periodicity

which are evaluated below, respectively. Let us find the improvement we can get by optimizing the

window when we fixfr(n). Sinces? = r(0) = 1, the com-

{1 + §p7 1,1— §p7 1}7 pactiqn gain i_s th_e maximum eigenvalue of thet symmetr_ic
3 3 Toeplitz matrix with the first row1 f.(1) p 0 0 0 0], which is
5v/3 5 53 5 1+ 1.801_9fL(1?|p_|. Using fr.(1) gi\{en iq (47): the improved

L+ ==pl=cpl=—=pl+cpr. (45)  compaction gain id +1.6410|p|. With this optimum window

fixed, one can verify thaf;(n) in (47) is still the optimum

. sequence.
First, assume > 0. The maximum of the first set i§,(0),

and the maximum of the second se1§1§(1). Hence, applying g choice of the Periodicity.

Step 3 of the algorithm, we have . ) o
The window method will produce compaction filters as long

_ _ as L is a multiple of M and is greater thav. This choice
{Fe(k); k=0, L =1} = {4,4,0,0.0.0.0,0.0,0,0,4}. of L will ensure thatf.(n) is Nyquis{A/). The smallest such
(46) period isL = M[N/M], and the largest id = oo. The
) i . choice L = M[N/M] leads to an additional symmetry in
Taking the inverse DFT of'(k), we calculate in Step 4 ¢ () and according to our experience, the corresponding
compaction gains are not good. If we uge = oo, then
1+v3 21 1-V3 we get the ideal solution forfr(n): fr(n) = g(n). The
3 33 3 " corresponding compaction filter obtained after windowing is
(47) not optimal either. I, is chosen to be the smallest multiple of
M such thatZ > 2N, then we obtain very good compaction

Hence, the product filteg(n) = w(n)f(n) has been found, gains. This choice can be compactly written as

{fL(n),n:(),---,N}:{l, 0,

and L = M[2N/M].
G(z) = 1- \/326 + 123 + éz2 + Mz +1 If M = 2, then this choice reduces fo= 2N. In Example 8,
18 6 9 18 we increased. from 12 to 16 and found that the compaction
n 51+ \/3)2—1 y 32 1 s 1- \/32—5_ gain decreased. When we used the ideal filterffdin ), which

18 9 6 18 corresponds td. = o, the compaction gain was better than
(48)  that of the casd = 16 but worse than that of the cage= 12.
. Example 9—Dependence on M/e have designed com-
Next, consider the case< 0. Referring to (45),5.(6) in the paction filters using the window method for an AR(5) process,
first set andS,(7) in the second set is maximum. Hencewhose psd is shown in Fig. 8. We have chosen this psd because
{I(k),k =0,---,L -1} = {0,0,0,0,0,4,4,4,0,0,0,0}, it is multiband, and the capture of the signal energy can be
which is equal toF(k — 6), where Fi(k) is the previ- jllustrated clearly. The number of channels i = 2. We
ous solution. Hencefz(n) = (-1)"fr(n), and therefore, considered the filter order&’ = 1,3,5, and N = 31. For
(I(z) = G(-=). By spectrally factorizing the product filter, aneach orderV, we increased. from 2N to 100 in steps of
optimum compaction filter is obtained. The compaction ga® The resulting compaction gains are plotted in Fig. 6. From
is 1+ (5(1++3)/9)|p| = 1+ 1.5178]p]. the plot, we see that the best compaction gain isZfes 2/V.
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V. LINEAR PROGRAMMING METHOD

The use of linear programming (LP) method in compaction
filter design was proposed by Moulét al. [20], [31], [32]. We :
briefly review the method and propose some improvements.
Assume that the input procesé) is real. The output variance :
is 02 = r(0)+2 X}, g(n)r(n). Let g4 and r4 be
the vectors formed by deleting eved/th coefficients of
g(n) and r(n) for n = 1,---N. Then, the objective can
be written asoy = r(0) + 2rggg. This incorporates the where w(n) is a symmetric window of orde# <L — N
Nyquist M) condition but not the nonnegativity constraint inlength 2K + 1) with non-negative FT (see Fig. 7); then,
(6). Leteg(w) 2 [cos(w) cos(2w) - - - cos((M —1)w) cos((M + from Section IV-A, we conclude that(¢’*) > 0,Vw. The
Dw) - --cos(Nw)]. Then, G(¢/*) = 1 + 2¢k(w)ggq. Hence, Nyquis{M) property ofg(n) is assured by that ofy,(n). In

1 :
gm e wm) ]
] [l

Illl

Fig. 7. Windowing of the linear programming solution.

N K I-N! L

the problem is equivalent to d contrast to the window method, here, we can have- N.
This is because the LP solution already has the desired order.
maximizerggd For maximum compaction gain, the symmetric ordet.¢fh)
. - is chosen to be maximum, namelif = L — N — 1. Note
subject to cg(w)gd > —0.5,Yw € [0, 7]. (49) lic 1

that whenL = 2N, we havegr(N) = 2¢(N). One can

This type of problem is typically classified as semi-infinit&!S€ & fixed window like a triangular window, as depicted in
linear programming (SIP) [32] because there are infinitelf® figure, and get a satisfactory compaction gain. However,
many inequality constraints on finitely many variables. BYN€ can always optimize the window as in Section V-
discretizing the frequency, one reduces this to a well knowh !f L is very large, optimization should be avoided as
standard LP problem. the performance loss becomes negligible. The loss can be

Drawbacks of the TechniqueNo matter how dense the fre-auantified as follows: Assuml.ngfc =1, when agfed window
quency grid is, LP guarantees the nonnegativityGiz/~) 1S used, the compaction gain &,, = 1+ 2¢°7, whereg
only on this grid. Hence, one has to modify the solution t8Nd 7 are the vectors formed by the sequengggn) and
have G(¢/*) > 0,Yw. One can numerically determine the(7)r(n),n =0,.--, N.If, for example, a triangular window
unit-circle zeros ofG(c/*) and merge the pairs of zerosCf Symmetric orde(’ = L — N —1is used, we havei(n) =
that are close to each other. Yet another way is to “liftt — 7/(L = N),n = 0,---,N. When the optimum W'n?\f)w
G(¢*) by increasingy(0) relative to other coefficients. Since!S Used, the compaction gain &, = )‘Hlax{gje(”)T(T@}O :
9(0) has to be 1, in effect, we scalgin) for n # 0 by a Hence, theloss i, — Gy, = Awaxigr(n)r(n)}y —2¢°7 1.
constantc < 1. This can also be considered as windowin%S L = oo,w(njr(n) — r(n), andgr(n) — gopi(n). Hence,
with w(n) = ¢,n # 0, andw(0) = 1. In the next section, Gw — Gopt. SINCEGy, < Gy < Giopr, We See thalr, — Gop
we propose another windowing technique to modifgei«), s Well. Hence(#, — G, — 0asL —oo.

The advantage of this is to avoid having to locate any zergsEX@mple 10:Let the input psd be as in Fig. 8, and let
or the minimum of G(¢’*). The non-negativity ofG(e/* N =65 andxM = 2. In the same f!gurg, we plot the.magnltude
is guaranteed by that o (¢/~) as in Section IV-A. If the Sduare|H(c’~)|* of the compaction filtet(z) designed by
filter order N and the number of discrete frequenciesare LP- The number of frequencies used in the design process
small, using an optimum window perfoms better than tH¥asL = 512. We have used triangular window of symmetric
other techniques. In principal, a — oo, the LP solution Order& = L — N —1 = 446 and found that the resulting
approaches the optimal solution. However, as stated in [3§pMPaction gain i€7,, = 1.8698. If we optimize the window,
there will be numerical problems if. is too high. Another the compaction gain becomés = 1.8744. Hence, the loss is
drawback of LP is that the complexity is prohibitively highGe — Gw = 0.0046. One can verify that the compaction gain
for high filter orders. We should note here that the windo®f the ideal(L = o) filter is Gigea = 1.8754.

method that we proposed in Section IV does not have this

problem. The window method is very fast, even with verg. Connection Between the Linear Programming

high filter orders, and the resulting filters are very close to thend Window Methods

optimal ones. In both the LP and window methods, we use windows to

assure the nonnegativity a(c’~). Consider the equations
A. Windowing of the Linear Programming Solution (50) and (36). WhenL is a multiple of M, a periodic
Let L uniform frequencie§wy, = (2r/L)k,k=0,---, L — sequencegr,(n) in the linear programming method and a
1} be used in LP, and leg;(n) be the periodical expan- periodic sequencefz(n) in the window method are found
sion of the resulting product filter. Assume that>2N. such that they are Nyquist/) and their FSC are all non-
Linear programming assures th&{(c/*) is non-negative at negative. ForL > 2N, the two problems are not the same
the frequenciegw;}. Hence, the FSQ¥, (k) of g.(n) are becausgr(n) is order constrained, wheredg(n) is not. If,
non-negative. Now, consider the product however,L = 2N, then the two problems are exactly the same.
If windowing is done in the same way in both methods, then
g(n) = wn)gr(n) (50) we see that the resulting compaction gains should be the same.
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AR(5) process and LP filter response, M =2, N =65 1.9+
127
) 1.8}
L I R o N
i xx oy 12 h c

8l ol —  IHE™) i ‘B1.7¢
c 1t 1 o ;
« I [ c |
o ! I o )
I i il
© 1! 1 : o -
84 5 S1.5| ! Cidoas (N =)
g ! '\ = --- linear programming
o ! 7 .

14l window method
1.3 ' ' ' : y y
2 , , . ‘ ‘ 10 20 30 40 50 60
0 0.2 0.4 0.6 0.8 1 fiiter order N
frequency, o/r ()
Fig. 8. Power spectral density of an AR(5) process and the magnitude square 9r

of an optimal compaction filter fotV. = 65 and M = 2, designed by LP.
The parameter. is 512 and a triangular window is used.

8,

Hence, one can view the window method as an efficient and 7}
noniterative technigue to solve an LP problem wheg 2N. £

If L is increased, we saw that the window method does not 2’6’

necessarily yield better gains, whereas this is the case for the 25|
LP method, provided the window order is increased as well. §

However, optimization of the window in LP becomes costly ~ §4f
o

as the order increases. If one uses a fixed triangular window

. . . . i ) 3t --- linear programming

(with highest possible order) in LP, and if the windows are window method

optimized in the window method, then the window method is ol

very close and sometimes superior to LP, as we demonstrate

in the following example. 1 10 20 30 40 50 60
Example 11: Comparison of Linear Programming and Win- number of channels M

dow Methods:Let the input psd be as in Fig. 8. In Fig. 9(a), (b)

the CompaCt_ion gains of both the LP and the window meth%. 9. Comparison of the window and linear programming methods. The
versus the filter order are plotted fa¢ = 2. The number of input power spectrum is as shown in Fig. 8. (2) Compaction gain ve¥sus
frequencies used in LP i& = 512, whereas the periodicity for 4 = 2. (b) Compaction gain versus! for N = 65.

used in the window method 5 = 2N. The windows used in

LP are triangular windows with symmetric ordér— N — 1. ysjng the window and LP methods. We present in Table | the
In the window method, the autocorrelation sequence is fifgsylting filter coefficients and the corresponding compaction
windowed by a triangular window of symmetric ord&¥ gains forp = 0.1,0.5, and 0.9. The analytically optimum

to find fr(n), and then, the window is reoptimized. Frontoefficients (33) and the corresponding compaction gains (34)
the figure, we observe that if the order is high, one hage also presented in the same table. We see in this case that
slightly better compaction gains using the window methoghe compaction gain of the window method is not too far from
This implies that if one optimizes the window, there is no neagle optimal one and slightly worse than that of LP, even for

to use large number of frequencies in LP. More importantlgych a small order. The discrepancy between the window and
there is no need to use LP for hlgh filter orders. However, |I_IP Compaction gains IS maximum Wh@’): 0.5.

should be emphasized that if the windows are optimized in LP,

one can get slightly better compaction gains than the window

method. In Fig. 9(b), we show the plots of the compaction VI. CONCLUDING REMARKS

gains of the two methods for various values &f for a We have presented two new techniques for the design of

fixed filter order of 65. We observe that the window methodptimum FIR compaction filters. First, we have proposed an

performs very close to LP, especially for low valuesidf We analytical method in the two-channel case. The technique

show the upper bounds on compaction gains in both plots. Tiseapplicable for a rather restricted but practically important

upper bound in the first plot is achieved by an ideal compactiefass of signals. The method involves Levinson recursion

filter, and that in the second plot is achieved by a maximahd two spectral factorizations of half the filter order. As

eigenfilter, as discussed in Section II. examples, we have produced analytical expressions for the
Example 12: Let the input be AR(1) as in Example 1. Forcompaction filter coefficients for AR(1) and MA(1) processes.

N = 3 and M = 2, we have designed compaction filterdNext, we have proposed a method called wiedow method
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It is applicable for any given spectra and for any givefhis, in particular, implies7(¢’*) > 0 for w € [7/2,7]. The
number of channels. It is very efficient since it is noniterativeroof for the case of evefWW — 1)/2 is similar; the details

and involves only comparison of some DFT coefficients arate omitted.

windowing. We have given its relation to the LP method. As
the filter order becomes higher, the computational complexity
of the LP method grows rapidly. The window method, on the
other hand, is very fast, even when the filter orders are very
high. Furthermore, the suboptimality of the window method!]
diminishes as the filter order increases.

Future work will incorporate these methods in the design of2]
optimal FIR orthonormal uniform and nonuniform subband
coders. In the two-channel case, the optimum compactiop;]
filter already determines the optimum filter bank. Hence, the
algorithms in this paper can readily be used in applications Iikg‘]
wavelet-based image coding. In particular, it would be inter-
esting to investigate the performance of our filters in zero-tre®!
coding and wavelet-package coding. For such applications, we
expect that the analytical method of Section Il will be quite[6]
useful. In theM -channel case, we mentioned one method [20]
that efficiently finds the rest of the filter bank if the first filter [7]
is given. In speech and audio coding applicatiaischannel
uniform filter banks are commonly used, and the filters hav
high orders. We expect that the window method of Section
IV will be very useful for such applications. Needless to say
there are many other important applications of compactioLg]
filters, some of which are mentioned in the last paragraph @b]
the introduction. Hence, our design algorithms can directly Ef]
used in such applications as well. All the algorithms describ d1

in this paper can be found at our webpage [28]. [12]
[13]
APPENDIX
PROOF OF NON-NEGATIVITY 4]
We will show that G(¢’*) obtained by the proce-

dure in Section Il is necessarily nonnegative in th&"!
region [r/2,7]. The Nyquist(2) property ofF(c’*) implies [16]
G'(¢/*) = G'(/)). We therefore have’(e+/?) =
G(dm=«x/2y = 0,k = 0,---,(N — 3)/4. Now, by the (7l

mean value theorem in calculus, we also ha¥éc/“/2) =
F(E%/D)y = 0k = 0,---,(N — 7)/4 for some [18l

& € (wg, wrt1)- Notice that sincevy,’s are all distinct and lie [19]
in the open regior{0, 7), all of the above zeros are distinct.
The total number of such zeros is therefake— 1. Since
G(e’*) is a cosine polynomial of ordeN, G'(¢’*) is a sine
polynomial of orderN, and therefore, it can be written in thel21]
form G'(e/*) = sinwT(cosw), whereT(z) is a polynomial

of order N — 1. Excluding the zeros at 0 ang, the total
number of zerog¥(¢/“) can have in0, 7] is N — 1. Hence, [22
G'(¢/*) cannot have any other zero on the unit circleGlf)

has a zero atr — wy/2 with multiplicity greater than 2, then [23]
G'(¢’*) has at least double zero at that frequency, implying
that the total number of its zeros is more ther- 1, which isa [24]
contradiction. IfG(z) has a single zero in the regidn /2, ),
which is different from allwy’s, then by applying the mean 25
value theorem once moréy’(¢’“) has to have another zero,
whiqh is again a contradiction. Hence, we have proved th[%%]
(G(e’*) has double zeros at — wy/2,k=0,---, (N — 3)/4

and that it does not have any other unit circle zerds jf2, .
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