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the first place, if it hadn’t been for the continuous support of my parents. Dank
jullie wel!

Mark Schenk
February 2006

iii



iv



Summary

The fields of static balancing and tensegrity structures are combined into stati-
cally balanced tensegrity mechanisms. This combination results in a new class of
prestressed structures that behave like mechanisms: although member lengths
and orientations change, they can be deformed into a wide range of positions,
while continuously remaining in equilibrium; in other words, the structures have
zero stiffness. The key to these structures is the use of zero-free-length springs
as tension members.

The tools of structural engineering were used to search for, and understand,
zero-stiffness modes in the tangent stiffness matrix of prestressed pin-jointed
bar frameworks. To this end the recently uncovered parallels between struc-
tural engineering and mathematical rigidity theory were exploited. Mathemati-
cal literature described that affine transformations preserve the equilibrium of a
tensegrity structure; these findings gained value when translated from a mathe-
matical concept into the engineering terms rigid-body motions, shear and dila-
tion. Not only did these transformations prove to be instrumental for describing
zero stiffness, but it also provided new insight in the form-finding methods for
tensegrity structures: the minimum nullity requirement for the stress matrix is
formed by the affine transformations.

In this research it was shown that affine transformations of the structure that
preserve the length of conventional members are zero-stiffness modes valid over
finite displacements: these are statically balanced zero-stiffness modes. What is
more, for prestress stable structures with a positive semi-definite stress matrix of
maximal rank – meaning there are only affine transformations in its nullspace –
those are the only possible zero-stiffness modes. The length-preserving affine
transformations exist if and only if the directions of the conventional members
lie on a conic at infinity. If all conventional member directions lie on a conic,
the number of independent length-preserving affine transformations can then be
found with a simple counting rule.

A systematic analysis of the zero-stiffness modes in the tangent stiffness matrix
of a prestressed pin-jointed bar framework yielded several interesting scenarios
that warrant further attention, as they cannot be fully described within the
currently developed framework.

Finally, a demonstration prototype was designed and constructed to illustrate
the properties of statically balanced tensegrity mechanisms; the prototype serves
as a proof of concept, not as a practically applicable design. Prior to construc-
tion, the range of motion of the tensegrity used for the prototype was extensively
analysed using the analytic equilibrium conditions. The results were instrumen-
tal in dimensioning the prototype.
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Chapter 1

Introduction

This thesis concludes the efforts to investigate the theory and design of statically
balanced tensegrity mechanisms, a hitherto unexplorered combination of two
fields of research, tensegrity structures and statically balanced systems.

Tensegrity structures, or tensegrities, are a special type of prestressed pin-
jointed bar frameworks with unique properties: the tension elements are usually
replaced by cables, resulting in aesthetic, light-weight structures that seem to
defy gravity. The structures are generally both statically and kinematically in-
determinate, and they derive their stability from the state of self-stress, which
stabilizes any internal mechanisms present.

Statically balanced systems are in equilibrium in every configuration in their
workspace, even when no friction is present: they are neutrally stable, and have
zero stiffness. As a consequence, these systems can be operated with much
less effort as compared to the unbalanced situation. Hence, static balancing
is used for energy-efficient design in for instance prosthetics and rehabilitation
technology. A classic every day example is the ‘Anglepoise’ desk lamp which
can be positioned virtually anywhere without external force.

The combination of the two fields was expected to produce mechanical frame-
works with very interesting properties: tensegrities that can be deformed into a
wide range of shapes without external work, and thus displaying mechanism-like
properties. These structures are in a fascinating state of balance: during defor-
mation, the internal forces remain in harmony, but they change and shift from
member to member. Understanding these structures was expected to provide
new insights into both fields, and perhaps yield a more fundamental understand-
ing of static balancing.

A note is due about the terminology of these structures, as they are at once
both structure and mechanism. In the current research we have used the tools
of structural eningeering to analyse their properties, and will therefore refer to
them as zero stiffness tensegrity structures in the report. However, any practical
application would be for their mechanism properties, and hence the term stati-
cally balanced tensegrity mechanisms would be more appropriate. In describing
these structures both terms are equally valid and may be used interchangeably.
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Chapter 1

1.1 Outline

The results of the MSc. Thesis are presented as two papers, complemented
with a range of Appendices for background information. The papers appear
as chapters in this report, but are written as free standing entities: each has
its own abstract, introduction and conclusions. This accounts for the fact that
some sections appear to be duplicated in both papers.

The first paper describes the underlying theory of “Zero Stiffness Tensegrity
Structures” and contains the main novelties of the research. It recapitulates the
stiffness analysis of tensegrity structures, and describes under which circum-
stances the structure has zero stiffness when zero-free-length springs are added.
The results are illustrated by the numerical analysis of a classic tensegrity.

The second paper complements the first and aims to fill up some of the gaps, by
providing a systematic “Overview of Zero Stiffness in Prestressed Bar Frame-
works”, and as far as current knowledge allows, describing its nature. Some
intriguing border cases are given, to illustrate the interesting work left.

The conclusion wraps up both papers and the current state of research, and
suggests viable directions for continuing the research.

Appendices The appendices provide (detailed) background information to
the work described in the papers. The equilibrium conditions and configurations
of a special class of prismic rotationally symmetric tensegrities are described in
Appendix A. These play a special role in the developed theory about zero-
stiffness structures, as they form an entire family of statically balanced struc-
tures. The derivation and comparison of the formulation of the tangent stiffness
matrix used extensively throughout the research is provided in Appendix B. Ap-
pendix D describes in detail the design process of the demonstration prototype,
and contains useful information about the design problems encountered. Ap-
pendix E shows several examples of zero stiffness tensegrity structures, followed
by an extensive list of suggestions for future research work in Appendix F.

CDROM Enclosed with the report is a CDROM, which aside from a digital
copy of this report includes the Matlab code described in Appendix C, as well
as pdf copies of a lot of the references.

WWW This report is also available online, along with presentations and
Matlab code, at: http://www.markschenk.com/tensegrity/
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Chapter 2

Zero Stiffness Tensegrity
Structures

M.Schenka, S.D.Guestb, J.L.Herdera

aMechanical, Maritime and Materials Engineering, Delft University of
Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

b Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, United Kingdom

Abstract

Tension members with a zero rest length allow the construction of tensegrity
structures that are in equilibrium over a continuous range of positions and thus
exhibit mechanism-like properties: they are neutrally stable, or equivalently
have zero stiffness. Those zero-stiffness modes are not internal mechanisms, as
they involve first-order changes in member length, but are a direct result of the
use of the special tension members. These modes correspond to an affine trans-
formation of the structure that preserves the length of conventional members,
and are present if and only if the directional vectors of those members lie on a
conic. This geometric interpretation provides an entire family of zero stiffness
tensegrity structures.

Keywords: zero stiffness, tensegrity structures, tensegrity mechanisms, static
balancing, affine transformations

2.1 Introduction

This paper will describe and analyse a new and special class of ‘tensegrity’
structures that straddle the border between mechanisms and structures: al-
though member lengths and orientations change, the structures can be deformed
over large displacements whilst continuously remaining in equilibrium. In other
words, they remain neutrally stable, require no external work to deform, and
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(a) (b) (c)

Figure 2.1: Static balancing: the three structures shown are in equilibrium
for any position of the bar, as long as in (a) the masses (black circles) are
correctly chosen, and in (b) and (c) the springs are zero-free-length springs with
appropriately chosen stiffness.

hence have zero stiffness. Although zero stiffness is uncommon in the theory
of stability, several examples exist. Tarnai (2003) describes two systems that
display zero stiffness, respectively related to bifurcation of equilibrium paths,
and to snap-through type loss of stability of unloaded structures in a state of
self-stress. These structures require specific external loads or states of self-stress
to exhibit zero stiffness. The key to the structures discussed in this paper, how-
ever, is the use of tension members that, in their working range, appear to have
a zero rest length – their tension is proportional to their length. Such members
are not merely a mathematical abstraction; it is for instance possible to wind a
close-coiled spring with initial tension that ensures, when the spring is extended,
that the exerted force is proportional to the length.

The utility of zero-free-length springs was initially exploited in the design of
the classic ‘Anglepoise’ lamp (French and Widden, 2000), but is more generally
applied in the field of static balancing (Herder, 2001)(see Figure 2.1). Statically
balanced systems are in equilibrium in every configuration in their workspace,
and as they require little to no effort to operate, they are used for energy-
efficient design in for instance robotics and medical settings. Herder (2001)
discovered some basic examples of statically balanced tensegrities, which formed
the inspiration for the current research. Acquired knowledge in this research is
suspected to lead to a more fundamental understanding of, and new synthesis
tools for, statically balanced systems.

‘Tensegrity’ is a term that is not consistently defined in literature, see Motro
(1992) for a discussion. Here we take it to mean free-standing prestressed pin-
jointed structures, which are in general both statically and kinematically inde-
terminate. The state of self-stress ensures that each member carries a non-zero,
purely tensile or compressive load, under absence of external loads and con-
straints. Previously, the analysis of tensegrity structures, either by a structural
mechanics approach (e.g. Pellegrino and Calladine, 1986) or a mathematical
rigidity theory approach (e.g. Connelly and Whiteley, 1996), has only been
concerned with whether or not a structure is stable. We shall only consider
structures that, were they constructed with conventional tension and compres-
sion members, are prestress stable (i.e. have a positive-definite tangent stiffness
matrix, modulo rigid-body motions). The novel feature of this paper is that we
then replace some or all of the tension members with zero-free-length springs,
in search of zero-stiffness modes.

4



Zero Stiffness Tensegrity Structures

The zero-stiffness tensegrities described in this paper walk a fine line between
structures and mechanisms. Here we shall refer to them as tensegrity structures,
as we will be using the tools of structural engineering and not mechanism theory.
For other purposes, the term tensegrity mechanisms might be more applicable.
Practical applications of this new class of structure will most likely also take
place on the borderline of structures and mechanisms, such as, for example,
deployable structures which are in equilibrium throughout deployment.

There are clear hints to the direction taken in this paper in the affine transfor-
mations considered by Connelly and Terrell (1995) or the ‘tensegrity similarity
transformation’ considered by Masic et al. (2005). Unlike in those papers, here
the affine transformations are translated from a mathematical abstraction into
a real physical response of structures that can be constructed.

The paper is laid out as follows. Section 2.2 recapitulates the equilibrium and
stiffness analysis of prestressed structures. In particular it describes the con-
sequences of using zero-free-length springs by means of a recent formulation of
the tangent stiffness matrix. Section 2.3 introduces affine transformations and
shows that affine modes which preserve the length of the conventional members
are statically balanced zero-stiffness modes. A general existence criterion for
length-preserving affine transformations is discussed in section 2.4. An example
analysis of a classic tensegrity structure fitted with zero-free-length springs, in
section 2.5 illustrates the theory laid down priorly.

2.2 Equilibrium and stiffness of prestressed struc-
tures

This section aims to lay the groundwork for the coming sections, by first briefly
recapitulating the tensegrity form-finding method from rigidity theory, followed
by the description of the tangent stiffness matrix that clearly shows the effects
of using zero-free-length springs. The section is concluded by a discussion of
zero-stiffness modes in conventional tensegrity structures.

2.2.1 Equilibrium position

This paper is primarily concerned with the stiffness of a tensegrity structure in
a known configuration, and not with form finding, i.e. finding an initial equi-
librium configuration (Tibert and Pellegrino, 2003). Nevertheless, a brief de-
scription will be given, as there are interesting and useful parallels between the
stiffness of a prestressed structure and the energy method of rigidity theory (or,
equivalently, the engineering force density method) used in form finding.

The energy method in rigidity theory considers a stress state ω to be a state
of self-stress if the internal forces at every node sum to zero, i.e. the following
equilibrium condition holds at each node i

∑

j

ωij (pj − pi) = 0 (2.1)

5
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where pi are the coordinates for node i, and ωij is the tension in the member
connecting nodes i and j, divided by the length of the member; ωij is referred
to as a stress in rigidity theory, but is known in engineering as a force density
or tension coefficient. If all the nodal coordinates are written together as a
vector p, pT = [pT

1 ,pT
2 , . . . ,pT

n ], the equilibrium equations at each node can be
combined to obtain the matrix equation

Ω̃p = 0 (2.2)

where Ω̃ is the stress matrix for the entire structure. In fact, because equa-
tion 2.1 consists of the same coefficients for each of d dimensions, the stress
matrix can be written as the Kronecker product of a reduced stress matrix Ω

and a d-dimensional identity matrix Id

Ω̃ = Ω ⊗ Id. (2.3)

The coefficients of the reduced stress matrix are then given, from equation 2.1,
as

Ωij =







−ωij = −ωji if i 6= j, and {i,j} a member,
∑

k 6=i ωik if i = j,

0 if there is no connection between i and j.
(2.4)

Although the stress matrix is here defined entirely by equilibrium of the struc-
ture, we shall see the same matrix recurring in the stiffness equations in sec-
tion 2.2.2. This dual role of the stress matrix allows the combination and ap-
plication of insights from rigidity theory – where the stress matrix has been the
object of study – to engineering stiffness analysis.

Form-finding methods require the symmetric matrix Ω to have a nullity N ≥
d + 1, and thus for Ω̃ a nullity N ≥ d(d + 1)1. If the nullity requirement is not
met, the only possible configurations of the structure will be in a subspace of a
lower dimension. For example, form finding in 3 dimensions would only be able
to produce planar equilibrium configurations (Tibert and Pellegrino, 2003). The
significance of this requirement will be further elucidated in section 2.3, when
affine transformations are introduced. If Ω̃ has a nullity equal to d(d + 1), we
shall describe it as being of maximal rank.

2.2.2 Tangent stiffness matrix

Stability analysis considers small changes from an equilibrium position. For a
prestressed structure account must be taken not only of the deformation of the
elements and the consequent changes in internal tension, but also of the effects of
the changing geometry on the orientation of already stressed elements. This re-
sults in the tangent stiffness matrix Kt, that relates infinitesimal displacements
d to force perturbations f

Ktd = f . (2.5)

1The nullity of a square matrix is equal to its dimension minus its rank.

6



Zero Stiffness Tensegrity Structures

The tangent stiffness matrix is well-known in structural analysis, and many
different formulations for it exist (e.g. Murakami, 2001; Masic et al., 2005). Dif-
ferent formulations with identical underlying assumptions will produce identi-
cal numerical results, but may provide a different understanding of the stiffness.
The formulation used in this paper is derived by Guest (2006), and incorporates
large strains. It is written as

Kt = K̂ + Ω̃

= AĜAT + Ω̃ (2.6)

where Ω̃ is the stress matrix as described earlier, K̂ is the modified material
stiffness matrix, A is the equilibrium matrix for the structure and Ĝ is a diag-
onal matrix whose entries consist of the modified axial stiffness for each of the
members. The modified axial stiffness ĝ is defined as

ĝ = g − ω (2.7)

where g is the conventional axial stiffness and ω the tension coefficient. For
conventional members, ĝ will be little different from g. It will certainly always
be positive, and hence the matrix Ĝ will always be positive definite. However,
for a zero-free-length spring, because the tension t is proportional to the length,
t = gl, the tension coefficient is equal to the axial stiffness, ω = t/l = g, and
the modified axial stiffness ĝ = g − ω = 0. Thus structures constructed with
zero-free-length springs will have zeros along the diagonal of Ĝ corresponding
to these members, and Ĝ will now only be positive semi-definite.

Normally, a zero axial stiffness would be equivalent to the removal of that mem-
ber (Deng and Kwan, 2005). This is not the case for the zero modified axial
stiffness of zero-free-length springs, because the contribution of the member is
still present in the stress matrix Ω̃. This leads to the observation that for zero-
free-length springs the geometry (i.e. the equilibrium matrix A) is irrelevant
and only the tension coefficient and member connectivity (i.e. the stress matrix
Ω̃) define their reaction to displacements.

2.2.3 Zero-stiffness modes and internal mechanisms

The main interest of this paper lies in displacements that have a zero stiffness;
in other words, displacements that are in the kernel, or nullspace, of the tangent
stiffness matrix. A zero tangent stiffness for some deformation d requires, from
equation 2.6, either that K̂d = −Ω̃d, or that both K̂d and Ω̃d are zero. We
will briefly discuss in section 2.3.3 why the first possibility is not of interest, and
will concentrate on the second case, i.e. d lies in the nullspace of both K̂ and
Ω̃.

For a conventional structure, as Ĝ is positive definite, the nullspace of K̂ =
AĜAT is equal to the nullspace of AT , and hence AT d = 0. The matrix
C = AT is the compatibility matrix (closely related to the rigidity matrix in
rigidity theory) of the structure, and the extension of members e is given by
Cd = e; i.e. e = 0 for a zero-stiffness mode. Thus, for a conventional structure

7
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a zero tangent stiffness requires the deformation to be an internal mechanism:
a deformation that to first order causes no member elongation. In addition Ω̃d

must be zero, which implies that the mechanism is not stabilized by the self-
stress in the structure. One obvious mode is that rigid-body displacements of
the entire structure will have no stiffness. However, in general there may also
be other non-stiffened (higher-order) infinitesimal, or even finite, internal mech-
anisms present (see e.g., Pellegrino and Calladine, 1986; Kangwai and Guest,
1999). Infinitesimal mechanisms may eventually stiffen due to the higher-order
elongations of members, but finite internal mechanisms have no stiffness over
a finite path. Thus, the stability of a structure requires that all displacements
have a positive stiffness. This means that, modulo rigid-body motions, all eigen-
values of the tangent stiffness matrix are positive and the matrix is thus positive
definite.

Some of the above observations change when a structure includes zero-free-
length springs, which have modified axial stiffness ĝ = 0. A key observation is
that the nullspace of K̂ = AĜAT is no longer the same as the nullspace of AT ,
as Ĝ is now only positive semi-definite. The increased nullity of the modified
material stiffness matrix K̂ is of great importance to this study, as it will prove
to be key to finding the desired zero-stiffness modes (see section 2.3). Note
that the stress matrix Ω̃ is invariant when zero-free-length springs are added to
the structure.

We introduce the term ‘statically balanced zero-stiffness mode’ to distinguish
between zero-stiffness modes found in conventional tensegrity structures, such
as internal mechanisms and rigid-body motions, and (finite) zero-stiffness modes
introduced by the presence of zero-free-length springs. In contrast with (finite)
internal mechanisms, these latter modes involve first-order changes in member
length, and thus energy exchange among the members.

2.3 Affine transformations and zero-stiffness modes

This section introduces the concept of affine transformations, leading up to the
key conclusion that affine transformations that preserve the length of ‘conven-
tional’ members are statically balanced zero-stiffness modes that are valid over
finite displacements. It shall further be argued that for prestress stable tenseg-
rity structures with a positive semi-definite stress matrix of maximal rank, these
are the only possible zero-stiffness modes.

2.3.1 Affine transformations

As described in section 2.2.1, the equilibrium position of a freestanding tenseg-
rity structure for a given state of self-stress is given by Ω̃p = 0. Under an affine
transformation of the nodal coordinates p this condition still holds (Connelly
and Whiteley, 1996; Masic et al., 2005), and hence the new geometry is also in
equilibrium for the same set of tension coefficients. An important consequence
which had previously not explicitly been observed, is that affine transformations
of p hence remain in the nullspace of Ω̃.

8



Zero Stiffness Tensegrity Structures

(a)

(b)

(c) (d)

(e)

Figure 2.2: The independent affine transformations of an object (a) in 2D space
are: (b) two translations, (c) one rotation, (d) one shear, (e) two dilations. The
total of 6 transformations complies with the d(d + 1) formula for d = 2.

Affine transformations are linear transformations of coordinates (of the whole
affine plane onto itself) preserving collinearity. Thus, an affine transformation
transforms parallel lines into parallel lines and preserves ratios of distances along
parallel lines, as well as intermediacy (Coxeter, 1989, pp. 202). We write them
as the transformation of the coordinates of node i

pi → Upi + w

where in d-dimensional space U is a d-by-d matrix, and w ∈ Ed. This provides
a total of d(d + 1) independent affine transformations. Affine transformations
are well-known to engineers, but under a different guise. Recall that the square
matrix U can be expressed as the sum of a symmetric and a skew-symmetric
component. Then the half of the d(d + 1) affine transformations constituted by
w and the skew-symmetric part of U, is better known to engineers as rigid-body
motions (e.g. 6 rigid-body motions in 3-dimensional space). The interpretation
of the other half – the symmetric part of U – is less obvious, but it turns out to
be equivalent to the basic strains found in continuum mechanics: shear and dila-
tion. For instance, for a 3-dimensional strain, infinitesimal affine deformations
give the six independent strain quantities (exx, eyy, ezz, exy, exz, eyz) (Love,
1927). For two dimensions, the complete set of affine transformations is shown
in Figure 2.2.

It is obvious that the equilibrium of a tensegrity structure holds for rigid-body
motions, but it is less clear for the other affine transformations. This knowledge
can be used to great advantage in form finding to obtain new equilibrium shapes
(Masic et al., 2005), but it also has important consequences for static balancing
and the study of zero-stiffness modes. The above also clarifies the N ≥ d(d+1)
nullity requirement for Ω̃ found in form finding: there must be at least d(d + 1)
affine transformations in the kernel of Ω̃ if a solution for the form finding is to
be found in d-space – provided there are sufficient nodes to span d-space.

9
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2.3.2 Statically balanced zero-stiffness modes

A structure has a zero stiffness if for a given displacement vector d – in the
nullspace of the tangent stiffness matrix Kt – the following equation

Ktd = K̂d + Ω̃d

= AĜAT d + Ω̃d = 0 (2.8)

returns zero. We focus here on the situation where both AĜAT d and Ω̃d

are zero – other possibilities are discussed in section 2.3.3. We shall exclude
internal mechanisms by only considering tensegrity structures that when built
with conventional elements would be stable for the given state of self-stress.
Conventional elements are here understood to be tensile or compressive members
that have a positive modified axial stiffness. Consequently, any zero-stiffness
modes would be a result of the use of zero-free-length springs.

As shown in section 2.3.1, affine transformations of the coordinates p are in the
nullspace of Ω̃. For a conventional structure, these modes (excluding the rigid-

body motions) are stabilized by the modified material stiffness matrix K̂. For
structures with zero-free-length springs, however, the positive semi -definiteness
of Ĝ and the resulting increased nullity in K̂ will result in new zero-stiffness
modes. The key therefore is in understanding the solutions to AĜAT d = 0. If
a displacement d is length-preserving for the conventional members, then

AT d = e (2.9)

returns zero-elongations for those conventional members. Now consider that

ĜAT d = Ĝe (2.10)

always returns zeros for the zero-free-length springs and non-zero for conven-
tional members, due to the zero modified axial stiffness on the diagonal of Ĝ.
Thus, a displacement d that preserves the length of conventional elements will
satisfy ĜAT d = 0 and will hence be in the nullspace of AĜAT . Combining
these observations, it is clear that for an affine transformation that preserves the
length of conventional members, both K̂d and Ω̃d are zero and there is a stat-
ically balanced zero-stiffness mode. This is illustrated by the simple statically
balanced structure shown in Figure 2.3.

Note that when a member length remains constant, so does the tension and thus
the tension coefficient. This also follows from the fact that the stress matrix Ω̃

remains invariant under the affine transformation that results in new equilib-
rium, and therefore, so do the tension coefficients. For zero-free-length springs
the tension coefficient is equal to their spring stiffness and will therefore always
be constant, but for conventional members the only way a tension coefficient
can remain constant is when both length and tension are invariant.

Any modes in the tangent stiffness matrix are per definition infinitesimal dis-
placements. This leads to the question whether the aforementioned statically
balanced zero-stiffness modes merely hold for infinitesimal, or also for finite
deformations. The independence of the zero-free-length springs of their actual
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Figure 2.3: Example of a 2D statically balanced structure consisting of two
unconnected bars of differing lengths, and four zero-free-length springs of equal
stiffness. When the bars are rotated with respect to each other, they remain
in equilibrium and their movement thus has zero stiffness. In this example it is
clear that the statically balanced mode is a combined shear and scale operation
which preserves the bar lengths. Figure adapted from Herder (2001).

geometrical position for their contribution to Kt, suggests an affirmative an-
swer to this question. Formalization of the fact that they are indeed finite
zero-stiffness modes, takes a different approach, and will be deferred to section
4.3 as it requires additional information.

2.3.3 Additional zero-stiffness modes

Using equation 2.6 for the tangent stiffness matrix, there are two distinct ways
the structure may have zero stiffness. Either the contributions of K̂ and Ω̃

cancel out, or both are zero.

The situation where K̂d = −Ω̃d is not fully understood, and no example struc-
tures are known to the authors. For conventional structures it would also seem a
rather unlikely situation as for small strains the contributions of K̂ are generally
an order of magnitude greater than those of Ω̃. Furthermore it would require
the stress matrix Ω̃ to have negative eigenvalues, which is undesirable as it may
make the structure unstable under certain loading conditions.

Throughout the previous sections we have focused on the case where the zero-
stiffness mode is in the nullspace of both components of the tangent stiffness
matrix. When zero-free-length springs are added to the structure, the nullspace
of the stress matrix is invariant, but the nullspace of K̂ changes significantly.
If the newly introduced nullvectors coincide with an affine transformation, the
structure has zero stiffness. However, the nullspace of Ω̃ is in general not limited
to the affine transformations, and theoretically more combinations of the two
nullspaces of K̂ and Ω̃ are possible. It is beyond the scope of this paper to
systematically analyse all possible combinations that produce a zero stiffness.

The situation is considerably simpler when considering structures with a pos-
itive semi-definite stress matrix of maximal rank, which are prestress stable
when constructed with solely conventional members. Under these conditions
the length-preserving affine transformations are the only possible zero-stiffness
modes. The maximal rank condition ensures that only affine transformations
are in the nullspace of the stress matrix, and by virtue of the prestress stabil-
ity condition those are not internal mechanisms. The positive semi-definiteness
requirement ensures that there are no negative eigenvalues in the stress matrix
that can cause zero stiffness by the contributions of K̂ and Ω̃ cancelling each

11



Chapter 2

other out: K̂d = −Ω̃d. These are not considered restrictive requirements as
many classic tensegrity structures already seem to comply.

The above conditions provide an additional benefit, as they ensure that any
internal mechanisms remain stabilized by the state of self-stress throughout the
displacement along the finite affine transformation. The number of internal
mechanisms will always remain constant under an affine transformation, as the
rank of the equilibrium matrix is constant under a linear transformation (with
the exception of a projection on a lower dimension). Disregarding the latter
scenario, in all other cases the maximal rank positive semi-definite stress matrix
(which is invariant under the affine transformation) will ensure that the state of
self-stress will always impart a first-order stiffness to the internal mechanisms.

2.4 Length-preserving affine transformations

In the previous section it has been shown that an affine transformation preserv-
ing the length of conventional members is a statically balanced zero-stiffness
mode. In this section we will show that such a transformation exists if and only
if the directions of the conventional members lie on a conic. The conic form will
also prove to be useful in establishing the finiteness of the found zero-stiffness
mode.

2.4.1 Length preservation and conic form

In order to understand under which circumstances the length of a member in-
creases, decreases or stays the same under an affine transformation, we shall
investigate the squares of the lengths of the members under the affine transfor-
mation given by pi → Upi +w, where U is a d-by-d matrix, w ∈ Ed, and pi,pj

are the nodal coordinates:

L2 − L2
0 = |(Upi + w) − (Upj + w)|2 − |pi − pj |2

= (pi − pj)
T UT U(pi − pj) − (pi − pj)

T Id(pi − pj)

= (pi − pj)
T [UT U − Id](pi − pj)

= vT Qv

where Id denotes the d-dimensional identity matrix, and v = (pi − pj) is the
member direction. From this calculation it is clear that the symmetric matrix
Q = UT U − Id and its associated quadratic form determine when member
lengths increase, decrease or stay the same.

We are interested in the situation where vT Qv = 0. For the case of d = 3,
with directions vT = [vx vy vz] and components of the symmetric Q given as
qkl = qlk, this would take the following form

v2
xq11 + 2vxvyq12 + 2vxvzq13 + v2

yq22 + 2vyvzq23 + v2
zq33 = 0. (2.11)

Equation 2.11 defines a quadratic curve, which (in nondegenerate cases) corre-
sponds to the intersection of a plane with (one or two nappes of) a cone: a conic
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section (Weisstein, 1999). We can now see that a set of directions defined by

C = {v ∈ Ed |vT Qv = 0} (2.12)

forms a conic at infinity. This conic is clearly defined since scalar multiples of
a vector satisfy the same quadratic equation, including the reversal of direction
by a negative scalar. Generally one would expect C to be the set of lines from
the origin to the points of, for example, an ellipse in some plane not through
the origin (see Figure 2.4).

Supposing D is a set of directions in d-space, then there is an affine trans-
formation pi → Upi + w that is not a rigid-body motion and that preserves
lengths in the directions in D if and only if the directions in D lie on a conic
at infinity. Or conversely, when the directions of certain members (in our case
conventional elements) lie on a conic given by Q = UT U− Id, their length will
remain constant under the affine transformation U.

Of interest here are structures where all the conventional member directions lie
on a conic, as the corresponding affine transformations will have zero stiffness.
This is for instance clear for the structures shown in Table 2.1, where all the
bar directions lie on a conic and the other members are zero-free-length springs.
This leads to the observation that all the rotationally symmetric tensegrity
structures discussed by Hinrichs (1984) and by Connelly and Terrell (1995) can
have zero stiffness, when the cables are replaced by appropriate zero-free-length
springs.

2.4.2 Number of zero-stiffness modes

Using the conic form, the number of independent length-preserving affine trans-
formations of the structure can easily be determined. It holds that five points
in a plane – no three of which collinear – uniquely determine a conic. This
follows from the fact that a conic section is a quadratic curve; e.g. dividing
equation 2.11 by q11 leaves 5 constants. If there are less points, the conic is
not uniquely defined and there exists more than one conic that satisfies the
quadratic curve.

As shown previously, when all conventional member directions lie on a conic
there exists a length-preserving affine transformation which has zero stiffness.
However, if there are less than five unique member directions (i.e. unique points
on the conic section) there exists more than one conic, and thus more than one
length-preserving affine transformation. The number of additional conics (and
thus zero-stiffness modes) is found by subtracting the number of unique points
on the conic section from the five required for uniqueness.

The above can now be summarized in the following counting rule for determining
the number of zero-stiffness modes. Provided that all conventional member
directions vi lie on a conic, and with k unique points on the conic section, the
number of zero-stiffness modes is given by

k ≥ 6 → 1 zero-stiffness mode
k < 6 → (6 − k) zero-stiffness modes

(2.13)
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v1

v2

v3

origin

Figure 2.4: A conic intersected by a plane generates a conic section, which is a
quadratic curve such as an ellipse, parabola or hyperbola. The directions vi on
the conic project onto points on the conic section.

Table 2.1: Number of statically balanced zero-stiffness modes for several
rotationally symmetric tensegrity structures discussed by Hinrichs (1984). All
bar directions lie on a conic, and thus when using appropriate zero-free-length
springs the structures will have zero stiffness. The number of bar directions
on the conic and the number of zero-stiffness modes fit the counting rule
established in section 2.4.2.

Bar directions on conic 5 4 3
Zero-stiffness modes 1 2 3
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Note that only the number of member directions is relevant, not the number of
members. In other words, parallel members share a common member direction,
and project onto a single point on the conic section. Furthermore, it is as
yet unclear how to deal with two-dimensional structures, or structures that are
projected onto a lower dimension and are reduced to a planar configuration.

2.4.3 Finiteness of zero-stiffness mode

The conic form is also valuable for showing the finiteness of the statically bal-
anced zero-stiffness modes. If the conventional members lie on a conic, as by
previous discussion, there exists an affine transformation that has zero stiffness.
If we follow that zero stiffness path for an infinitesimal step, then in the new
geometry, because the step is an affine transformation, there will exist a new
conic on which the conventional members lie, and hence there will again be a
zero-stiffness mode. As a result, the statically balanced zero-stiffness mode will
be finite.

2.5 Example

This section describes the numerical analysis of the classic tensegrity structure
shown in Figure 2.5. Both the nature and number of the calculated zero-stiffness
modes fit the theory laid down in previous sections. This is further illustrated
by the construction of a physical model.

2.5.1 Numerical analysis

It is expected that when the cables are replaced by zero-free-length springs, the
structure will have three zero-stiffness modes, and that these modes are affine
transformations preserving the length of the three bars. This follows from the
observation that the structure has three bar directions on a conic, and thus by
equation 2.13 there are three independent zero-stiffness modes.

The tangent stiffness of the structure has been found using the formulation of
equation 2.6 for two different cases. Firstly, with the structure consisting of
conventional elements, and secondly, when made from conventional compressive
bars, but using zero-free-length springs as tension members. The equilibrium
configuration has been calculated with the analytical solution of Connelly and
Terrell (1995), and the level of self-stress – and thus the stress matrix – is identi-
cal for both cases. All conventional elements have a ‘stiffness’ of EA = 100N, the
horizontal springs 1N/m and the vertical springs

√
3N/m. The internal tension

of the structure is uniquely prescribed by these spring stiffnesses. The results
are presented as the stiffness of each of the eigenmodes (excluding rigid-body
motions) in Tables 2.2(a) and 2.2(b).

For the conventional structure all eigenvalues of the tangent stiffness matrix are
positive, and the stress matrix is of maximal rank. The system has an internal
mechanism, which is stabilized by the state of self-stress. This can be seen in
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Figure 2.5: Rotationally symmetric tensegrity structure. The structure has a
circumscribing radius R = 1, height H = 2 and the two parallel equilateral
triangles (nodes 1–3 and nodes 4–6) are rotated π/6 with respect to eachother.

Table 2.2: Stiffness of each of the eigenmodes, excluding rigid-body motions, for
(a) the conventional structure and (b) the structure with zero-free-length springs

as tension members. The total stiffness Kt is the sum of the contributions of K̂

and Ω̃.
(a)

Kt K̂ Ω̃

5.6304 0.0174 5.6130
27.8384 26.1960 1.6424
27.8384 26.1960 1.6424
83.2190 79.1954 4.0236
83.2190 79.1954 4.0236
107.3763 103.0749 4.3014
107.3763 103.0749 4.3014
113.8525 113.5350 0.3175
132.5068 130.4743 2.0325
132.5068 130.4743 2.0325
176.2051 170.2051 6.0000
225.4577 225.3881 0.0696

(b)

Kt K̂ Ω̃

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
5.6703 0.0267 5.6436
5.6703 0.0267 5.6436
5.7899 0.0174 5.7724
6.0000 0.0000 6.0000
6.0000 0.0000 6.0000
6.0000 0.0000 6.0000
75.5997 75.3721 0.2276
75.7193 75.3629 0.3564
75.7193 75.3629 0.3564
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Figure 2.6: Fully symmetric zero-stiffness mode, with (a) 3D view, (b) top view
and (c) side view. All displacement vectors are of equal magnitude, and with
equal z-component. In this mode the rotation angle between bottom and top
triangle remains constant throughout the displacement.

the first line of Table 2.2(a), where the K̂ component is almost zero (it is not

precisely zero because the eigenvectors of K̂ and Kt are not precisely aligned).

When zero-free-length springs are placed in the structure, three new zero-
stiffness modes appear in Kt – the first three rows of Table 2.2(b) – which are
linearly dependent on the affine transformations for shear and dilation. These
modes can be considered in a symmetry-adapted form (Kangwai and Guest,
1999) as a totally symmetric mode, and a pair of modes that are symmetric and
antisymmetric with respect to a dihedral rotation. The fully symmetric mode
is shown in Figure 2.6. It is purely dependent on scaling transformations, and
corresponds to a mode where the structure is compressed in the x-y plane and
expands in the z-direction.

In conclusion, the numerical results confirm the theoretical predictions: the
zero-stiffness modes correspond to affine transformations, the bar lengths remain
constant – Cd returned zero for the bars – and the number of introduced zero-
stiffness modes fits the counting rule established in section 2.4.2.

2.5.2 Physical model

To illustrate that the zero stiffness tensegrity structure is not merely mathe-
matical, a demonstration prototype was constructed. It does not make use of
actual zero-free-length springs, but of conventional springs that are attached
alongside the bars such that the properties of zero-free-length springs are em-
ulated. As gravity forces were not taken into account in the calculations, if
perfectly constructed, the prototype would collapse under its own weight. The
friction in the system prevents this from happening, however. As a result the
structure requires some external work to deform, but it will nevertheless remain
in equilibrium over a wide range of positions (see Figure 2.7).
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Figure 2.7: The demonstration model deformed in accordance with the sym-
metrical zero-stiffness mode. The three positions shown do not correspond to
the extremes of the working range, as further deformation is still possible.

2.6 Summary and Conclusions

This paper has investigated the zero-stiffness modes introduced to tensegrity
structures by the presence of zero-free-length springs. It was shown that under
absence of external loads and constraints, affine transformations that preserve
the length of conventional members are statically balanced zero-stiffness modes.
Those modes involve changing spring lengths, but require no energy to move,
even over large displacements. For prestress stable tensegrities with a positive
semi-definite stress matrix of maximal rank, we further showed that these are
the only possible zero-stiffness modes introduced by the zero-free-length springs.

A general existence criterion was derived, and it was shown that such length-
preserving affine transformations are present if and only if the directions of the
conventional elements lie on a conic. This geometric interpretation revealed an
entire family of tensegrity structures that can exhibit zero stiffness. A simple
counting rule was also found, which provides the number of independent length-
preserving affine transformations.

By only considering tensegrity structures, the theory in this paper has several
inherent restrictions. Future work will attempt to resolve these aspects, starting
with the inclusion of external loads and nodal constraints in the analysis of pin-
jointed structures. The next phase would be to apply the acquired knowledge
to non-pin-jointed structures, in order to describe statically balanced structures
such as the ‘Anglepoise’ lamp in a generic way.

Finally, the construction of the physical model has illustrated that this type of
structure is not yet suited for practical applications. Once difficulties such as
accuracy of spring stiffness ratio, presence of friction and overall complexity of
design have been overcome, a totally new class of structures, or mechanisms,
will be available to engineers.
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Overview of Zero Stiffness
in Prestressed Bar
Frameworks
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Abstract

When a prestressed structure exhibits zero stiffness, this is traditionally con-
sidered undesirable as it is associated with internal mechanisms. There exist,
however, other types of zero stiffness, which involve first-order changes in bar
length, and where the structure remains in equilibrium over a continuous range
of motion. This paper catalogues and describes the current state of knowledge
considering the zero-stiffness modes in prestressed pin-jointed bar structures by
systematically analysing the components of the tangent stiffness matrix.

Keywords: zero stiffness, internal mechanisms, prestressed bar frameworks,
affine transformations

3.1 Introduction

Conventional wisdom in the design of prestressed structures dictates that zero
stiffness is undesirable; it is associated with internal mechanisms, which result
in “floppy” structures. As a result zero stiffness has not been studied systemati-
cally in the past, and only occasional examples have appeared in literature (e.g.
Tarnai, 2003). This lack of attention is based on the mistaken premise that
zero stiffness is always related to internal mechanisms, and therefore always
undesirable.

21



Chapter 3

As shown in Herder (2001) there exist structures that are in equilibrium over
a continuous range of positions, and are thus neutrally stable and have zero
stiffness. A classic example is the ‘Anglepoise’ lamp, that can be placed into
any position without external force. Those statically balanced systems employ
a special type of spring that is pretensioned such that it has a zero free length
in its working range. The existence of such systems prompted research on how
to include the zero-free-length springs in pretensioned structures. Schenk et al.
(2006) described the case of zero stiffness tensegrity structures, and found an
entire class of structures that exhibit zero stiffness. The zero stiffness described
there involves changing member lengths – and thus the energy exchange among
members – and is valid over a finite range of motion.

Not only do some types of zero stiffness provide interesting engineering applica-
tions (namely those valid over a continuous range of positions), but understand-
ing the various types of zero-stiffness modes can also provide greater insight into
the mechanical properties of structures in general.

This paper complements the results in Schenk et al. (2006), and therefore limits
itself to tensegrity structures: self-stressed, unloaded and unconstrained pin-
jointed bar frameworks. This means that effects such as buckling (and corre-
sponding bifurcations) are not considered. The aim of this paper is then to
catalogue and describe the zero stiffness of free-standing prestressed structures
by systematically analysing the tangent stiffness matrix described in section 3.2
for possible zero stiffness. Two different types of zero stiffness are distinguished,
depending on how the zero stiffness is obtained, and extra attention is paid to
structures with zero-free-length springs. The paper finishes with a brief conclu-
sion and a listing of topics warranting further attention.

3.2 Stiffness of prestressed structures

For the stiffness analysis of a prestressed structure, account must be taken not
only of the deformation of the elements and the consequent changes in internal
tension, but also of the effects of the changing geometry on the orientation of
already stressed elements. This results in the tangent stiffness matrix Kt that
relates infinitesimal displacements d to force perturbations f

Ktd = f . (3.1)

The tangent stiffness matrix is well-known in structural analysis, and many dif-
ferent formulations for it exist. Different formulations with identical underlying
assumptions will produce identical numerical results, but may provide a differ-
ent understanding of the stiffness. The formulation used in this paper is derived
by Guest (2006) and it incorporates large strains. It is written as

Kt = K̂ + Ω̃

= AĜAT + Ω̃ (3.2)

where Ω̃ is the stress matrix, K̂ is the modified material stiffness matrix, A is the
equilibrium matrix for the structure and Ĝ is a diagonal matrix whose entries
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L0=l0

F0=0
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F0=kL0

l0=0

l0=L0-F0/k
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Figure 3.1: Springs with identical stiffness k and physical length L0, but with
a different rest length l0 due to the varying level of pretension F0. The springs
respectively have a (a) positive, (b) zero, and (c) negative modified axial stiff-
ness ĝ.

consist of the modified axial stiffness for each of the members. The modified
axial stiffness ĝ is defined as

ĝ = g − ω (3.3)

where g is the conventional axial stiffness and ω the tension coefficient. The
latter is defined as the tension t divided by the length l of the member: ω = t

l
.

For conventional members, ĝ will be little different from g. It will certainly
always be positive, and hence the matrix Ĝ will be positive definite. However,
for a zero-free-length spring, because the tension t is proportional to the length,
t = gl, the tension coefficient is equal to the axial stiffness, ω = t/l = g, and
the modified axial stiffness ĝ = g − ω = 0. Thus structures constructed using
zero-free-length springs will have zeros along the diagonal of Ĝ corresponding to
these members, and Ĝ will now only be positive semi-definite. This will prove
to be critical for finding zero-stiffness modes in section 3.3.1. What is more, it
is also possible for the modified axial stiffness to take a negative value. This is
the case for springs pretensioned such that they have a negative free length in
their working range. See Figure 3.1 for an overview.

A very important part is played by the stress matrix Ω̃. This matrix serves a
dual purpose in the analysis of structures: in form-finding methods for tenseg-
rities it is used to describe the equilibrium of the structure (e.g. Connelly and
Whiteley, 1996), but here it returns in stiffness analysis. This parallel allowed
the application of some ideas from form-finding to be applied to zero stiffness
analysis of tensegrity structures (Schenk et al., 2006). The stress matrix is
composed by summing the internal forces at each of the nodes, and when the
nodal coordinates of the structure are written as a vector p, the equilibrium is
expressed as

Ω̃p = 0. (3.4)

Because the equilibrium is the same for each of the d dimensions, the stress
matrix can be written as the Kronecker product of the reduced stress matrix Ω

and a d-dimensional identity matrix Id:

Ω̃ = Ω ⊗ Id. (3.5)
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Using the tension coefficients ω of each of the members – referred to as stress
in mathematical Rigidity Theory – the coefficients of the reduced stress matrix
are then given as

Ωij =







−ωij = −ωji if i 6= j, and {i,j} a member,
∑

k 6=i ωik if i = j,

0 if there is no connection between i and j.
(3.6)

Note that the stress matrix merely contains information about element connec-
tivity and tension coefficients, but no information about the geometry of the
structure.

This formulation of the tangent stiffness matrix has proven to be especially
useful, because it contains two clear links to other fields of research. The equi-
librium matrix is used by Pellegrino and Calladine (1986) to analyse prestressed
structures, and the stress matrix is of major importance in mathematical Rigid-
ity Theory (e.g. Connelly and Terrell, 1995). These overlaps facilitated the use
of ideas from both fields. Furthermore, the introduction of the modified axial
stiffness provided crucial insight in the case of zero-free-length springs.

3.2.1 Types of zero stiffness

When a prestressed structure has zero stiffness, this means that there exist dis-
placements d that require no force f to move (see equation 3.1). In other words,
the displacements are in the nullspace, or kernel, of the tangent stiffness matrix
Kt. The objective of the coming sections is therefore to identify and understand
(as far as current knowledge allows) which vectors are in its nullspace, using the
formulation of equation 3.2.

In the study of zero-stiffness modes in prestressed pin-jointed structures, a first
distinction can be made between zero-stiffness modes present in conventional
structures (i.e. caused by topology, geometry and prestress levels), and those
introduced by special elements (and specifically those with a zero rest length
within their working range). There are known examples of structures, that when
built with these elements have zero stiffness over a finite range of motion.

A further distinction is provided by the way the total stiffness can become
zero. In the present formulation of the tangent stiffness matrix (Kt = K̂ + Ω̃)
three possibilities for zero stiffness arise: (i) the contribution of both parts is
zero, (ii) the first part is positive and the second negative, and (iii) the first
part is negative (e.g. for springs with a negative rest length) and the second
positive. We shall first investigate the case where the zero stiffness mode is in
the nullspace of both K̂ and Ω̃ in section 3.3, followed in section 3.4 by the case
where both contributions cancel each other out.
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3.3 Zero stiffness and matrix nullspace

3.3.1 Nullspace of modified material stiffness matrix K̂

For conventional structures with a positive definite matrix Ĝ, the nullspace of
the modified material stiffness matrix K̂ = AĜAT is identical to that of the
compatibility matrix C = AT of the structure:

AT d = Cd = e = 0.

The nullspace consists of nodal displacements d that to a first-order approx-
imation do not result in member elongations e. These are a combination of
internal mechanisms and rigid-body motions. The presence of rigid-body mo-
tions implies that the structure is not sufficiently constrained and can move in its
entirety. The internal mechanisms can subsequently be divided into infinitesi-
mal mechanisms, which may eventually stiffen due to higher-order elongations of
the members, and finite mechanisms that involve no member elongations at all.
First-order infinitesimal mechanisms may be stabilized by the state of self-stress
(Ω̃), and the stiffness is then proportional to the level of self-stress. Higher-order
and finite mechanisms cannot be stabilized. As the tangent stiffness matrix can
also be considered as the Hessian of the energy stored in the system, detailed
study of the internal mechanisms would therefore require higher-order variations
of the energy, to determine the order of the mechanism.

For structures constructed with zero-free-length springs, things change signifi-
cantly. As Ĝ is no longer positive definite, but positive semi -definite, the nullity
of K̂ increases. These new zero stiffness modes correspond to deformations of
the structure that preserve the lengh of conventional members (i.e. members

that have a positive modified axial stiffness). As ĜAT d = Ĝe will return zeros
for the entries corresponding to the zero-free-length springs, a set of displace-
ments preserving the conventional member lengths will yield Ĝe = 0.

These are the only possible cases of zero stiffness in K̂, as summarized in
Table 3.1. Any other cases are not possible due to the orthogonality of the
nullspaces of A and AT (Pellegrino and Calladine, 1986): it is not possible for
there to be a set of member elongations AT d = e (or a linear transformation

thereof by means of the diagonal matrix Ĝ) that are in the nullspace of A.

3.3.2 Nullspace of stress matrix Ω̃

The stress matrix Ω̃ does not change when special elements are added, as it
only consists of tension coefficients for the members. It is within the power of
this matrix to stabilize the zero-stiffness modes of K̂ by imparting a first-order
stiffness proportional to the self-stress, but the nullspaces of both matrices may
also coincide and the total structure then has zero stiffness. This calls for the
understanding of all the zero-stiffness modes of the stress matrix.

As discussed in the previous section, the stress matrix cannot stabilize all in-
ternal mechanisms, and none of the higher-order or finite internal mechanisms;
these modes may therefore be in its nullspace. A second source of nullity is
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Table 3.1: Nullspace of K̂ = AĜAT .

Conventional structure Structure with zero-free-length springs

- AT d = e = 0

internal mechanisms and
rigid-body motions

- AT d = e = 0

internal mechanisms and rigid-
body motions

- AT d = e; Ĝe = 0

length-preserving for conven-
tional elements

introduced by any unstressed nodes in the structure (nodes connected by un-
stressed members). As can be deduced from equation 3.6, each unstressed node
introduces a d (dimension of space) nullity to the stress matrix.

A further source of nullity is reportedly the case of projections of the structure
onto a lower dimension (e.g. Connelly and Back, 1998). At present, this is
not yet fully understood. When translated into engineering terms, it would
for instance describe a planar configuration in 3-space, or a structure where
all nodes are collinear. How this translates into three dimensional structures
is unclear. It might be related to internal mechanisms, but this is as of yet
undetermined, and the topic warrants further investigation.

The most interesting part of the nullspace of the stress matrix, however, is con-
stituted by the affine transformations. It was shown that the equilibrium of
the structure is maintained under an affine transformation of the coordinates
(Masic et al., 2005; Connelly and Terrell, 1995), and by equation 3.4 those dis-
placements are thus in the nullspace of the stress matrix. Affine transformations
are linear transformations of coordinates (of the whole affine plane onto itself)
preserving collinearity. Thus, an affine transformation transforms parallel lines
into parallel lines and preserves ratios of distances along parallel lines, as well as
intermediacy (Coxeter, 1989, pp. 202). These transformations are well-known
to engineers under a different guise: shear, dilation and rigid-body motions.
This means that for an unconstrained structure in d-space, there are d(d + 1)
affine transformations. The affine transformations determine a lower bound for
the nullity of the stress matrix.

It should be noted that the zero stiffness modes discussed in this section are not
per definition linearly independent, and may coincide (e.g. internal mechanisms
that are affine transformations).

3.3.3 A combination of nullspaces

This section attempts to catalogue and describe the situations where the nullspaces
of both parts of the tangent stiffness matrix align. Several examples shown in
Figure 3.2 demonstrate that care has to be taken in combining the various
nullspaces discussed previously: not all combinations are possible, or may re-
quire special circumstances.

26



Overview of Zero Stiffness in Prestressed Bar Frameworks

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Two dimensional examples of prestressed structures. The basic
structure (a) is statically indeterminate and therefore prestressed. It remains
stiff when an unstressed node is added in (b) and (c). When the tension
elements are replaced by zero-free-length springs in (d), there now exists a
length-preserving affine transformation which has zero stiffness. This finite zero-
stiffness remains in (e) but when another member is added in (f) it reduces to an
infinitesimal zero-stiffness mode: the structure behaves as if it had an internal
mechanism. In both (e) and (f) the zero-stiffness mode no longer corresponds to
an affine transformation of the entire structure. If the unstressed node is moved
slightly, the structure (g) becomes rigid again. The structure (h) also has an
infinitesimal internal mechanism, but (i) suddenly yields a ‘finite’ mechanism;
the zero-stiffness mode has a limited working range, but is nevertheless finite.
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Table 3.2: Nullspace of Ω̃∗.

Conventional structure Structure with zero-free-length springs

- internal mechanisms
- d(d + 1) affine transformations (includes rigid-body motions)
- nullity due to unstressed nodes
- projections on a lower dimension

* Note that these are not necessarily linearly independent vectors.

The most obvious case of a zero-stiffness mode is a rigid-body motion, which
has no stiffness in either component of the tangent stiffness matrix. A further
clear scenario is when the internal mechanisms in K̂ are not stabilized by the
state of self-stress. This is the traditional interpretation of zero stiffness in
prestressed structures, and results in “floppy” structures. Internal mechanisms
in K̂ may also coincide with affine transformations of the structure, or zero-
stiffness modes in Ω̃ due to the unstressed nodes. These zero-stiffness modes in
the tangent stiffness matrix are finite if and only if the internal mechanism is
finite.

The zero-stiffness modes in Ω̃ caused by unstressed nodes are per definition
linked to displacements of those unstressed nodes, and thus only involve elon-
gations of conventional members (the zero-free-length springs are by definition
stressed). Those elongations therefore correspond to positive values on the

diagonal of Ĝ, which remain unchanged by the addition of zero-free-length
springs. As a result these modes cannot, by themselves, coincide with the length-
preserving modes introduced by the zero-free-length springs in K̂.

An interesting combination is where the affine transformations coincide with the
length-preserving zero-stiffness modes introduced by zero-free-length springs.
This scenario was described in detail by Schenk et al. (2006), and it was shown
that those zero-stiffness modes are finite, and that for structures with a maximal
rank positive semi-definite stress matrix they are the only possible zero-stiffness
modes. The maximal rank condition requires the nullity to be equal to the d(d+
1) affine transformations. For three dimensions it was shown that these modes
are present in a structure if and only if the conventional member directions lie
on a conic. It are these zero-stiffness modes that provide the understanding for
the statically balanced structures described in Herder (2001).

However, complications arise when the stress matrix is no longer maximal rank,
as is described in Figure 3.2. Then there exist (finite/infinitesimal) zero-stiffness
modes introduced by the zero-free-length springs – which preserve the length of
conventional members – that are no longer an affine transformation of the entire
structure. Numerical analysis of the examples suggests that the zero-stiffness
modes in the stress matrix correspond to a combination of affine transforma-
tions and displacements of the unstressed node. It is conjectured that modes
correspond to an affine transformation of the ‘stressed’ part of the structure, and
that understanding these phenomena might be a first step towards describing
non-pin-jointed structures.
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Table 3.3: Combination of nullspaces of K̂ and Ω̃.

Conventional structure Structure with zero-free-length springs

- unstabilized internal mecha-
nisms
(may coincide with affine
transformations or nullity due
to unstressed nodes)

- rigid-body motions

- unstabilized internal mecha-
nisms
(may coincide with affine trans-
formations or nullity due to un-
stressed nodes)

- rigid-body motions
- finite length-preserving affine

transformations
- length-preserving mode with

combination of affine and
unstressed modes

- more?

As the projections of the structures onto a lower dimension are currently not
sufficiently understood, the discussion of combinations with other zero-stiffness
modes would be nothing more than conjecture.

3.4 Contributions of K̂ and Ω̃ cancel out

The second scenario is where K̂d = −Ω̃d and their sum is thus zero. For
conventional structures K̂ is per definition positive semi-definite, and therefore
Ω̃ would need to have a negative eigenvalue. It should be noted that many
practical tensegrity structures have a positive semi-definite stress matrix (i.e.
no negative eigenvalues), and in those structures this scenario cannot occur.
The cancellation could theoretically occur in conventional structures, but due
to small strains the contributions of K̂ are generally an order of magnitude
greater than those of Ω̃, and this scenario therefore seems mostly of theoretical
value.

For structures with zero-free-length springs, the zeros in the Ĝ corresponding to
those elements will result in a reduced contribution of K̂ to the tangent stiffness.
As a result, the likelihood of both contributions cancelling each other out will
therefore increase. It is also theoretically possible, in the case of springs with a
negative free length and thus with a negative modified axial stiffness, that the
first part is negative and the latter positive.

Regarding these zero-stiffness modes, it should be noted that no example struc-
tures are known to the authors, and it is unknown whether the zero stiffness is
always infinitesimal, or sometimes finite.
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3.5 Conclusion

The systematic analysis of zero stiffness in the tangent stiffness matrix of pre-
stressed pin-jointed bar frameworks described in this paper complements the
results in Schenk et al. (2006). Several additional types of zero stiffness have

been described, both in the case where the mode is in the nullspace of K̂ and
Ω̃, and in the case where both contributions cancel each other out.

Although the possible zero-stiffness modes have been catalogued, the analy-
sis has possibly raised more questions than it has answered. A large number
of zero-stiffness modes introduced by zero-free-length springs are not yet fully
understood, and neither is the scenario where the contributions of both com-
ponents of the tangent stiffness matrix cancel out. Therefore several potential
directions for future research have been formulated as follows:

• Investigate the zero stiffness caused by the cancelation of the contributions
of the two components of the tangent stiffness matrix. Can these modes
be finite, or are they always infinitesimal?

• Investigate the combination of unstressed nodes and affine transformations
in the nullspace of the stress matrix. Considering only the stressed parts
of the structure for affine transformations might be a first step towards
analysing non-pin-jointed structures.

• Investigate the nullity in the stress matrix caused by projections onto a
lower dimension; how does this translate into engineering terms?

• Incorporate external forces and constraints in zero stiffness analysis in
order to describe more general structures.
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Conclusions

The findings of this Master Thesis can be summarized in the following points:

• the use of structural engineering methods to investigate statically bal-
anced tensegrity mechanisms has proven to be successful, by searching for
zero stiffness in the tangent stiffness matrix of prestressed pin-jointed bar
frameworks;

• the parallels between mathematical rigidity theory and structural engi-
neering have been exploited and provided several important insights;

• affine transformations are known to engineers as rigid-body motions, shears
and dilations;

• the equilibrium of a freestanding tensegrity structure is preserved under
an affine transformation, i.e. affine transformations are in the nullspace of
the stress matrix;

• the minimum nullity requirement for the stress matrix found in form find-
ing is now better understood, as it is formed by the affine transformations;

• for conventional tensegrity structures, zero-stiffness modes are in general
internal mechanisms and rigid-body motions;

• for tensegrity structures with zero-free-length springs as tension members,
new zero-stiffness modes are introduced, and they are termed statically
balanced zero-stiffness modes;

• affine transformations of the structure that preserve the length of con-
ventional members are statically balanced zero-stiffness modes valid over
finite displacements;

• for prestress stable structures with a maximal rank (only affine transfor-
mations in the nullspace) positive semi-definite stress matrix, those are
the only possible zero-stiffness modes;

• a structure contains length-preserving affine transformations if and only
if the conventional member directions lie on a conic at infinity;
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• if all conventional member directions lie on a conic, a simple counting rule
allows to find the number of independent zero-stiffness modes;

• numerical analysis of several classic tensegrity structures supports the de-
veloped theory;

• a systematic enumeration of possible zero-stiffness modes in the tangent
stiffness matrix yielded interesting cases which are not yet fully understood
within the current knowledge;

• the construction of a prototype has demonstrated the theory, although the
model exhibits some shortcomings, notably a high level of friction.

Recommendations

A detailed discussion of recommendations, along with some pointers, for future
research is given in Appendix F. Here the main points are recapitulated:

• extend theory to structures with external loads and constraints;

• extend theory to cover structures with unstressed nodes and other sources
of nullity in the stress matrix;

• extend theory to non-pin-jointed structures;

• clarify link to static balancing by validating (and extending) the modifi-
cation rules of Herder (2001);

• investigate range of motion of the tensegrity mechanisms;

• explore links to mechanism theory, such as the number of degrees of free-
dom of mechanisms;

• investigate constructibility and practical applications of statically bal-
anced tensegrity mechanisms.
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Appendix A

Tensegrity Equilibrium

A.1 Introduction

Rotationally symmetric tensegrity structures have been the object of study in
the past (e.g. Hinrichs, 1984; Connelly and Terrell, 1995), and seemed – and
subsequently proved – to be a good starting point for investigating specific ex-
amples of zero-stiffness tensegrities. In this appendix the analytical equilibrium
conditions for a class of rotationally symmetric tensegrity structures will be
derived.

In their overview article of form-finding methods Tibert and Pellegrino (2003)
distinguished two types of methods: the kinematic and static method; the kine-
matic methods utilize the fact that in tensegrities bar lengths reach a maximum,
and cable lengths a minimum at the equilibrium position; the static method
works from the equilibrium of forces at each of the nodes. The analytical solu-
tions to the equilibrium position will be derived via both routes, and the results
compared with Murakami (2001) (kinematic) and Connelly and Terrell (1995)
(static).

Additionally, for the three bar tensegrity structure used for the demonstration
prototype of a statically balanced tensegrity structure, the required spring stiff-
ness ratios were derived.

A.2 Equilibrium configuration

The rotationally symmetric structure under consideration is shown in Figure
A.1. It consists of n bars, connecting the vertices of two regular n-polygons
on two parallel planes, twisted over an angle α with respect to eachother. The
structure has height h, top radius rh and bottom radius r0. With these values
all aspects of the structure can be calculated.
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Figure A.1: Rotationally symmetric tensegrity structure with n bars, height h,
radii r0 and rh, and twist angle α. Figure copied from Murakami (2001).

A.2.1 Element lengths

For the calculation of the element lengths, the cosine rule was used extensively:

c2 = a2 + b2 − 2ab cos (γ). (A.1)

With equation A.1 the bar length is then written as

b2 = h2 + r2
0 + r2

h − 2r0rh cos (
2π

n
+ α), (A.2)

the vertical cable length as

l2 = h2 + r2
0 + r2

h − 2r0rh cos (α), (A.3)

and the horizontal cable lengths as (with either r0 or rh):

l20 = 2r2
0 − 2r2

0 cos (
2π

n
). (A.4)

The length of the horizontal cables will now be rewritten in a simpler form:

l0 = r0

√

2 − 2 cos (
2π

n
)

= r0

√

4 − 4 cos ( 2π
n

)

2
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= 2r0

√

1 − 1 cos ( 2π
n

)

2

= 2r0 sin (
π

n
). (A.5)

For the last step, the following goniometric relationship was used:

sin (
γ

2
) =

√

1 − cos γ

2
. (A.6)

It is now obvious that the length of the cable could immediately have been
written in the simpler form of equation A.5, as that is required to solve the
formulas at a later stage.

A.3 Twist angle

There are now two ways to calculate the twist angle α, the static and kinematic
way. Both will be discussed, but the static method will prove to be most useful
as it also allows the easy calculation of internal tensions.

A.3.1 Kinematic

The length of the cable as a function of α is:

l(α) =

√

b2 + 2rhr0

(

cos (
2π

n
+ α) − cos (α)

)

(A.7)

where the height h in equation A.3 is replaced by substituting equation A.2. At
the equilibrium configuration the cable length reaches its minimum, which can
be found by equating the derivative dl

dα
to zero. This results in

sin (
2π

n
+ α) = sinα = sin (π − α), (A.8)

and we find that

2π

n
+ α = π − α

2α = π − 2π

n

α =
π

2
− π

n
. (A.9)

The kinematic method has given us the twist angle for which the structure is in
equilibrium, but calculating the internal tensions is problematic. Therefore it is
easier to now consider the static method and equate the forces at the nodes.
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A.3.2 Static

We are considering the nodal equilibrium at node n + 1 in figure A.1, with
tension sb in the bar, tension sv in the vertical cable and s0, sh the tension in
the bottom and top horizontal cables respectively.

First we consider equilibrium in the z-direction, which merely involves the ver-
tical cable and bar:

sb

b
h +

sv

l
h = 0 (A.10)

which yields that

sv = −sb

b
l. (A.11)

Next the equilibrium in the y-direction is derived. Due to symmetry considera-
tions on the horizontal cables we can say that the contributions of the bar and
vertical cable should cancel eachother out. This analysis yields:

sin (α)rh

sv

l
+ sin (

2π

n
+ α)rh

sb

b
= 0 (A.12)

which with equation A.11 becomes

rh

sb

b
(sin (

2π

n
+ α) − sinα) = 0. (A.13)

For this to hold for any α we obtain

sin (
2π

n
+ α) = sinα = sin (π − α) (A.14)

and once again find that

2π

n
+ α = π − α

2α = π − 2π

n

α =
π

2
− π

n
. (A.15)

So, as expected, both the kinematic and static method produce the same twist
angle.

A.4 Equilibrium tensions

With the equilibrium twist angle now known, we wish to find the corresponding
internal tensions. It was already shown in equation A.11 that

sv = −sb

b
l.
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To calculate the tensions in the horizontal cables, the force equilibrium in x-
direction at node n + 1 is considered. The contributions of the vertical cable
and bar to that equilibrium, fx,vert, can be written as:

(r0 − cos αrh)
sv

l
+

(

r0 − cos (
2π

n
+ α)rh

)

sb

b
= fx,vert (A.16)

which, when using equation A.11 becomes:

(

cos α − cos (
2π

n
+ α)

)

rh

sb

b
= fx,vert. (A.17)

With α = π
2 − π

n
we can write

(

cos (
π

2
− π

n
) − cos (

π

n
+

π

2
)
)

rh

sb

b
= fx,vert (A.18)

and using the following goniometric relationships

cos (γ + β) = cos γ cos β − sin γ sin β

cos (γ − β) = cos γ cos β + sin γ sin β

we find

(

sin (
π

n
) + sin (

π

n
)
)

rh

sb

b
= fx,vert

fx,vert = 2 sin (
π

n
)rh

sb

b
. (A.19)

Next, the effect of the tensions in the horizontal cables in the x-direction can
be written as:

2

(

r0 − cos (
2π

n
)r0

)

s0

l0
= fx,horz

fx,horz = 2

(

1 − cos (
2π

n
)

)

r0s0

l0
. (A.20)

Now the two contributions are summed, and the solution to fx,vert +fx,horz = 0
yields:

2

(

1 − cos (
2π

n
)

)

r0s0

l0
= −2 sin (

π

n
)rh

sb

b
(

1 − cos (
2π

n
)

)

r0s0

2r0 sin (π
n
)

= − sin (
π

n
)rh

sb

b
(

1 − cos (
2π

n
)

)

s0 = −2 sin2 (
π

n
)rh

sb

b
(

1 − 1 + 2 sin2 (
π

n
)
)

s0 = −2 sin2 (
π

n
)rh

sb

b

s0 = −rh

sb

b
(A.21)
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where use is made of

cos (2γ) = 1 − 2 sin2 (γ). (A.22)

Reasoning that in A.21 the rh has to be replaced by r0 to obtain the tension sh

all the tensions in the system can be written as follows:

[sv sh s0] = −sb

b
[l r0 rh] (A.23)

which corresponds to the results found by Murakami (2001). We can now cal-
culate all tensions in the tensegrity structure.

A.5 Literature comparison

The above equilibrium configuration and tensions have been derived before in
literature, although the full derivation is never given. To check their validity,
the above results will be compared with two literature sources.

A.5.1 Murakami (2001)

Murakami used the kinematic approach to derive the twist angle. He did not
explicitly derive the internal tensions, but stated them in the form of equation
A.23.

A.5.2 Connelly and Terrell (1995)

Connelly and Terrell (1995) derived the equilibrium equations and internal ten-
sions for more generic connectivity cases than Murakami, but with fixed radius
for top and bottom polygons. Their classification scheme is based on Hinrichs
(1984) and it is advisable to read the latter paper to understand the scheme.

They define two polygons with n vertices on two planes at distance h, and
the connectivity is determined with two integers j, k = 1, 2, . . . , n − 1. The
tensegrities are classified as

Pn(j, k),

where n determines the number of nodes on each polygon, j determines the
connectivity between upper and lower polygon, and k determines connectivity
within a polygon. Hinrichs (1984) described k as the number of successive ver-
tices to where the horizontal cables are attached, and j the number of successive
vertices counting from the bottom of the strut, to which the top of the strut is
connected by the vertical cable. See Figure A.2.

For these tensegities, Connelly and Terrell (1995) derive the formulas for the
stress ω in the members – which is equivalent to the engineering force density
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Figure A.2: Hinrichs’ method of classifying rotationally symmetric tensegrities.
Figure copied from Hinrichs (1984).
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Figure A.3: Three bar rotationally symmetric tensegrity structure.

or tension coefficient. They are given as functions of a chosen positive value for
the stress in the horizontal cables:

ωhor = γ > 0 (A.24)

ωver = 2γ
sin2

(

k
n
π
)

sin
(

j
n
π
) (A.25)

ωbar = −2γ
sin2

(

k
n
π
)

sin
(

j
n
π
) (A.26)

The structures considered by Murakami would have k = 1 and j = 1, and
equivalence with equation A.23 can then quite easily be established.

A.6 Spring stiffness ratios

The three bar tensegrity used for the demonstration model of a statically bal-
anced tensegrity, is shown in Figure A.3. In the terminology of Hinrichs (1984)
it is a P3(1, 1) tensegrity, or when we adhere more strictly to his convention: a
P3(−1, 1), as it is actually a mirror image of a P3(1, 1) tensegrity.

In the analysis of statically balanced tensegrity structures the cables are replaced
by zero-free-length springs. This leads to the question what the stiffness (ratios)
of those springs must be in order to preserve equilibrium. Our case is somewhat
simplified as r0 = rh = r and s0 = sh = shor. Using equation A.23 we then find
that

shor

r
=

sv

l
= Kver
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Khorlhor

r
= Kver

lhor

r
=

Kver

Khor

2r sin (π
n
)

r
=

Kver

Khor

2 sin (
π

n
) =

Kver

Khor

(A.27)

and for our tensegrity prism with n = 3 we obtain:

2 sin (
π

3
) =

Kver

Khor

=
√

3 (A.28)

This could also be derived immediately from equation A.25 when we realize that
the stiffness of a zero-free-length spring is identical to its tension coefficient; with
j, k = 1 and n = 3, it results in the same value for the spring stiffness ratio.

A.7 Conclusion

The derivation of the equilibrium conditions for the rotationally symmetric
tensegrities was of great use to the research, as it provided a whole class of
structures for which the solutions are known analytically. This class of struc-
tures eventually proved to be especially interesting to zero-stiffness research as
it was shown that the entire class can be statically balanced by replacing the ca-
bles with zero-free-length springs. What is more, the analytical solutions made
detailed analysis possible for the design of the three bar demonstration model,
as described in Appendix D.
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Tangent Stiffness Matrix

B.1 Introduction

The objective of this appendix is to provide a different route to the geometri-
cally non-linear tangent stiffness matrix found in Guest (2006) and to identify
some of the underlying assumptions in its derivation. Guest’s work introduces
the concept of a ‘modified axial stiffness’ in the formulation of the tangent
stiffness matrix for prestressed pin-jointed structures. This variable provides
valuable (and otherwise not immediately intuitive) insight into the special case
of introducing zero-free-length springs (Herder, 2001) to structures.

Due to the fundamental importance of this step in the study of zero-stiffness
structures with zero-free-length springs it was deemed relevant to verify the
resulting tangent stiffness matrix via another route: geometrically non-linear
Finite Element Analysis. Literature on non-linear FEA (e.g. Crisfield, 1991) is
known to be meticulous in keeping track of deformed and undeformed lengths
during the creation of the tangent stiffness matrix. This will lead to a slightly
more complex formulation, from which it is possible to establish which assump-
tions were used in Guest (2006).

B.2 Modified axial stiffness

Figure B.1 shows a free body diagram of a bar in three-dimensional space. The
external forces f1 and f2 are in equilibrium with the internal bar tension t, and
the nodes have position vectors, x1 and x2.

The equilibrium at the two nodes 1 and 2 can be expressed in terms of the bar
tension t and the unit vector n = (x1 − x2)/l,

f1 = nt (B.1)

f2 = −nt. (B.2)
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Figure B.1: A single bar floating in space, connecting two nodes x1 and x2.
Figure copied from Guest (2006).

Alternatively, with a tension coefficient or force density defined as t̂ = t/l, the
equilibrium can be rewritten as

f1 = (x1 − x2)t̂ (B.3)

f2 = (−x1 + x2)t̂. (B.4)

These equilibrium equations are now differentiated with respect to the nodal
coordinates (effectively a Jacobian matrix) which will develop into the tangent
stiffness matrix,

∂f

∂x
=







∂f1i

∂x1i

. . . ∂f1i

∂x2k

...
. . .

...
∂f2k

∂x1i

. . . ∂f2k

∂x2k






(B.5)

with

f =

[

f1
f2

]

and x =

[

x1

x2

]

where the vectors fa and xa are 3-dimensional, with corresponding sub-indices
i, j, k. For the sake of brevity, the calculation will only be continued for the top
left quarter of the Jacobian; a full derivation is provided in Guest (2006). Now,
using equation B.3 we obtain

∂f1

∂x1
↔ ∂f1i

∂x1j

= (x1i − x2i)
∂t̂

∂x1j

+ δij t̂ (B.6)

where δij is the Kronecker delta

δij ≡
{

0 for i 6= j
1 for i = j

. (B.7)
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This can be simplified by observing that

∂t̂

∂x1j

=
dt̂

dl

∂l

∂x1j

=
dt̂

dl
nj , (B.8)

by rewriting dt̂
dl

as

dt̂

dl
=

d(t/l)

dl
=

1

l

(

dt

dl
− t̂

)

, (B.9)

and by considering that dt/dl is equal to the axial stiffness g = EA0

l0
(unless a

cable is at its rest length), resulting in

dt̂

dl
=

g − t̂

l
(B.10)

which simplifies even further when the modified axial stiffness ĝ = g − t̂ is
introduced, giving

dt̂

dl
=

ĝ

l
. (B.11)

Returning to equation B.6 and using the results in equations B.8 and B.11 we
arrive at

∂f1i

∂x1j

= niĝnj + δij t̂ (B.12)

or, in vector form

∂f1

∂x1
= nĝnT + t̂I. (B.13)

When the above calculations are performed for the entire Jacobian, the tan-
gent stiffness matrix of a single prestressed bar, relating small changes in nodal
position to small changes in nodal forces can be written as

Ks =

[

n

−n

]

[ĝ]
[

nT −nT
]

+ t̂

[

I −I

−I I

]

. (B.14)

With

as =

[

n

−n

]

; Ss = t̂

[

I −I

−I I

]

this becomes

Ks = as[ĝ]aT
s + Ss (B.15)

where the second part is referred to as the stress matrix in mathematical litera-
ture. It should be noted that in the case of zero-free-length springs the modified
axial stiffness is equal to zero, because the tension coefficient t̂ is identical to
the constant spring stiffness of the zero-free-length spring, Kzfl. This means
that only the stress matrix is relevant in those situations; this implies that for
zero-free-length springs merely topology and not geometry is relevant.
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B.3 Geometrically non-linear FEA

The derivation of the tangent stiffness matrix in this section is largely based on
calculations in Crisfield (1991), but with notations adapted to those in Guest
(2006) for ease of comparison.

B.3.1 Strain of a bar element

The initial length l0 and deformed length ln of the bar are written as

l20 = (x1 − x2)
T (x1 − x2) (B.16)

l2n = (x′
1 − x′

2)
T (x′

1 − x′
2) (B.17)

where x′
a is the set of displaced coordinates for node a, related to the initial

coordinates by the nodal displacements pa

x′
a = xa + pa. (B.18)

For computational ease, equation B.17 will henceforth be written as

l2n = x′T Ax′ (B.19)

with

A =

















1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

















and x′ =

















x1i

x1j

x1k

x2i

x2j

x2k

















′

.

The engineering strain is defined as

ǫ =
ln − l0

l0
. (B.20)

Now, when keeping equations B.20 and B.19 in mind, the following can be
derived:

∂ǫT

∂p
=

1

l0

∂lTn
∂p

=
1

l0

1

ln
Ax′ =

1

l0ln
c(x′) (B.21)

with

c(x′) =

















x′
12i

x′
12j

x′
12k

−x′
12i

−x′
12j

−x′
12k

















and x′
12i = x′

1i − x′
2i. (B.22)
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Note the similarity of c(x′) with the equilibrium vector as defined in section
B.2. Their relation can be written as

c(x′) = ln

[

nn

−nn

]

= lnas. (B.23)

B.3.2 Equilibrium equations

The virtual work principle will be used to derive the equilibrium equations, by
equating the external work δWu as a result of nodal forces q and the internal
work δWi as a result of member elongations:

δWu = δWi

δpT q = δpT

∫

σ
∂ǫ

∂p
dV

q =

∫

σ
∂ǫ

∂p
dV = A0l0σb =

σA0

ln
c(x′) = λ

σA0

l0
c(x′) (B.24)

with

λ =
l0
ln

. (B.25)

B.3.3 Tangent stiffness matrix

Presently the tangent stiffness matrix can be derived,

Kt =
∂q

∂p
=

A0

ln
c(x′)

∂σT

∂p
+

σA0

ln

∂c(x′)

∂p
− σA0

l2n
c(x′)

∂ln
∂p

. (B.26)

It is clear that the tangent stiffness matrix consists of three individual matrices;
the first is the linear stiffness matrix, the other two form the geometric stiffness
matrix

Kt = Kt1 + Ktσ1 + Ktσ2. (B.27)

Linear stiffness matrix

The first term in equation B.26 is the linear stiffness matrix, and when taking
into account that

∂σ

∂p
= E

∂ǫ

∂p
= EbT =

E

l0ln
c(x′)

T
(B.28)

the linear stiffness matrix becomes

Kt1 =
EA0

l0l2n
c(x′)c(x′)

T
=

EA0

l30
λ2c(x′)c(x′)

T
. (B.29)
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Geometric stiffness matrix

Keeping in mind that ∂c(x′)
∂p

= A the second term in equation B.26 can be
rewritten as

Ktσ1 =
σA0

l0
λA. (B.30)

The last term in equation B.26 can also be rewritten, because with equation
B.21 it holds that

∂ln
∂p

=
1

ln
c(x′)

T
(B.31)

which results in

Ktσ2 = −σA0

l2n
c(x′)

∂ln
∂p

= −σA0

l30
λ3c(x′)c(x′)

T
. (B.32)

B.4 Comparison

Now it is time to compare the tangent stifness matrix found in Guest (2006) to
the one derived in the previous section

KT = as[ĝ]aT
s + t̂

[

I −I

−I I

]

(B.33)

where

as =

[

n

−n

]

; t̂ =
t

l
; Ss = t̂

[

I −I

−I I

]

and importantly the modified axial stiffness is

ĝ = g − t̂ =
EA0

l0
− t̂. (B.34)

These results are now to be compared with equations B.29, B.30 and B.32:

Kt1 =
EA0

l30
λ2c(x′)c(x′)

T

Ktσ1 =
σA0

l0
λA

Ktσ2 = −σA0

l30
λ3c(x′)c(x′)

T
.
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Bearing in mind equation B.25, λ = l0
ln

, the equations become

Kt1 =
EA0

l0l2n
c(x′)c(x′)

T
(B.35)

Ktσ1 =
σA0

ln
A (B.36)

Ktσ2 = −σA0

l3n
c(x′)c(x′)

T
. (B.37)

When using equation B.23, c(x′) = lnas, these can be rewritten into

Kt1 =
EA0

l0
asa

T
s (B.38)

Ktσ1 =
σA0

ln
A (B.39)

Ktσ2 = −σA0

ln
asa

T
s . (B.40)

Finally, when it is observed that σA0

ln
is equal to t̂ and using g = EA0

l0
the

equations can be rewritten as:

Kt1 = as[g]aT
s (B.41)

Ktσ1 = t̂A (B.42)

Ktσ2 = −as[t̂]a
T
s . (B.43)

Now it is obvious that Ktσ1 is identical to the stress matrix Ss and when equa-
tions B.41 and B.43 are combined they produce the first term from equation
B.33.

B.5 Conclusion

Concluding, the two approaches to the tangent stiffness matrix provide identical
results, given the assumption that the length l in Guest (2006) is equal to the
deformed length ln. This is the case as the bar is assumed to be pretensioned
and is thus already in a deformed state.

Unfortunately, most formulations of the tangent stiffness matrix used in tenseg-
rity literature are not directly compatible with the formulation using the mod-
ified axial stiffness, as they ignore the contribution of equation B.43 due to a
small strain assumption. In the case of zero-free-length springs, that assumption
is no longer valid and the present formulation is required. By introducing the
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modified axial stiffness, the derivation used in Guest (2006) provides a valuable
insight regarding the use of zero-free-length springs, which is harder to recognize
when using the traditional FEA approach to the tangent stiffness matrix.

It must be added that the use of a global reference frame makes it easier to
arrive at the tangent stiffness formulation mentioned above, compared to the
use of local coordinates on the bars and performing coordinate transformations
at a later stage (Crisfield, 1991, section 3.6).
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MATLAB Code Description

C.1 Introduction

The main objective of the MATLAB program included on the CDROM is to
calculate the tangent stiffness matrix of a tensegrity structure, and analyse its
zero-stiffness modes. The code is commented throughout, and should be self-
explanatory for future users reasonably well-versed in the topic. Nevertheless, a
brief outline of the code will be given, some custom functions will be discussed in
more detail, and finally, certain noteworthy parts of the code will be highlighted.

C.2 Code outline

The geometry of the tensegrity structure is specified in a separate file, and is
defined by the two structure arrays lmnt and node. The lmnt array contains
information about element type, node connectivity, stiffness and tension; the
node array contains nodal coordinates.

With these properties of the structure known, the tangent stiffness matrix

is calculated, and its eigenmodes and eigenvalues are investigated. The stiffness
of each of the modes is decomposed into the contributions of the modified ma-
terial stiffness matrix and the stress matrix to gain additional insight. As the
structures are modelled free-standing, there are at least 6 rigid-body motions

present in the zero-stiffness modes, which are subsequently removed by means
of a QR-decomposition. The QR-decomposition is further utilized to check
the linear dependence of the remaining zero-stiffness with the affine trans-

formations of the structure. This numerically verified the developed theories
concerning zero stiffness.

Additionally, the program includes the symmetry analysis (Kangwai and
Guest, 1999) of a three bar rotationally symmetric tensegrity, which yields the
zero-stiffness modes in a symmetry-adapted form. These symmetry-adapted
modes are then used for performing a small step along the zero-stiffness path,
which cannot be solved directly because the stiffness matrix is singular, and thus
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requires the use of the pseudo-inverse and several iterations until equilibrium
is restored.

Limitations

Some remarks regarding the applicability of the code are in order. The code was
written in tandem with the increasing understanding of zero-stiffness tensegrity
structures, and was afterwards rewritten for more general applicability. As a
result the code is not as versatile as one could hope, and it is for instance hard-
coded to 3-dimensional structures. The symmetry analysis is written specifically
for the three bar tensegrity structure and applying the routine to other struc-
tures will give nonsensical results. Finally, the path tracking routine (which
aims to follow a zero-stiffness mode) is currently limited to only one step, be-
cause the newly calculated equilibrium position is no longer precisely symmetric
and the symmetry analysis subsequently returns nonsensical values. This could
be improved by correcting the intermediate iterations for symmetry, but it was
considered beyond the scope of this program.

C.3 Custom functions

[K,S,A,G] = Kt extra(lmnt,node) The Kt extra function calculates the tan-
gent stiffness matrix for a structure given by lmnt, node. The function
returns the various components of the tangent stiffness matrix as used in
Guest (2006): the modified material stiffness matrix K, the stress matrix
S, the equilibrium matrix A and the modified material matrix G. This
provides all the necessary information to fully analyse the stiffness of the
structure. The tangent stiffness matrix is subsequently easily calculated
as Kt = K + S.

drawtens(lmnt,node,‘off’,‘orig’) This function creates a 3-dimensional
image of the tensegrity given by lmnt, node in the current figure. It
takes two additional arguments as strings. The first determines whether
or not to plot the element and node numbers, and takes ‘on’ and ‘off’

as values. The second determines whether to plot the structure in its
original or displaced position, respectively indicated by solid and dashed
lines, and takes takes the values ‘orig’ and ‘disp’.

displacement vectorplot(node,disp) The nodal displacements of a stiffness
mode can be plotted as a vectors, by using this function. The displace-
ments disp are a column vector with xyz displacements for all nodes.
The function uses the internal MATLAB function quiver3 to actually
plot the vectors.

lengths(lmnt,node) This function returns the lengths of the elements, which
is of use for checking the length-preserving properties of the zero-stiffness
modes.

nodalforces(lmnt,node) This function can be used to check the equilibrium
of the tensegrity structure by calculating the resulting nodal forces at each
of the nodes.
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C.4 Various remarks

Symmetric tangent stiffness matrix By virtue of its construction, the tan-
gent stiffness matrix should be symmetric. In practice this was not always
precisely the case and the analysis would yield complex-valued eigenvalues,
which are meaningless in a static analysis. To circumvent this problem,
the tangent stiffness matrix is explicitly symmetrized by averaging the
sum of Kt and its transpose KT

t .

QR-decomposition An important part in the zero stiffness analysis is played
by the QR-decomposition; among other things it is used to remove the
rigid-body motions from the zero-stiffness modes. The QR-decomposition
is provided by MATLAB and splits up a matrix A in an upper triangular
matrix R of original dimension, and a unitary matrix Q so that A = QR.
In practice it makes it possible to identify the linear dependence of various
vectors, by performing a QR-decomposition on the juxtaposed vectors: if
the resulting R-matrix is a strictly diagonal matrix, all vectors are inde-
pendent. If there are off-diagonal elements, there is a linear relationship
between the corresponding column vectors in Q.

Tangent space The tangent stiffness matrix is only valid over infinitesimal dis-
placements, i.e. the eigenmodes are in tangent space. When the rigid-body
motions are removed from the zero-stiffness modes, these must therefore
also be in tangent space. In practical terms this means that the con-
ventional rotation matrix cannot be used, and that the rotational modes
are given by the cross-product of the nodal positions and the unit direc-
tion vectors of the principal axes. It can quite easily be verified that the
cross product is essentially the same as the derivative of the conventional
rotation matrix, at zero rotation angle.

C.5 Conclusion

The MATLAB program was initially not written as a general purpose FEA

analysis tool for tensegrity structures, but specifically crafted for the analysis
of the three bar rotationally symmetric tensegrity structure. In that sense the
program definitely served its purpose, as it not only provided insights into zero-
stiffness structures prior to the development of the underlying theory, but also
allowed for the verification of the theory by examining specific example struc-
tures. The code was later rewritten to accommodate more general functions
and the rewrite resulted in the current form, of which the stiffness section of
the code can be used for the analysis of any free-standing tensegrity structure.
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Prototype Design

D.1 Introduction

Based on the theory described in Chapter 2, a demonstration prototype was
constructed. It was built not only to verify the developed theory, and to demon-
strate that it is actually possible to physically build these structures, but also
to get a feel of the challenges that will be encountered when constructing these
systems.

The design process turned out to be more complex than anticipated, and in-
volved the balancing of various conflicting design considerations. A major issue
was the fact that gravity is not taken into account in the theory, and the struc-
ture was therefore to be limited in size to minimize the effect of the mass of the
structure. On the other hand, various other constraints provided a lower bound
to the dimensions of the structure.

This appendix will describe the design process of the prototype, by first outlining
the conceptual design in Section D.3, and subsequently detailing the final design
in Section D.4. The latter chiefly involved establishing suitable dimensions to
fit the components, and still obtain a sufficient range of motion. Section D.5
provides a brief evaluation of the final design, as well as some pictures of the
prototype.

D.2 Design requirements

An important purpose of the prototype is to demonstrate the mechanism-like
properties of this class of structure. Consequently the range of motion was (qual-
itatively) required to be ‘sufficiently large’ to clearly visualize those properties.
Actually quantifying the desired range of motion proved to be so intertwined
with the dimensions of the structure, that it was not considered until the spec-
ification of the dimensions in Section D.4.

A major requirement for the prototype is easy adjustment of the parameters,
so that the balancing properties can be tuned. This translates into adjustable
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Figure D.1: Three bar rotationally symmetric tensegrity structure used for the
prototype; when all cables are replaced by zero-free-length springs the structure
is statically balanced.

attachment points for the springs and wires, as well as some control over the
friction in the system. On one hand the aim was to reduce friction as far as
possible, in order to get as close as possible to a true zero-stiffness structure.
On the other hand, some control over friction would be needed to overcome the
effects of gravity forces.

D.3 Prototype description

The structure chosen for the prototype was the three bar rotationally symmetric
tensegrity structure shown in Figure D.1. Not only is this structure instantly
recognizable to people working in the field of tensegrities and often used as
a module for larger structures, it also has relatively few components, which
simplified the design and construction process.

D.3.1 Conceptual design

For the static balancing of the tensegrity structure, the use of springs with a zero
rest length is a condition sine qua non. However, the prototype does not actually
feature pretensioned zero-free-length springs, and their properties are emulated
by means of regular non-pretensioned springs. This choice is motivated by
the manufacturing difficulties of zero-free-length springs, and the physical rest
length of the springs which would unnecessarily limit the range of motion of the
structure. The properties of the zero-free-length spring are emulated by running
the wire over the endpoint of the bar, to a conventional spring (Herder, 2001).
By correctly choosing the total wire length, the spring will be at its rest length
when the endpoint of the wire coincides with the endpoint of the bar, and thus
the tension will be proportional to the ‘length’ of the wire between the two bars
it connects.

This translates into a design (schematically shown in Figure D.2) where wires
run over a yarn guide on the endpoint of the bar, wrap around a pulley attached
to the spring, and are fixed at a flange. This pulley construction halves the
necessary elongation of the spring, so the springs would actually fit on the bar.
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Figure D.2: Conceptual design of the bars of the tensegrity structure. Only
one spring is shown, but two more are attached in similar manner, along the
circumference of the flanges. Two springs (vertical and horizontal) are attached
on one end, and one (horizontal) on the other. Note that this image is not to
scale.

Figure D.3: The prototype with the springs corresponding to a single bar; this
is identical for each of the three bars. The angles under which the springs are
attached around the bar circumference are determined in Section D.4.

The other end of the wire is attached to a small pin inside the bar. As the
total structure consists of three bars and nine springs (three horizontal and
six vertical), each bar therefore has three springs attached: a ‘horizontal’ and
‘vertical’ spring on one end, and a ‘horizontal’ on the other (see Figure D.3).

Spring design

Unlike many spring applications, the precise spring stiffness was not relevant, as
the springs balance eachother out. A crucial property of the springs, however, is
the required spring stiffness ratio between the horizontal and vertical springs as
calculated in section A.6: the vertical spring must be

√
3 times stiffer than the

horizontal spring. What is more, most off-the-shelf springs are pretensioned to
some degree. This would unnecessarily complicate the assembly of the structure,
as the levels of pretension would have to be taken into account for the required
wire length. The combination of these factors led to the decision to custom
make the springs without pretension.

As the springs are custom made, further specific requirements could be made
to the ends of the springs to facilitate the design of the total prototype (see
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Figure D.4: Spring design: one end has a small teflon wheel attached, the
other end a threaded rod for adjustability. The endpoint wires are twisted
orthogonally to eachother.

Figure D.4). On one end a small threaded rod is attached to the spring, making
adjustment of the spring position possible. The other end of the spring is twisted
orthogonally to the spring body, so the pulley (a grooved teflon wheel) can
directly be attached.

Adjustability

The structure can be tuned quite easily by adjusting the position of the spring,
as well as the attachment of the wire, with respect to the flanges. This dual
adjustability makes rough (spring attachment) and fine (wire attachment) ad-
justment possible. All adjustments are made by simply turning a nut.

D.4 Design detailing

This section describes the detailing of the final prototype design. First the bar
dimensions are determined (with special attention to the range of motion of the
structure), before the other components are described and finalized.

D.4.1 Range of motion

All calculations on the range of motion are performed using the equilibrium
equations as found in Appendix A, based on the assumption that the structure
is deformed in its fully symmetric zero-stiffness mode and remains symmetric
throughout its deformation. The working range of the structure is then expressed
in terms of a generalized parameter, the ratio between height h and radius r
of the structure: h/r. It is very difficult to define a ‘sufficient’ h/r range of
motion, but some idea will be given in the following section.

D.4.2 Bar dimensions

Bar length

Establishing the bar length involved balancing various factors. An upper bound
was given by the increased weight of the structure, and although this was not
quantified, it meant that the objective was to minimize the size of the structure,
but at the same time maintain a sufficient range of motion. The range of motion
is limited by a variety of factors. These factors will be discussed in detail, and
by means of Figures D.11 to D.19 the constraints were translated into a suitable
choice of bar length.
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10mm + 78% + 10mm

function of flange diameter

Figure D.5: Trade-off of design dimensions. The minimum required distance be-
tween the flanges conflicts with the desired distance of the flange to the endpoint
to avoid contact between the flange and the wires.

spring length + elongation As can be seen in figure D.12, the maximum
spring elongation is 47% of the bar length, and assuming that is at 150%
elongation, the spring rest length is 31% and the total spring length at
maximum elongation is 78% of the bar length. This determines the mini-
mum distance between the flanges, along with some ‘dead’ length for the
spring attachment and flange width. The latter was estimated at 10mm at
each end. The above calculation implicitly uses another constraint, that
of the maximum possible spring elongation of 150%. If that value can-
not be reached, a larger distance is required between the flanges to reach
a similar range of motion, which conflicts with the wire/flange clearance
discussed further down.

wire length The wire length maximally reaches a value of 98% of the bar
length (see Figure D.11) and when the spring is fully at rest length that
length of wire should fit on the bar. As the wire is halved by the pulley,
that requires 98/2=49% of the bar length, and with the spring rest length
of 31% that totals to about 80%. The distance from the endpoint of
the bar to the flange should be subtracted from that percentage, as some
wire length is stored there as well. As a result, the 78% flange distance
described above seems to be sufficient.

bar clearance During displacement, the bars with the springs might touch
eachother. The likelihood can be reduced by choosing the total diameter of
bar and springs as small as possible, but nevertheless a minimum clearance
between the bars is required, in order to obtain a certain working range.
The minimum required bar clearance is calculated at 30mm from heart to
heart of the bars, working on the assumption that both the spring and bar
diameter are 10mm, and that they lie side by side. That yields a certain
working range, as can be found in Figure D.16, which is mostly limited in
the lower end of the h/r ratio range.

flange and wire clearance During displacement the wires of the structure
might collide with the flanges to which the spring and wires are attached;
thus limiting the range of motion. The flanges couldn’t be moved away
from the endpoint indefinitely to avoid contact, as that would conflict
with the minimum required distance between the two flanges. Another
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Lvirtual
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α

Figure D.6: Virtual length and angle assumption in calculations.

approach would be to reduce the diameter of the flange, but that is deter-
mined by the diameter of the spring.

The angle between bar and wire is plotted in Figure D.17, and this was
used to create Figure D.19 which shows the required distance of the flange
from the endpoint, for three different flange radii. The available endpoint
length of three bar lengths was also plotted: that is 11% of bar length
minus 10mm of ‘dead’ length required for spring attachment.

NB: Some notes are in order with regard to this calculation, as it implies
a false sense of accuracy. First of all, because the wires exit from an offset
due to the bar diameter, there is a ‘virtual’ bar length, which should really
be used for calculations of the angle. Secondly, the angle is taken from the
heart line of the bar, and that is also how the required endpoint distance is
calculated (see Figure D.6). These effects have conveniently been ignored.

Let us first summarize the above described constraints, before they are trans-
lated into a choice of bar length:

• minimum required flange distance of 78% plus a ‘dead’ length of 20mm;

• an estimated required clearance of 30mm;

• an estimated required flange radius of ∼15mm.

Using Figure D.16 and D.19, and with the consideration that a sufficient range
of motion would be h/r = [0.5 . . . 4], we find a bar length of 450mm, provided
the flange radius is maximally 15mm. This h/r ratio can be translated into
a practical height and radius range by means of Figure D.14. When realizing
that the width of the structure is roughly

√
3R, that translates into a height

range of 110 . . . 410mm, and width range of 175 . . . 390mm for a bar length of
450mm. This range of motion was deemed sufficiently large to visualize the
mechanism-like properties of the system.

Bar diameter

Based on the available diameter yarn guides in the ascotex catalogue, the
decision was made to use bars with an inner diameter of 6mm, which corresponds
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to an inner diameter of about 3.2mm for the yarn guide; this was deemed
sufficient to guide three wires through. Next was the choice of material and
wall thickness of the tube. Two options are compared in Table D.1.

Table D.1: Comparison of two bars; aluminium and steel with different wall
thickness.

Steel Aluminium

Density (kg/m3) 7900 2700
Young’s modulus 200E+09 70E+09

Bar properties

Inner (m) 0,006 0,006
Outer (m) 0,007 0,008
Length (m) 0,450 0,450
Weight(kg) 0,036 0,027

Critical Load

Inertia 5,42E-011 1,37E-010
Pcr(N) 528 468

With the inner diameter fixed at 6mm, the two options were steel and aluminium
with respectively a wall thickness of 0.5 and 1mm. The weight and Euler buck-

ling load were calculated for a bar length of 450mm with Pcr = π2EI
L2 . The

aluminium bar has a slightly lower buckling load, but is about a third lighter,
and was therefore chosen. Note that the axial stiffness of the bars is irrelevant
as the lengths will remain constant throughout the displacement.

D.4.3 Springs

Some aspects of the spring design were already discussed in Section D.3, such as
the spring stiffness ratio of

√
3, and the wish for the springs to be untensioned.

Several more aspects had to be taken into consideration when designing the
definitive springs: a maximum allowed spring stiffness is imposed by the buckling
load of the bar, and the springs have to be able to extend at least 150% of their
rest length.

Maximum stiffness

To calculate the maximum spring stiffness in order not to exceed the buckling
load of the bar, a relatively large safety factor of 10 was taken to take into
account excentric loading. This provides an upper bound for the forces that
can be exerted by the spring on the bar. Using Figure D.15 and with the
vertical spring stiffness

√
3 times higher than the horizontal spring stiffness, the

maximum exerted (normalized) force on the bar (with two horizontal and one
vertical spring) can be found at h/r = 1.7. At that point the elongation of all the
springs is approximately 34% of the bar length (see Figure D.12). That means
that the maximum spring stiffness may not exceed 47N

0.34·450·(2+
√

3)
= Khor =

0.082N/mm for the horizontal spring.
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Spring elongation

The allowed spring elongation is closely linked to the dimensions and material
properties of the spring. The springs used in the structure were individually
made to specification, by cutting the required length from a long strand of
untensioned spring with an outer diameter of 10mm, and respectively a wire
thickness of 1mm and 0.9mm for the vertical and horizontal spring. The spring
material was stainless steel.

To see whether the springs could reach the desired elongation of 0.47 · 450 =
212mm, a back-of-the-napkin calculation was done, using the formulas and data
tables from a spring manual (Verenfabriek Bakker, Hengelo). Input require-
ments were that the spring is untensioned, the coils are touching and the spring
rest length including end attachments is maximally 31% of the bar length.

The relevant spring properties for calculating the spring stiffness, are:

• d = wire diameter

• D = spring diameter (centre to centre; Douter − d)

• n = number of coils

• G = material shear modulus

The spring stiffness as a function of the spring properties is then given as

K =
Gd4

8nD3
. (D.1)

The decisive question is whether the spring is capable of the desired elongation
∆l, as established previously. This can be determined by calculating the spring
force at maximum elongation, Fmax = K ·∆l, and comparing the corresponding
stress τmax with the maximum allowed values from literature. The τmax is given
by

τmax =
8FmaxDk

πd3
(D.2)

where k is the Göhner correction factor given by

k = 1 +
5

4

1

W
+

7

8

1

W 2
+

1

W 3

with W the spring index W = D/d. The allowed τmax was further corrected
for the load ratio and number of load cycles. The load ratio is given by the
working range of the spring divided by the maximum force, in our case (Fmax −
0)/Fmax = 1, and with a maximum number of load cycles chosen to be 5000,
the correction factor was 1.09.

With the above formulas and boundary conditions, the two springs in Table
D.2 were calculated. At maximum elongation both springs remain within the
maximum allowed stress. These theoretically calculated springs were used as
guidelines when actually making the springs from a long strand.
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Table D.2: Calculated values for the required springs.
horizontal spring vertical spring

body length (mm) 126 128
coils 140 128

stiffness (N/mm) 0.0556 0.0958

D.4.4 Yarn guides

The yarn guides were ordered at Ascotex Ltd., and the chosen material type
was T27C, a very smooth titania ceramic. Two different parts were ordered: the
flanged eyelet E120 (D1=6mm, d=3.2mm, H=8mm, D2=7.90mm, h=6.20mm),
and the tube eyelet TE3 (A=6mm, B=3.5mm, h=6mm).

D.4.5 Wires

For visual effect, as well as reduced friction, the wires were chosen to be as
thin as practically possible. Two requirements were placed on the material
properties: a high stiffness (so that the length does not change significantly with
the changing internal tension during displacement) and the absence of creep, so
that the length actually remains fixed under a constant load. Eventually Kevlar
fishing line was used, and because the applied load was much lower than the
maximum possible load, the small amount of creep was deemed insignificant.

D.4.6 Pulleys

The pulleys were constructed as simple as possible, and consist of a small
grooved PTFE (Teflon) wheel, which runs directly around the spring loop.

D.4.7 Flanges

The outer diameter of the flanges was established during the calculation of the
required bar length, and was set at 30mm. A next question was under which
angles to attach the springs around the circumference of the bar. The angles
between the springs can be seen in Figure D.7, and their relation to h/r is
plotted in Figure D.20. The initial configuration was, somewhat arbitrarily,
chosen to be where the angles are approximately at their midpoint between the
values at h/r=0.5 and 4. This is denoted by the vertical line in Figure D.20,
and gave the following angles for spring attachment: 90◦, 125◦ and 145◦. As
the angles will change during the displacement, it is very likely that the bars
will rotate slightly along their axis.
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Figure D.7: View along the axis of a bar, showing the angles between the various
wires connected to the bar. The detail shows the springs on the bar, and the
corresponding wires.
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Figure D.8: Overview of range of motion of demonstration prototype, deformed
in the symmetric zero-stiffness mode.

D.5 Design Evaluation

Several pictures of the prototype are given in Figure D.8 to D.10, showing several
stages of the assembly process, and providing an indication of the working range
of the final structure. A major issue in the model is the high level of friction,
which is much greater than anticipated, and which reduces the feeling of ‘zero’
stiffness. It does serve a useful purpose by compensating for the gravity forces,
which had not been taken into account for calculations.

D.5.1 Design process

In retrospect the numerical analysis of the range of motion was too detailed,
and too optimistic. The various constraints discovered in the analysis proved
to be much less significant than the practical problems posed by the actual
components and complexity of assembly. Nevertheless, the analysis did provide
a great deal of valuable insight in the structure, and it is definitely a necessary
and worthwhile aspect of the design process.

D.5.2 Design and Components

The demonstration prototype has quite a lot of friction, which will have to be
reduced in future designs. The use of roller bearings for the pulleys will be
an improvement, but the main bottleneck is the tight curvature of the wires
at the endpoint of the bars. The friction currently makes the spring and wire
adjustment possibilities redundant, but it will become relevant when the friction
has been reduced sufficiently.

The three (stiffer) vertical springs proved to be hard-pressed to reach the de-
sired 150% elongation, and for a next prototype it would be worthwile to pay
more attention to the design of the springs, and to consider more combinations
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of spring diameter and wire thickness to find a suitable spring. Also, a different
attachment method for the springs would be advisable, which would allow some
control over the stiffness of the spring, e.g. a threaded cylinder which can be
screwed into the spring. Thirdly, the current method of attaching the pulleys
does not scale up well for higher loads, as the spring loop deforms under increas-
ing load and consequently the wires often slip out of the grooves. This limits
the range of motion slightly.

Finally, in the prototype springs without pretension were used in order to facil-
itate assembly. It would also be possible to use pretensioned springs, and they
would reduce the required distance between the flanges as less extension would
be needed to reach the same tension. On the other hand, the pretension will
reduce the range of motion, as the force/displacement curve is cut off sharply
when the spring reaches its rest length. It is nevertheless worthwile to consider
the use of standard pretensioned springs in future designs.

D.5.3 Assembly

The assembly of the structure is a fairly complex and tedious job. The tedious-
ness largely results from having to individually measure the spring properties
and the required wire lengths. Also, attaching the wires inside the bars, and
‘threading’ the wires through the yarn guides, is a fiddly job. The complexity
lies in the fact that all bars need to be firmly fixed when tensioning the springs,
as the structure is out of balance until all springs are attached. If there is less
friction in the system, the structure will have to be finetuned to be precisely in
balance, and it will be a difficult task to determine which of the springs has to
be adjusted.

D.5.4 Conclusion

Although the prototype serves its purpose as a proof of concept, it clearly shows
that a lot of work lies ahead, before these types of structures can be put to
practical use. Especially the friction has to be reduced drastically to obtain a
feeling of zero stiffness. The design process further showed that a thorough
analysis of the desired range of motion is advisable, not only to determine
the required spring elongations, but also to determine the dimensions of the
components of the structure.
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(a) When all springs are attached and all
wirelengths are measured out, the bars are
firmly fixed with clamps . . .

(b) . . . so that the springs can be tensioned
one by one.

(c) Close-up of springs during assembly. (d) Removing the clamps that fix the bars.

(e) Removing last clamp.

Figure D.9: The assembly process involved fixing the bars tightly at a given
initial position, in order to tension the springs one by one. Once all springs are
tensioned, the structure is in equilibrium and the clamps can be removed.
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(a) Low position (b) Medium position

(c) High position

Figure D.10: Prototype deformed in symmetric zero-stiffness mode. It can be
deformed into a wide range of other shapes as well, as there are two additional
anti-symmetric zero-stiffness modes.
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Figure D.11: Lengths of members, versus the h/r ratio. The vertical line indi-
cates where the horizontal and vertical wires are of equal length.
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Figure D.12: Spring elongation as ratio of bar length, versus the h/r ratio. This
is essentially just half of the length of the corresponding wires, plotted in Figure
D.11, but zoomed in for better judgement of the values.

73



Appendix D

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

radius

he
ig

ht
 &

 ra
tio

height

height/radius

Figure D.13: Height and radius (ratio) during displacement with constant bar
length. This graph makes it possible to read the physical working range of the
structure, once the h/r working range is known.
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Figure D.14: Height and radius (ratio) during displacement with constant bar
length. This example shows how the working range of h/r can be translated
into height and radius; the h/r working range of 0.5 . . . 4 translates into h =
0.6 . . . 2.3 and r = 0.57 . . . 1.28. These values have to be multiplied with a scaling
factor to obtain the actual displacement of the prototype.
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Figure D.15: Normalized bar forces due to spring elongations. The maximum
force is compared with the buckling load of the bar.
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Figure D.16: The normalized clearance between the bars, versus the h/r ratio.
The horizontal lines show the 30mm clearance line for various bar lengths, and
allows the judgement of working range.
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Figure D.17: Angle between the bar and the horizontal and vertical wires, versus
the h/r ratio.
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Figure D.18: Required distance from endpoint for various flange diameters. The
horizontal lines show the available endpoint length, as in 11% of bar length -
10mm.
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Figure D.19: Enlarged version of Figure D.18.
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Figure D.20: The angles between the wires on the bar during displacement.
This is used to find an initial configuration for the spring attachment on the
bars.
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Zero Stiffness Examples

E.1 Introduction

Several tensegrity geometries with zero-free-length springs as tension members
have been numerically analysed for zero stiffness, using the matlab program
described in Appendix C. These include the famous ‘babytoy’ tensegrity, as
well as several rotationally symmetric tensegrities.

For the first, the equilibrium configuration is derived in Section E.2, and for the
latter the equilibrium equations from Appendix A are used; the naming scheme
is that of Hinrichs (1984). The structures are plotted in Figures E.2 to E.4, and
an overview of the number of zero-stiffness modes in each of the structures is
given in Table E.1.

Structure No. of bars on conic No. of zero-stiffness modes

‘Babytoy’ 3 3
P3(1, 1) 3 3
P4(1, 1) 4 2
P5(1, 1) 5 1

Table E.1: Structures analysed for zero-stiffness in this section. The number
of zero-stiffness modes and the number of bar directions lying on a conic are
listed, and they correspond to the theory described in Chapter 2.

E.2 ‘Babytoy’ equilibrium

The ‘babytoy’ tensegrity consists of 6 identical bars, divided into three orthog-
onal parallel pairs, connected by 24 cables of equal length. The equilibrium
position is calculated by means of the kinematic form-finding method, which
utilizes the fact that cable lengths reach a minimum at the tensegrity equilib-
rium configuration.

With x the distance between two parallel bars of length L, the cable length
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Lcable is written as

Lcable =

√

(

L − x

2

)2

+
(x

2

)2

+

(

L

2

)2

=
1√
2

√

L2 − xL + x2 (E.1)

and the derivate to bar distance x yields

∂Lcable

∂x
=

(2x − L)√
L2 − xL + x2

1

2
√

2
= 0

= 2x − L = 0

which gives the solution x = L
2 . Subsequent analysis of nodal equilibrium yields

that the tensions coefficients are related as follows:

t̂bar =
3

2
t̂cable (E.2)

These values were used for calculating the three zero-stiffness modes of the
structure, which are plotted in Figure E.1.
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Figure E.1: The ‘babytoy’ tensegrity structure. Its three zero-stiffness modes
roughly correspond to shear on three orthogonal planes. No symmetrization has
been performed on the modes, and it is expected that such an analysis would
yield perfectly orthogonal shears.
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Figure E.2: A P3(1, 1) structure with its three symmetrized zero-stiffness modes.
The first corresponds to a scaling transformation, the latter two are combina-
tions of shear and scaling.
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Figure E.3: A P4(1, 1) structure with its zero-stiffness modes. The first mostly
consists of a skewing transformation, the second mostly of a scaling transfor-
mation.
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Figure E.4: A P5(1, 1) structure with its zero-stiffness mode, which corresponds
to a scaling transformation.
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Future Work

F.1 Introduction

The work described in this MSc. thesis has been a first step in the direction of
a fundamental understanding of zero-stiffness structures. This section briefly
discusses some possible directions for future research, and where possible, pro-
vides some pointers. The limitations imposed by only considering tensegrity
structures, namely absence of external forces and constraints, are first to be
considered, before other issues such as range of motion and practical applica-
tions are looked into.

F.2 Future work

external forces The current theory cannot take into account exernal loads, as
it makes use of the fact that in unloaded state, affine transformations of
the nodal coordinates are in the nullspace of the stress matrix. This no
longer holds when there are external loads present.

A priority is to include constant gravity forces in the calculations, and
some possible approaches were considered, but none were carried through
to fruition. The first would be to qualitatively include gravity forces as
a special type of ‘gravity element’ with a specific direction and of infi-
nite length, which might or might not lie on the conic. The next step
would then be to say that the affine transformation U should maintain
the direction v of that element, and therefore

U(pi − pj) = Uvij = λvij

and the element direction is thus an eigenvector with eigenvalue λ. The
eigenvalue would be 1 if the ‘gravity element’ lies on the conic, and its
length is therefore preserved.
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Another (quantitative) approach would be to reconsider the structural
equilibrium as

Ω̃p = fext

where the effect of the affine transformation U on each of the n nodes,
can be written as

Ω̃U′p = U′fext

= 1 · fext

with U′ = In ⊗U a blockdiagonal matrix with U working on each of the
nodal coordinates/forces. As a result, one can see that a constant fext is
an eigenvector of the blockdiagonal U′ with eigenvalue 1.

constraints Although traditionally tensegrity structures are analysed as free
standing, in practice some degrees of freedom are fixed in order to remove
rigid-body motions. The choice of constraints strongly influences the pos-
sible deformations of the structure, and therefore the structure needs to
be fixed without prohibiting the length-preserving affine transformations
that have zero stiffness. It is as of yet unclear how to do this in a general
manner.

An interesting approach is to first only consider the subset of displace-
ments that are length-preserving for the conventional elements. This is
done numerically by means of a QR-decomposition, where the rows of the
compatibility matrix C are orthogonalized in two parts: one that involves
elongations of conventional members, and a set Czfl that does not. With
the latter set, a reduced stiffness matrix can be obtained, which is limited
to only those displacements that are length-preserving for conventional
elements.

Kt,reduced = CT
zflKtCzfl

This technique might facilitate finding affine transformations that are not
prohibited by the nodal constraints.

non-pin-jointed structures Once the issues of external loads and constraints
have been solved, the question arises whether (some of) the above devel-
oped theory can be extended to also include non-pin-jointed structures
such as the ‘Anglepoise’ lamp, and to confirm and extend the modifica-
tion rules developed by Herder (2001).

range of motion Numerical calculation of the zero-stiffness modes produces
displacements in tangent space. Therefore, for large displacements itera-
tive techniques need to be employed to find a next equilibrium configura-
tion, even more so because the tangent stiffness matrix is per definition
singular.

It is therefore very difficult to intuitively extrapolate from the calculated
zero-stiffness modes, to see how it is best interpreted over large displace-
ments and what the range of motion would be. For instance consider
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Figure F.1: In tangent space, the zero-stiffness mode of this statically balanced
structure corresponds to shear and scaling, but on macro scale, it corresponds
to the rotation of the two bar with respect to each other.

the simple statically balanced structure in Figure F.1; the structure has
a zero-stiffness mode that can numerically be described as consisting of
shear and scaling. However, on a macro level, one can see that the two
bars rotate with respect to eachother. The question is, how this can be
done more generally and for more complex (three-dimensional) structures.

An approach to this would be either to analytically analyse the struc-
tures, or look at mechanism theory and try to find techniques from that
field; mechanisms concepts such as the number of Degrees of Freedom of
a mechanism should also be investigated.

practical application The demonstration prototype described in Appendix D
was constructed not only to demonstrate that these types of structure
actually exist, but also to get a feel for the practical issues that arise when
trying to construct zero stiffness tensegrities.

There is a lot more (practical) work to be done here, not only to reduce
friction and to device more efficient methods of construction, but also
to make the structures simpler and more robust, and thus suitable for
practical applications.

overview of zero-stiffness modes As indicated in Chapter 3 there exist types
of zero stiffness which are not yet fully understood, and several example
structures were given. In order to understand these structures, further
research is needed, with special attention to the presence of unstressed
nodes.

other forms of zero stiffness Other forms of zero stiffness are described in
literature, such as by Tarnai (2003) where the equilibrium paths at a
bifurcation point remain neutrally stable over a finite range of motion. It
is currently unclear how these forms of zero stiffness are related to the
ones described in this research.

sensitivity analysis It would be interesting to analyse the sensitivity of the
zero-stiffness modes to perturbations and/or imperfections of initial con-
ditions. Will the calculated modes zero-stiffness modes also be present in
configurations close to the analysed ones; for example if the conventional
members do not precisely lie on a conic?
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F.3 Conclusion

The above suggestions for future work illustrate that only the first steps have
been taken in fully understanding zero-stiffness tensegrity structures. A lot of
work is left in the theoretical field, and also (and in common with tensegrities
in general) in practical design and applications. As the applications will most
likely be based on the mechanism-like properties of the structures, the links to
mechanism theory should definitely be explored.
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