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Abstract-It is well known that the analysis and synthesis filters 
of orthonormal DFT filter banks can not have good frequency 
selectivity. The reason for this is that each of the analysis and 
synthesis filters have only one passband. Such frequency stacking 
(or Configuration) in general does not allow alias cancelation 
when the individual filters have good stopband attenuation. A 
frequency stacking of this nature is called nonpermissible and 
should be avoided if good filters are desired. In a usual AI- 
channel filter bank with real-coefficient filters, the analysis and 
synthesis filters have two passbands. It can be shown that the 
configuration is permissible in this case. Many designs proposed 
in the past demonstrate that filter banks with such configurations 
can have perfect reconstruction and good filters at the same time. 
In this paper, we develop the two-parallelogram filter banks, 
which is the class of 2-D filter banks in which the supports of 
the analysis and synthesis filters consist of two parallelograms. 
The two-parallelogram filter banks are analyzed from a pictorial 
viewpoint by exploiting the concept of permissibility. Based on 
this analysis, we construct and design a special type of two- 
parallelogram filter banks, namely, cosine-modulated filter banks 
(CMFB). In two-parallelogram CMFB, the analysis and synthesis 
filters are cosine-modulated versions of a prototype that has 
a parallelogram support. Necessary and sufficient conditions 
for perfect reconstruction of two-parallelogram CMFB will be 
derived in the paper. 

1. INTRODUCTION 

HE M-channel filter bank has been studied extensively 

in the past (see Fig. 1 with scalar decimation ratio M) .  

A 1-D M-band filter bank usually has the frequency stacking 

as shown in Fig. 2. The synthesis filters typically have the 

same passband regions as the corresponding analysis filters. A 
figure like this showing the passband regions of the filters will 
be called the support conjgurution of the filter bank. Filter 

banks with this type of configuration have been successfully 

designed through many approaches. It is possible to have per- 

fect reconstruction and good individual analysis and synthesis 

filters (good frequency selectivity) at the same time. It tums 

out that the support configuration shown in Fig. 2 have two 

features that are necessary for a successful filter bank design. 
First, the support of each analysis filter does not .overlap under 
modulo 27rlM. Filters with such a support are called aliasfree 
supported with respect to M (AFS(M) ) .  This means that 
if the filters are ideal, then their outputs allow aliasfree M -  
fold decimation, that is, no aliasing is created in the subbands. 

Manuscript rcccived March 7, 1995; revised May 14. 1996. This work was 

supported in part by NSF grant MIP 92-15785, Tektronix, Inc., and Rockwell 
International. Thc associate editor coordinating the review of this papcr and 
approving it for publication was Dr. Bruce Suter. 

The authors are with the Department of Electrical Engineering, California 
lnstitute of Technology, Pasadena, CA 91 125 USA. 

Publisher Item Identifier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 1053-587X(96)08236-0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 0 0 0 
0 0 0 . . . 

Fig. I .  
the absolute value of the determinant of M .  

IMI-channel maximally decimated filter bank, where IMI denotes 

HM-1 Ho Hi HM-1 ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo m *  

I 

-Z-(M-I.)ZIM -nIM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 nlM (M-l)nIM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn o 

Fig 2 Typical stacking or a 31-channel filter bank 

We say a configuration is A.FS(M) if each analysis filter is 

A.FS(M). The second feature of the support configuration 

in Fig. 2 is a property called permissibility. It is argued in 

[ I ]  that with certain support configurations in a filter bank, 

a considerable amount of aliasing will remain uncanceled 

if the individual filters have good attenuation. In this case, 

the support configuration is called nonpermissible. The 1-D 

uniform DFT filter bank [2] is known to be an example of 

this nature. (The notion of configuration permissibility is more 

involved and will be explained in greater detail in Section 11.) 

These two features are desirable for good filter bank design 

of any dimension. 

Recently, there has been considerable interest in the design 

of 2-D maximally decimated filter banks (Fig. 1) [3]-[14]. For 

example, perfect reconstruction is achieved in [5]  for a 2-D 
two-channel FIR filter bank with diamond-shaped filters. In 

[8], transformations are used to design higher dimensional 
filter banks from filter banks of lower dimensions. In [I], 

several issues regarding design of multidimensional filter bank 

are treated. In particular, the concept of support permissibility 

is introduced and discussed from a pictorial viewpoint. A 

study of a 2-D cosine modulated filter bank (CMFB) with 

rectangular-shaped but nonseparable prototype is made in [9]. 

The prototype of this type of 2-D CMFB has rectangular sup- 

port but is allowed to be nonseparable. Nonseparable prototype 

with separable modulation is studied in [lo]. In addition, 2-D 
nonseparable orthonormal wavelets using local cosine or sine 

bases are obtained in [ 111-[13]. A nonseparable generalization 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Typical support of' a two-parallelogram filter 

for 2-D CMFB is considered in [14]. However, the support 

of the 2-D filter banks studied therein is nonpermissible in 

general. 

In the construction of 2-D filter banks, we have more variety 

in terms of possible configurations. Even if we impose the 

condition that all the analysis filters have real coefficients and 

have only two passbands, it is possible to have more than 

one configuration for a filter bank with decimation matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM .  
Various shapes can be used for the passbands of the individual 
filters, e.g., triangles [15] and parallelograms [16]. In this 

paper, we study the two-parallelogram filter banks, which are 

the class of 2-D filter banks in which the support of each 

analysis and synthesis filter is the union of two parallelograms 

(Fig. 3). Filters with this type of supports are called two- 

parallelogram filters. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Two-Parallelogram Filter Banks 

A typical two-parallelogram filter bank has support configu- 

ration as shown in Fig. 4. This is a natural 2-D generalization 

of the frequency stacking in Fig. 2. For a two-parallelogram 

filter bank with decimation matrix M as in Fig. 1, we will 

study the conditions such that the configuration is AFS(M) .  
For this, we will derive the necessary and sufficient condi- 

tions such that a two-parallelogram support is A F S ( M ) .  For 

those A.FS(M) configurations, we will further investigate 

permissibility of the configurations. 

In this context of 1-D filter bank design, the cosine- 

modulated filter banks are well-known for low design cost 

and low complexity. The implementation of two-parallelogram 

filter banks using cosine-modulated filter banks yields similar 

advantage of economy. The two-parallelogram CMFB will be 

constructed and designed in this paper. 

Two-Parallelogram CMFB 

In two-parallelogram CMFB's, each of the two parallelo- 

grams of the analysis filters is a shifted version of a real- 

coefficient prototype, which has a parallelogram support and 

is, in general, nonseparable. Each analysis filter is a cosine- 
modulated version of the prototype, and each analysis filter 
consists of two copies of the prototype. The synthesis filters 
have the same spectral supports as the corresponding analysis 

filters. The analysis bank will eventually be constrained to be 

paraunitary; the analysis filter Hk. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U) and the corresponding 

synthesis filter F ~ ( u )  are related by Fk.(w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= H,*(u). All the 

Fig. 4. Typical configuration of a two-parallelogram filter bank. 

analysis and synthesis filters have real coefficients. We will 

present the sufficient conditions such that cancelation of major 

aliasing (due to overlapping transition bands) can be struc- 
turally enforced. Finally, having canceled the major aliasing, 
we constrain the prototype to ensure perfect reconstruction of 

the two-parallelogram CMFB. 

We can conceive that in the more general case of 2-D 

filter banks the individual filters can lhave any even number 

of parallelogram. Particularly in the 2-D separable filter bank 

obtained by cascading 1-D filter banks, the support of each 

analysis filter consists of four rectangles. In a companion 

paper [17], we will study the four-parallelogram filter banks 
[ I  81, which are the 2-D filter banks in which the supports 

of the analysis filters consist of four parallelograms. Note 

that two-parallelogram filter banks are fundamentally different 

from 2-D separable filter banks obtained from 1-D filter 

banks. However, four-parallelogram filter banks will reduce 

to separable 2-D filter bank in special cases. 

Paper Outline: In Seciton 11, we explain perfect recon- 

struction of 1-D filter banks from a pictorial viewpoint. This 

illustration will supply the explanation why A F S ( M )  prop- 

erty and permissible configurations are important for good 

design of analysis and synthesis filters. Section I11 is devoted 

to the study of two-parallelogram filter banks. For a successful 

design, the analysis filters should be AFS(M) .  Toward this 

end, we derive the necessary and sufficient conditions such that 

a two-parallelogram filter is AFTS(M). Permissibility of the 

two-parallelogram filter bank will also be studied. Using the re- 

sults developed in Section 111, we construct AFS(M) configu- 

rations for the two-parallelogram CMFB (Section IV). In Sec- 

tion V, the analysis and synthesis filters of two-parallelogram 

CMFB are formulated. The necessary and sufficient condition 

for the perfect reconstruction two-parallelogram CMFB is 

presented in Section VI. Efficient implementation and a design 
example of the two-parallelogram CMFB are given in Section 

VII. Preliminary versions of this work have been presented at 
international conferences [ 161, [191. 

Preliminaries and Notations Notations in this paper are as 

in 121. The fundamentals of integer matrices and 2-D multirate 

systems are employed frequently in this paper. A brief review 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Bandlimited signal with bandwidth 27r/A-. 

is given in Appendix A. Some of the frequently used notations 

are listed below: 

1) Boldfaced lower-case letters are used to represent vec- 

tors, and boldfaced upper-case letters are reserved for 

matrices. The notations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAT and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt represent the trans- 

pose and transpose-conjugate of A. 
2) The Fourier transform of a 2-D signal z(n)  is denoted 

by X ( w ) ,  where w is a 2 x 1 vector with w = [WO w1IT. 

3) Vectors will also be used as subscript, e.g., &(U). If 

k = [ko klIT, then Pk(w), and P(ko,k,)(w) will be 

used interchangeably. 

4) The notation T denotes a 2 x 2 identity matrix. 

5) If the support (passband) of a filter H ( w )  does not 

overlap under modulo ~ T M - ~ .  H ( w )  is called aliasfree 

supported with respect to M (AFS(M) ) .  If, in addition 

to being AF’S(M),H(w) is also an ideal filter ( H ( w )  
is 1 in the passband and 0 otherwise), then the output 

of H ( w )  allows aliasfree M-fold decimation [20], [21], 
and in this case, H ( w )  is called an aliasfree(M) filter. 

A configuration is referred to as AFTS(M) if all the 

analysis filters are AFTS(M). 

11. BASIC CONSIDERATION OF FILTER BANK DESIGN 

In this section, we explain pictorially how perfect re- 

construction is achieved for 1-D filter banks. The pictorial 

illustration will help us identify the roles of AFTS(M) property 

and permissibility. To explain why these two features are 

important, we will use the CMFB’s as an example. An M -  
band CMFB is a special case of M-band filter banks. It usually 

has the stacking in Fig. 2. The analysis and synthesis filters 

of CMFB’s satisfy some additional properties. In particular, 

they are the cosine-modulated versions of a prototype filter. 

Although this property has made alias cancelation in CMFB’s 

somewhat different from that in a usual filter bank, as the 

discussion proceeds, we will make observations for the more 

general filter banks. First, we review two l-D sampling the- 
orems and verify that the configuration in Fig. 2 is indeed 

AFTS ( M )  . 

One-Dimensional Sampling Theorems 

Recall the following two types of l-D ideal filter H ( w )  that 

is known to be aliasfree(M). 

Fact 2.1: Suppose H ( w )  has bandwidth ~ T / N  as shown 

Fig. 5; then, H ( w )  is aliasfree(M) if and only if N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 M .  
The 2-D extension of this fact will be given in Section 111. 
To compare with 2-D result to be stated later, we define 

L = N / M .  In this case, H ( w )  is aliasfree(M) if and only 
if L 2 1. 

n n 
J \I I J I 
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Fig. 6. Bandlimited real sequence with total bandwidth 27;/1.(1. 

Fact 2.2-One-Dimensional Bandpass Sampling Theorem 
[22]: Suppose a 1-D ideal filter H ( w )  has total bandwidth 

27rlM as shown in Fig. 6. Then, H ( w )  is aliasfree(M) if and 

only if W O  is a multiple of T I M ,  i.e.. WO = kT /M,  for some 

integer k .  
In practice, the filters are not ideal but only AFTS(M). 

The band edges of the analysis filters in Fig. 2 are multiples 

of r / M ;  the analysis filters are A F S ( M ) .  Therefore, the 

configuration in Fig. 2 is indeed AFTS(M). 

One-Dimensional Cosine-Modulated Filter Banks (CMFB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’s) 

Two types of CMFB’s have been developed: pseudo 

QMF systems [23]-[25] and perfect reconstruction systems 

[26]-[28]. Consider the M-channel filter bank in Fig. 1 (with 

scalar decimation ratio M ) .  An M-channel CMFB (pseudo- 

QMF or perfect reconstruction) is typically obtained by 

starting from a 2M-channel uniform DFT filter bank [2]. 

Each filter in the DFT filter bank is a shifted version of a 

lowpass prototype P ( w )  (see Fig. 7(a)) with bandwidth T / M ,  
which is half the total bandwidth of each filter in the desired 

M-channel system. The filters in the DFT filter bank are then 

shifted by T / ~ M  and paired to obtain real-coefficient analysis 

filters as in Fig. 7(b) for the M-channel CMFB. The shifts 

of the prototype are denoted by Pk(w) in the figure. Each 

analysis filter has total bandwidth 27r/M, which is two times 

that of the prototype. In almost all the designs, the synthesis 

filters are time-reversed versions of the corresponding analysis 

filters; the analysis and synthesis filters have the same spectral 

support. 

In the CMFB described above, as each analysis filter con- 

sists of two shifted copies of the prototype, each of the two 

copies has M - 1 images due to decimation followed by 

expansion. Due to the AFTS(M) property, the images of the 

analysis filters are adjacent to the support of the corresponding 

synthesis filters but are not overlapping with the passbands of 

synthesis filters, as shown in Fig. 7(c). Thus, if the prototype 
filter is an ideal brick-wall filter, there is no aliasing, and the 

filter bank has perfect reconstruction. If the prototype filter 

is not ideal, those images that are adjacent to the synthesis 

filter result in major aliasing (Fig. 7(d)), whereas those that 

are not adjacent to the synthesis filters will be attenuated 

to the stopband level of the prototype filter. In the pseudo 

QMF CMFB, only the major aliasing errors are canceled, 

and approximate alias cancelation is attained. Approximate 

reconstruction is then achieved without sophisticated optimiza- 

tion of the lowpass prototype. In the perfect reconstruction 

CMFB, the prototype is optimized under further constraint 

(e.g., paraunitariness). The paraunitariness of the CMFB is 
guaranteed if the polyphase components of the prototype filter 
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Fig. 7. One-dimensional cosine modulated filter bank. (a) Support of the 
prototype filter P(d ) .  (b) Support of the analysis filters HI; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d). Each analysis 
filter has two parts, Pk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(J) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 -i, (d), (c) Images of the analysis filter 
Hk (3) that are adjacent to the synthesis filter FA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(d). (d) Major aliasing in 
the kth subband and the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( k  + 1)th subband. 

satisfy some pairwise power complementary conditions 1281. 

In both pseudo QMF and perfect reconstruction systems, the 

design of the whole filter bank is reduced to the optimization 

of the lowpass prototype filter. The complexity of the analysis 

bank is equal to that of a prototype filter plus a DCT matrix. 

Main Features zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Con.gurution in Fig. 2 

From the preceding discussion, we observe that the support 

configuration in Fig. 2 has the following two features, which 

are necessary for designing a filter bank with good analysis 

and synthesis filters. 

1) AFS(M)  Property: Each analysis filter is AFS(h f ) ,  
and the configuration is AFS(M) .  This means that if 

the filters are ideal, they are aliasfree(M) filters; no 

aliasing is created in the subbands, and the filter bank 

has perfect reconstruction. This feature is indispensable 
for the design of perfect reconstruction filter banks. For 

a configuration that is not A F S ( M ) ,  severe aliasing 

will be created in the subbands, no matter how good the 

filters are. Without a AFS(M)  configuration, a filter 

bank cannot have perfect reconstruction, even if the 

analysis and synthesis filters are ideal brick-wall filters. 

2) Permissibility: From the discussion of CMFB, we see 

that major aliasing errors that contribute to the same 

aliasing transfer function A, ( U )  (defined in Appendix 

A) appear in pairs. For example, around the frequency 

k r / M  (Fig. 7(d)) both kth and ( k  + 1)th subbands have 

major aliasing errors, and it can be verified that these two 

aliasing errors contribute to the same aliasing transfer 

function Ak (U ) .  This is essential if alias cancelation is to 

take place in CMFB. For the more general M-band filter 

banks, assume that the filters are not ideal but have good 

frequency selectivity. If a certain A,(u) has only one 
major aliasing term in a particular frequency region, this 

major aliasing cannot be canceled; perfect reconstruction 

is not possible. Therefore, if a perfect reconstruction 

filter bank has good analysis and synthesis filters, it is 

necessary that in any frequency region, there is more 

than one major aliasing term contributing to the same 

aliasing transfer function A, ( U ) .  A configuration without 

this feature will be referred to as nonpermissible. Permis- 

sibility allows the possibility of canceling major aliasing. 

If a filter bank has a nonpermissible configuration, the 

filters cannot have good stopband attenuation unless all 

the filters are ideal brick-wall filters. The 1-D uniform 

DFT filter bank [2] is known to be an example of this 

nature. 

Remarks on Permissibility 

1) The issue of permissibility arises only when nonideal 

filters are considered. In addition, permissibility is mean- 

ingful only when the underlying analysis and synthesis 

filters have frequency selectivity, i.e., when the notion of 

passbands and stopbands still makes sense. For example, 
in delay chain filter bank, the analysis and synthesis 

filters are allpass functions ( H k ( z )  = x-' and Fk(z)  = 
xk)  and have no frequency selectivity. In this case, 

discussion of permissibility is meaningless. 

2) To check the AFS(M)  property of a configuration, we 

can individually examine each analysis filter. However, 

whether a configuration is permissible is determined 

jointly by all the analysis filters. 

3) Permissibility is only a necessary condition for good 

filter bank designs. It does not suggest any constructive 

approach to design the filter banks. 

111. TWO-PARALLELOGRAM FILTER BANK 

In this section, we study a subclass of 2-D filter banks: 

the two-parallelogram filter banks. This is the class of filter 

banks in which the support of each analysis and synthesis 

filter is the union of two parallelograms. Before designing any 

filter bank, we first study the support configuration and see 
if good analysis and synthesis fillers are possible. As a first 

step toward this, the analysis and synthesis filters should be 

A F S ( M )  for a given decimation matrix M .  This calls for 

a bandpass sampling theorem for two-parallelogram filters. 

For those A.FS(M) configurations, we further investigate 

permissibility of the configurations. 
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Fig. 8. Lattice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL’r. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Sampling Theorems for One- and Two-Parallelogram Filters 

A 2-D filter H ( w )  with a frequency support that consists 

of k parallelograms is called a k-parallelogram filter. By 

definition, H ( w )  is A.FTS(M) if the support of H ( w )  does not 

overlap under modulo ~ T M - ~ .  However, for one- or two- 

parallelogram filters, there is no existing simple testing rule as 
those given in Facts 2.1 and 2.2. The 2-D equivalence of Facts 

2.1 and 2.2 will be given in this subsection. Due to these 2-D 

extensions, we can easily test AFTS(M) property of one- or 

two-parallelogram filters [29]. 

One-Parallelogram zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA3S( M )  Filters 

A result related to the multidimensional generalization of 

Fact 2.1 is as follows. Let H ( w )  be a 2-D filter with support 

SPD(7rMPT) or a shifted version of SPD(7rMPT)  for some 

integer matrix M .  When H ( w )  has such a support, H ( w )  is 

A.F‘S(M) [2]. Now, consider the more general case that H ( w )  
is a one-parallelogram filter with support SPD(7rN-*) or a 

shifted version of S P D ( T N - ~ ) .  The analysis of d F S ( M )  
property of one-parallelogram filters is more intricate than that 

of 1-D one-passband case. Let us define 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 M P I N  

and denote the absolute value of the determinant of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL by ILI. 
The condition ILI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 alone does not imply the A F S ( M )  
property [6], and a stronger condition is called for. In particu- 

lar, the lattice of LT has to satisfy one additional property. A 
more precise statement is given in the theorem that follows. 

Theorem 3.1: Let H ( w )  be a one-parallelogram signal 

with frequency support S F ‘ D ( T N - ~ )  or a shifted version 

of S P D ( T N - ~ ) ,  where N is possibly a noninteger matrix. 

Then, H ( w )  is AFTS(M) if and only if the matrix L defined 

as L = M - l N  satisfies LAT(LT) n (-1, 1)2 = (0). 

This necessary and sufficient condition means that no vector 

in LAT(LT) is inside the square (-1. 1)2 except the vector 
0.  For example, let LT = [t5 i].  Then, LAT(LT) is as 

shown in Fig. 8; LAT(LT) has only one vector (the vector 0) 

inside the square (-1, 1)2. Notice that in 1-D case, lLI 2 1 if 

and only if LAT(LT) n (- 1, l )  = { O}. However, this relation 

does not hold in more than one dimension. 

Proof of Theorem 3.1: Recall that H ( w )  is AFTS(M) if 
and only if the support of H ( w )  does not overlap mod- 

ulo ~ T M - ~ .  Therefore, H ( w )  is AFTS(M) if and only if, 

whenever zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkl # k2 mod M T ,  

w1-  2 ? r M T k 1  

# w2 - 2nMPTk2,  V W ~ , W ~  E S P D ( T N - ~ )  

y0/2+SPD(0.51) 

-yo / 2+ SPD( 0.51) 

(b) 

Fig. 9. 
with normalized axes. 

(a) Support of a two-parallelogram filter H ( w ) .  (b) Support of H ( w )  

Rearranging the above equation, we have w1 - w2 # 
27rMPT(kl - k2 ) .  As w1,w2 E S P D ( T N - ~ ) , W ;  can 

be expressed as w; = nNPTyi for some 2 x 1 vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y i  E [-1, 1 ) 2 , i  = 1,2. Hence, 

w1 - w z  = 27rN-*y, forsomey E (-1,l)’ 

Using this expression, we have y # LT(k l  - k2), for kl # 
k2 mod M T .  This is satisfied if and only if LAT(LT) n 

This theorem can be generalized for D-dimensional signals. 

The above technique of the proof can be carried out for signals 

of any dimensions. 

( - 1 , 1 ) 2  = { O } .  

Bandpass Sampling Theorem for Two-Parallelogram Filters 

Now, consider the case that H ( w )  is a two-parallelogram 

filter. The support of H ( w )  (see Fig. 9) consists of two 

parallelograms, each a shifted version of S P D ( x N P T ) .  The 
two passbands can be described as W O  + S P D ( T N - ~ )  and 
-wo+SPD(.lrNPT). Let M be an integer matrix with /MI = 

IN1/2. For H ( w )  to be AFS(M) ,  the 1-D bandpass sampling 

theorem suggests that the two parallelograms in the support of 

H ( w )  should be properly located. On the other hand, the above 

sampling theorem for one-parallelogram signals indicates that 

in higher dimensions, the shape of the support also affects 

whether AFS(M)  property is possible. Indeed, we will see 

that whether H ( w )  is AFTS(M) depends on the matrix N ,  as 
well as the relative position of the two parallelograms. 

Theorem 3.2: Let H ( w )  be a 2-D filter, and let the support 

of H ( w )  be the union of two parallelograms, where each is 

a shifted version of S P D ( T N - ~ ) .  The matrix N is possibly 
a noninteger matrix. Let M be an integer matrix with IMI = 
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lNl/2. Then, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( w )  is AFS(M)  if and only if the following 

two conditions are satisfied: 

M-IN;  then, LT has the form LT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= r U ,  
where U is a unimodular matrix, and r is of one of the 

following forms: 

1) Define L 

[: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA*:I .[*% :I , E  *;I ,L: 11. O < p < 1 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a) ( b )  (c) ( 4 

(1) 

This is equivalent to saying that ILl = 2,LAT(LT)  n 
(-1, 1)2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) and LT has one integer row vector. 

= .irNPTyo, where yo is a 2 x 1 vector. 

Corresponding to the above four cases of L, yo satisfies 

2) Let 

[: 1 [yo]l is odd [yolo is odd yo = LTk + 

'0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~~k + [ :] , for some integer vector k. (2 )  

(a) ( b )  ( 

( 4 

For example, let LT = [ 0"; !]. One can verify that the 

first element of any vector 'U E LAT(LT)  is an integer and that 

L satisfies the first condition. Notice the first condition is not 

necessary in a 1-D bandpass sampling theorem since L 2 
in the 1-D case, and LAT(L) consists of integers only. As 
indicated by the 1-D bandpass sampling theorem in Fact. 2.2, 
in 1-D case only the relative location of the two passbands 

needs to be constrained. 

Proof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Theorem 3.2 

We first show that these two conditions are necessary. 

Condition 1 Is Necessary: An equivalent necessary and 

sufficient condition for H ( o )  to be A.FS(M) is that when 

H ( w )  is decimated and then expanded by M ,  there is no 

overlapping in the passbands among H ( w )  and the IMI - 1 

images. For convenience, we will discuss the decimated and 

expanded version of H ( w ) .  When H ( w )  is decimated and 

then expanded by M ,  each of the IMI - 1 images is a 

shifted version of H ( w ) ;  each consists of two parallelograms. 

For convenience, we normalize the frequency plane by 

27rNpT; the new axes 1/0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 are the two entries of 

v = 2 ~ N - ~ w .  After normalization, the support of H ( w )  
appears to be the union of two squares (Fig. 9(b)), which are 

denoted by S and S' with S = -y,/2 + SPD(0.51) and 

S' = yo/2 + SPD(0.51). As IN1 = 2 / M / ,  this is maximal 

decimation. Threfore, H ( w )  and its lMI - 1 images fill the 
frequency plane; the normalized plane is tiled by the squares 

of SPD(O.51). In a square tiling, we can observe at least one 

set of parallel lines (Fig. 10) and all the cells are bounded 
by these lines. For example, in the tiling of Fig. 10(a), we 

can observe one set of horizontal lines and all the squares are 

bounded by the horizontal lines. In Fig. 10(b), there is one set 

of vertical lines. Therefore, the images of passbands S and 

S' are confined to these horizontal or vertical lines. Suppose 

the images of S are located at -y0/2 + c for some vector c. 

Fig. I O .  Square tiling with (a) horiLontal lines and (b) vertical lines. 

Then, [c] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 must be an integer when the images are bounded by 

horizontal lines, and [cl" must be an integer when the images 

are bounded by vertical lines. On the other hand, observe that 

the images of S are located at -y0/2 -t LAT(LT)k for some 

integer vector k. To have the images o€ S located between the 

horizontal or vertical lines, LT is necessarily of the form 

do di [ x x ] Or [to ill (3) 

for some integers do and dl,  i.e., LT has one integer row. 
Notice that if a two-parallelogram filter with paral- 

lelogram prototype S P D ( T N - ~ )  is A F S ( M ) ,  then a 

one-parallelogram filter with support SPD(  T N - ~ )  is also 

AFS(M) .  For this, L must satisfy LAT(LT) n (-15 1)2. 

Combining this condition and the fact that ILI = 2, after some 

row operation, we can arrive at (1) from (3). Conversely, 

if L is of the forms in ( I ) ,  then we can verify that 

lLI = 2,LAT(CT) n (-1, 1)2, and LT has one integer row 

vector. Corresponding to the four cases in (I), the passband 

S and its images are as shown in Fig. 11 with p = 0.25. 

Fig. l l (e)  shows that case when L is as in (c) of (1) with 

p = 1. 

Condition 2 Is Necessary: To satisfy the bandpass sam- 

pling theorem, the other passband S' imust be located in one 

of the lighter shaded cells that are not occupied yet. In the 

first case (Fig. ll(a)), the second passband can be located 

anywhere in the lighter shaded stripe; [TJO]~ is an odd integer. 

In the third case (Fig. ll(c)), lighter shaded cells can be 

described as 

-yo/2 + (LTk  + [;I) + SPD(0.51). 

where k is an integer vector. 

When the passband S' is in one of the lighter shaded cells 

Similarly, we can verify the second and the fourth cases. 

Conversely, if LT is of the form in (1) and yo is given 

as in (2), we can verify that the passbands of H ( w )  and the 

y0/2 = -y0/2 + (LTk + [:I). Therefore, yo = L T k + [ O ] .  1 
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Fig. 
squares) for various cases of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL.AT(L” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Passband S and relative position to its images (darker shaded 

images are properly interlaced and that the bandpass sampling 

theorem is satisfied. 

Remarks 

1) We would like to point out one necessary condition 
implied by Theorem 3.2. The vector yo has at least one 
nonzero integer entry. The importance of this necessary 

condition will be observed in the next remark. 

2) Continuous Time Maximal Decimation: Let H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 )  be the 

Fourier transform of a 2-D continuous time filter h(t). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* . i o *  

Fig. 12. Quincunx lattice. 

Suppose H(f2) is an ideal filter and that the support 

of H(R) is the union of two parallelograms, where 

each is a shifted version of S P D ( n N P T ) ,  and the 

two parallelograms are separated by 2rNPTyo.  The 

question is as follows: What are the conditions such 

that the output of H(b2) can be maximally decimated? 

The necessary and sufficient condition for this is that 

yo has at least one nonzero integer entry. As long as 

H(S1) satisfies this condition, we can always find M 
with IMl = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlNl/2 such that H(b2) is aliasfree(M). 

Therefore, maximal aliasfree decimation of the output of 

H ( 0 )  depends entirely on the relative position of the two 

passbands. However, in the 1-D case, the condition that 

yo is a nonzero integer is not sufficient. The necessary 
and sufficient condition in 1-D case is that yo is an odd 

integer. 

Properties of two-Parallelogram Filters 

In all cases of Fig. 11, we observe that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS is adjacent to 

its own images. This is, in general, true; it can be verified 

that S is necessarily adjacent to its own images when the 

bandpass sampling theorem is satisfied. The type of adjacency 

is determined by LAT(LT) .  More specifically, we have the 

following three cases: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 )  Complete Edge Adjacency: When L is as in (a) or (b) of 

(I), S is adjacent to its images on two edges; S and its 

images form a stripe pattern (Fig. 1 l(a)-(b)). 

2)  Purtial Edge Adjacency: When L is as in (c) or (d) of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(1)  with p f 1, S is partially edge adjacent to its images 

(Fig. 11 (c)-(d)). 

3) Vertex Adjacency: When L is as in (c) or (d) of (1) with 
p = l .LAT(LT)  is quincunx (Fig. 12). In this case, 

S is vertex adjacent to its images; S and its images 

form a check pattern (Fig. 11 (e)). Notice that this is very 

different from the 1-D case. Recall that in the 1-D case, 

no passbands of the analysis filters are adjacent to their 
own images. This observation will help us to study the 

permissibility of two-parallelogram filter banks. 

B. Permissibility of Two-Parallelogram Filter Banks 

Now, consider a two-parallelogram filter bank. In the sub- 

bands, the images of the analysis filters will be attenuated 
to the stopband level of the synthesis filter, except those 
images that are adjacent to the synthesis filters. Those ad- 

jacent images result in major aliasing if the individual filters 

are assumed to have good frequency selectivity. In the 2-D 

case, there are several different types of adjacency, which 

result in different types of major aliasing. As the notion of 
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image of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L-LY 

-uncancelable major aliasing 

Fig. 13. Illustration of uncancelable major aliasing. 

permissibility originates from uncancelable major aliasing, 

we have to consider a finer classification of permissibility. 

Consider the different cases in Fig. 11. Suppose the shaded 

areas represent the images of S or S’. In all cases, one 

image is adjacent to S and will result in different major 

aliasing. For example, in Fig. 1 1(a)-(d), the image results 

in edge aliasing, whereas in Fig. 1l(e), the image results in 

vertex aliasing. For an alias transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAk(w), if in a 

certain frequency region there is only one particular major 

aliasing term, then this major aliasing cannot be canceled. 

In this case, when the uncancelable aliasing is edge based 

or vertex based, the support is called edge nonpermissible 

or vertex nonpermissible, respectively. We see that edge 

adjacency corresponds to band adjacency in the 1-D case 

(Fig. 7), whereas vertex adjacency has no 1-D correspondence. 

Comparing these two types of nonpermissibility, edge-based 

aliasing is, in general, much more serious than vertex based. 

The filter banks that do not have any type of uncancelable 

major aliasing is called permissible. We will explain below that 

the two-parallelogram filter banks can have edge permissible 

but cannot have both edge and vertex permissibility. 

When the images of S are adjacent to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. major aliasing 

is created and this major aliasing is uncancelable. To explain 

this, suppose LT = [i i] , as in (d) of ( I ) .  As the vector 

[1 p]’ E LAT(LT).  one image of S will be separated 
from S by [1 p l T .  This image is edge adjacent to S and 

creates major aliasing as in Fig. 13. The resulting major 

aliasing contributes to the alias transfer function A(l,o) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U)  

since [l pIT = LT[ l  O I T .  In other subbands, the major 

aliasing errors that contribute to A(l,ol(w) are not in the the 

same frequency region; this major aliasing is uncancelable. 

However, from previous subsection, we know images of S will 
always be adjacent to S. We conclude that two-parallelogram 

filter banks are not permissible in general under the assumption 

of good analysis and synthesis filters. 

On the other hand, in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11  (e), we observe that images of 
S are only vertex adjacent to S. Therefore, edge permissibility 

is possible. The two-parallelogram CMFB’s that have edge 

permissibility will be constructed in the next section. 

IV. CONFIGURATION OF TWO-PARALLELOGRAM CMFB’s 

In view of the construction procedure for 1-D CMFB’s in 

Section I1 and the discussion in previous section, there are 

three important issues to be addressed. First, for a given filter 

bank with decimation matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM as in Fig. 1, we ask how to 
obtain the analysis filters such that the support configuration 

of the 2-D CMFB is an extension of I-D version. The second 

issue is the analysis and synthesis filters should be AFS(M) ,  
and the configuration should be AFS(M) .  Moreover, as the 

supports of the analysis filters form a tiling of the frequency 

plane, the filter bank has perfect reconstruction when the 

prototype filter is an ideal filter. For those that satisfy these 

two criteria, we further consider support permissibility. 

Issue 1-Support Conjiguration 

summarized as follows: 

The general setting of 1-D M-channel CMFB can be 

I )  Design a 2M-channel uniform DFT filter bank. 

2) Shift the filters in the DFT filter bank by 7r/2M, 
and combine appropriate pairs of filters to yield real- 

coefficient analysis filters. 

We now translate these procedures to the 2-D case and 

construct the two-parallelogram CMFB. To design a two- 

parallelogram CMFB with decimation matrix M ,  conceptually, 

we start from a uniform DFT filter bank [2] with decimation 

matrix N = ML.  where L is an integer matrix (to be chosen 

appropriately) with ILI = 2. For example, 

7 -2 
let M =  [” ] and L = [t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:I, then 

As IN1 = 14, there are a total of 14 DFT filters as shown in 

Fig. 14. The DFT filters P;(w) are given by 

P i ( W )  = Po(w - 27rN-Tki), k; E N(NT) .  

Each filter in the DFT filter bank is a shifted version of a proto- 

type P(w) ,  which has a parallelogram support SPD( X N - ~ ) .  
For a given M ,  the support of the prototype is different for 

different choice of L.  In 1-D CMFB, we shift the filters by 

7r/2M, but in 2-D case, the shifts arc: vector shifts, and we 

can shift the filters by 

T N - ~ [ I  O I T ,  7 r ~ - ~ [ 0  llT; or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT N - ~ [ I  l lT, 

as shown in Fig. 15. Fig. 16(a)-(c) shows the results with 

respect to the three shifts. The filters Q ~ , ; ( w ) ,  Q ~ ; i ( w )  and 

&c.;(w) are given by 

QA, , (w)  =P.(w - 2 ~ N - ~ [ 0 . 5  O I T ) ,  

QB,%(w)  = P~(w - 2rNPT[0 0.51T), 

Q ~ , , ( w )  =I’.(w - 2.irNPT[0.5 0.5IT). 

For all the three cases, filters can be paired to obtain real- 

coefficient analysis filters. For example, in Fig. 16(a), the filter 

coefficients of Q ~ , i ( w )  and Q!4,i(w) are complex conjugates 

of each other. The filters Q A , ~ ( w )  and QL,i(w) can be paired 

to obtain the analysis filter H4.i (w) 

HA.i(w) = dc)A.i(W) + SL, i (w) .  

The corresponding synthesis filter is FA,;(w) = Q>.i(w) + 
Q:;,;(w). Similarly, in Fig. 16(b) and1 (c), H ~ , i ( w )  consists 
of & ~ . ; , ( w )  and &/B,;(w), and Hc, ; (w)  consists of &c, i (w)  

and Q&,,;(w). (The subscripts A; B, and C of the analysis and 

synthesis filters are only temporary and meant to distinguish 

the three cases in Fig. 16.) Each analysis filter consists of two 

parallelograms. Therefore, the CMFB constructed this way is a 

subclass of two-parallelogram filter banks. We observe that all 
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(--x,--K) I 

Fig. 14. DFT filter bank with decimation matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN .  

Fig. 15. Three possible vector shifts. I 

(b) 

three support configurations are extension of the 1-D version. 

The three configurations will be referred to as configuration 

A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. and C in the discussion to follow. From Fig. 16, it seems 

that configurations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and L? are very similar. Indeed, as we 
will see in issue 2 and 3, properties derived for configurations 

A are also true for configuration B, except for some minor 

modifications. 

Issue 2--AFS(M) Support ConJiguration 

We now study the conditions such that configurations A. B. 
and C are A.FS(M). As M is fixed, and supports of the 

analysis filters in each configuration are already determined, 

Theorem 3.2 implies that L will completely determine whether 

the the analysis filters are A F S ( M )  in the ideal case. In 

configuration A, the two passbands of the analysis filters are 

separated by 2 ~ N - ~ ( 2 k  + [1 O I r )  for some integer vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IC. By Theorem 3.2, the analysis filters are AFTS(M) in ideal 
case in the following two situations. 1) Choose L as in (b) of 

( l ) f o r a n y O < p <  1 .2 )ChooseLas in (c )o f ( l )wi thp=  1. 

which yields quincunx LAT(LT)  (see Fig. 12). Similarly, in 

configurations B and C,  the two passbands of the analysis 

filters are separated, respectively, by 2 ~ N - ~ ( 2 k  + [0 1IT) 
and 27rNMT(2k+[1 1IT). We can verify that configuration B 
is A F S ( M )  if we choose I, as in (a) of ( I )  for any 0 < p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 1, 

or we can choose L as in (c) of (1) with p = 1, i.e., quincunx 
LAT(LT). Additionally, configuration C is A.FS(M) if we 

choose L as in (a) or (b) of (1) for any 0 < p  5 1. 
Notice that in all three configurations, the analysis filters 

form a tiling of the frequency plane. When the configurations 

(c) 

Fig. 16. Three possible support configurations o f  the two-parallelogram 
cosine modulated lilter bank. (a) Configuration .4. (b) Configuration 13. (c) 
Configuration r. 

are A.FS(M).  the filter bank has perfect reconstruction if the 

prototype is an ideal filter. 

Issue 3-Support Permissibility 

According to the preceding analysis, each of the three 

support configurations is AFS(M)  for some L. However, 

not all configurations are valid candidates in terms of support 

permissibility. From the discussion of two-parallelogram filters 

in Section IV, we know that when LT is as in (a) or (b) of 
(l), one passband is edge adjacent to its own images, which 

leads to edge nonpermissibility. The 2-D CMFB studied in 

[ 141 usually has this type of nonpermissible support. From the 

consideration of support permissibility, any configuration with 

L as in (a) or (b) of ( I )  is not suitable for the development of 
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TABLE I 
SAMPLING CRITERION, EDGE PERMISSLBILITY AND RkLATION TO THE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVAKIOUS CASES OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN EQ. ( I )  FOR CONFlCURATlONS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,  AND c‘ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 satisfying the  sampling criterion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcl 0. 

U n I edge permissible 

configuration. We see that configuration C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS either violating 

sampling criterion or edge nonpemissible. Configurations A 
or B can satisfy the sampling criteinon and, at the same 

time, is edge permissible if LAT(L*) is quincunx (Fig. 12) 

These two cases are more suitable for the construction of 

two-parallelogram CMFB. In this case, the two-parallelogram 

CMFB can have edge-based permissibility but lacks vertex- 

based permissibility. This imposes limitations on the attenua- 

tion of the individual filters in the two-parallelogram CMFB. 

ge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaliasing due to 

Images of QA,i 

Fig. 17. 

images of Q,q,,(w) arc edge-adjacent to CJ’;,,(wj. 

Images of Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl , , (u)  and their positions relativc to (J:,T,i(w): four 

2-D CMFB. As configuration C is AFTS(M) only for these 

two types of L,  configuration C will not be considered. In 

addition, configurations A and B with L as in (a) and (b) 

of (1) will not be considered. To design a edge permissible 

two-parallelogram CMFB, the only two possible choices left 

are configuration A and B with quincunx LAT(LT). Indeed, 

we will explain below that these two choices lead to edge 

permissible two-parallelogram CMFB. 

As we discussed in Section IV, for two-parallelogram filters, 

each of the two passbands and its images form a check 

pattern when LAT(LT) is quincunx (Fig. 11 (e)). Therefore, 

each passband is edge adjacent to four images of the other 

passband, which results in edge aliasing (Fig. 17). However, 

we can show that these edge aliasings appear in pairs, and 

the two-parallelogram CMFB is edge permissible. To see this, 

consider the ith subband in configuration A and only image 

(a), which is at the support of Q14,j(w). The resulting edge 

aliasing is as shown in Fig. 17. On the other hand, four images 

of QA.] (w)  will be edge adjacent to one of the four 

images is at Q;,, and results in edge aliasing. It turns out that 

these two edge aliasing errors contribute to the same alias 

transfer function. Therefore, edge aliasing errors appear in 
pairs, and configuration A is edge permissible. The situation 

for configuration B is similar. In Section VI, we will discuss in 

detail how those edge aliasing errors can cancel one another. 

Although configurations A and B can be edge permissible, 
they are not vertex permissible. For each analysis filter, 

images of one passband will be vertex adjacent to itself. 

The analysis in previous section shows that the resulting 

vertex aliasing is uncancelable under the assumption of good 

analysis and synthesis filters. Table I is a summary of the 

role of L to the AFS(M)  properly and permissibility of each 

V. FORMULATION OF THE TWO-PARALLELOGRAM CMFB’S 

We have set up the framework of two-parallelogram CMFB 

in Section IV. We have also derived two edge permissible 

support configurations. In this section, we will consider all the 

design details. For a given 2-D filter bank with decimation 

matrix M ,  we start from a uniform DFT filter bank with 

twice the number of channels. By shifting the DFT filters 

property, we obtain two edge permissible configurations. We 
then proceed to formulate the analysis and synthesis filters. 

A.  Conjgurution A and B 
Consider the IMI-channel 2-D filter bank with decimation 

matrix M in Fig. 1. We start from a uniform DFT filter bank 

with decimation matrix N = M L ,  where L is an integer 

matrix with ILI = 2 and quincunx LAT(LT) (for edge 

permissibility). To be more specific about the formulation of 

the DFT filter bank, let M be diagonalized as M = UAMVM, 
where U and VM are unimodular. The matrix AM is diagonal 

with diagonal elements  AM]^^ = A0 > 0 and [AM]I I  = 
A1 > 0. For simplicity, we choose L = VG1 [ A  i] V for 

some unimodular V such that LAT(LT) is quincunx. Then, 

the matrix N given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = M L  becomes 

--/ 
M L 

(4) 

A 

Clearly, IMi = &XI, ILI = 2, and IN1 2AoX1. The pro- 

totype filter P(w)  in the DFT filter bank has a parallelogram 

support SPD(  T N - ~ ) ,  The DFT filters are shifted versions of 

the prototype by 27rNPTk;, for k; E N(NT) .  
For referring convenience, we will adopt a particular or- 

dering of N ( N T ) .  As V T A  and NT lhave the same lattices, 
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we will consider the ordering 

ordering is as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k l  = 

Then, N(V'A) = {ko,k l ,  

of n/(V'A) for simplicity. The 

ko = 0 , l .  ' ' ' , Xo - 1, 

0 , 1 , .  . . ,2X1 - 1. ( 5 )  

. . ,  k , ~ , - ~ } .  Configurations A 

and U (Fig. 16) are obtained by shifting the DFT filters. In 

particular, the complex filter underlying configurations A and 

B are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q ~ ( w )  = P ( w  - 2 ~ N - ~ ( k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ I ) ) .  k E N(VTA) (6) 

where I = [0.5 0.5IT 
for configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. The vector subscript of Qk(w) should be 

interpreted modulo NT. 

OIT for configuration A and 1 = [0 

B. The Analysis and Synthesis Filters 

To obtain real-coefficient analysis and synthesis filters, 

we need to combine two shifted copies of the prototype 

P(w) .  Suppose the impulse response of Qk(w) is ~ ( n ) .  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k' be such that q k , ( n )  = $(n).  Pair Qk(w) and Qk/(w). 
Then, the analysis filters of the form Qk(w) + Qk/(w) have 

real coefficients. The pairing procedure is formulated in the 

following property. 

Proposition 5.1: The coefficients of & L , , , + ~ ,  xn (w) and 

Q".-;+.'.; A() (w) are complex conjugates of each other if 

mo, mb. ml , and m/1 are related by 

mo+mb=bomodXo.  and 

ml + rn/l = bl mod 2x1. where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[;:I = -2VPTI. 

(7)  

Proof of Proposition 5.1: The filter Qk(w) is a shift of the 

prototype P(w)  by 27rNPT(k + L ) .  If Qk/(w) is a shift of 

the prototype P(w)  by -27rNUT(k + I ) ,  q k ( n )  and qk'(n) are 
conjugates of each other. Therefore, &(U) + Qp (w) has real 

coefficients if 27rNPT(k' + I )  = - 2 ~ N - ~ ( k  + I )  mod 27rI. 
or equivalently, 

k + k' = -21modNT. (8) 

Next, we would like to relate 711, and vi' such that k, + k,t = 
-21 mod N T .  Let m = mg + Xoml and m' = mb + Aorr&. 
Then, 

k, = v T p ] ,  

If we combine conjugate pairs Qk(w)  and Q v ( w )  as de- 

scribed in Proposition 5. l ,  we get /MI real-coefficient analysis 

filters. 

H,(w) =Qkmo+nlr*o ( w )  + Qkm;+m;ho (w), 

F, (w) = H k  (U) ,  m = 0, 1 , . . . , IMI - 1 (9) 

where mo = m, mod &,ml  = b + (m  - mo)/& mod 2x1, 
and b = ( b l  + 1)/2.  Values of mb and mi are given by (7). It 

can be verified that b = ( b l  + l ) / 2  is an integer, and the above 

enumeration of the analysis filters is complete. It follows from 

(9) that the impulse response of the analysis filter H,(w) is 

h,(n) 2 p ( n )  COS ( ~ T ( ~ , , + V L , X ~  + I)TN-lTL), 
m = O,I, .  . . , IMI - 1. 

We have chosen F, (w) = H A  (w) in the above formulation, as 

the system is eventually going to be paraunitary. The: impulse 

responses of the analysis and synthesis filters are re1,ated by 

f h ( n )  = hk(-n),  wherenis any2 x lvector. 

In a 1-D CMFB, each analysis filter has two distinct shifts 

of the prototype filter. Therefore, the total bandwidth of each 

individual filter is the same. For 2-D filters, total b,andwidth 

should be interpreted as the total spectral occupancy. In the 

two-parallelogram CMFB, all analysis filters have the same 

size of spectral occupancy. Every analysis filter consists of two 

distinct shifts of the prototype. This follows from the 'quincunx 

property of LAT(LT) as we will show below. 

Proposition 5.2: The analysis and synthesis filters have 

equal size of spectral occupancy. 

Proof of Proposition 5.2: We only need to show thlat Qk(w) 
and Qk:,(w) are distinct filters whenever the coefficients of 

Q ~ ( w )  and Q v ( w )  are complex conjugate of each other. 

Suppose the contrary is true; the coefficients of Q,t(w) and 

Qp (w) are complex conjugate of each other, but the:y are the 

same filter, i.e., k = k' mod N T .  By (S), we have 

NT 2k = -21. 

As LAT(LT) is quincunx, 2k = 0 mod LT.  Taking modulo 

LT on both sides of the above equation, we have 0 = -21. 
By the definition of I ;  21 = [l 0IT or [O 1IT. Therefore, 
21 LAT(LT) ,  which leads to a contradiction. We conclude 

that when the coefficients of Q t ( w )  and &(U)  are complex 

conjugate of each other, Qk(w) and Q ~ ( w )  are not the same, 

and each analysis filter consists of two distinct copies of the 

prototype. 

LT 

VI. PERFECT RECONSTRUCTION 
TWO-PARALLELOGRAM CMFB's 

kmt = VT [z ] and therefore 

It follows that Qkmn , m, x o  (U) + Qk,-b+,,Li xo  (U) have real 

coefficients if m o -  mb. m l .  and mi are related as in (7). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii derived for two-parallelogram CMFB as well. 

In this section, we first show how to cancel edge aliasing 

errors that arise in every subband. Then, we present the 

necessary and sufficient condition for perfect reconstruction of 

a two-parallelogram CMFB. In the l-D case, the CMFB has 
perfect reconstruction if and only if the polyphase components 

of the prototype are pairwise power complementary [28]. We 

will see that similar necessary and sufficient conditialns can be 
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A. Cancelation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Edge Aliasing 

In Section IV, we mentioned that in each subband (config- 

uration A or B), one passband of each analysis filter is edge 

adjacent to four images of the other passband. This results 

in serious edge aliasing. It turns out that these edge aliasing 

errors from different subband can actually cancel with one 

another if the prototype has linear phase and satisfies some 

minor condition. To be more specific, let the impulse response 

of the prototype be p ( n )  and 

p ( n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p ( n s  - n), for some integer vectorn,. (10) 

Proposition 6. I :  Consider a two-parallelogram CMFB with 

analysis and synthesis given as in (9). Let LAT(LT)  be 

quincunx. Then, the following is true: 

1) Edge aliasing errors appear in pairs. 

2) Pairwise edge aliasings can cancel with each other if n, 
satisfies 

n, = N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[:::I modN. 

3) The vector n, thus determined is an integer vector, and 

This is a minor condition because it is always possible to 

Proof of Proposition 6.1: 

N n,s has the form n,s = U[0 X I I T .  

shift the linear-phase prototype such that ( I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) is satisfied. 

Consider the subband that has analysis filter Qk(w) + 
Qv(w) .  The aliasing terms due to edge adjacency of 

Qi , (w) ,  and images of Qk(w) are 

Qk,+ks ( ~ ) Q ; r ( w ) ,  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, E AS. (12) 

The adjacency set (AS) is given by 

AS !! {[(:I. [-;I. [:'I- [-;I}. 
These aliasing terms contribute, respectively, to the 

aliasing transfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAL ( 2 k ~ + z ~ + k ,  (w) .  Now, 
consider the subband that has analysis filter Qkpk9 (w )  + 
Qk,+k, (U). One image of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQkpks (w)  will be located in 

support of Qk,(w) and results in aliasing error 

QLr+kq ( W ) Q k ' ( W )  (13) 

which also contributes to AL-T(2kr+21+k (w) .  There- 

fore, the edge aliasing errors occur in pairs. 

Notice that the error in (13) is the conjugate of error in 

(12), and they cancel each other if 

Q;, (W)Qk/+k,  (w)  = -Qk'(W,Q;'+k, (w) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYk5 E AS. 

In what follows, we show that the above equation holds 

when n, is as in (1 1). By (IO),  P ( w )  assumes the form 

P ( w )  = e-JwTn,/'PT (w) ,  where I)T(w) is a real-valued 
function. Let P, k (w)  = Pr(w - 27rN-'(k + I ) ) .  Then, 
we can verify 

Q;((w)Qk/+k,(w) + Qk'(w)Q;(+k, (U) 
- - ( ? J T ~ ;  N-ln,  + epJ.rkTN-'n, 1 P,,& (w 

' pr,k'+k, (w) .  

= 27rd + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT [ :] . for some integer vector d .  

Premultiplying both sides by (1/27r)N, we have 

n, = Nd + N[0.5 O.5IT or, equivalently, n, = 
N[0.5 0.5IT mod N .  

0.5IT 
mod N .  As LT = V T [ i  ; ]VGT.LAT(LT) is the 

same as the lattice of VT [ 

3) The vector n, is determined by n, = UAV[0.5 

:]. Let 

The vector [OOO 7 1 0 1 1 ~  is on the lattice of LT,  which 

is quincunx. Any vector c on the quincunx lattice has 

the property that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[cl0 + [ell is even. This means that 

voo + 7101 is even; 1100 and 1101 are either both odd or 

both even. If uoo and 1101 are both even, then /VI is 

even, which contradicts with the assumption that V is 

unimodular and has IVI = 1. Therefore, 7100 and 1101 

are both odd. This in turn implies that 7110 and 2111 must 

be one odd and one even (since IVI = 1) .  As a result 

V[0 .5  0.51T = [CO r1+O.5IT for some integers CO and 

c1. Let c = [CO 0.5IT) 
or, equivalently, n, = N(V- lc)  + UIO XI]'. Hence, 

we have ns c U [ 0  A l l T ,  which is an integer vector. 

clIT. Then, n, = UA(c+  [0 

B. Pegect Reconstruction Conditions 

tation: 

Let the prototype have the following polyphase represen- 

where 
- -  

n T , " + X o T ~ ,  =U 1;: I , n,O = 0,1, ' '  , ~0 - 1; 

(15) 121 = 0; 1,.  ' .  ; 2x1 - 1 

where U is as given in (4). Then, &(w)  is the polyphase 

component of P ( w )  with respect to n;. The paraunitariness of 

the two-parallelogram CMFB can be translated into pairwise 

power complementary conditions on Ei (w) .  
Theorem 6. I--Necessary and Suflcient Conditions for  Pa- 

raunitariness: Consider the filter bank with decimation matrix 

M in Fig. I and the choice of analysis and synthesis filters in 

(9). Let the matrix N be given by N = ML; where LAT(LT) 
is quincunx. In addition, let the prototype be linear-phase with 

p ( n )  = p ( n s  - n) and n, = N[O.5 0.51T mod N. Then, the 
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two-parallelogram CMFB is paraunitary (i.e., the polyphase 

matrix is paraunitary) if and only if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E%*(W)E,(W) + E,",x,x, (w)E,+xoxl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w)  = c: (16) 

where c is some constant. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

The proof of Theorem 6.1 is given in Appendix B. 

Remark on Theorem 6.1: The condition in (16) is equiva- 

lent to saying that E,(w) and El+xoxi ( U )  are power com- 

plementary in a 2-D sense. As explained in Section V, the 

two-parallelogram CMFB is of configuration A when 1 = 
[O.5 0.5jT. As the 

theorem is true regardless of choice of 1. Theorem 6.1 holds 

for both configuration A and configuration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. 

0IT and configuration B when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = [0 

C. Polyphase Components of the Prototype 

In the 1-D CMFB, the polyphase components of the proto- 

type are related in pairs because of linear phase constraint of 

the prototype. At the same time, there are also power comple- 

mentary pairs due to paraunitariness. Furthermore, if half of 

the polyphase components are pairwise power complementary, 

the other half, due to linear phase, are automatically pairwise 

power complementary as derived in [28]. The situation is 

similar in the two-parallelogram CMFB, as we elaborate upon 

next. 

According to (lo), the impulse response of the prototype 

is p ( n )  = p ( n ,  - n). Therefore, the vector ns determines 

the pairwise relations of the polyphase components. More 

precisely, we will show that the polyphase component are 

pairwise related by 

nb = - n o  mod Ao, 

ni zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 AI - 7 1 1  mod2A1 (17) 

where d is a vector determined by n,5, and the two quantities 

CO and c1 are given by 

0. if nl 5 X I .  
1. otherwise. 

0, if 710 = 0, 

1 ~ otherwise, 
and (1 = e o =  { 

Proof of (17): As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnh = N[O.5 O.5IT mod N , n ,  = N d +  
N[O.5 0.5IT for some integer vector d .  Using the linear 

phase property of P(w) ,  we have P(w)  = e-JWTnSP*(w) .  
Substituting in the polyphase representation of P ( w )  gives us 

n&=O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = 0  

. e - J W ' U ( - n ;  X1-n;)' 

The right-hand side of the above equation is equal to 

Therefore. 

if [ n o  nilT = [cox0 - nh 2c1A1 + AI - r ~ , : ] ~ .  This gives 

0 

According to the statement of Theorem 6.1, we know the 

first and the second halves of the polyphase components are 

power complementary in pairs. Combining these two different 

pairwise relations, we observe that if the following pairs 

us the pairwise relations given in (17). 

are power complementary, then the others will be pairwise 

power complementary due to the linear phase property of the 

prototype. Here, the ceiling function [x1 is defined as the 

smallest integer greater than x .  
Comment on the Nyquist Property of the Analysis Filters: 

As in the 1-D case, we can define Nyquist filters. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA filter h(m) 
is called a Nyquist ( N )  filter if one polyphase component of 
h(m) is a delay. From the previous discussion, we observe 

that while (Eo(w), Exox, (w)) is a power complementary pair, 

these two polyphase components are also related because P(w)  
has linear phase. As a result, &(U) and E x o x l  (w) are merely 

delays. Therefore, the prototype is a Nyquist ( N )  filter. The 

analysis filters are cosine-modulated versions of the prototype. 

We conclude that the analysis filters are also Nyquist ( N )  
filters . 

VII. IMPLEMENTATION AND DESIGN 

EXAMPLE OF TWO-PARALLELOGRAM CMFB 

Eflcient Implementation of the Two-Parallelogram CMFB 

Efficient implementation is one of the reasons that CMFB's 

attract a lot of attention. In the 1-D CMFB, the complexity of 

the analysis bank or the synthesis bank is that of the prototype 

filter plus a DCT matrix. The DCT matrices are known to be 

low-complexity matrices. We will show that there also exists 

efficient implementation for the two-parallelogram CMFB. 

The cost of the analysis bank or the synthesis bank is that of a 

prototype filter plus a matrix, which has elements resembling 

that of a nonseparable 2-D DCT matrix. Implementation of 
this DCT-like matrix can be decomposed into 1-D DCT 

matrices of smaller dimensions. Denote the complexity of a 

A-point DCT by C(X). Then, the complexity of C is roughly 

4A1C(Ao) + XoC(zA,), where A0 and A 1  are the diagonal 

elements of AM. 
Using the polyphase representation of the prototype in (14), 

the analysis filters in (9) can be rewritten as 
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Fig. 18. Efficient implementation of the analysis bank of the 
two-parallelogram CMFB. The matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is of dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAllMl by 2lMi. 

where 

The above expression for the analysis filters gives rise to 

the efficient implementation in Fig. 18. The matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is 

rectangular of dimension IMI x /NI. The figure demonstrates 

that the complexity of the 2-D CMFB is that of the prototype 

plus G.  The elements of c are those of a nonseparable 2-D 

DCT. 

Decomposition and Complexity of C: We first define the 

the Kronecker product of two matrices A and B: 

. . .  

,- 
I J x K L  

The matrix C can be decomposed as (to be shown in Appendix 

C) 

where CO, So are XO x XO matrices, and C1. SI are XI x 2x1 
matrices given by 

The implementation of C is closely related to that of 

CO, So, C1 and SI. The matrices CO. So, C1 and S1 have 

elements resembling that of DCT and DST matrices. The 
complexity of these four matrices can be shown to be 

roughly C(Xo), C(X,), $ C(2X1) and $ C(2X1). Using the 

decomposition in (19), we can further show that the complexity 

of the C matrix is roughly equal to 4XlC(Xo) + XoC(2X1). 
These properties of C ,  Go, So, C1 and SI will be verified in 

Appendix C. 

Fig. 19. Example 7.1. Two-parallclogram cosine modulated filter bank. (a) 

Polyphase components of I '(w) that are pairwise power complementary. (b) 
Polyphase components of P ( w )  that are related due to linear phase of P ( w ) .  

Example 7. I-Two-Parallelogram CMFB: Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[U' -I] = [: -3 [U' ;] 

Choose 

With the above of choice of L, LAT(LT) is quincunx. If we 

choose configuration B,  then I = [O 0.5IT. Fig. 4 shows 

the supports of the analysis filters. By Theorem 6.1, the 

two-parallelogram CMFB has perfect reconstruction if the 

polyphase components of the prototype satisfy the power com- 

plementary condition given in (16). Fig. 19(a) shows the pairs 

of polyphase components that are power complementary. As 

the prototype is linear phase, the polyphase components are re- 

lated in pairs. Fig. 19(b) shows these pairwise relations. In the 

figures, we use the notation E,";(w) to denote the polyphase 

component Erlo+rL, xo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U). From the discussion for polyphase 

components in Section VI-C, if (Ei(w).  E; (w) )  for i = 1.2.3.  

are power complementary pairs, then (Ei(w).  E; (w) )  for z = 
4,s. 6, are guaranteed to be power complementary pairs. We 

can optimize P ( w )  subject to only the condition that Ei (w)  
and E f ( w )  for I = 1,2,3,  are power complementary. This 

condition can be satisfied by using the 2-D paraunitary lattice, 

Fig. 20 shows the support of impulse response of the 

prototype filter p(n). The support of p ( n )  resembles the 

shape of SPD(2N).  Each solid dot represents a possibly 

nonzero coefficient of p(n). In this optimization, each of the 14 

polyphase components has four coefficients. The correspond- 

ing frequency response of the prototype is shown in Fig. 21. 
The stopband attenuation of the prototype is 17 dB. The reason 

that the prototype cannot have good attenuation is due to the 

lack of vertex permissibility in two-parallelogram filter banks 
(Section 111). 

~301. 

Concluding Remarks 

In the application of subband coding, the support config- 

uration of the analysis filters on a large scale determines 

the coding performance of the filter bank. In this paper, we 
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0.5 

-0.5 0 . 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 21, 
magnitude response of thc prototype with frequency normalized by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2%.  

Example 7. I .  Two-parallelogram cosine modulated filter bank. The 

Fig. 20. Example 7.1. Two-parallelogram cosine modulated filter bank. The 
impulse responsc support of the prototype. Each solid dot represents a possibly 
nonzero coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the prototype. (Intersection points of  the dashed lines 4) Lattices.’ The lattice of a matrix M is denoted by 
are on the lattice of N .  Solid lines represent integers.) 

have considered the class of two-parallelogram filter bank. 

The passband of each analysis filter consists of two parallelo- 

grams and the frequency plane is partitioned by parallelogram 
cells. (These types of configurations also have the potential 

To facilitate the analysis, we introduced the notions of 

edge and vertex permissibility and explained that, although 

the former one is more important, both types of permissibility 

are necessary for good filter bank design. As elaborated upon 

in Section 111, the two-parallelogram filter banks can possess 

edge or vertex permissibility but not both. As a consequence, 

the stopband attenuation of the filters in two-parallelogram 

perfect reconstruction filter banks cannot be arbitrary large. 
Extensions of the discussions of this paper for the case of 

linear-phase filters can be found in [19]. 

LAT(M) .  Two matrices M and M’ have the same 

lattice if and only if MplM’ is a unimodular matrix. 

In this case, N ( M )  and n/(M’)  have the relation 

N ( M )  = { n m o d M , n  E Af(M’) } .  The lattice of a 

2 x 2 matrix M is called quincunx if M = [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp t  :] U 
for some unimodular U .  

matrix M can always be factorized as M = UAV, 
where U and V are unimodular integer matrices, and 

A is a diagonal integer matrix. 

Preliminary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 2 - 0  Multirate Systems 

application of extracting directional information-like edges,) 5) DiagoflaliZation of Integer Matrices: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA D x D integer 

1) Decimation ~ ~ l l ~ ~ ~ d  by ~ ~ ~ ~ ~ ~ i ~ ~ :  ~i~~~ an M-fold 

decimator, the input z(n)  and the output y(n)  are related 

by y(n) z ( M n ) .  In the frequency domain, the relation 
is 

X(M-’(w - 27rk)). 
1 

Y ( w )  = ~ 

APPENDIX A t tnr(Mr) 
SUMMARY OF INTEGER MATRICES AND MULTIRATE SYSTEMS 

Given an M-fold expander, the input z(n) and the 

output g(n) are related by Fundamentals of Integer Matrices 

I )  Unimodular Matrix: An integer matrix U is unimodular 
if IU/ = 1. 

2) Notations N(M) , IMl  and S P D ( M )  : Let M be a 

D x D nonsingular integer matrix. The notation H ( M )  
is defined as the set of integer vectors of the form 

M z ,  z E [O, 1 ) D  

The number of elements in n / ( M )  is equal to IMI, which 

is the absolute value of determinant of M .  In the 1- 

Dcase ,  D = l , a n d n / ( M )  = {0,1,2; . . ,M-l}.  

The symmetric parallelepiped S P D ( M )  is defined as 

3 )  Division Theorem for Integer Vectors: Let M be a D x D 
matrix and n be a D x 1 integer vector. We can express 

n as n = no + Mk,no E N ( M ) .  Moreover, no and 
k are unique. This relation is denoted by n = no mod 

M. We will use the notation n 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk if n - k = Md for 

some integer vector d .  

S P D ( M )  = { M q z  € [ - I , l ) D } .  

M .  

x(Mpln), n E L A T ( M )  
otherwise. 

In the frequency domain, the relation is Y ( w )  = 

Consider the concatenation of the M-fold decimator 
followed by an M-fold expander. The input ~ ( n )  and 

the output y (n )  are related by 

X ( M T w ) .  

n E LAT(M)  
otherwise. 

In the frequency domain, the relation becomes 

1 - 7  

The output Y ( w )  contains X ( w )  and lMI - 1 images of 

X ( w ) ,  which are shifts of X ( w )  by 27rMpTk. 



LIN AND VAIDYANATHAN I'HEOIIY AND DESlGN OF TWO-PAKALLbLOCRAM FlLThR BANKS 2703 

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPer$ect Reconstruction 2 - 0  Filter Bunk: Consider the 

2-D filter bank in Fig. 1. The output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ( w )  is given by 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IMI - 1 

A ~ ( w )  = H,(w - 2 ~ M - ~ k ) F , , , ( w ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk E N ( M T ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m =o 

The filter bank is free from aliasing if the aliasing 

transfer function &(U) is 0 when k # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 mod zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMT. 
The 2-D filter bank has perfect reconstruction if X ( w )  
is a scaled and delayed version of X ( w ) .  As in 1-D 

filter banks, the perfect reconstruction condition can be 

interpreted in terms of the polyphase matrices. Using 

polyphase decomposition, the analysiq and synthesis 

filters have the form 

H,,(w) = E,,,,,(MTw)e-lWTk , 
E,  E N ( M )  

r n  = 0 . 1 , .  . . . IMI - I ,  

FTI2(w) = R, ,n J M T ~ ) ~ , ' W T k J ,  

k, EN(M) 

m = 0.1,  ' ' ' . IMI - 1 

The (MI x lMl matrice., E ( w )  and R ( w )  with 

[E(w)],,, = E,, ((U) and [ R ( W ) ] , ~ ~  I = R n , , ( w )  are, 
respectively, called the polyphase matrices for the 

analysis bank and the synthesis bank. The 2-D filter 

bank has perfect reconstruction if R ( w ) E ( w )  = f l ~ l ,  
where 1 1 ~ 1  denotes a IMl x IMI identity matrix. 

APPENDIX B 

PROOF OF THEOREM 6.1 

The proof will be done in three steps. In the first step, we 

formulate the polyphase matrix E ( w )  of the analysis bank. 

As the 2-D CMFB is paraunitary, the filter bank has perfect 

reconstruction if and only if Et ( w ) E ( w )  is an identity matrix 

except some scalar. In the second step, we simplify the product 

Ei ( w ) E ( w )  as much as possible without using the linear phase 

property of the prototype P(w).  As elaborated in Section VI-C, 

the polyphase components of the prototype are related in pairs 

due to the linear phase of P(w) .  In the final step, we use those 

pairwise relations to show E t ( w ) E ( w )  = I , M ~ ,  provided that 

E,(w) are pairwise power complementary as in (16). 

Notations and Preliminaries for  Appendix B 

For the convenience of derivation, we introduce the follow- 

1) The matrix Ik. denotes a k x k identity matrix, and .7k 
denotes a k x k reversal matrix with nonzero entries 

[ J l n . k - l P n  = 1 for n = O , l , . " , k  - 1. 

2) The DFT Matrix: The A x A DFT matrix w~ is given by 
[ W X ] , ~ ~ ~ ,  = W r n .  where WX = c-J2."/'. 

ing notations: 

3) Two properties of the Kronecker product (defined in 

Section VII) are relevant to our discussion. 

(1) ( A @ B ) t  = A t  @ D t ,  arid 

( 2 )  (&@&)(a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@&I = (4) @ (e). 
I x K  .JxL  K x M  LxiV I x M  J x N  

Step 1-Polyphase Matrix E ( w )  of the Analysis 
Bunk: Let q(w) be a IN1 x 1 vector q(w) = [Qko(W) 
~ t , ( w )  . . .  QkINl- , (W)IT,  and let h(w) be a I M I  x I 

vector h(w)  = [No(w) H l (w)  . . .  H , M , - ~ ( U ) ] ~ ,  where 

H,(w)  is as given in (9). In view of the discussion in Section 

V, we have 

h(w)  = 

where 

0 J(X1-6)X0 J(X1-h)  O I  @ J' ' 
G = p;" J b  c3 J' 0 

0 J X o - h o - l  O I  [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-7' = JJbo+l  

where the values of 6 and 60 are as given in Section V. We will 

first derive the matrix representation of q(w) and, therefore, the 

matrix representation of h(w).  From the expression of h(w) ,  
we can obtain the polyphase matrix E ( w )  of the analysis bank. 

Using the polyphase representation of the prototype P(w)  
in (14), we have 

Qkm 0 + A O  nx I (w + 27"TZ) 

z,=o /, =o 

. E,,+x, ,~ (NTw)e-JW'  n b o + A o 4 1  % 

m u  = 0.1. ' ' ' , A0 - 1, 

m1 = 0.1.  ' ' ' .2x1 - 1. 

By the definition of k,o+~oml and n,,+~,,~ given in ( 5 )  
and (15), the term E J ~ ~ ~ ~ ~ ~ ~  1 A ~ m 1 ~ - ~ ~ ~ o + A o , 1  reduces to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W ~ m " l n W ~ ~ l l l ,  where W, = e-JZn / ' .  Then, 

q(w + 2nN-TZ) 

= (w,',, 8 W~,)diwg: (~O(NTw) . . . . ,EINl-l(NTw)) 

' (w)  

where diag (Eo(N'w), . . . . E l ~ , - l ( N T w ) )  is a IN1 x IN1 
diagonal matrix with the rth diagonal entry E,(NTw).  The 

matrices W X ,  and W2xi are, respectively, A0 x A0 and 

2x1 x 2x1 DFT matrices. The vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeuA(w) is the 2-D 
delay chain vector with respect to . " (UA) .%A(~)  

[(,-w'nn ?-wTnl . . .  p I N I - ~ I T ,  where 

n, is as given in (15). Since n , + I ~ I  = n7 + 
U ( O  AI)T. for I = 0,1, . . .  , / M I  - 1, [euA(w)] ,+ lMl  - 
C-JWTU(O XI) '  [ e V ~ ( w ) l t .  Let the 2-D delay chain with 

respect to UAM be 

-wTn 

- 
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q M 7  (w+zxN-'Z)) 

' @AM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w + 27rNPTI) (20) 

where Go, Eo(w)  and E l ( w )  are IMI x IMl diagonal matrices 

with 

. [EO(W)111 = E,(LTw).  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2?ZT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN -  ' n, 
[GO],, = c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[ E l ( W ) ] L L  = e -  E L + X O X 1  ( L T 4 ,  _IWTVi\gl(O 1)T 

1 = 0 , 1  , . . .  . IMI - l. 

The matrix E(w) as indicated in (20) is the polyphase matrix 

of the analysis bank. The 2-D CMFB is paraunitary if and only 

if E ( w )  is paraunitary. For simplicity, we will prove the pa- 

raunitariness of ~ ( w  + 2 7 r ~ - ~ 1 ) ,  i.e., E' (w + ~ T L - ~ I ) E ( ~  + 
27rL-y = I ,Ml.  

Step 2-Simpli~'ication of the Product Et ( ,  + 27rL-*1) 
E ( w  + 27rL-Tz): 

Et( ,  + 27rKTI)E(w + 27rL?I) 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGA(Ei(w)E!(w)) 

By the definition of G, we can verify that the product GTG is 

] 8 J'.  
0 

GTG = I ~ N ~  + [ J i b  
J2(X1 - b )  

It can be shown that the DFT matrix W X  has the following 

property: 

where rx is a X x X diagonal matrix with [ r x ] k k  = 
e J 2 T k / X .  k = 0 , 1 , . . .  . A  - 1. Using this relation and the 
second property of the Kronecker product, we have 

. (GI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA63 eo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

E + ( W  + 2nL-Tz)E(w + 27rL-y 

It follows that 

In the next step, G ( w )  will be shown to be equal to the 

IMI x lMI zero matrix. Since both Eo(w) and E l ( w )  are 

both diagonal, E ( w  + ~ T L - ~ I )  is paraunitary if and only if 

[ E O ( W ) ] ~ ~  and [El (w) I l z  are power complementary. Equiva- 
lently, (& (U) ,  El+xoxl ( w ) )  is a power complementary pair 

in 2-D sense. 

Step 3-Proof of G ( w )  = 0: As mentioned in Section V, 

bl is odd. Therefore, [ r~ i ] k+X l , k+~ I  = - [ r ; \ ] k k  for k = 

0 .1 , '  . . , A 1  - 1, and hence, [r;il @ r ~ o ] k : + ~ o ~ l , k + ~ o ~ l  = 

-[r;ylry,]kk. = 0.1,. . . , x0xl - 1. Let r;il 8 rYo = 

[f; -%I. We observe that 

APPENDIX C 

DECOMPOSITION AND COMPLEXITY OF THE MATRIX c 
1)  Decomposition of the Matrix C: Substitute in k k o + x o ~ l  

= V T ( h  I C I ) ~ ,  and nno+xonl = VT(no r t ~ ) ~ ,  and we 

have 
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2) The Complexity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe Matrices CO; SO,  C1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASI: The 

DCT and DST matrices are categorized into four types in [31]. 

The matrix Cl has the first X I  rows of a 2x1 x 2XI type I1 

DCT. In some implementation methods, C1 requires only half 

the computation of a 2X1 point DCT. Likewise, SI is the upper 

half of a 2x1 x 2x1 type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 DST and needs half the complexity 

of a 2X1 point DST. When bo is odd, CO is a rearrangement 

of a type I1 DCT matrix. Computation of CO is equivalent 

to that of a Xo point DCT. Similarly, So can be obtained by 

rearranging a type I1 DST matrix, and the computation of SO 
is equivalent to that of a &-point DST. However, when bo 
is even, CO and So become, respectively, rearrangement of 

type I DCT and type I DST. Complexity of CO and So are 

comparable with that of a XO + 1 point type I DCT and Xo - 1 

point type I DST. 

3) The Complexity of the Matrix C: The matrix C has 

two parts, namely, C1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 CO and S1 @ SO. We will look 

into details of computing C1 8 Co. The implementation of 

SI @ So is similar. Suppose the input of C is x; which 
is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIN1 x 1 vector. Let y = (Cl @ Co)x, which is a 

lMI x 1 vector. By the property of the Kronecker product, 

we can also write C1 8 CO as (Cl 8 Ix,)(Iax, 8 CO).  The 

vector y can be obtained in two steps: i) computation of 

1 2 1  I 8 CO and ii) computation of C1@ Ixo.  We analyze these 

two operations as follows: i) Partition x into 2x1 vectors, 

each of size Xo, i.e., x = [x; xT . . . xTAl Let 

?U = ( 1 2 ~ ~  8 Co)x be the output of the first step, and 

then, w = [ (COQ)~  (C0x1)~ . . .  ( C O ~ ~ X , - I ) ~ ] ~ .  
The computation of w requires 2XlC(Xo).  ii) It can 

be verified that after some row exchanges and column 

exchanges C1 @ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1~~ assumes the form Ix, @ CI, namely, 

Cl 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIx l l  = Pl(Ixo @ C1)P2, where P I  and P2 are 
permutation matrices. Partition P2w into XO vectors P2w = 
[w; W T  * w~~-,]’ .  Each of wis is a 2x1 x 1 vector. 

Then, y = P I [ ( C ~ W ~ ) ~  (Clwl)‘ . . .  (C1wxo-l)T]T. 
As PI and P2 are permutation matrices and require no 
computation, operation CI 8 Ix, can be completed with 

complexity (Xo/2)C(2A1). 
Therefore, the computation needed for C1 8 CO is 

2X1C(Xo) + (Xo/2)C(2X1). The matrix SI 8 So has the 

same complexity. This verifies that complexity of C is 

4XIC(X”) + AoC(2A1). 
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