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ABSTRACT

We introduce a new model for extracting classified struc-
tural segments, such asintro, verse, chorus, breakand so
forth, from recorded music. Our approach is to classify
signal frames on the basis of their audio properties and
then to agglomerate contiguous runs of similarly classi-
fied frames into texturally homogenous (or ‘self-similar’)
segments which inherit the classificaton of their con-
situent frames. Our work extends previous work on au-
tomatic structure extraction by addressing the classifica-
tion problem using using an unsupervised Bayesian clus-
tering model, the parameters of which are estimated using
a variant of the expectation maximisation (EM) algorithm
which includes deterministic annealing to help avoid lo-
cal optima. The model identifies and classifies all the seg-
ments in a song, not just the chorus or longest segment.
We discuss the theory, implementation, and evaluation of
the model, and test its performance against a ground truth
of human judgements. Using an analogue of a precision-
recall graph for segment boundaries, our results indicate
an optimal trade-off point at approximately 80% precision
for 80% recall.
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1 INTRODUCTION

Methods for automatically segmenting music recordings
into structural segments, such asverseandchorus, have
immediate applications in music summarization, song
identification, feature segmentation, feature compression
and content-based music query systems. In order to eval-
uate an automatically-generated segmentation, however,
we must develop an understanding of both the act of seg-
mentation and the use to which a segmentation will be put.

The notion of ‘a segment’ is intimately bound up with
the notion of ‘a boundary’. It would be difficult to dis-
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agree with the proposition that, if a segment is (or is at
least associated with) a temporal interval defined by its
end-points, then these end-points must be ‘boundaries’
(in a sense which we intentionally leave undefined at this
stage). Conversely, one might wish to argue that the inter-
val between any two consecutive boundaries is a segment.
Does this preclude the possibility that the interval between
two non-consecutive boundaries is also a segment, per-
haps on a larger scale? Furthermore, one could argue that,
even if every boundary must be the start or end of some
segment, the intervals between certain pairs of boundaries,
such as the gap between two tracks on a CD, need not have
the same ontological status as more substantive events,
such as a verse or a drum solo. (To give a visual analogy,
the space between objects is not necessarily an object.)

Thus, we may conclude (a) that an enumeration of
segments necessarily fixes all the boundaries, but (b) that
the boundaries do not necessarily determine the segments
without further information. In fact, the models we dis-
cuss in this paper are so constructed that the segments are
indeed uniquely determined by the boundaries.

Once we have come to a logically consistent posi-
tion on the relationship between segments and boundaries,
there remains the question of what criteria we are going to
use to define and detect them. One approach, as exempli-
fied by most the methods summarized below as well as our
own contribution, is to consider some local properties of
the signal (a sort of generalised ‘texture’) and assert that
the segments are ‘texturally’ homogenous regions over
which those properties are relatively constant. A corol-
lary of this is that the boundaries can only appear where
there is a change in the local texture. Whilst this has been
the most common approach to segmentation from audio,
it will fail in certain circumstances: consider a song which
contains two separated verses in the first half but two con-
secutive verses in the second. If we successfully identify a
local property which corresponds to ‘versiness’, that is, it
is true whenever a verse isin progress, we will detect the
first two verses but other two will be merged into one long
verse, even if there are other features marking the bound-
ary between the two. This approach is therefore incapable
of detecting what one might call ‘unitary’ or ‘gestalt’ or
‘countable’ events; only that a certain type of event or
process is occurring. Such distinctions are examined at
great length in the literature on temporal logics and event
calculi (eg,. Allen, 1984; Galton, 1987).
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Assuming an approach based on textural similarity, a
commonly used tactic is what one might call ‘atomisation-
clustering-agglomeration,’ which involves three steps: (1)
divide the signal into a number of equal length fragments
at the temporal resolution required for the boundaries and
compute the value of the textural property (or feature tu-
ple) for each fragment; (2) cluster the collection of prop-
erty valuesignoring the temporal relationships between
the fragments to which they belong and thereby assign
a class label to each fragment; (3) agglomerate runs of
equally classified fragments into segments. In addition,
the segments themselves can inherit the classification of
their constituent fragments. This algorithm is liable to
produce excessively fragmented segments if the clusters
identified at stage (2) overlap, since fragments are classi-
fied without regard to the classifications of their temporal
neighbours. This behaviour can be traced to a failure to
encode our prior expectations about the durations of the
segments we wish to detect. Indeed, this is an impor-
tant factor in the segmentation process since there may
be many valid segmentations of a piece of music, distin-
guished by their different time scales.

In the following sections, we discuss previous work
on audio segmentation, and present an atomisation-
clustering-agglomeration algorithm built around a proba-
bilistic clustering model, which classifies all the segments
found not just the ‘key’ segment or chorus. We evaluate
our model against a ground truth of structural segmenta-
tions for a set of 14 popular song recordings, and discuss
planned extensions to our system.

1.1 Segmentation by timbre

If broad spectral features are used to assess textural
similarity, then we obtain what is essentially a timbre
based segmentation resulting in timbrally homogenous
segments. This is the approach taken by Aucouturier
et al. (2005), who use mel frequency cepstral coefficients
(MFCCs), which are selectivity of wide-band modulation
in the source power spectrum whilst remaining relatively
invariant to fine spectral structure.

Foote (1999) proposed the dissimilarity matrix orS-
matrix, containing a measure of dissimilarity for all pairs
of feature tuples, for music structure analysis using MFCC
features. With the initial analysis at 100 fragments per
second, this means that a 3-minute song produces an
18000×18000 S-matrix. This extremely large, dense
data object is the basis for the proposed methods, which
are related to the recurrence plots discussed in Eckmann
et al. (1987); for instance, Foote proposed that the chorus
should be labelled as the longest ‘self-similar’ segment
using a cosine distance measure and MFCC features.

Logan and Chu (2000) proposed a method for sum-
marization, also using MFCCs, employing both Hidden-
Markov Models (HMMs) and threshold-based cluster-
ing methods, grouping features into key song segments.
Peeters et al. (2002) propose a multi-pass clustering ap-
proach that uses bothk-means and HMM-based clustering
using multi-scale MFCC features. However, these studies
provide no measure of performance for all segments in a
song.

1.2 Segmentation by harmony

Some recent studies addressed the structure extraction
problem in terms of harmonic rather than timbral features.
For example Wakefield (1999) proposed chromagram fea-
tures that represent the distribution of power spectrum en-
ergies among the twelve equal-temperament pitch classes
based on A440, providing invariance to timbral changes
in repeated segments.

One desirable property of harmonic features is the
possibility of implementing explicit transpositional invari-
ance. Goto (2003) describes a system calledRefraiD that
locates repeated structural segments independent of trans-
position. TheRefraiD system is able to track a chorus,
for example, even if it modulates up a sequence of semi-
tone key changes. The problem of chorus extraction was
divided into four stages: computation of acoustic features
and similarity measures; repetition judgement criterion;
estimating end-points of repeated sections; and detecting
modulated repetitions. This was the first work to explore
the extraction of multiple structural segment types, i.e.
verseand intro as well aschorus. The results for chorus
detection were reported as accurate for 80 of 100 songs.
However, the quality of the segmentation for non-chorus
segments was not evaluated in that study.

Dannenberg and Hu (2002) also describe a system that
used agglomerative clustering with chroma-based features
for music structure analysis of a small set of Jazz and Clas-
sical pieces. They do not report an evaluation of the meth-
ods over a corpus.

1.3 Segmentation by rhythm and pitch

Symbolic approaches to structure analysis attempt to iden-
tify the repeated thematic material in string-based mu-
sic representations. Whilst these methods show much
promise in identifying structure from score information,
they are not well adapted for use in structure analysis from
audio, largely due to the addition of significant uncertainty
in audio representations.

There has recently been some work on combined au-
dio and symbolic representations, attempting to unify the
different views of similarity. Maddage et al. (2004) de-
scribe a system in which a partial transcription is used to
make decisions about structure, integrating beat tracking,
rhythm extraction, chord detection and melodic similar-
ity in a heuristic framework for detecting all segments in
a song. They also propose using octave-scale rather than
mel-frequency scale cepstral coefficients as pitch-oriented
representation. The authors report 100% accuracy for de-
tecting instrumental sections in songs, and report results
for detection and labelling ofverse, chorus, bridge, in-
tro and outro sections. Similarly, Lu et al. (2004) de-
scribe an HMM-based approach to segmentation that used
a 1

12
th-octave constant-Q filterbank for pitch selectivity in

addition to MFCC features. They report improved per-
formance in segmentation for the constant-Q transform
when used with MFCCs over use of MFCCs alone. Both
of these methods used anS-matrix approach with an ex-
haustive search to find the best fit segment boundaries to
a given objective function.
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2 SEGMENTATION METHODS

Our segmentation algorithm follows the atomisation-
clustering-agglomeration approach described earlier, but
several steps are required to compute the feature tuples,
which are actually short-term histograms over state occu-
pancy in a hidden Markov model (see section 2.1). These
histograms are subsequently clustered using one of two
methods described in sections 2.2 and 2.3.

2.1 Feature extraction

The processing chain begins with mono audio in WAVE
format (IBM, 1991) and breaks it into a sequence of short
overlapping fragments. This is then reduced to a sequence
of discrete valued HMM states, going via a constant-Q
log-power spectrum, normalisation to provide invariance
to gross dynamics, and dimensionality reduction using
PCA. The resulting 20-dimensional feature tuples repre-
sent the short-term power spectrum in a way compara-
ble to the first 20 MFCCs, but using PCA results in the
best (in a least-squares sense) low-dimensional approxi-
mation to the normalised log-power spectra. A Gaussian-
observation HMM is then fitted to the sequence of PCA
coefficients and the most probable state path inferred us-
ing the Viterbi algorithm1. Finally, a sequence of short-
term state occupancy histograms are formed using a slid-
ing window. For example, if the HMM has 20 states and
the histogram window covers 15 states, then each his-
togram has a total bin count of 15 distributed over 20 bins.

2.2 Pairwise clustering

The histograms resulting from the above processing steps
inhabit a space which is not self-evidently Euclidean;
clustering methods based on Euclidean feature values are
therefore not trivially applicable. One way to proceed is
to define an empirical dissimilarity measure between ob-
served windowed state histograms with reasonable prop-
erties: histograms with the same distribution should be
maximally similar, while those with no overlap should be
maximally dissimilar.

One such measure is the cosine dissimilarity measure
as used by Foote (1999): using the vectorsx andx′ to
denote twol2-normalized histograms, this is defined as
dc(x,x′) = cos−1 (x · x′).

As an alternative, we propose a symmetrization of
the Kullback-Leibler divergence based on the interpre-
tation of the histograms as summaries of data drawn
from a multinomial probability distribution. Withl1-
normalized histogramsx, x′, we set dkl(x,x′) =∑M

i=1
[xi log (xi/qi) + x′

i log (x′
i/qi)] whereqi = 1

2
(xi+

x′
i) andM is the number of bins in the histograms. This

can be interpreted as the sum of the KL divergences from
either histogram to their mutual averageq.

These pairwise distances are then used in assigning
frames to clusters using an algorithm due to Hofmann and

1These preprocessing stages correspond closely to descrip-
tors AudioSpectrumEnvelopeD, AudioSpectrum-
ProjectionD, SoundModelDS and SoundModel-
StatePathD, defined in the MPEG-7 standard (Casey, 2001;
ISO, 2002).

Buhmann (1997) which uses a form of mean-field anneal-
ing to minimise a cost function while avoiding local min-
ima.

2.3 Histogram clustering

Since the data we wish to cluster are histograms represent-
ing a distribution over a discrete feature space (the HMM
states), we may, following Puzicha et al. (1999), consider
each underlying class to determine a probability distribu-
tion over the feature space. The observed histograms are
then modelled as the result of drawing samples from one
of these distributions. This leads quite naturally to a prob-
abilistic latent variable model with an optimisable likeli-
hood function.

Assuming the existence ofK underlying classes, the
discrete distributions are parameterised by anM ×K ma-
trix A, such thatAjk is the probability of observing the
jth HMM state in while in the regime modelled by thekth
class. IfC ∈ (1..K)L is the sequence of class assigments
for a given sequence of histogramsX ∈ N

M×L, then the
overall log-likelihood of the model reduces to

Hh =
L∑

i=1

M∑

j=1

K∑

k=1

δ(k,Ci)Xji log
Xji

Ajk

(1)

whereL is the total number of histograms being consid-
ered, each of which relates to a certain fragment of the
original signal. This cost function is optimised using a
form of deterministic annealing as described by Puzicha
et al. (1999), which is equivalent to expectation maximi-
sation (Dempster et al., 1977) with a ‘temperature’ param-
eter which gradually falls to zero. The end result is a max-
imum a posterioriestimate for the class assignmentsC

and the class-conditional distributionsA.

3 EXPERIMENTS

We performed segmentations using the above-described
methods on 14 popular music songs from Sony’s cata-
logue, which had been down-sampled to 11 kHz mono be-
fore being distributed to the MPEG-7 working group. The
constant-Q spectrograms were computed every 200 ms
over 600 ms frames and at a resolution of1

8
-octave. The

normalised log-power spectra were then encoded using
their first 20 principal components. HMMs were trained
with 10, 20, 40 and 80 states, and the state occupancy his-
tograms were computed over windows of 15 states with
a hop size of 1. Both clustering algorithms were applied
with between 2 and 10 classes, resulting in segmentations
with between 2 and 10 segment types. A sample segmen-
tation, along with some of the intermediate results, is pre-
sented in figure 1.

4 EVALUATION

In order to evaluate the segmentations, they were com-
pared against a ground truth consisting of annotations
made by an expert listener, giving, for each ground truth
segment, a start time in seconds, an end time in seconds
and a label.
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Nirvana:Smells Like Teen Spirit

80 state HMM histograms

pairwise(kl) : regions(0.2299,0.03494,0.8676), info(0.6786,2.069,0.6019)

histclust(mf) : regions(0.2369,0.06965,0.8467), info(0.5502,2.148,0.523)

0 50 100 150 200 250

annotation

time/s

Figure 1: A segmentation of a sample from the test set, comparing the results of dyadic clustering (using the symmetrized
Kullback-Leibler distance) and the histogram clustering algorithm, both with 7 clusters. The constant-Q spectrogram
is displayed in the top panel. The ‘ground truth’ annotations are displayed as different shades of grey for the different
segment labels. Note how the fifth segment and its repeats have been split over two classes: in all cases, the same internal
structure is visible. This effect was seen consistently in many of the songs in the test set.

To make the comparison it is necessary to map the
boundaries between segments back to the original contin-
uous timeline on which the ground truth annotations are
defined. Bearing in mind that the sequence of short-term
histograms is defined on a discrete timeline which is it-
self derived via two framing operations from the original
discrete time signal, this is not a trivial operation. De-
pending on how the fragment classification is interpreted,
the boundary between two segments (essentially the ‘gap’
between two discrete time moments) could be mapped
back to one of several points or intervals on the contin-
uous timeline. We shall, for the time being, map the gap
between two discrete moments back to the middle of the
overlap between their respective continuous time inter-
vals, which, at 15 HMM states, are 3.4 s long and overlap
by 3.2 s.

Having found times for the detected segment bound-
aries, we adapted the segmentation evaluation measure of
Huang and Dom (1995). Considering the measurement
M as a sequence of segmentsSi

M , and the ground truthG
likewise as segmentsSj

G, we compute a directional Ham-
ming distancedGM by finding for eachSi

M the segment
S

j
G with the maximum overlap, and then summing the dif-

ference,dGM =
∑

Si
M

∑
Sk

G
6=S

j

G

|Si
M ∩Sk

G| where| · | de-
notes the duration of a segment. We normalisedGM by the
track lengthL to give a measure of the missed boundaries

m = dGM/L. Similarly, we computedMG, the inverse
directional Hamming distance, and a similar normalised
measuref = dMG/L of the segment fragmentation. Note
that these measures consider only the time intervals occu-
pied by each segment, not the classifications of the seg-
ments. Plots off andm against the number of clusters
for our corpus are presented in figures 2 and 3.

An alternative information-theoretic measure was also
investigated in order to assess the how well the classifica-
tion reflected the original segment labels. This involves
‘rendering’ the ground-truth segmentation into a discrete
time sequence of numeric labelsC0, using the same dis-
crete timebase as the sequence to be assessed,C1, and
then treating the the joint distribution over labels as a
probability distribution. The two sequences are compared
by computing the conditional ‘entropies’H(C1|C0) and
H(C0|C1). H(C0|C1) measures the amount of ground-
truth information ‘missing’ from the class assignments,
while H(C1|C0) measures the amount of ‘spurious’ in-
formation in the classfication, e.g. when several classes
represent one segment type. The ‘mutual information’
I(C0,C1) measures the information in the class assign-
ments about the ground truth segment label, and is max-
imal when each segment type maps to one and only one
class. In this case bothH(C1|C0) andH(C0|C1) will be
zero. We plot the mutual information for our segmentation
methods in figure 4.
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Figure 2: Rate of false detectionf for all segmentation
methods aggregated over our corpus. The four curves
are for HMMs with 10, 20, 40 and 80 states; there is no
strongly statistically significant difference between them.
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Figure 3: Rate of true negative failurem for all segmenta-
tion methods aggregated over our corpus. As in figure 2,
the four curves display the data for HMMs with different
numbers of states.
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Figure 4: Mutual Information (in bits) between ground
truth and machine segmentation for our segmentation
methods.

5 CONCLUSIONS

Firstly, it is clear from the individual results that the ap-
proach we have taken in this paper, to a large extent inde-
pendently of the details of the particular segmentation al-
gorithm, has met with a degree of success. While no seg-
mentation produced by our algorithm was perfect, some
(represented in the top right corner of figure 5) are close
to the ideal of the expert’s segmentation.

We should note that the expert’s segmentation should
not be taken as the Platonic truth: equally valid segmen-
tations, depending on the application, can be formed at
greatly different timescales; in addition, in real music
there is often a degree of ambiguity, not reflected in the
annotations, as to the exact point of transition between one
segment and the next.

A number of tendencies are visible in the results.
Firstly, both the number of successfully detected bound-
aries and the number of false detections increase with the
number of classes requested. This is unsurprising since,
as the number of classes increases, each class becomes
more selective, which tends to break up the segments and
introduce more boundaries. Even if these were placed at
random, this would increase both true and false positives.
However, the increase in the mutual information measures
shows that the extra classes are being put to good use as
far as reflecting the annotated labels.

Secondly, a close inspection of the individual segmen-
tations shows that, in many cases, over-segmentation re-
veals the internal structure of the annotated segments in a
consistent way; for example, in fig. 1, each repetition of
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Figure 5: Values of1− f , corresponding loosely to preci-
sion, plotted against values of1 − m, analogous to recall,
over all songs and segmentation methods presented. The
optimal average tradeoff point is approximately (0.8,0.8).

the fifth segment produces recognisably the same pattern
of internal sub-segments. This effect is more pronounced
when more classes are requested, resulting in distinctive
pattern of several sub-segments on each repetition of the
annotated segment type. Hence, the classified segmenta-
tion can be thought of as a sort of ‘abstract score’.

Fragmentation also results if the clusters for two
classes overlap in the histogram feature space. In this
case, even a single frame in the middle of one segment
which happens to look more another segment type will be
misclassified. Intuitively, this occurs because we have not
encoded any expectations of temporal coherence. In sub-
sequent work, we have found that including an explicit
prior on segment durations, to discourage very short seg-
ments, largely solves the fragmentation problem.

Finally, in a bid to keep the parameter space tractable
for this investigation, we have not discussed variations in
the early stages in audio processing chain. In addition to
the obvious parameters which could be varied, such as hop
sizes or constant-Q resolution, the effects considering an-
other representation, such as a chromagram, in place of or
in addition to our constant-Q spectrum, warrant investiga-
tion.
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