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We developed a theory to compute and interpret the photonic band structure of a periodic array of

metallic helices. Interesting features of the band structure include longitudinal and circularly polarized

eigenmodes and wide polarization gap. The helical symmetry also implies unusual features such as

negative group velocity bands at both sides of the polarization gap and band crossings pinned at the zone

boundary. A direct proof of negative refraction via a chiral route is achieved for the first time by measuring

the spatial beam shift through a slab of the three-dimensional helices.
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The prediction of negative refraction in chiral media [1]
has fueled interest in chiral metamaterials as a medium to
achieve a negative refractive index [2–5], strong optical
activity [6–8] and circular dichroism [9–12]. In many
recent studies, chiral metamaterials are typically realized
as one or two layers of discrete chiral resonators, and the
exotic properties are interpreted by a numerical approach
assuming the applicability of effective medium theory
[13]. A ‘‘first-principles’’ investigation starting from the
real structure of the chiral building blocks would be fruitful
for a deeper understanding of the relation between struc-
ture and functionality. As previous evidence of negative
refractive behavior of chiral metamaterials was deduced by
retrieving the constitutive parameters from the transmis-
sion and reflection spectra under normal incidence [2–5], a
direct demonstration of negative refraction from chiral
structures would be highly desirable.

Helix, as a representative element of helical symmetry,
is intrinsically chiral because any object with helical sym-
metry does not have mirror symmetry. The rotation of the
plane of polarization of electromagnetic (EM) waves by a
twisted structure was observed as early as 1898 [14] and
the observation of EM activity from randomly dispersed
metallic helices in 1914 [14] ignited the interest in elec-
tromagnetic chirality. A helix has a continuous symmetry
such that the system remains invariant if the helix is rotated
in a given angular speed and simultaneously displaced at a
corresponding speed along the helical axis. This special
rotational or translational symmetry operation imposes an
associated phase factor for the EM wave propagation
[15,16]. As a consequence, the guided eigenmodes of
metallic helix can have backward phase velocity [15,16].
It is expected that the structures comprising of helix units
will provide us more options in wave manipulations by
properly utilizing the electromagnetic chirality. By incor-
porating the constitutive relation of bianisotropic medium,
an interesting paper presented an analytical model for
helicoidal spirals [17], predicting the elliptical polarization

of eigenstates and bandgaps along the directions orthogo-
nal to the spiral axis. In an elegant recent experiment, very
wide and robust polarization gaps were demonstrated in a
gold helix metamaterial in the THz regime [18]. However,
the underlying physics of such kind of chiral metamaterials
are still under exploration.
In this Letter, we theoretically and experimentally inves-

tigate the properties of a three-dimensional structure made
with a square array of metallic helices. Here, we will show
that the special symmetry of a helix would guarantee the
formation of longitudinal and circularly polarized eigen-
modes, the existence of band crossing at the Brillouin zone
(BZ) boundary and wide polarization gaps, as well as other
important properties such as negative group velocity bands.
We developed a photonic band theory for the helix array
by combining multiple scattering theory [19,20] with
Sensiper’s solution for a single helix [15]. The theory
enables us to identify interesting features such as the lon-
gitudinal and circularly polarized eigenmodes, the wide
polarization gap, and negative group velocity bands at
both sides of the gap. By measuring the spatial beam shift
through a sample, we directly demonstrate the negative
refraction in the helical systems for the first time.
Figure 1 shows a photograph of a sample of the square

array of right-handed (RH) helices. Oriented along the

FIG. 1 (color online). (a) The schematic picture of a metallic
helix unit and (b) photo of a square array of metallic helices.
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z axis, the metallic helices form a square array in the xy
plane with a lattice constant of d ¼ 11 mm. Figure 1(a)
shows the schematic picture of a single helix unit, which
has a pitch of p ¼ 4:4 mm, radius a ¼ 3:3 mm, and di-
ameter of metallic wires � ¼ 0:8 mm. We define a pitch
angle c by cotc ¼ 2�a=p. We note that a helix comes
back to itself after being translated by a distance of �z and
being rotated simultaneously by an angle of 2��z=p (for
RH helix) or �2��z=p [for left-handed (LH) helix], and
thus physical entities associated with the helix should
satisfy the helical symmetry condition

Uð�;�; zÞ ¼ U

�
�;�� 2��z

p
; zþ �z

�
(1)

with the þð�Þ sign for the RH (LH) helix, respectively
[15,16]. The periodicity along the helical axis also implies
that the field components for an RH helix system can be
expanded by functions of the form

c nð�;�; zÞ ¼ eikzzFnð�Þe�in�eið2n�=pÞz (2)

where kz is the Bloch wave vector along z axis. The angular
term should be ein� instead if the helix is LH. The radial
function Fnð�Þ obeys the Helmholtz differential equation,
and can be expressed in terms of modified Bessel functions
In and Kn. We follow the Sensiper approach [15] to impose
the condition of uniformly distributed surface current flow
along the metal wires. Under that assumption, the bound-
ary continuity conditions require that the local electric field
on metal wires must be perpendicular to the line of metal
wire. Combining with the multiple scattering theory for-
malism which accounts for interhelix coupling, we derive
an eigenvalue equation of helix array as

X
n

��
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where �n ¼ ½ðkz þ 2�n
p Þ2 � k2�1=2, Rn ¼ sinðn��=pÞ

n��=p , yn ¼
Knð�naÞ þ ð�1ÞnPlSl�nð�nÞIlð�naÞ, zn ¼ K0

nð�naÞ þ
ð�1ÞnPlSl�nð�nÞI0lð�naÞ, xn ¼ ynI

0
nð�naÞ � znInð�naÞ,

and Slð�Þ ¼
P

q�0Klð�RqÞeil�qeiki�Rq is a lattice sum

running over the nodes (Rq, �q) of the square lattice in

cylindrical coordinates with ki being the transverse com-
ponent of the wave vector k in the air, and I0nðxÞ, K0

nðxÞ
satisfying to I0nðxÞ ¼ dInðxÞ=dx, K0

nðxÞ ¼ dKnðxÞ=dx.
The computed photonic band structures give us an in-

tuitive understanding of the optical property of helix ar-
rays. In the helical structure, there is a ��=2 phase
difference between the radial and the angular components
for both the electric field and magnetic field, implying that
the eigenmodes are left-handed or right-handed circularly
polarized (LCP or RCP). This can be checked by examin-
ing the field solutions written in the Sensiper form (see
supplementary material, Ref. [21] ) [15]. Figures 2(a)–2(c)
show the band structure of the helix metamaterials along
the helix axis for three lattice constants d ¼ 20 mm,
11 mm, and 8 mm, respectively. We label the eigenmodes
in Fig. 2 by their dominant term in Eq. (2). For example,
the (� 1, S) modes (blue stars in Fig. 2) have n ¼ �1 term
as the dominant term and ‘‘S’’ stands for a ‘‘slow mode’’
below the light line, and we use the subscript ‘‘F’’ for a
mode inside the light cone. The polarization of an eigen-
mode is analyzed in Fig. 3 by the ratios jhEzij=jhExij,
jhEzij=jhEyij, and AR ¼ hExikz=hiEyijkzj, where the spa-

tial average h� � �i is taken inside a unit cell. Figures 3(a)
and 3(b) clearly indicate that the (0) mode (red circles in
Fig. 2), has a strong longitudinal component Ez and this
mode picks up a circular polarized character as kz in-
creases. It goes to a longitudinal mode with a finite fre-
quency at the BZ center (kz ¼ 0). Both the electric field
and magnetic field are essentially parallel to the helical
axis. It is evident from Fig. 2 that the interhelix coupling
pushes the longitudinal mode to higher frequencies. In the
limit d ! 1, it goes to zero frequency. Figures 3(c)–3(f)
show that the n ¼ �1 modes are either LCP or RCP.
Eigenmode analysis and numerical transmission simula-
tion employing a finite thickness slab showed that the
n ¼ �1 modes with positive group velocity couple to an
incident plane wave with opposite handedness as the helix,
while the n ¼ þ1 modes with positive group velocity
(green squares in Fig. 2) couple to incident waves of the
same handedness as the helix. In general, a mode couples
to an incident wave of the same (opposite) handedness as
the helix if nkz > 0ð<0Þ.

FIG. 2 (color online). The photonic band structures of the helix crystal along the helix axis for three lattice constants (a) d ¼ 20 mm,
(b) d ¼ 11 mm, (c) d ¼ 8 mm. The pitch p ¼ 4:4 mm, the radius a ¼ 3:3 mm, and diameter of metallic wires � ¼ 0:8 mm.
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An important feature of the band structure is the exis-
tence of a wide polarization gap (shaded in grey in Fig. 2)
that only allows incident waves of opposite handedness to
pass through. As such, a RH helix array has an RCP gap.
The gap grows wider for a higher helix filling ratio (smaller
d). Such wide polarization gaps have been experimentally
demonstrated for a thin slab of gold helices in IR frequen-
cies [18,22]. The lower edge of the polarization gap is
pinned at the frequency at which the (þ 1, S) mode attains
zero group velocity. The (þ 1, S) mode is the result of the
hybridization between the free photons (riding on the light
line) and a mode guided on the helix which is backscat-
tered by the periodicity. As the (þ 1, S) mode is guided on
the helices, the frequency is only moderately affected by
the interhelix coupling. The upper edge of the polarization
gap is pinned at the frequency at which the (þ 1, F) mode
has zero group velocity. The (þ 1, F) mode is the result of
hybridization between the radiative modes from helix and
free photons. It exists as an eigenmode in the periodic array
and is sensitive to the volume available between the heli-
ces. The mode is squeezed to higher frequencies at a higher
helix filling ratio, leading to a much wider polarization gap
for smaller values of the lattice constant (d). In order
words, the lower edge of the gap is primarily determined
by the helix parameters (a and p) along the helical axis,
while the upper edge is primarily determined by the struc-
tural parameter perpendicular to the helical axis (lattice
constant d). This picture explains why the polarized gap
can be very wide in the frequency range.

Another interesting feature of the band structure is the
emergence of the negative group velocity bands at both
sides of the polarization gap, which is different from the
previous theoretical prediction that the negative refraction
only happens above the resonant gap [1]. Both the high

frequency (þ 1, F) and the lower frequency (þ 1, S)
branch exhibit negative group velocities. The (þ 1, S)
branch exhibits negative group velocity after reaching a
maximum frequency that pins the lower edge of the polar-
ization gap. Concomitant with the negative refraction
bands in the slow mode, one can see from Fig. 2 that there
are band crossings at the BZ boundary (k ¼ �=p) and the
degenerate modes are pinned at frequencies (see supple-
mentary material, Ref. [21]) that are nearly independent of
the lattice constant d. We note that according to Eq. (2)
Bloch modes that differ by �k ¼ 2�=p will be orthogonal
because of orthogonality of the angular phase factor. Con-
sequently, the (0) branch is degenerate with the (þ 1, S)
branch at the zone boundary, which ensures the existence
of a negative group velocity branch below the polarization
gap. This is essentially a consequence of backward waves
guided on a metallic helix satisfying the helical symmetry.
A comparative study shows that the genuine longitudinal
and/or circularly polarized eigenmodes, the negative dis-
persion bands in the slow mode, and band crossing will
disappear when the helices are cut into ‘‘discrete’’ spirals
(see supplementary material, Ref. [21]). The slope of the
negative dispersion band above the polarization gap be-
comes very small without the helical symmetry. Thus we
conclude that many salient features of the band structure
are direct consequences of the helical symmetry require-
ment [Eq. (1)].
We performed negative refraction measurements inside

an anechoic chamber through a slab of the helix array with
the aforementioned geometric parameters [the band struc-
ture is shown in Fig. 2(b)]. Helix samples are fabricated by
periodically embedding the clockwise metallic helices in a
polyurethane foam slab. The polyurethane foam is lossless
with " � 1. The sample slab contains 15� 11 metallic
helices, each having 140 periods along the helical axis
(z axis).
Computed equifrequency surfaces (EFSs) for the (þ1,

S) branch [see Fig. 4(b)] and (þ 1, F) branch (not shown)
demonstrate that negative refraction can be achieved at
both sides of the polarization gap. Here we try to realize
the negative refraction at the lower edge of the gap, which
is not found or predicted in other systems before. As the
(� 1, S) modes lie below the light line, we can excite the
(� 1, S) modes by prism coupling techniques to penetrate a
Gaussian beam into the sample slab [see Fig. 4(a)], and
estimate the refractive angle quantitatively by measuring
the spatial beam shift. Figure 4(a) illustrates the schematic
configuration of our experimental setup. Two isosceles
right-angled triangular alumina prisms ("r ¼ 8:9) are
placed so that they touch the sample slab at both sides
and a Gaussian beam is normally incident in xz plane to the
air-prism interface from a linearly polarized horn emitter,
ensuring an incident angle of 45� from alumina to sample.
The local field intensity is measured by the LCP/RCP horn
receiver as a function of the horizontal position in a preci-
sion of 1 mm per step. The spatial shift of the out-
going beam is found by measuring the peak position at

FIG. 3 (color online). Eigenmode analysis by calculating
the ratios AR ¼ hExikz=hiEyijkzj (black squares for real, red

circles for imaginary), jhEzij=jhExij (green up-triangles) and
jhEzij=jhEyij (blue down-triangles). (a) and (b) for n ¼ 0 modes;

(c) (þ 1, S) modes; (d) (þ 1, F) modes; (e) (� 1, S) modes;
(f) (� 1, F) modes.
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the interface of prism. The coordinate origin in the hori-
zontal position is aligned with the position of the horn
emitter, marked by the dashed vertical line in Fig. 4(a).
Negative refraction is observed from 9.18 GHz to 9.48 GHz
with a refraction angle from�17:44� to�50:11�, which is
in good agreement with the computed EFS shown in
Fig. 4(b). The solid line in Fig. 4(c) presents the spatial
profile of local field intensity measured at 9.41 GHz.
A peak value is measured at the horizontal position of
�24 cm, corresponding to a refraction angle of �46:5�,
roughly equal to �45:8� estimated by EFS analysis. Thus
negative refraction below the polarization gap is verified
experimentally. We note from Fig. 4(b) that in the fre-
quency range of our interest, the dispersion is not only

negative along kz, but it is also negative along kx due to
Bragg scattering.
In summary, the unusual optical properties in metallic

helix arrays are revealed by the photonic band structure
computed by a semianalytical technique. There are nega-
tive bands both above and below the polarization gap.
Negative refraction on the low frequency branch is dem-
onstrated directly by measuring the spatial beam shift. We
note that the optics of the helix array is governed by the
helical symmetry as well as scatterings within the helix
lattice and there is no easy way to describe the phenome-
non using effective medium parameters.
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FIG. 4 (color online). (a) Schematic of the experimental setup
for negative refraction. (b) Computed equifrequency surface
(EFS) for the (þ 1, S) branch. The arrow refers to the direction
of the refracted waves at 9.41 GHz under an incident angle at
45�. (c) Measured electric field intensity as a function of the
horizontal position of the circularly polarized horn receiver, with
(red) or without (black) the chiral sample and alumina prisms at
9.41 GHz. The two curves are normalized such that the magni-
tude of both peaks is unity. The blue dashed line at the horizontal
position of �11 cm refers to the spatial beam shift with respect
to 0� refracted angle.
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