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Abstract

It has been hypothesized that continuously releasing drug molecules into the tumor over an

extended period of time may significantly improve the chemotherapeutic efficacy by over-

coming physical transport limitations of conventional bolus drug treatment. In this paper, we

present a generalized space- and time-dependent mathematical model of drug transport

and drug-cell interactions to quantitatively formulate this hypothesis. Model parameters

describe: perfusion and tissue architecture (blood volume fraction and blood vessel radius);

diffusion penetration distance of drug (i.e., a function of tissue compactness and drug

uptake rates by tumor cells); and cell death rates (as function of history of drug uptake). We

performed preliminary testing and validation of the mathematical model using in vivo experi-

ments with different drug delivery methods on a breast cancer mouse model. Experimental

data demonstrated a 3-fold increase in response using nano-vectored drug vs. free drug

delivery, in excellent quantitative agreement with the model predictions. Our model results

implicate that therapeutically targeting blood volume fraction, e.g., through vascular normal-

ization, would achieve a better outcome due to enhanced drug delivery.

Author Summary

Cancer treatment efficacy can be significantly enhanced through the elution of drug from

nano-carriers that can temporarily stay in the tumor vasculature. Here we present a
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relatively simple yet powerful mathematical model that accounts for both spatial and tempo-

ral heterogeneities of drug dosing to help explain, examine, and prove this concept. We find

that the delivery of systemic chemotherapy through a certain form of nano-carriers would

have enhanced tumor kill by a factor of 2 to 4 over the standard therapy that the patients

actually received. We also find that targeting blood volume fraction (a parameter of the

model) through vascular normalization can achieve more effective drug delivery and tumor

kill. More importantly, this model only requires a limited number of parameters which can all

be readily assessed from standard clinical diagnostic measurements (e.g., histopathology

and CT). This addresses an important challenge in current translational research and justi-

fies further development of the model towards clinical translation.

Introduction

The biological drivers of cancer promote a physical microenvironment that differs significantly

from normal tissues [1]. The underpinnings of the dysregulated physical properties of cancer

are an active area of investigation. Research efforts in this area are highlighted by modern

oncologic concepts of how the physical microenvironment influences tumor behavior (i.e., the-

ories such as Transport Oncophysics and vascular normalization) [2, 3], and are supported by

experimental data in animal cancer models and cancer patients [4, 5]. Mathematical modeling

has provided quantitative insights into the understanding of how these physical properties

impact therapeutic drug transport, which will eventually help to optimize, predict and provide

treatment strategy on an individual patient basis [6–10]. Notable modeling successes with vali-

dation against in vitro, in vivo, and/or patient data include mathematical modeling of cancer

tumor development [11–14] and traditional drug delivery in neoadjuvant [15, 16], adaptive

[17], and standard chemotherapy treatment conditions [18]. We have also studied how mathe-

matical modeling of the mass transport of drugs can mechanistically describe the therapeutic

response to chemotherapy [19–22] and enable an understanding of the drug delivery process

in humans [23]. However, to date, these efforts have been limited by the inability to account

for spatial and temporal heterogeneity in drug dosing and tumor characteristics.

Chemotherapy drugs need to traverse the vasculature, interstitial space (i.e., stroma and

microenvironment), and cancer cell membranes to finally reach intracellular targets. At multi-

ple biological scales, tumors have properties that impede the delivery of chemotherapy, and the

poor delivery of drugs prevents the killing of cancer cells [3, 24, 25]. In solid tumors, the disor-

ganized and leaky vasculature of the tumor microenvironment influences the delivery of and

response to systemic chemotherapy [2, 26–28]. Furthermore, the stroma not only acts as a

physical barrier to drug delivery, but also impairs the function of blood vessels [29, 30]. Con-

ceivably, the ability to characterize these physical properties of tumors would enable scientists

and clinicians to not only predict response, but also rationally design therapeutics for an indi-

vidual cancer patient.

Toward this goal, we have developed a theory of chemotherapy response based on the quan-

titative physical transport properties of cancer cells [20, 21] as well as solid tumors [19, 22, 23].

Our approach describes how a tumor’s biophysical properties affect drug delivery using “quan-

titative pathology,” a translational approach combining mathematical modeling and measure-

ments from histopathology of individual patients’ tumors to predict treatment outcome [19–

22, 31]. In particular, the mechanistic model presented in [19] accurately predicted the fraction

of tumor killed (denoted by fkill) from chemotherapy in patients with colorectal cancer (CRC)
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metastatic to liver and in patients with glioblastoma. We also demonstrated the feasibility of

the model for clinical translation by predicting patient-specific treatment efficacy using com-

puted tomography (CT) scan data [19, 23]. The model presented in [20] is a time-dependent

model based on first principles of cell biophysics to predict in vitro the nonlinear dose response

curves for two types of delivery methods, free drug and targeted nano-carriers. We found that

drug delivery mediated by nano-carriers targeting the tumor cells overcomes resistance to free

drug because of improved cellular drug uptake rates.

We previously hypothesized that tumor kill would be significantly enhanced through the

elution of drug from a nano-carrier that deposits in the tumor [3]. A series of pilot studies have

tested this hypothesis using experimental tumor models for delivering drugs via multistage vec-

tors (MSVs) [32–34]; MSVs are nested particles (with smaller particles nested inside larger

ones), particularly designed to lodge in tumor vasculature to release nanoparticles over an

extend period of time (e.g., several weeks). To date, mathematical modeling validated against

experimental laboratory results has resulted in insights into fine-tuning nano-carriers for opti-

mized drug delivery through charge and size optimization [35, 36], drug release duration [37,

38], and targeting molecule surface loading [39]. Work to this end has also resulted in

increased understanding of how vasculature structure and the resulting interstitial fluid behav-

ior are involved in distribution of the nano-carriers in the blood vessels in vivo [40]. Here, we

develop a mathematical model to quantitatively formulate the hypothesis of drug delivery via

loaded nano-carriers. Specifically, we extend our previous time-dependent modeling work [20]

by also accounting for spatial dependence in predicting tumor response to systemic agents.

This generalized model allows us to consider a variety of treatment strategies, including sys-

temic drug delivery via nano-carriers, and helps to predict the tumor response to different

forms of drug delivery methods before the start of treatment. Model predictions are further val-

idated using experiments on a breast cancer mouse model in vivo.

Methods

Generalized mathematical model

We extend the time-dependent drug-cell interaction model [20] by incorporating spatial

dependence to describe perfusion and diffusion heterogeneities. The governing equations for

drug concentration σ(x, t) and the volume fraction of tumor cells φ(x, t) are

@s

@t
¼ Dr2

s� luφs; ð1Þ

@φ

@t
¼ �lulkφðx; tÞ

R t

0
sðx; tÞφðx; tÞdt; ð2Þ

where D is the diffusivity of the drug, λu the per-volume cellular uptake rate of drug, and λk the

death rate of tumor cells per unit cumulative drug concentration. While drug uptake is known

to have a nonlinear dependency on drug concentration [41, 42], we assume a linear drug

uptake for simplicity. Because drug diffusion time and the plasma half-life of drug are both

much shorter than the time scale for cell death (on the order of minutes vs. hours or days), and

also because the model will be examined on time scales of days to weeks, rather than minutes,

Eq 1 can be solved at the steady state (i.e., @σ / @tffi 0; note that this is actually a quasi-steady

state, meaning that σ(x, t) quickly relaxes to the instant steady state defined by φ(x, t)). Thus,

without the time derivative in Eq 1, the solution σ(x, t) is independent of initial conditions; for

boundary conditions, we set a drug concentration σ0 at the blood vessel wall. We further clarify

that the steady state solution of σ(x, t) still has spatial dependence, and hence a gradient; it is
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only steady state with respect to time. The main assumption underlying the use of a steady-

state equation with a constant boundary condition was that the entire time curve of several

bolus injections over several months of treatment for each patient could be satisfactorily

replaced with a constant σ0 equal to the time averaged drug concentration throughout the

entire multi-month treatment regimen. That is, we assume that a drug administered as bolus at

a certain dose level has the same effect as the same total amount of drug administered over sev-

eral months at a constant, smaller dose level; see [19, 23] for validation of this assumption

(with patient data) on the use of a constant boundary condition. For a cylindrically symmetric

domain surrounding a blood vessel (Fig 1), the boundary conditions can be set to

sðr ¼ rb; tÞ ¼ s
0
; and ð3Þ

n � rsjx!1 ! 0; ð4Þ

where r denotes the radial position from the center of the cylinder, and rb represents the blood

vessel radius; the second boundary condition reflects that the far-field drug concentration flat-

tens out. Furthermore, Eq 2 has no spatial derivatives, and thus only requires the initial condi-

tions for φ(x, t), which we set to

φðx; t ¼ 0Þ ¼ φ
0
; ð5Þ

i.e., a homogeneous initial tumor volume fraction. As detailed below, this generalized model

allows us to examine not only successive (conventional) bolus chemotherapy, characterized by

a time-varying intravenous drug concentration σ0 according to a specific dosing and timing

regimen, but also drug release through loaded nano-carriers where drugs are released at a

nearly constant rate over a certain time interval, approximated here by a constant σ0.

Fig 1. Illustration of transport-based hypothesis. By diffusion, a blood vessel supplies substrates to the
cylindrical tissue volume surrounding the vessel. We hypothesize that at each position inside the tissue, the
substrate supply is supported by the closest blood vessel. Thus, the influenced tissue surrounding a vessel
can be estimated to be between a cylinder of radius rb / (L BVF1/2) in dimensionless form, and the vessel itself
with dimensionless radius rb / L. Theoretically, chemotherapeutic drugs delivered by a blood vessel kill the
tissues immediately adjacent to the vessel, leaving some viable tissues on the far end. Here, we propose that
through drug-loaded nano-carriers that can accumulate within tumors and continuously release drugs for a
longer time (e.g., lasting several cell cycles), the drugs can penetrate further into the surrounding tissue
volume and thus achieve a higher tumor killing ratio.

doi:10.1371/journal.pcbi.1004969.g001
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Model normalization

The generalized model (Eqs 1 and 2) is nondimensionalized as

r0
2
s

0 � φ
0
s

0 ¼ 0; ð6Þ

@φ
0

@t0
¼ �φ

0ðx0
; t

0Þ
R t

0

0
s

0ðx0
; tÞφ0ðx0

; tÞdt; ð7Þ

where x0 = x / L and t' = t / T are the dimensionless space and time coordinates, with T =

(λkλuφ0σ0)
−1/2 (a characteristic time of drug-induced apoptotic cycles; as shown previously

[20], this corresponds to the short-term apoptosis time, as the drug uptake reaches significant

levels). The dimensionless drug concentration is σ' = σ / σ0, and the tumor volume fraction is

made dimensionless by φ' = φ / φ0. Similarly, the boundary conditions in Eqs 3 and 4 can be

nondimensionalized as

s
0
r
0 ¼ rb

L
; t

0
� �

¼ 1 ; and ð8Þ

n
0 � r0

s
0 jx0!1 ! 0; ð9Þ

with r’ = r / L, while the initial conditions for the tumor volume fraction in Eq 5 become

φ
0ðx0

; t
0 ¼ 0Þ ¼ 1: ð10Þ

Note that the nondimensionalization leaves no parameters in the governing differential

equations (Eqs 6 and 7), and only special boundary conditions will introduce biophysical

parameters into the model.

Considering the cylindrically symmetric domain surrounding a blood vessel, to which the

boundary conditions Eqs 8 and 9 apply, Eq 9 can be further revised to

ds
0

dr0
jr0¼ rb

L
ffiffiffiffiffi

BVF
p ¼ 0: ð11Þ

Thus, the boundary conditions Eqs 8 and 11 introduce two dimensionless parameters in our

numerical analysis: rb / L and BVF. Numerically, we use a two-step process to integrate the gen-

eralized model over time. First, we use φ’ from the previous time step and solve Eq 6 for the

steady-state solution of σ’ to the first order of Δr, the spatial mesh size. Next, we substitute this

σ
’ into Eq 7 and compute φ’ for the current time step using a backward Euler method [43],

which is accurate to the first order of Δt, the numerical time step size.

Formulation of tumor kill from treatment

By integrating the viable tumor volume fraction at each time point over the cylindrical tissue

domain surrounding a blood vessel and affected by the drug diffusion, we calculate fkill as the

ratio of the killed tumor volume to the total initial tumor volume:

fkillðtÞ ¼ 1�
2

φ
0
L2

R rb=ðL
ffiffiffiffiffiffi

BVF
p

Þ
rb=L

φðr; tÞrdr
1

BVF
� 1

� � r2
b

L2

: ð12Þ

as a function of parameters: rb, blood volume fraction (BVF), and L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D=ðφ
0
luÞ

p

(the effec-

tive diffusion penetration length of the drug). As shown in Fig 1, the model domain is com-

prised of the space between two concentric cylinders. The inner cylinder has a radius rb / L in
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dimensionless units, representing the blood vessel at the center of the domain. With the

hypothesis that the substrate supply for any spot in a tissue is supported by the closest blood

vessel, we estimate rb / (L BVF
1/2) to be the dimensionless radius of the influenced tissue vol-

ume of the vessel, where BVF< 1. The influenced tissue volume refers to a specific region of

tissue that relies on this blood vessel for supply of oxygen and other essential chemicals.

Special formulation of fkill for time-course tumor measurements

Histology data are not always available for determining values (for parameters BFV, rb, and L)

needed for using Eq 12. Thus, we develop an alternative form of fkill as a function of another set

of experimental parameters, the values of which can be obtained from in vivo cytotocixity

experiments. By substituting Eq 1 into Eq 2, we have

@φ

@t
¼ �lk D

R t

0
r2

sdt: ð13Þ

Integrating φ in Eq 13 over the total tissue volume V, we obtain the changing rate of the

tumor volume:

d

dt

R

V
φ dV ¼ �lkD

R t

0
ð
R

V
r2

sdVÞdt: ð14Þ

We denote the tumor volume as VT; by the convergence theorem, Eq 14 can be rewritten as

dVT

dt
¼ �lkD

R t

0
ð
R

@V
� @s

@n
daÞdt; ð15Þ

where @V represents the boundaries of the total tissue volume in question here, and @σ/@n is

the flux of the drugs across the boundaries. It is safe to hypothesize that the flux of the drugs

becomes negligible at the tissue boundaries far away from the blood vessel, and hence the only

contribution in the boundary integral we consider is the flux at the boundaries next to the

blood vessel. For simplicity, we define

F � D
R

@V
� @s

@n
da ffi D

R

rb
� @s

@n
da: ð16Þ

We have previously demonstrated that in vitro porous silicon particles achieve a constant

release rate of doxorubicin for up to two weeks at neutral pH [44]. Note that F is dependent on

nanoparticle size; for the same type of nanoparticle, the bigger the size, the slower is the drug

release rate [45]. We thus further hypothesize that the rate of change of flux for the first several

days is approximately zero, dF / dt = 0 (i.e., this initial time period is too short for F to change

significantly); hence F is constant, and we have:

dVT

dt
¼ �lk

R t

0
F dt ¼ �lkFt; ð17Þ

which leads to

VT ¼ VT;0 �
1

2
lkFt

2; ð18Þ

or equivalently,

VT

VT;0

¼ 1� lkFt
2

2VT;0

: ð19Þ
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As defined previously [19], 1−(VT/VT,0) is exactly our definition of fkill, i.e., the fraction of

tumor volume killed from chemotherapy. Hence, we obtain a new mathematical formula for

calculating the amount of fkill through the delivery method of loaded nano-carriers:

fkill ¼
Flk
2VT;0

t2: ð20Þ

Note that there is a quadratic increase in fkill with time, which is consistent as previously

observed in vitro [20] (cfr. Eq. 4a in that reference).

Results

Determination of reference values for model parameters

For the generalized space- and time-dependent model (Eqs 1 and 2), patient data from multiple

time points are usually necessary to determine the model parameters. However, for each

patient in our data set obtained from a cohort of 21 patients with CRC metastatic to liver, we

had histology data from one time point (after chemotherapy) and contrast CT imaging data

from two time points (before and after chemotherapy). Thus, we directly applied Eq. S2 to

obtain patient-derived parameter values for BVF, rb, and L (S1 Text). Briefly, least-squares fit-

ting of Eq. S2 was performed using Mathematica routine “NonlinearModelFit” [46] to the fkill
and BVF measured from the histopathology (S1 Fig and S1 Text). This resulted in estimates of

rb and L parameters which produced the best fit (Fig 2A); the values are consistent with pub-

lished data [47, 48]. Statistically significant P values were obtained (inset). Moreover, using

regression analysis, we also determined a linear correlation between contrast CT enhancement

(in Hounsfield Units) and measured BVF values (Fig 2B and S1 Text). Standard deviations for

CT data reflect 25% variability in physiology and contrast-injection protocols across patients,

and was estimated by calculating standard deviation of CT measurements taken within the

patient aorta. CT measurements reflect perfusion of tissue, which relies on the volume fraction

of blood vessels, hence resulting in P< 0.001. The linear correlation (Fig 2B) was used to

inform model Eq. S2 directly from pre-treatment CT data to predict fkill for each patient. The

results in Fig 2C show that there is no statistically significant difference between the predic-

tions obtained from the linear correlation and direct measurements of kill from histopathology

of the resected tumors. Lastly, the predicted fkill based on CT scans prior to treatment (Fig 2D,

open circles) matched the measured fkill (filled circles) after treatment with an average relative

error of� 24%. Hence, we used the obtained, verified parameter values (for BVF, rb, and L) as

reference values for subsequent simulation studies.

Parameter analysis of the generalized model

We performed a set of simulations with the generalized time- and space-dependent model in a

cylindrically symmetric domain surrounding a blood vessel. Model parameter values were set

as follows (Fig 2A): L = 155.06 μm and rb = 15.83 μm, giving rb/L = 0.102; we also set

BVF = 10−2 as the reference value for the simulations, as measured BVF values ranged approxi-

mately from 10−3 to 10−1. We ran the model (Eqs 6 and 7) for 10 drug-induced apoptotic

cycles. To examine the impact of each parameter on fkill, we further simulated nine parameter-

variation combinations, using three rb/L values, i.e., 0.05, 0.1, 0.5, paired with three BVF values,

i.e., 0.005, 0.01, 0.05. Fig 3 shows the numerical results of the model. In the presence of a

boundary condition σ0 at the vessel wall (r = rb), successive cell layers next to the blood vessel

die out (Fig 3A) due to enhancement of drug penetration (Fig 3B), in turn leading to acceler-

ated cell kill (Fig 3C). As cell kill occurs, tumor volume fraction φ decreases, leading to an

Mechanistic Modeling of Tumor Response to Chemotherapy
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increase in local drug concentration σ (because dead cells no longer take drugs), and thus accel-

erating cell kill in the locations further away from the vessel and deep into the tumor.

Fig 4A shows the temporal evolution curves of fkill calculated from Eq 12 by varying the

parameters rb/L and BVF, representing conditions where drug-loaded nano-carriers are

employed, as well as the estimates using our simplified “bolus”model (i.e., Eq. S2). The results

indicate that the “bolus” killing ratios are readily achieved by drug-loaded nano-carriers after 1

or 2 cell cycles. To estimate the benefits of drug release by the nano-carriers over a longer

period of time, we normalized the fkill curves using their corresponding bolus fkill values (Fig

4B). The results suggest that we may achieve 2- to 4-fold of the bolus killing ratios if the drug

release from nano-carriers administration lasts for 3 or 4 apoptotic cycles. However, for large

BVF values (representing highly vascularized tumors), cell killing effects from both methods of

Fig 2. Parameter calibration from patient data demonstratesmodel predictivity. (A) Nonlinear regression analysis of Eq. S2 (coefficient of
determination R

2 = 0.86) to the measurements of kill fraction and blood volume fraction BVF from histopathology images of 21 patients with CRCmetastatic
to liver (standard deviations reflect variability of measured values across 20 slides per patient). Inset: parameter values obtained from fit. (B) Linear
regression analysis of Hounsfield Unit measurements from pre-treatment arterial-phase contrast-enhanced CT data from 18 patients and blood volume
fraction (BVF) measurements from histopathology leads to calibration of BVF parameter (inset). (C) Side-by-side boxplots of fkill values measured from
histopathology and predicted by mathematical model Eq. S2 based on calibration in A and B (18 data points in each set, symbols). In each boxplot, the thick
horizontal line is the median; the box is defined by the 25th and 75th percentiles (lower and upper quartile); the diamond is the mean. A paired t-test at the
0.05 significance level resulted in P = 0.44, indicating that the observed difference between the two data sets is not significant. (D) Predictions of Eq. S2
(open circles, average relative error� 24%) compared, for each patient, to the direct measurements from histopathology post-treatment and resection (filled
circles, with standard deviation of multiple measurements per patient).

doi:10.1371/journal.pcbi.1004969.g002
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delivery are roughly equivalent. This is expected because the majority of the tumor cells are

killed within just one or two apoptotic cell cycles; a 50% increase in tumor kill is nevertheless

expected from loaded nano-carriers releasing over a longer period of time. This suggests an

alternative strategy to improve chemotherapeutic efficacy by promoting or normalizing angio-

genesis at the target site before administrating chemotherapy drugs [2, 49–51], or by promot-

ing perfusion by other means such as mild hyperthermia [52], both of which would lead to an

increase in BVF. We also note that, in our simulations, the domain size (i.e., the radius of the

outer cylinder) was determined by rb / (L BVF
1/2). Thus, a larger rb / L or a smaller BVF repre-

sented a larger tissue volume relying on the blood vessel for drug transport, and hence required

a longer time to achieve the same fkill.

Fig 3. Numerical simulations of the general integro-differential model (Eqs 6 and 7) in a cylindrically symmetric domain. As cell kill
ensues over several cell cycles, (A) successive cell layers next to the blood vessel (r = rb) die out, i.e., tumor volume fraction φ decreases; (B)
local drug concentration σ increases due to an enhancement of drug penetration; and (C) cell kill accelerates further from the vessel and deep into
the tumor. Input parameters: rb / L = 0.102 and BVF = 0.01. The duration of the entire simulation was 10 (λkλuφ0σ0)

−1/2, where time unit is a
characteristic cell apoptosis time. Drug concentration and tumor volume fraction were normalized by their initial values, and radial distance by the
diffusion penetration distance L. The fraction of tumor kill fkill is calculated from Eq 12 (Methods).

doi:10.1371/journal.pcbi.1004969.g003

Mechanistic Modeling of Tumor Response to Chemotherapy
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Fig 4. Drug-loaded nano-carriers lead to cell-kill enhancement over bolus delivery. (A) Time-evolution
curves of chemotherapeutic efficacy fkill (Eq 12) of nano-carriers releasing drug compared to the estimated
efficacy (symbols) of conventional chemotherapy (Eq. S2), for parameter values: rb / L = 0.05 (dashed curves,
upper triangles), 0.1 (solid curves, diamonds), and 0.5 (dotted curves, lower triangles), paired with
BVF = 0.005 (red curves and symbols), 0.01 (blue curves and symbols), and 0.05 (green curves and
symbols). (B) Same as (A), but normalized to the corresponding bolus values of tumor kill, fkill,bolus.

doi:10.1371/journal.pcbi.1004969.g004

Mechanistic Modeling of Tumor Response to Chemotherapy
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Experimental validation

Ethics statement. The animal studies were performed in accordance with the guidelines of

the Animal Welfare Act and the Guide for the Care and Use of Laboratory Animals following

protocols approved by the Institutional Animal Care and Use Committee (IACUC).

Cytotoxicity experiments: Comparison of free and nano-particle-based drug delivery in

vivo. A total of 40 six-week-old female BALB/c mice were obtained from Charles River Labo-

ratories and kept in a specific pathogen-free facility at the Houston Methodist Research Insti-

tute. On day zero, mice were inoculated with 5 x 104 green fluorescent protein (GFP)-labeled

murine 4T1 cells in their inguinal mammary fat pad. Breast tumors were allowed to grow for

two weeks to reach a volume VT,0 = 100–200 mm3. Mice were then randomly placed into four

groups (10 mice per group) and administered intravenously beginning on day 14 according to

a predefined protocol. The four groups were: i) control: phosphate buffered saline (PBS),

administered twice a week; ii) free doxorubicin (3 mg/kg, i.v.), administered twice a week; iii)

1.0 μm porous silicon particle loaded with chemotherapy drug (iNPG/pDox 1.0, 6 mg/kg, i.v.)

[53], administered once a week; and iv) 2.6 μm porous silicon particle loaded with chemother-

apy drug (iNPG/pDox 2.6, 6 mg/kg, i.v.), administered once a week. Tumor volume was mea-

sured for each mouse on days 14, 17, 21, 25, 28, and 31 after tumor cell injection. Mice were

sacrificed on day 31 via CO2 asphyxiation and tumors were removed. For comparison with

model predictions (i.e., Eq 20), the tumor volume measurements were normalized across the

four treatment groups to the measurements from the PBS control group and to the initial

tumor volume, and for each tumor, fkill was calculated as 1 minus the normalized tumor

volume.

Model predictions. From the time-evolution of fkill for the three groups of BALB/c mice

(Fig 5), it is evident that, after roughly three days of first treatment with rapid growth, fkill
remains approximately constant until the end of the experiments (fkill = 0 at the onset of the

treatment on day zero). This rapid growth of the fraction of dead cells is consistent with the

quadratic time-dependence predicted by model Eq 20. The measured tumor kill from nano-

vectors is about 0.5, and roughly 3 times that from free drug, in excellent agreement with the

model predictions of a 2–4 fold increase in kill depending on the parameter values (cfr. Fig

4B). From the experimental protocol, we know that the total amount of drug released by the

particles is F�t� 1.2�10−4 g for a typical mouse weight of 20 g [44, 54–56]. We then analyzed

the tumor growth curves (S3 Fig) and estimated the approximate (linear) growth rates. For

example, the controls were found to grow at an average rate of Λ� 70 mm3 / day (proliferation

only; no death), while the tumors in mice treated with iNPG/pDox 1.0 μm grow at a rate of�
35 mm3 / day (net outcome of proliferation minus death rates). The latter result produces a net

death rate for the iNPG/pDox 1.0 μm treated tumors of Λk � 35 mm3 / day, which, since the

specific rate of kill (per molecule of drug) is λk = Λk / (Ft), gives, together with Eq 20, an esti-

mate for tkill ¼ 2V0

Lk
� fkill � 4 days (corresponding to fkill � 0.5 and V0 = 130 mm3), in excellent

agreement with the observed time to plateau of the cell kill reported in the experiments (Fig 5).

Note that subsequent treatments in the protocol are relatively irrelevant, as the amount of drug

used is the same whereas the tumors have already grown by one order of magnitude by the

time the second treatment is applied (i.e., one week).

Discussion

A fundamental principle of oncologic therapy is that cancer cell kill must be absolute to achieve

a cure. For patients with metastatic cancer, conventional systemic chemotherapy alone does

not eradicate all of the disease [57]. This therapeutic challenge is evident in clinical practice

with both cytotoxic and cytostatic therapies, and our mathematical model of cellular response
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to chemotherapy highlights a physical mechanism for this clinical observation [19, 22]. Indeed,

in our original report of this mathematical description of cancer cell kill due to local drug con-

centrations, we found that complete eradication of the cells was impossible using current meth-

ods to infuse drugs intravenously [23]. Here, we have confirmed this finding in a larger dataset

of patients with colorectal liver metastases. Notably, we find that the pathological response to

chemotherapy is heterogeneous within a given tumor and that the local physical properties of

the tumor describe this response. This is significant in understanding therapeutic resistance,

suggesting that the physical microenvironment naturally selects cancer cells that reside in areas

with poor drug penetration.

This observation of heterogeneous response inspired a concept of improving drug delivery

using nanoparticles that accumulate within the tumor, delivering sustained local release of

drug to the cancer cells. We simulated this concept by generalizing our mechanistic model and

applying it to the same patient group with colorectal liver metastases. This generalized model

now accounts for the spatial and temporal heterogeneities of drug dosing, which builds on our

prior work [19, 20]. From the parameter analysis (Figs 3 and 4), we find that an extended

period of treatment achieves a better treatment outcome (i.e., killing more cancer cells). More

importantly, we found that the delivery of systemic chemotherapy using these nanoparticles

would have enhanced cell kill by a factor of 2 to 4 over the standard therapy that the patients

actually received (Fig 4B). However, this strategy may not be feasible in practice due to the

constraint of tolerable cytotoxicity to healthy cells; further investigation into tumor-targeted

nano-carriers may be necessary to realize the results in patients that our model predicts.

In our model, for the case of cells that stay further away from the blood vessel, the reduction

of cell death is only due to lowered local drug concentration. Indeed, these cells may also

Fig 5. Testing the efficacy of drug-loaded nano-carriers in mice.Comparison of fraction of tumor killed measured
across three different treatment BALB/c mice groups (n = 10 per group) over a period of 17 days (from day 14 to day 31 after
4T1 tumor cell inoculation, seeMethods) showing a roughly 3-fold increase in kill from nano-vectored drug vs. free drug. At
each time point, tumor volumemeasurements from the three drug treatment groups were first normalized to the
measurement from the control (PBS) group (no drug treatment), and then to the initial tumor volume for each group; fkill was
then calculated as (1 –normalized tumor volume).

doi:10.1371/journal.pcbi.1004969.g005
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experience a change in other microenvironmental conditions (such as hypoxia and nutrient

deprivation), which can lead to reduced proliferation rates and therefore reduced sensitivity to

cytotoxic drugs. To address this issue, we could add oxygen concentration as a parameter to

the model, as demonstrated in our prior work [37]. However, in light of the insight we gained

from our model for enhanced drug penetration (Fig 3), oxygen may also penetrate deeper into

the surrounding tissue because dead cells no longer uptake oxygen. Therefore, our assumption

of a fixed cell sensitivity to drugs may remain valid even without taking oxygen into consider-

ation. In our ongoing work, we are validating our model results shown in Fig 3 with in vivo

experiments.

Another observation from our model is that a larger BVF results in a higher tumor killing

ratio. One may envision extending our generalized model to other therapeutic strategies that

aim to improve efficacy through enhanced drug delivery by increasing BVF. These strategies

include, but are not limited to, vascular normalization [2], metronomic dosing [58], and stro-

mal targeting [29, 30]. Each of these physical sciences-based therapeutic strategies could be

optimized through our predictive mathematical model.

As an experimental demonstration of this concept of drug-loaded nano-carriers, we used a

porous silicon particle delivery system loaded with chemotherapy in a mouse model of breast

cancer. We have found that these particles localize within tumors [59], likely due to the geome-

try of the particles. As predicted by our model, we measured a 3.5-fold difference in tumor

growth rate in the mice tumors treated with drug-loaded nanoparticles compared to the tumors

treated with systemic delivery of doxorubicin (Fig 5). This experimental confirmation of the

model results provides rationale to translate these findings and concepts to patients.

In the future, additional layers of complexity involving other factors or physiological barri-

ers, such as tumor cell regrowth or proliferation that repopulates the killed region, effect of cell

to cell contact, and effect of chemotherapy on the tumor vasculature [25, 37, 38], can be added

to the model in an effort to improve the accuracy of model predictions. Importantly, this

model applies to any systemic agent, including immunotherapy. For example, the model may

be generalized even more to account for cancer cell kill by the immune system, accounting for

the physical barriers to immune cell infiltration into the cancer. Moreover, through the use of

non-invasive characterization of transport prior to therapy using diagnostic CT or MRI imag-

ing, as well as the biological characterization of molecular targets for an individual tumor [60],

one could optimize both drug delivery and therapeutic selection for a given patient. This bio-

physical characterization and prediction strategy would complement genetically-based,

patient-specific cancer therapy methods by individualizing drug administration regimens.

Supporting Information

S1 Text. Supplementary material.

(DOCX)

S1 Fig. Example of measurements from histopathological specimens. (A) A portal triad in

normal liver. (B) Example of a histologic section from one patient. (C) Segmentation of the his-

tologic section B for calculation of the fraction of dead tumor area: dead tumor (red); live

tumor (blue); no tumor (green).

(TIF)

S2 Fig. Comparisons of cumulative distributions of measured fkill in tissue. Data were

obtained from histopathology images of 21 patients with CRC metastatic to liver. Measure-

ments by image segmentation using the GIMP software (blue); standard clinical assessment by

the pathologist at MDACC (red). (A) Measurements of fkill by software vs. by pathologist. (B)
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Measurements of fkill by software and shifted to the right by 0.108 vs. by pathologist.

(TIF)

S3 Fig. Measurements of tumor volume. Four treatment groups: PBS (control), free doxoru-

bicin, 1.0 μm porous silicon particle loaded with chemotherapy drug (iNPG/pDox 1.0), and

2.6 μm porous silicon particle loaded with chemotherapy drug (iNPG/pDox 2.6). Data were

measured on days 0, 3, 7, 11, 14, and 17 after first treatment.

(TIF)
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