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S U M M A R Y

We derive a time-domain differential equation for modelling seismic wave propagation in

constant-Q viscoelastic media based on fractional spatial derivatives, specifically Laplacian

differential operators of fractional order. The stress–strain relation is derived from the classical

equation expressed in terms of fractional time derivatives. The new formulation has the

advantage of not requiring additional field variables that increase the computer time and

storage significantly. The spatial derivatives are calculated with a generalization of the Fourier

pseudospectral method to the fractional-derivative case. The accuracy of the numerical solution

is verified against an analytical solution in a homogeneous medium. An example shows that the

proposed wave equation describes the constant-Q attenuation and velocity dispersion behaviour

observed in Pierre Shale. Finally, we consider a plane-layer model and the Marmousi model

to show how the new formulation applies to inhomogeneous media.

Key words: Numerical solutions; Seismic attenuation; Computational seismology; Wave

propagation.

1 I N T RO D U C T I O N

Seismic wave propagation has anelastic characteristics in real Earth

materials. Particularly, in exploration geophysics the target area

(the hydrocarbon reservoir) shows high seismic attenuation (i.e.

low quality factor, Q) which may be caused by the presence of

overpressured free gas accumulations (e.g. Carcione et al. 2003;

Dvorkin & Mavko 2006). As a result, the recorded signals are

significantly affected in amplitude and phase. Therefore, an accurate

wavefield modelling approach should be able to account for the

effects of attenuation and velocity dispersion.

One of the first attempts to model anelastic wave propagation

was carried out by Carcione et al. (1988), based on the generalized

Zener model and memory variables. This model uses a spectrum

of relaxation mechanisms to describe the constitutive relation. It

involves a set of first-order differential equations that can be solved

with numerical methods. This approach has been widely applied

in geophysical studies (Carcione 1990; Robertsson et al. 1994; Xu

& McMechan 1995; Hestholm 1999; Komatitsch et al. 2004; Zhu

et al. 2013).

An alternative approach for modelling constant-Q given by Kjar-

tansson (1979) is more attractive because it requires three param-

eters, namely, Q, a reference phase velocity and a reference fre-

quency. This model has been shown to describe the behaviour of

seismic waves in Pierre shale (McDonal et al. 1958; Carcione et al.

2002). The model involves a fractional time derivative, that is an

irrational (or non-integer) degree of the time derivative (Caputo &

Mainardi 1971). The Grünwald-Letnikov approximation (Podlubny

1999) is used to compute this time derivative (Carcione et al. 2002;

Carcione 2009). However, this formulation is based on the history

of the wavefield, thus requiring to store in memory all the previous

values to present time. It becomes unaffordable for practical seismic

modelling studies, in particular for 3-D simulations, even though

it is possible to truncate the fractional operator after a given time

period (Podlubny 1999; Carcione et al. 2002).

To avoid the memory requirements of the fractional time oper-

ators, we have developed a constant-Q wave equation using frac-

tional Laplacian operators (Carcione 2010; Treeby & Cox 2010).

Zhu & Harris (2013) presented the viscoacoustic case, that is only

P-wave propagation. Here, we consider the viscoelastic case, that

is propagation of P and S waves. We transform the fractional

time derivative to a fractional Laplacian operator (Chen & Holm

2004; Carcione 2010). This operation, computed with the fractional

Fourier pseudospectral method, avoids the storage of wavefields,

rendering the modelling as efficient as the simulation in lossless

media.

The paper is organized as follows: First, we review the deriva-

tion of the viscoacoustic stress–strain relation using the fractional

Laplacian operator. Then, we derive the viscoelastic constitutive

equation from the formulation given in Carcione (2009). The novel

stress–strain relation has two sets of fractional Laplacian opera-

tors, one for P waves and another for S waves. The modelling

algorithm is based on the method introduced by Carcione (2010),

where the spatial derivatives are computed by a generalization of the

Fourier pseudospectral method to the fractional case. Finally, we val-

idate the modelling algorithm with an analytical solution for a 2-D
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2 T. Zhu and J. M. Carcione

homogeneous medium and further illustrate the method with two

seismic applications in inhomogeneous media.

2 T H E O RY

2.1 Fractional viscoacoustic wave equation

We consider the following phenomenological constitutive relation

based on the fractional time derivative (Caputo 1967; Carcione et al.

2002) that defines the stress–strain relation in attenuating media

σ =

(

M0

t
−2γ

0

)

∂2γ ε

∂t2γ
, (1)

where σ is the trace of the stress tensor, εis the trace of the strain

tensor, M0 = ρc2
0 cos2(πγ /2) is a bulk modulus, t0 = 1/ω0 is a

reference time, c0 is a reference velocity, ρ is the mass density

and γ = (1/π) tan−1(1/Q) is the fractional order, satisfying 0 <

γ < 0.5 for any positive value of Q. ω0 is an arbitrary reference

frequency, which should be higher than the source frequencies to

guarantee pulse delay with respect to the lossless case. The complete

formulation of the constant-Q model can be found in Kjartansson

(1979), Carcione et al. (2002) and Carcione (2009).

Next, we construct a phenomenological stress–strain relation

based on fractional spatial differential operators. Applying a

wavenumber-frequency domain Fourier transform to eq. (1) yields,

σ̂ = M0ω
−2γ

0 (iω)2γ
ε̂, (2)

where ω is the angular frequency and i is the imaginary number.

Since i2γ = cos(πγ ) + i sin(πγ ), eq. (2) can be written as

σ̂ ≈ M0c
2γ

0 ω
−2γ

0 cos (πγ ) k2γ ε̂ + (iω) M0c
2γ−1

0 ω
−2γ

0

× sin (πγ ) k2γ−1ε̂, (3)

where we have introduced the wavenumber k = ω/c0. The fractional

Laplacian is defined in Chen & Holm (2004) as,

(−∇2)α/2σ (r, t)
F

←→ kα σ̂ (k, ω) , 0 < α < 2. (4)

Applying the inverse Fourier transform to eq. (3), we obtain

σ = M0c
2γ

0 ω
−2γ

0 cos (πγ )
(

−∇2
)γ

ε + M0c
2γ−1

0 ω
−2γ

0

× sin (πγ )
∂

∂t

(

−∇2
)γ−1/2

ε. (5)

Combining eq. (5) with the momentum-mass conservation equa-

tions, a first-order fractional wave equation can be obtained. Based

on the plane-wave analysis of Appendix A, we verify that the phase

velocity and quality factor are similar to those of the constant-Q

model proposed by Kjartansson (1979) and Carcione et al. (2002).

Wavefield simulations can be found in Zhu & Harris (2013).

2.2 Fractional viscoelastic wave equation

Similarly, we construct a viscoelastic stress–strain relation from the

constitutive equation given by Carcione (2009),

σi j = Cλ D2γP εkkδi j + 2Cµ D2γS
(

εi j − εkkδi j

)

, (6)

where δi j is the Kronecker delta, i, j, k are spatial indices and the

fractional time-derivative operators for the P- and S-waves are de-

fined as

D2γP,S =
∂2γP,S

∂t2γP,S
. (7)

Moreover,

Cλ = M0ω
−2γP

0 , Cµ = µ0ω
−2γS

0 , (8)

with µ0 the shear modulus and

γP,S =
1

π
tan−1

(

1

Q P,S

)

, (9)

where Q P and QS are the P- and S-wave quality factors, respectively.

Einstein’s convention of repeated indices is assumed. According to

the constant-Q model (Carcione 2009), the P-wave modulus M0 and

the S-wave modulus µ0 are, respectively, given by

M0 = ρc2
P0 cos2

(

atan(Q−1
P )

/

2
)

, µ0 = ρc2
S0 cos2

(

atan(Q−1
S )

/

2
)

,

(10)

where cP0 and cS0 are the P- and S-wave velocities at the reference

frequency, respectively.

Consider the 2D case and the (x,z)-plane. We have

σ11 = Cλ D2γP (ε11 + ε33) − 2Cµ D2γS ε33, (11)

σ33 = Cλ D2γP (ε11 + ε33) − 2Cµ D2γS ε11, (12)

σ13 = 2Cµ D2γS ε13. (13)

Now, we perform a Fourier transform to the wavenumber-

frequency domain and replace ω by cP0k in terms containing the

D2γP derivative and by cS0k in terms containing the D2γS derivative.

This ad hoc construction provides a stress–strain relation based on

fractional spatial derivatives

σ̂11 = Cλc
2γP

P0 [cos (πγP ) + i sin (πγP )] k2γP (ε̂11 + ε̂33)

− 2Cµ [cos (πγS) + i sin (πγS)] c
2γS

S0 k2γS ε̂33. (14)

Applying inverse Fourier transforms yields

σ11 = Cλc
2γP

P0

[

cos (πγP )
(

−∇2
)γP

+ c−1
P0 sin (πγP )

∂

∂t

(

−∇2
)γP −1/2

]

(ε11 + ε33)

− 2Cµc
2γS

S0

[

cos (πγS)
(

−∇2
)γS

+ c−1
S0 sin (πγS)

∂

∂t

(

−∇2
)γS−1/2

]

ε33, (15)

which can be re-written as

σ11 =

[

τP

∂

∂t

(

−∇2
)γP −1/2

+ ηp

(

−∇2
)γP

]

(ε11 + ε33)

− 2

[

τS

∂

∂t

(

−∇2
)γS−1/2

+ ηS

(

−∇2
)γS

]

ε33, (16)

where

τP = Cλc
2γP −1

P0 sin (πγP ) , (17)

ηP = Cλc
2γP

P0 cos (πγP ) , (18)

τS = Cµc
2γS−1

S0 sin (πγS) , (19)

ηS = Cµc
2γS

S0 cos (πγS) . (20)
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Viscoelastic modelling using fractional spatial derivatives 3

Similarly, eqs (12) and (13) become

σ33 =

[

τP

∂

∂t

(

−∇2
)γP −1/2

+ ηp

(

−∇2
)γP

]

(ε11 + ε33)

− 2

[

τS

∂

∂t

(

−∇2
)γS−1/2

+ ηS

(

−∇2
)γS

]

ε11, (21)

σ13 = 2τS

∂

∂t

(

−∇2
)γS−1/2

ε13 + 2ηS

(

−∇2
)γS

ε13, (22)

respectively. Combining eqs (16), (21) and (22) with the momen-

tum conversation equations, we obtain the fractional viscoelastic

wave equation. The complete first-order velocity-stress equations

are given in Appendix B. When Q P,S → ∞ (γP,S → 0), we obtain

the elastic case.

Anelastic propagation described by viscoelasticity is a phe-

nomenological model, whose prediction properties depend on a

number of parameters, which are reduced to a minimum in this

formulation. The fact that the parameters are assumed to be con-

stant in the derivation of the fractional viscoelastic wave equation

does not preclude the fact to use the modelling method to simulate

real seismic data for an arbitrary heterogeneous model of the Earth.

The essential fact is that this ad hoc construction of the rheological

equations allows us to avoid the time convolutions and therefore to

save substantial computer time.

To solve the wave equation in inhomogeneous media, we use

the numerical approach given in Carcione (2010). We calculate the

first-order spatial derivatives with the staggered-grid pseudospec-

tral method that minimizes spatial numerical dispersion and non-

physical ringing (Özdenvar & McMechan 1996; Carcione 1999).

The fractional Laplacian operators are implemented with the frac-

tional Fourier pseudospectral method as shown by Carcione (2010).

The perfectly matched layer (PML) approach is used as absorbing

boundary to remove non-physical events from the sides of the mesh

(e.g. Berenger 1994; Carcione & Kosloff 2013).

3 N U M E R I C A L E X A M P L E S

We validate the proposed viscoelastic wave equation with exper-

imental data and the numerical solver by comparison to the ana-

lytical solution. McDonal et al. (1958) reported seismic data from

Pierre shale in Colorado which present an approximate constant-

Q behaviour, with attenuation coefficients αp = 0.12 f dB/kft and

αs = 1.05 f dB/kft, where f is the frequency. The P- and S-wave

quality factors of Pierre shale are Q p = 32 and QS = 10, and

the respective velocities are 2164 and 802 m s−1 at the reference

frequency of 100 Hz (Carcione 2009). We assume a shale density

of 2.2 g cm−3. The simulations are performed with a 612 × 612

mesh, 1-m grid spacing along the x- and z-directions and a time

step of 9.24 × 10−5s. A Ricker wavelet source with 100 Hz centre

frequency is located at (300, 300) m and two receivers at (360, 360)

m and (380, 380) m. Fig. 1 shows the recorded waveforms. Then,

the attenuation coefficient α (in dB/km) and the phase velocity are

calculated with the amplitude spectral ratio as (Picotti & Carcione

2006; Treeby & Cox 2010)

α(ω) = −20 log10

(

A2

A1

)/

d, (23)

c(ω) =
ωd

φ1 − φ2

, (24)

Figure 1. Normalized waveforms recorded at receivers located at (360,

360) m (a) and (380, 380) m (b). The amplitude differences are caused by

geometric spreading and intrinsic attenuation.

respectively, where A1,2 are the amplitude spectra at the two re-

ceivers, φ1,2 are the phases and d is the propagation distance in

meters.

Fig. 2 displays the calculated attenuation factor (circles), the the-

oretical curves (solid lines) and the experimental results (triangles)

from McDonal et al. (1958). Figs 3(a) and (b) illustrate the P- and

S-wave phase velocity dispersion in Pierre shale. Overall, the cal-

culated attenuation and dispersion values agree with the theoretical

constant-Q curves as well as with the experimental results. We note

that the calculated S-wave attenuation factor and phase velocity

oscillate at high frequencies due to the strong attenuation. Similar

observations were made by Wuenschel (1965) and Zhu & Harris

(2013).

Next, we consider a homogeneous model, where the analytical

solution is available, in order to verify the accuracy of the algorithm.

For completeness, the Green’s function is given in Appendix C [see

also Carcione (2009)]. The P- and S-wave velocities are 2500 and

1500 m s−1, respectively, and the density is 2200 kg m−3. We have

considered Q p = 32 and QS = 16. The model is discretized in

a mesh with 512 × 512 grid points using a 10-m grid spacing in

both the horizontal and vertical directions, and the time step is
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4 T. Zhu and J. M. Carcione

Figure 2. P- and S-wave attenuation coefficients. The solid lines represent

the theoretical attenuation based on the constant-Q model. The dotted points

are estimated from the waveforms in Fig. 1. The triangles correspond to the

experimental data reported by McDonal et al. (1958).

Figure 3. P-wave (a) and S-wave (b) phase velocity dispersion. The solid

lines represent the theoretical phase velocity. The dotted points are estimated

from the waveform in Fig. 1.

Figure 4. Comparison of the elastic and viscoelastic numerical results with

the respective analytical solutions (normalized values). Elastic case: (a)

horizontal υx and (b) vertical υz , where Q p and QS take infinite values.

Viscoelastic case: (c) horizontal υx and (d) vertical υz , where Q p = 32

and QS = 16. A vertical source is located at (395, 395) m and the receiver

position is (995, 995) m.

0.8 ms. The source (a vertical force) has a Ricker time history

with 25 Hz centre frequency. Fig. 4 compares the numerical and

analytical solutions. As can be seen, the two solutions agree very

well.

In the third example, we consider seismic wave propagation in

inhomogeneous media. The model shown in Fig. 5 consists of three

layers. The low velocities and low Qp of the middle layer simulate

a high-attenuation reservoir. The medium is discretized with 462 ×

206 grid points and uniform vertical and horizontal grid spacings

of 10 m. The source is a vertical force with a Ricker-wavelet time

history and a central frequency of 25 Hz (∼5.55 grid points per

shortest wavelength), located at (2310, 250) m. 246 receivers are

located at a depth of 250 m ranging from 10 to 4510 m, with a

spacing 20 m. The time step of the modelling algorithm is 0.5 ms.

PML absorbing strips of width 20 grid points are implemented at the

four boundaries of the computational mesh to avoid wraparound.

Fig. 6 shows the elastic and viscoelastic vertical-component snap-

shots at 0.5 s. The snapshots in Figs 6(a) and (b) clearly show the

direct P wave and other events, for example, the reflected PP and
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Viscoelastic modelling using fractional spatial derivatives 5

Figure 5. Layered model with the properties used in the calculation of the

synthetic data. The black star represents the source location at (2310, 250) m.

Figure 6. Snapshots of the wavefield (vertical particle velocity) at 0.5 s

corresponding to the three-layer model: (a) elastic case and (b) viscoelastic

case. The symbols denote: DP: direct P wave; DS: direct S wave; PP: reflected

P waves at the first interface; PS: converted S waves from P waves at the

first interface; SS: reflected S waves; SP: converted P waves from S waves

at the first interface.

PS waves, the reflected SP and SS waves and the transmitted P

and PS waves. Figs 7(a) and (b) display the corresponding syn-

thetic seismograms. Fig. 7(c) shows the seismogram computed by

the standard linear solid model approach (Zhu et al. 2013). As

expected, major features, including first arrivals, refractions, re-

flections, diffractions and multiples, are weaker in the viscoelastic

case. Fig. 8 compares traces computed with the present approach

with those computed with the viscoelastic modelling approach using

a single standard linear solid element. Overall, the amplitudes are

comparable.

In the last example, we apply the present approach to the Mar-

mousi model (Fig. 9), which describes strongly heterogeneous me-

dia. We assume an S-wave velocity Cs = C p/1.73. The low QP’s

Figure 7. Seismograms (horizontal particle velocity) corresponding to the

three-layer model using (a) infinite Q p and QS and (b) the values indicated

in Fig. 6. For comparison, using the same attenuation models, we simulated

the viscoelastic data (c) by using the standard linear solid model approach.

of the upper part simulate a high-attenuation gas cloudy area in

Fig. 9(c). Moreover, we assume QS = QP/1.2. The medium is dis-

cretized with 921 × 481 grid points and uniform vertical and hor-

izontal grid spacings of 6.25 m. Again, PML absorbing strips of

width 20 grid points are implemented at the four boundaries of the

computational mesh to avoid wraparound. The source denoted by a
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6 T. Zhu and J. M. Carcione

Figure 8. Comparison of corresponding traces of Fig. 7 at horizontal dis-

tance 2090 and 3290 m. The black line shows the elastic trace, the blue

line shows the viscoelastic case computed with the standard linear solid

approach, and the red line shows the viscoelastic case computed with the

present approach.

white star in Fig. 9(a) is a vertical force with a Ricker-wavelet time

history and a central frequency of 15 Hz, located at (2881, 281) m.

The receivers are located at a depth of 219 m and range from 62

to 5687 m, with a spacing 12.5 m. The time step of the modelling

algorithm is 0.4 ms. The time length of the simulation is 3 s.

Figs 10(a) and (b) show snapshots of elastic wavefields cor-

responding to the horizontal and vertical components at 0.9

s, respectively, and Figs 10(c) and (d) show the snapshots in

the viscoelastic case. It can be found that the wavefield pass-

ing through the high-attenuation gas cloudy zones is attenu-

ated. The wave types (e.g. major reflections) are identifiable.

Further, Figs 11(a) and (b) display the corresponding horizon-

tal and vertical particle-velocity synthetic seismograms. This

example shows that the proposed fractional viscoelastic wave

equation can be used for modelling seismic wave in complex

geological models of interest in seismology and exploration

geophysics.

4 C O N C LU S I O N S

We have presented a new formulation for simulating wave propa-

gation in viscoelastic media that avoids the use of memory vari-

ables or storing the past wavefields. The method is based on frac-

tional spatial derivatives that are computed with a generalization

of the Fourier pseudospectral method to the fractional case. The

formulation consists of two sets of fractional Laplacian opera-

tors to describe the attenuation of the P- and S-waves. Setting

the respective quality factors to infinite gives the classical elas-

tic formulation. Because the Laplacian operators are evaluated in

the spatial domain, the proposed viscoelastic equation is highly

efficient, since it avoids the use of additional arrays to store the

past values of the wavefields. Since the algorithm is a direct grid

method, it holds for all frequencies and arbitrary heterogeneous

models.

Figure 9. Marmousi P-wave velocity (a), density (b), and QP (c) models

with the properties used in the calculation of the synthetic data. We calcu-

lated S-wave velocity by Cs = C p/1.73. Also, we calculated QS = QP/1.2.

The white star in (a) represents the source at (2881.3, 281.2) m. The

receivers are located at a depth of 218.8 m and range from 62.5 to

5687.5 m.

Numerical results of the proposed wave equation for Pierre

Shale exhibit the desired constant-Q attenuation and dispersion

behaviour. Furthermore, comparison to the analytical solution in

homogeneous media shows that the algorithm can accurately sim-

ulate seismic wave propagation in viscoelastic media. Simula-

tions in inhomogeneous media illustrate the versatility of the

methodology.
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Viscoelastic modelling using fractional spatial derivatives 7

Figure 10. Wavefield snapshots at 0.9 s. Top: elastic horizontal (a) and vertical (b) particle velocity components. Bottom: viscoelastic horizontal (c) and vertical

(d) particle velocity components. Comparing these results, the wave energy (bottom) passing through the high attenuation gas cloudy areas is attenuated.

Figure 11. Viscoelastic horizontal (a) and vertical (b) particle-velocity

seismograms.
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A P P E N D I X A : C O N S TA N T - Q P H A S E

V E L O C I T Y A N D AT T E N UAT I O N

Let us assume a plane-wave kernel of the form exp(iωt − ik · r),

where the wavenumber vector k is complex-valued. Then, eq. (5)

yields the following complex modulus

M = M0

(

c0k

ω0

)2γ [

cos (πγ ) +
iω sin (πγ )

c0k

]

. (A1)

It can be shown that for realistic Q values we can use the relation

c0k = ω and after some calculations the complex velocity obtained

from eq. (A1) is given by

υc =
ω

k
=

√

M

ρ
, where M = M0

(

iω

ω0

)2γ

, (A2)

where M is the complex modulus. The phase velocity is

υph = Re−1(υ−1
c ) =

√

M0

ρ

(

ω

ω0

)γ /

cos
(πγ

2

)

= c0

(

ω

ω0

)γ

(A3)

and the quality factor is

Q =
Re(M)

Im(M)
= cot (πγ ) (A4)

(Carcione, 2007). These equations are identical to those of the

constant-Q model (Kjartansson 1979; Carcione et al. 2002) and

can be used for Q values as low as five.

Similarly, the complex velocities corresponding to the viscoelas-

tic case are given by

υP =

√

M (ω)

ρ
and υS =

√

µ (ω)

ρ
, (A5)

where

M (ω) = M0

(

iω

ω0

)2γP

and µ (ω) = µ0

(

iω

ω0

)2γS

, (A6)

while the phase velocities are

cph P (ω) = cP0

(

ω

ω0

)γP

and cphS (ω) = cS0

(

ω

ω0

)γS

. (A7)

The spatial quality factors are

Q P =
Re(M)

Im(M)
= cot (πγP ) (A8)

and

QS =
Re(µ)

Im(µ)
= cot (πγS) . (A9)

These equations, already given in Carcione (2009), can be used

for realistic Q values to estimate the seismic attenuation and phase

velocity, otherwise, for very low Q values, their calculation requires

the solution of an implicit equation on the complex velocities.

A P P E N D I X B : 2 - D V I S C O E L A S T I C WAV E

E Q UAT I O N I N T H E T I M E D O M A I N

The 2-D velocity-stress formulation of the wave equation combines

eqs (16), (21) and (22) with the equations of momentum conserva-

tion (Carcione 2007). We obtain

ρ∂tυ1 = (∂1σ11 + ∂3σ13 + f1), (B1)

ρ∂tυ3 = (∂1σ13 + ∂3σ33 + f3), (B2)

σ11 = τP AP

∂

∂t
(ε11 + ε33) + ηp BP (ε11 + ε33)

− 2τS AS

∂

∂t
ε33 − 2ηS BSε33, (B3)

σ33 = τP AP

∂

∂t
(ε11 + ε33) + ηp BP (ε11 + ε33)

− 2τS AS

∂

∂t
ε11 − 2ηS BSε11, (B4)

σ13 = 2τS AS

∂

∂t
ε13 + 2ηS BSε13, (B5)

∂tε11 = ∂1υ1, (B6)

∂tε33 = ∂3υ3, (B7)

∂tε13 =
1

2
(∂1υ3 + ∂3υ1), (B8)

where υi , εi j and fi denote particle velocity, strain and body force

components, respectively, and

AP,S =
(

−∇2
)γP,S−1/2

, BP,S =
(

−∇2
)γP,S

. (B9)
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A P P E N D I X C : A NA LY T I C S O LU T I O N I N

H O M O G E N E O U S V I S C O E L A S T I C

M E D I A

The solution of the wavefield generated by an impulsive point force

in a 2-D elastic medium has been given by Eason et al. (1956) (see

Carcione 2007). For a force acting in the positive z-direction, the

displacement solutions can be expressed as

u1(r, t) =

(

F0

2πρ

)

xz

r 2
[G1(r, t) + G3(r, t)] , (C1)

u3(r, t) =

(

F0

2πρ

)

1

r 2

[

z2G1(r, t) − x2G3(r, t)
]

, (C2)

where F0 is a constant that gives the magnitude of the force,

r 2 = x2 + z2,

G1(r, t) =
1

c2
P

(t2 − τ 2
P )−1/2 H (t − τP ) +

1

r 2
(t2 − τ 2

P )1/2 H (t − τP )

−
1

r 2
(t2 − τ 2

S )1/2 H (t − τS), (C3)

G3(r, t) = −
1

c2
S

(t2 − τ 2
S )−1/2 H (t − τS) +

1

r 2
(t2 − τ 2

P )1/2 H (t − τP )

−
1

r 2
(t2 − τ 2

S )1/2 H (t − τS), (C4)

τP =
r

cP

, τS =
r

cS

, (C5)

cP and cS are the compressional and shear wave phase velocities and

H is the Heaviside function. To apply the correspondence principle

and obtain the anelastic solution, one needs the elastic frequency

domain solution (Bland 1960; Carcione et al. 1988; Carcione 2007).

Using the transform pairs of the zero- and first-order Hankel func-

tions of the second kind,

∞
∫

−∞

1

τ 2
(t2 − τ 2)1/2 H (t − τ ) exp(iωt)dt =

iπ

2ωτ
H

(2)

1 (ωτ ), (C6)

∞
∫

−∞

1

τ 2
(t2 − τ 2)−1/2 H (t − τ ) exp(iωt)dt = −

iπ

2
H

(2)

0 (ωτ ), (C7)

we obtain

u1(r, ω, cp, cs)=

(

F0

2πρ

)

xz

r 2

[

G̃1(r, ω, cp, cs) + G̃3(r, ω, cp, cs)
]

,

(C8)

u3(r, ω, cp, cs) =

(

F0

2πρ

)

1

r 2

[

z2G̃1(r, ω, cp, cs)

−x2G̃3(r, ω, cp, cs)
]

, (C9)

where

G̃1(r, ω, cp, cs) = −
iπ

2

[

1

c2
p

H
(2)

0

(

ωr

cp

)

+
1

ωrcs

H
(2)

1

(

ωr

cs

)

−
1

ωrcp

H
(2)

1

(

ωr

cp

)

]

, (C10)

and

G̃3(r, ω, cp, cs) =
iπ

2

[

1

c2
s

H
(2)

0

(

ωr

cs

)

−
1

ωrcs

H
(2)

1

(

ωr

cs

)

+
1

ωrcp

H
(2)

1

(

ωr

cp

)

]

, (C11)

The complex wave velocities given in Appendix B are used to

replace the real-valued velocities in the equations above. Then, the

2-D viscoelastic Green’s function can be expressed as

u1,3(r, ω) =

{

u1,3(r, ω, VP , VS), ω ≥ 0,

u∗
1,3(r,−ω, VP , VS), ω < 0,

(C12)

where the asterisk denotes complex conjugate. This frequency do-

main form ensures that the solution is real in the time domain.

Multiplication with the source time function and a numerical in-

version by the discrete Fourier transform yield the desired time-

domain displacement solution (G̃3 and G̃3 assumed to be zeros at

ω = 0 because the Hankel functions are singular). The particle-

velocity solutions are the time derivative of the displacement

solutions.
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