
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 299. Number 1. January 1987 

K-THEORY AND MULTIPLIERS OF STABLE C*-ALGEBRAS 

J. A. MINGO 

ABSTRACT. The main theorem is that if A is a C*-algebra with a countable 
approximate identity consisting of projections, then the unitary group of M(A ® K) 
is contractible. This gives a realization, via the index map, of Ko(A) as components 
in the set of Fredholm operators on HA . 

For a C*-algebra A let HA = {(aJ I a j E A and 'Lara j converges in norm}. Then 
HA becomes a right A-module under the action (aJb = (ajb). With the A-valued 
inner product «aj),(bJ) = 'Larbj' HA is a Hilbert A-module. 2(HA) is the 
C*-algebra of operators on HA that have an adjoint; f(HA) is an ideal of 2'(HA), 
called the compact operators on HA. Set [11, §2, Definition 4). Operators in 2'(HA) 
invertible modulo f(HA ) are called Fredholm and have an index that takes its 
values in Ko(A). 

The paper is divided into two parts. In Part 1 we show that index: [~] ~ Ko(A) 
is an isomorphism, where [~] denotes the set of path components of the set of 
Fredholm operators. 

In Part 2 we show that the unitary group of M(A ® K) is contractible when A 
has a countable approximate identity consisting of projections. As 2(HA ) = 
M(A ® K), this in particular implies that the unitary group of 2(HA ) is connected 
when A is unital. This latter result is used to prove the isomorphism mentioned 
above. 

The results of this paper were announced in [14] (see Remark 2.5(2». This 
research is based on the author's doctoral work done at Dalhousie University under 
the supervision of Professor P. A. Fillmore. The author also wishes to thank W. J. 
Phillips for many useful suggestions. 

PART 1. THE INDEX OF A FREDHOLM OPERATOR 
1.1. We describe the index map from Fredholm operators on Hilbert C*-modules 

to the corresponding K-groups. The principal ingredients of this construction have 
been discussed by several authors: Kasparov [12], Miscenko and Fomenko [15], and 
Pimsner, Popa, and Voiculescu [17]. However, as we shall need refinements and 
variations of these constructions, we will give a detailed account of the index map. 

Throughout this paper K or f(H) will denote the C*-algebra of compact 
operators on a separable infinite dimensional Hilbert space H. For any two 
C *-algebras A and B, A ® B will denote the completion of the algebraic tensor 
product AGB in the spatial or minimal C*-norm (see e.g. Effros and Lance [8, §2]). 
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398 1. A. MINGO 

Regarding Hilbert C*-modules we will follow the notation of Kasparov [11, §2]; if 
Iff and $" are Hilbert A-modules, then !l'( Iff, $") denotes the set of adjointable 
maps from Iff to $", and f ( Iff, $") denotes the ideal in !l' ( Iff, $") consisting of 
compact operators. 

Ko(A) will denote the K-group of the C*-algebra A as defined in Taylor [19]. 
Murray-von Neumann equivalence of projections is denoted by " - " and stable 
equivalence class by [.]. When convenient (and appropriate) we will regard Ko(A) 
as the Grothendieck group of the semigroup of isomorphism classes of finitely 
generated projective A-modules, where again stable equivalence will be denoted by 
[ ]. 

DEFINITION. Let Iff and $" be Hilbert A-modules and T E!l'( Iff, $"). T is 
Fredholm if there exists S E!l'($",Iff) with 1- STEf(Iff,Iff) and 1 - TS E 
f($", $"). 

The index map associates to a Fredholm operator T E !l'( Iff), where Iff is a 
Hilbert A-module, an element, index (T), of Ko(A). This map generalizes the usual 
index map of Hilbert space theory in the following sense. If H is an ordinary Hilbert 
space, then the usual inner product makes H into a Hilbert C-module and our 
construction will associate, to a Fredholm operator T E !l'(H), index (T) in Ko(C). 
Now Ko(C) ~ Z by the dimension map, and the usual index map is T ~ 
dim(index T). 

Let HA be the Hilbert space over A, [11, §2, Example 2]. Let Pn E !l'(HA) be the 
selfadjoint map which sends (a 1 ,a 2 , ••• ) to (a 1,a 2 , ••• ,an,O, ... ). Then P is a 
projection and Pn~ ~ ~ for all ~ in HA. Thus P/!Jg,,,, ~ (!ig,,,, for all t 1] in HA (see 
[11, Lemma 3] for the definition of (!ig,,,,). Hence PnK, KPn ~ K for all K E f(HA)' 
If A is unital then HA has the standard orthonormal basis {~;}'{' where t is the 
sequence with zeros everywhere but the ith place, where there is a 1. Then 
Pn = I:7=1(!ig"g, E f(HA) and so {Pn}::"=l forms an approximate identity for f(HA), 
consisting of projections. 

1.2. We give, without proof, the version of a standard lemma that will be 
convenient for subsequent use. 

LEMMA. Let B be a C*-algebra. Suppose e and f are projections in Band 
II f - fef II ~ B < 1/IS. Then there exists a unitary in B (or B if B does not have a 
unit) with ufu* ~ e and lIu - 111 ~ ISB. 

1.3. If A is unital and P is a projection in f(HA ) with P ~ Pn for some n, then 
the range of P is a complemented submodule of A(n) and so is finitely generated and 
projective. By A(n) we mean the free A-module of rank n, and we regard A(n) as the 
submodule of H A : A(n) = {(a;) 19; = 0, i> n}. By Lemma 1.2 every projection in 
f(HA ) is equivalent to a P ~ Pn • Therefore we have 

LEMMA [12, §6, LEMMA 5]. Suppose that A is unital. The range of a projection in 
f(HA ) is a finitely generated and projective A-module. 

A simple observation used here and later is that if P and Q are projections in 
!l'(HA), then P - Q as projections implies that their ranges are isomorphic as 
A-modules. 
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1.4. Suppose that A is unital and that FE ,P(HA) is a Fredholm operator. We 
would like to take [ker F] - [ker F *] to be the definition of index F. However, for 
many such F's ker F and ker F * may fail to be finitely generated. 

DEFINITION. Let FE ,P(HA) be Fredholm. If G E ,P(HA) has finitely generated 
kernel and cokernel and closed range and G - FE f(HA ), then define 

index(F) = [kerG] - [kerG*] E Ko(A). 

In the next few paragraphs we will show that such a G always exists and the 
element of Ko(A) so defined depends only on F. 

1.5. PROPOSITION (PIMSNER, POPA, AND VOICULESCU [17, LEMMA 7.4]). Let 
U E ,P(HA) be unitary modulo f(HA). Then for n large enough U(l - Pn) has a 
polar decomposition, i.e. there is a partial isometry V in ,P(HA) with U(l - Pn) = 
VIU(l - Pn)l. Such a Vis a compact perturbation of U. 

PROOF. Choose n large enough that 11(1 - Pn)(l - U*U)(l - Pn)11 < 1 and let 

V = U(l - pJ( Pn + (1 - Pn )U*U(l - Pn)tI2 . 

1.6. LEMMA (d. [12, §6, Lemma 5]). Suppose that A is unital. If tff ~ HA is a finitely 
generated closed submodule of HA, then there is a projection P in f(HA) whose range 
is tff. 

PROOF. Let {1/; }7=1 be a set of generators for tff. Let K = 2:7=1 (!}T/,,~, where {~;} is 
the standard orthonormal basis for HA (see Definition 1.1). Then K(HA) = tff and 
K(A(n» = tff, where we regard A(n) as the submodule of HA: {(aI' a 2 , ••• ) I a; = 0, 
i:? n + I}. Now IIIKI1/11 = IIK1/11 for all 1/, and as tff is closed, we have that 
IKI(A(n» is closed. 

Next we claim that IKlf(A(n» is a closed subset of f(A(n». This follows 
because f(A(n» ~ Mn(A) ~ A(n) EEl ... EElA(n). Therefore by [3, Lemma 111.2.9, p. 
335] there is a projection P in f(A(n» such that IKIA(n) = PA(n) and IKIP = IKI. 
Then IKI is invertible in Pf(A(n»p = f(PA(n». Denote its inverse by IKI- l . We 
may regard P E f(A(n» as an operator on HA by making it zero on A(nl-l = 

(1 - Pn)HA; similarly, we regard IKI- l as an operator on HA by making it zero on 
(1 - P)HA" Now let V = KIKI- l . Then V is a partial isometry in f(HA) with 
range tff. So VV * is the desired projection. 

1.7. PROPOSITION. Suppose that A is unital and FE ,P(HA). If F is Fredholm then 
there is G, a compact perturbation of F, with closed range and finitely generated kernel 
and cokernel. 

PROOF. Choose U E ,P(HA) so that 7T(U) = 7T(F)7T(IFD- l where 7T: ,P(HA )--7 
'p(HA)/f(HA) is the quotient map. Then by Proposition 1.5 there is V, a partial 
isometry, for which U - V E f(HA ). Now choose H selfadjoint such that 7T(H) = 

10g7T(IFI). Then R = e H is positive and invertible and G = VR is a compact 
perturbation of F. Now range( G) = range( V) which is closed, and ker G = ker V = 
range(1 - V*V), and kerG* = kerV* = range(l - VV*) which are finitely gener-
ated by 1.3. 
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400 J. A. MINGO 

REMARKS. (1) It can be shown that any operator FE .P(HA ) with closed range 
and finitely generated kernel and cokernel is Fredholm. This uses an argument of 
W. J. Phillips which shows that as F has closed range there is V in .P(HA ), a partial 
isometry, with range(V) = range(F), k.er(V) = ker(F), and F = VIFI. If P is the 
projection onto ker F, then P E J{'(HA ) (1.6) and IFI + P is invertible. Also by 1.6, 
1 - V*V and 1 - VV* E J{'(HA ), so V is unitary modulo K(HA ). Hence F is 
invertible modulo J{'(HA ); that is, F is Fredholm. 

(2) Notice that the proof showed slightly more than was claimed. Namely, given a 
Fredholm operator F we may find a compact perturbation G with closed range and 
finitely generated kernel and cokernel so that kerG = Pn(HA ), where Pn is as in 1.1 
and V is chosen as it is in Proposition 1.5. 

1.8. We have now shown the existence part in the definition of the index map in 
1.4. Now we will show that it is well defined. This means showing that if F and G 
are Fredholm, F - G E J{'(HA ), and have closed range and finitely generated 
kernel and cokernel then 

[ker F) - [ker F*] = [kerG] - [kerG*] 
in Ko(A). This easily reduces to the case where F and G are partial isometries; write 
(by 1.7) F = VIFI, G = UIGI. Then '17(U)'17(IFj) = '17(V)'17(IGj) implies that U - V 
EJ{'(HA ). Then since kerU= kerF, kerU* = kerF*, etc., we are reduced to the 
case when F and G are partial isometries. 

LEMMA [12, §6, THEOREM 3 PROOF OF UNAMBIGUITY]. Let U and V be Fredholm 
partial isometries with U - V E J{'(HA ). Then [kerU]- [kerU*] = [kerV]-
[ker V*] in Ko(A). 

This completes the definition of the index map. The set of Fredholm operators on 
HA is denoted by~. ~ is a semigroup under multiplication. When A is unital we 
have a map: index: ~ -+ Ko(A). In the next few paragraphs we will establish some 
of the expected properties for this map-that it is a locally constant surjective 
homomorphism. 

1.9. PROPOSITION [12, §6, LEMMA 1]. The map index: ~ -+ Ko(A) is locally 
constant. 

PROOF. Let F E ~ and choose E > 0 so that IIF - Gil < E implies that 

11'17(F)'17(IFlr l - '17(G)'17(IGlr l ll < l. 

Then choose U and V such that 

'17(U) = '17(F)'17(IFlr\ '17(V) = '17(G)'17(IGlr l 

and IIUII, IIU - VII < Ii. Letting X = 2 - U*U + U*V and Y = 2 - UU* + 
UV* we have that 112 - XII, 112 - YiI ;( IIUII IIU - VII < 2, and so X and Yare 
invertible. 

Now index(F) = index(U), for if Fo = W/Fol is a compact perturbation of F 
with W a partial isometry then W is a compact perturbation of U. Similarly index 
G = index V. As X and Yare invertible, we have index( UX) = index U and 
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index(YV) = indexV, as ker(WX) = X-1ker(W). Finally index(UX) = index(YV) 
because 

UX - YV = (1 - UU*)(U - V) + U(1 - VV*) -(1 - U*U)V E K(HA)' 
As index( F (£) G) = index F + index G and there is a path of Fredholm operators 

connecting F (£) G to FG (£) 1 (see e.g. [12, § Lemma 2] or [17, Lemma 7.5]), we have 

COROLLARY. The map index: ~ ~ Ko(A) is a homomorphism. 

1.10. To show that the index map is onto, we begin with an observation of Atiyah 
[2, Appendix]. If pEA is a projection and S E !£l(H) is an isometry, then 
x = (1 - p) ® 1 + P ® S is an isometry in A 0 !£l(H) with 1 - xx* = P ® (1 -
SS*). 

LEMMA. Suppose that A is unital and pEA ® K is a projection. Then there is an 
isometry w in A ® !£l(H) with 1 - ww* = p. 

PROOF. We may assume that A ~ !£l(Ho) for some Hilbert space Ho; then A ® K 
and A ® !£l(H) may be defined to be the closures of the sub algebras of !£l(Ho ® H) 
generated by {a ® k I a E A, k E X"(H)} and {a ® b I a E A, bE !£l(H)}, respec-
tively. 

Let {eij } be a set of matrix units for X"(H). Let Pn = 1 ® L7=1 eii E A ® K. 
Then { Pn } f is an approximate identity for A ® K. 

Suppose first that p ~ Pn for some n. Then P = L7,j=l aij ® eij for some aij EA. 
Let U: H ~ cn ® H be a unitary which carries eij to hj ® ell (for i, j = 1, ... , n) 
where {/ij} is a set of matrix units for !£l(C n). Then 1 ® U: Ho ® H ~ Ho ® Cn ® 
H carries P to a projection of the form p' ® ell' where p' = L7,j=1 aij ® hj. By 
Atiyah's observation there is an isometry x E A ® Mn ® !£l(H) such that 1 - xx* 
= p' ® ell' Then v = (1 ® U)*x(l ® U) is an isometry in A ® !£l(H) with 1 -
vv* = p. 

If pEA ® K is arbitrary, then by choosing n large enough we have lip - PnPPnll 
< 1/18. So by Lemma 1.2 there is a unitary U in (A ® Kr with U*pU ~ Pn' If 
1 - vv* = U*pU as above then w = UWU* is an isometry in A ® !£l(H) with 
1 - ww* = p. 

COROLLARY. Let P E X"(HA) be a projection. Then there is an isometry W in 
!£l(HA) with P = 1 - WW*. Moreover index: ~ ~ Ko(A) is onto. 

PROOF. M(A ® K) denotes the multiplier algebra of A ® K (see [6]). Since 
A ® K is an essential ideal in A ® !£l(H), we may regard A ® !£l(H) as a 
sub algebra of M(A ® K) [6, Proposition 3.7]. By [11, Theorem 1] there is an 
isomorphism of M(A ® K) onto !£l(HA) which sends A ® K to X"(HA)' To prove 
the first claim, apply the lemma above. 

To see that the index map is onto let g, §~ A(n) be finitely generated projective 
A-modules. Let P, Q E Mn(A) be the projections of A(n) onto g and §, respec-
tively (where, if necessary, we replace g and § by isomorphic copies to assure the 
selfadjointness of P and Q). Since A(n) ~ Pn(HA) and Mn(A) ~ PnX"(HA)Pn> we 
will regard P and Q as projections in X"(HA)' So choose isometries V and W with 
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1 - VV* = P and 1 - WW* = Q. Then 
index(WV*) = [kerWV*] -[kerVW*] = [6"] -[§]. 

1.11. PROPOSITION [17, LEMMA 7.5]. If F E ~ and index (F) = 0, then there is G 
in .P(HA) invertible with F - G E '%(HA)' 

PROOF. We may suppose that F has closed range and its kernel and cokernel are 
finitely generated. Let F = VjFj be the polar decomposition of F given in Proposi-
tion 1.7. Moreover by Remark 2 following Proposition 1.7 we may suppose that 
ker(F) = Pn(HA) for some n. Now index F = 0 means Pn(HA) is stably isomorphic 
to ker F *. So let 6" be a finitely generated and projective A -module for which 

Pn ( H A) El) 6" = ker F * El) 6". 
As before we may suppose that there is a projection P in '%(HA) with P ~ Pn+ m -
Pn and 6" = P(HA)' 

Let VI = V(l - P). The VI is a partial isometry with kerVI = Pn(HA) + P(HA) 
and ker VI* = ker V * + V( 6") = ker F * El) 6". So there is a partial isometry W in 
'%(HA) with W*W = ker VI and WW* = ker VI*' Thus G = (VI + W)(jFj + Pn) is 
invertible and G - FE '%(HA)' 

1.12. The index map just constructed has a less explicit version that is easier to 
construct. If O(A ® K) denotes the quotient algebra M(A ® K)/A ® K, then the 
index map is the connecting homomorphism 8: K I ( O( A ® K» -4 K 0 (A ® K). As 
observed by J. Cuntz K*(M(A ® K» = {O}, so 8 is an isomorphism. If V is a 
Fredholm partial isometry in .P(HA)' then V = 7T(V) is unitary and 

8(V)=[(~*V_l ~~VV*)(~ ~)(~~VV* ~*V-l)]_[(~ ~)] 

= [( ~ - V*V ~)] _ [( ~ - VV* ~)] 

= index(V). 
The advantage of using the index map constructed above is that it gives us more 

explicit information about Fredholm operators: in the next section we will see that 
two Fredholm operators have the same index precisely when they are in the same 
path component of~. 

When A is not unital, the index construction given here does not work, mainly 
because A ® K may fail to have any projections, and when this happens there are 
no Fredholm partial isometries in .P(HA). One way around this is to use the 
stabilization theorem [11], when A has a strictly positive element. If A does have a 
strictly positive element, then HA is a countably generated Hilbert A-module, so 
HA El) HA = HA. Then send T E .P(HA) to TEl) I in .P(HA El) HA) = .P(HA). If T 
is Fredholm, then so is TEl) I. Now we can obtain index(T El) 1) E Ko(A). In fact, 

index(T El) 1) E kere* == Ko(A) <:;::; Ko(A) 
where e: A -4 C is the augmentation map. As noted above, Proposition 1.7 is not 
true in the nonunital case in general. This leaves the question: When A is non unital 
but has a strictly positive element if T E .P(HA) is Fredholm and index(T) = 0, 
then is there K E '%(HA) so that T + K is invertible? 
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The index map obeys the expected functoriality relations_ If !p: A ~ B is a unital 
* homomorphism then ip = !p 181 id K: A 181 K ~ B 181 K is nondegenerate (i_e-
ip(A 181 K) - B 181 K is dense in B 181 K) so we have a unital extension ip: M(A 181 K) 
~ M(B 181 K) which carries ~ into §B- As expected we have index(ip(T» = 

!p* index(T) as is easily verified by checking when T is a partial isometry_ 
The index map respects Kasparov's product- Suppose A and B are unital and 

FE !I!(HA ), G E !I!(HB) are Fredholm with polar decomposition F = VIFI, G = 

UIGI_ Let F' = JFI-1V*, G' = IGI-1U* where the inverses are taken on kerF..L and 
kerG..L respectively_ Unwinding the formula in [12, §4, Remark 3] (A and Bare 
trivially graded) we have 

(
(1 - V*V) 181 G 

F#G= 
F®I 

Let W be the partial isometry 

( (1 - V*V) 181 U 
V®I 

Then F#G = WIF#GI_ And so 

V* 181 1 ) 
(VV* - 1) 181 U* . 

index(F#G) = index F 181 indexG E Ko(A 181 B) 
as 

[1 - W*W] = [1 - V*V 1810 1 - U*U 0 ] 
1 - VV* 181 1 - UU* 

= [ker F 181 kerG] + [ker F* 181 kerG*] 
and 

[1 - WW *] = [1 - V * V 1810 1 - UU * 0 ] 
1 - VV* 181 1 - U*U 

= [ker F 181 kerG*] + [ker F* 181 kerG]. 
1.13. To conclude Part 1 we will show that for any compact Hausdorff space X, 

[X, ~], the set of homotopy equivalence classes of maps of X into ~, forms a 
group isomorphic to Ko(C(X) 181 A) via the index map. Our first step is to prove this 
when X is a point; in this case [X,~] will just be denoted by [~]. 

PROPOSITION. Suppose that A is unital. Then with the operation of multiplication 
[~] is a group and index: [~] ~ Ko(A) is an isomorphism. 

PROOF. We saw in Proposition 1.9 that index is constant on paths so we have a 
well-defined map index: [~] ~ Ko(A). We give [~] the obvious operation [F][G] 
== [FG]. By Corollary 1.9 index[F][G] = index[F] + index[G]. Thus index is a 
homomorphism of semigroups which is surjective by Corollary 1.10. It is clear also 
that [1] is the identity of [~]. 

The remainder of the proposition will follow if we can show that index[T] = 0 
implies that [T] = [1]. To do this we need the main result of Part 2: the group of 
invertible elements of M(A 181 K) == !I!(HA) is connected. 
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Now suppose [T] E [~] with index[T] = o. Then by Proposition 1.11 there is 
K E f(HA) such that V = T + K is invertible. So t ~ T + tK, t E [0,1], is a path 
of Fredholm operators connecting T to V. Now by Theorem 2.5 there is a path of 
invertible (hence Fredholm) operators connecting V to 1. 

If [T] E [~], then index[T] = -index[T*]. Therefore index[T][T*] = 0 and so 
[T][T*] = [TT*] = [1]. Thus [~] is a group and index is an isomorphism. 

Recall the isomorphism [11, Theorem 1] of 2(HA) with M(A ® K). Also if A 
and B are any C*-algebras, then M(A) ® M(B) will be regarded as a sub algebra of 
M(A ® B) [6, Proposition 3.7]. 

LEMMA. Suppose that A and B are unital. Then [~®B n (A ® M(B ® K»] is a 
group and the inclusion map i: ~®B n (A ® M(B ® K» ~ ~®B induces an 
isomorphism 

PROOF. Obviously i* is a well-defined homomorphism of semigroups. If T E ~®B 

n (A ® M(B ® K» and T may be connected to 1 in ~®B' then index T = O. By 
Proposition 1.11 there is K E f(HA®B) ~ A ® B ® K so that V = T + K E A ® 
M(B ® K) is invertible. As before, T may be connected to V in ~®B n (A ® 
M(B ® K». Now by Theorem 2.5 the group of invertible elements of A ® 
M(B ® K) is connected, so V may be connected to 1 in ~®B n (A ® M(B ® K». 
Thus i*[T] = [1] only if [T] = [1]. Also as before, [T][T*] = [1] in [~®B n A ® 
M(B ® K)], and so [~®B n (A ® M(B ® K»] is a group and i* is one-to-one. 

To see that i* is onto, we must, given T E ~®B' find S E ~®B n (A ® 
M(B ® K» so that [S] = [T], But by the Proposition this comes from showing that 
index S = index T. By Lemma 1.10 and the argument used in the corollary which 
follows Lemma 1.10 there is SEA ® B ® 2(H) ~ A ® M(B ® K) with indexS 
= indexT. 

THEOREM. For A unital and X compact and Hausdorff [X,~] is a group 
isomorphic to Ko(C(X) ® A). 

PROOF. Identify [X, ~], in the natural way, with 

[ffC(X)®A n C(X) ® M(A ® K)]. 

Then apply the lemma and we have 
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PROOF. Apply the five lemma to the diagram 

0 -+ 7Tn(~) -+ [sn,~l -+ [~] -+ 0 
; index~ ~ index 
'" 0 -+ Ko( Co(Rn) ® A) -+ Ko( c(sn) ® A) -+ Ko(A) -+ 0 

where the horizontal maps come from inclusion and evaluation at the north pole 
respectively. 

PART 2. CONTRACTIBILITY OF UNITARY GROUPS 

In this part we consider the question of the connectivity of the unitary group of 
M(A ® K) and related algebras. Whenever we speak of a path of unitaries we mean 
a function from [0, I] into M(A ® K) which is norm continuous and unitary valued. 
The question of the connectivity of the unitary group of M(A ® K) in the strict 
topology is solved in [12, §1, paragraph 17]. The main result is that the unitary group 
of M(A ® K) is contractible (norm topology) when A is unital or has a countable 
approximate iqentity consisting of projections. 

2.1. LEMMA. 

(a) Let A be a C*-algebra and {e i L~l,., be a sequence of orthogonal projections in 
M(A) such that L~l ei converges strictly [6, Definition 3.4]. Suppose {a i } is a 
sequence in M(A) which is bounded and satisfies aiei = eia i = ai. Then L~~l ai 
converges strictly and IIL~l aill = sUPillaill. 

(b) Suppose that B is a unital C*-algebra and that the {ed ~ M(A) are as in (a) 
but in addition are pairwise equivalent via the partial isometries Si/ SijSji = ei. Then 
for x E B ® M(A) 

PROOF. The proof of (a) is clear. The point of (b) is that L(1 ® sil)x(1 ® Sli) is a 
strictly convergent series in M(B ® A) but B ® M(A) is only a norm closed 
sub algebra. However 

IIL(1 ® sn)x(1 ® SlJ - L(1 ® sn)y(1 ® SlJ II < Ilx - yll 

for x, y E M(B ® A). So it suffices to show that L~~l(1 ® sidx(1 ® Sli) E B ® 
M(A) for x in the algebraic tensor product B 0 M(A). To achieve this we may 
suppose that x = b ® a with bE B and a E M(A). In this case 

00 00 

i=l i=l 

This gives us the following straightforward generalization of [13, Lemma 7]. 

PROPOSITION. Let A and B be C*-algebras with B unital. Let u be a unitary in 
B ® M(A). Suppose that {ei } is a sequence of orthogonal equivalent projections in 
IB ® M(A), with Lei = 1 strictly. If uei = eiu = ei for i = 2,3,4, ... , then u may be 
connected to 1 by a path of unitaries in B ® M(A). 
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PROOF. Let u = elue l . By u - W, we will denote that there is a path of unitaries 
connecting u to w. The idea of the proof can be exhibited by the following diagram. 

u 0 u 0 
1 u*u 

1 1 
u= 1 u*u 

1 
0 0 

u 0 
u* 

u 
u* 

u I 
0 

u 0 1 0 
u* 1 

u 1 =l. 
u* 1 

0 0 

To make this rigorous we will describe the path giving the first" - "; the second 
" - " is handled similarly. 

Let {Sij} be a family of partial isometries implementing the equivalences of the 
{ei }: SijSji = ei. Let Wi = SilUSli" By 

u o u o 
1 u* 

1 and u 
1 u* 

o o 
we mean of course u + e2 + e3 + ... and u + W2* + W3 + W4* + ... , respectively. 
By Lemma 2.1 the first series converges to u and the second to a unitary, w, in 
B ® M(A). 

To connect u to W we use the standard path involving sines and cosines: 
sn (t) = e2ncos t - S2n,2n+ 1 sin t + S2n+ l,2nsin t + e2n + lCOS t 

for t E [0, '7T /2], Let, for t E [0, '7T /2]. 

u(t) = (u + n~l (W2*n + e2n +l )) 

.( el + n~l Sn(t))( el + n~l (w2n + e2n +1))( el + n~l Sn(t))* 

By Lemma 2.1, e1 + L~=lSn(t) converges to a norm continuous path of unitaries in 
IB ® M(A) and both of u + L~=l w2*n + e2n +1 and e1 + L~=l W2n + e2n +l converge 
to unitaries in B ® M(A). Now u(O) = u and u('7Tj2) = w. 
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2.3. The next lemma is essentially contained in [13, Lemma 3] but more explicitly 
in [4, §3.1]. 

LEMMA. Let A be a C*-algebra with 1 and e, f E A orthogonal equivalent 
projections. If u is a unitary in A with u*eu orthogonal to f, then there is a path of 
unitaries in A connecting u to a unitary u1 satisfying u1e = eU1 = e. 

PROOF. Let v be a partial isometry with v*v = e and vv* = f. Then s = v + v* + 
1 - e - f is a symmetry and thus may be connected to 1, e.g. by 

s(x) = exp(i(l- s)x) for x E [0,'17"/2]. 
Now vu is a partial isometry with (vu)*( vu) = u*eu and (vu)( vu)* = f so t = vu + 
( vu) * + 1 - u *eu - f is also a symmetry which may be connected to 1. Thus 
U1 = uts is a unitary connectible to u and u1e = eU1 = e. 

2.4. LEMMA (ELLIOTT [9]). Let B be a C*-algebra with unit and A an ideal of B. 
Suppose that B has a countable approximate identity consisting of projections, {ei }. 
Let u in B be unitary. Then there is v in B, unitary, such that Ilu - vii < 2 and for 
some subsequence {fi} of {ei } we have 

vf1v*, V*f1V ~ f2 ~ Vf3V*, V*f3V ~ f4 ~ .... 

PROOF. In the proof of [9, Theorem 2.4] Elliott proves the following. If A is a 
separable matroid C*-algebra with {e i } ~ A, an approximate identity consisting of 
projections, then for every unitary u in M(A) there is a unitary v with Ilu - vii < 2 
and a subsequence of {ei}, which is again denoted {ei }, such that ve1v* ~ e2 ~ 
ve3v* ~ e4 .... All that was used in the proof was that A is an ideal in M(A) 
having an approximate identity consisting of projections. Thus replacing M(A) by B 
we obtain a unitary v in B with Ilu - vii < 2 and a subsequence {e i } such that 
ve1v* ~ e2 ~ ve3v* ~ e4 ~ .... Now let fi = e2i - 1 for i = 1,2,3, ... and we are 
done. 

2.5. THEOREM Suppose that A and Bare C *-algebras with B unital and A having a 
countable approximate identity consisting of projections (in particular, A may be 
unital). Then the unitary group of B ® M(A ® K) is connected. 

PROOF. Let u E B ® M(A ® K) be a unitary. Let {/;} ~ A, {gil ~ K be 
countable approximate identities for A and K respectively consisting of projections. 
Let ei = 18 ® /; ® gi' i = 1,2,3, ... ; when A is unital let ei = 18 ® lA ® gi' Then 
{e i } ~ B ® A ® K is a countable approximate identity consisting of projections. 
We may apply Lemma 2.4 to obtain v in B ® M(A ® K) with Ilu - vii < 2 and a 
subsequence of {ei }, which will be denoted {ei }, such that ve1v*, v*e1v ~ e2 ~ 
ve3v*, v*e3v ~ e4 ~ .... By standard methods (see e.g. [9, Theorem 2.4]) u may be 
connected to v, so now our task is to connect v to 1. 

Let e = I:r:Oe4i + 1 - e4i and f = I:~=Oe4i+3 - e4i+2, making the convention 
that eo = 0. By Lemma 2.1 these series converge strictly to projections in 18 ® 
M(A ® K). The inequalities v*e4n +1v ~ e4n +2 and e4n - 1 ~ v*e4nv imply that 
v*(e4n+l - e4n )v ~ e4n +2 - e4n - 1· Therefore v*(e4n +1 - e4n )v is orthogonal to 
e4m +3 - e4m +2 for m, n = 1,2,3, .... Thus both e and v*ev are orthogonal to f. 
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Next we want to show that e, 1 - e, and I are all equivalent to 1 in 18 ® 
M(A ® K). When A is unital this is clear for then, by construction, e, 1 - e, and I 
are infinite projections in 18 ® lA ® 2(H). Now in general 

and 

00 

e = 18 ® L (/4n+l ® g4n+l - 14n ® g4n)' 
n=O 

00 

1= 18 ® L (/4n+3 ® g4n+3 - 14n+2 ® g4n+2)' 
n=O 

00 

1 - e = 18 ® L (/4n ® g41l - 14n-3 ® g4n-3)· 
n=1 

We will show that e is equivalent to 1; the proof for I and 1 - e is similar. 
We have to show that L'::=1(/4n+l ® g4n+l - 14n ® g4n) - 1 in M(A ® K). Let 

hn = In - In-I· Now for k = [n/4] 
00 

(h n ® 1) L (/4m+l ® g4m+l - 14m ® g4m) 
m=O 

m>k+1 
n ¥= 1 mod 4, 

{
hn ® L (g4m+l - g4m), 

= hn ®(g4k+l+ L g4m+l-g4m), 
m>k+1 

n == 1 mod4, 

= h n ® k n 

where k n is an infinite projection in 2(H). Let Vn in 2(H) be a coisometry with 
v:;vn = k n. Then Ln= 1 h n ® Vn converges strictly to a coisometry in M( A ® K), as 
Lhn converges strictly to 1 in M(A). Let x = 1 ® L hn ® vn' then 

x*x = 1 ® L hn ® v:;vn = 1 ® L hn ® k n 

00 

= 1 ®(L hn ® 1) L (/4m+l ® g4m+l - 14m ® g4m) 
m=O 

= e. 
Now we have e, I, and 1 - e all equivalent to 1. As v*ev is orthogonal to I we 

may apply Lemma 2.3 to conclude that v may be connected to a unitary w with 
we = ew = e. 

Finally as lA ® 2(H) ~ M(A ® K) and e - 1, there is an orthogonal sequence 
of projections {d j}r:2 in M(A ® K), each equivalent to 1, with Lj=2dj = e. Let 
d 1 = 1 - e. We may now apply Proposition 2.2 to conclude that w may be 
connected to 1. Since we have shown that every unitary in B ® M(A ® K) may be 
connected to 1, the theorem is now proved. 
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COROLLARY. If A and B are as in the theorem, then the unitary group of B ® 
M(A ® K) is contractible. 

PROOF. The proof of the corollary uses the standard method and thus requires the 
following facts (see [13, §4] or [4, §4, Theorems 2 and 3]). 

(1) If X is an open subset of a Banach space and all the homotopy groups of X 
are trivial, then X is contractible. 

(2) For any unital C*-algebra A, x ~ xlxl-1 is a retraction of the set of invertible 
elements, ~, onto the set of unitary elements, 0/1, which is homotopic to the identity 
map from ~ to ~. 

Thus the homotopy groups of 0/1 and ~ are the same, and so by (1) 0/1 is 
contractible iff ~ is contractible. 

So we must show that any unitary valued map from the n-sphere S n to B ® 
M(A ® K) with f(*) = 1 (* is the north pole of sn) is homotopic to the constant 
map: x ~ 1. Equivalently we must show that any unitary f in C(sn) ® B ® 
M(A ® K) with f(*) = 1 can be connected to 1 by a path ft satisfying h(*) = 1. ~y 
the theorem there is a path of unitaries, ft' connecting f to 1 and by replacing h by 
x ~ ft(x)ft(*)-l we may suppose that ft(*) = 1 for all t. 

REMARKS. (1) As (A ® K)" = A" ® !l'(H) for any C*-algebra A, the conclusion 
of the corollary might be expected from the results of Breuer [4] and Bruning and 
Willgerodt [5], which show that the unitary group of (A ® K)" is contractible. 
However, their methods of applying Lemma 2.3 are quite different; in the W * case 
one finds the projections to fit the unitary whereas, in the C* case, one adjusts the 
unitary to fit the projections. Also since tensoring with C(sn) takes an algebra out 
of the category of von Neumann algebras; in [4 and 13] it is necessary to connect a 
large number of unitaries to 1 simultaneously. There is only slight overlap between 
our results and the W* ones; for unital algebras A, M(A ® K) is a von Neumann 
algebra only when A is finite dimensional. For if A is infinite dimensional, then 
there is a sequence of positive elements {Xi} in A with IIxili = 1 and xixj = 0 for 
i =F j. Let {eij } ~ K be a set of matrix units with Leu = 1. Then x = LXi ® ei1 
converges weakly in (A ® K)" but it is not a multiplier of A ® K, as 

instead of going to zero as it would if x were a multiplier of A ® K. 
(2) Theorem 3 in [14] is not correct. The subalgebra 1 ® !l'(H) + A ® K of 

M(A ® K) is strictly infinite but its unitary group is not in general connected (A is 
assumed unital). The problem is that the conclusion of Lemma 2.1(b) does not hold 
and so Kuiper's argument (Proposition 2.2) cannot be applied. By applying the 
K-theory six term exact sequence to the algebra 1 ® !l'(H) + A ® K and ideal 
A ® K we get an injection of Kl(A) into K 1(1 ® !l'(H) + A ® K). Thus 
K 1(1 ® !l'(H) + A ® K) is not trivial in general and so the unitary group of 
1 ® !l'(H) + A ® K is not connected. The theorem above seems to be the strongest 
replacement for [14, Theorem 3]. 
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(3) If one considers the Banach algebra B!l'(HA), which consists of all bounded 
A-linear operators on HA [15], one can also show that the group of invertible 
elements of B!l'(HA) is contractible. The proof is similar to that for !l'(HA) except 
for the following modifications. It is necessary to work with invertible elements 
instead of unitaries; this is mainly an inconvenience as we have no control over 
Ilx-111. It is again only necessary to prove the connectedness of the group of 
invertible elements of C(X, B!l'(HA))-the Banach algebra of continuous functions 
from X to B!l'(HA) with the sup norm. In Lemma 2.4 we say e ~ f if ef = fe = e 
for idempotents e and f in a Banach algebra. 

2.6. Theorem 2.5 suggests the question: for an AF C*-algebra when is d/i, the 
unitary group of M(A), contractible? In [9] Elliott showed that d/i is always 
connected (the proof is nominally for matroid C*-algebras but works for AF 
C*-algebras as well). 

However, d/i is not always contractible; there are known obstructions to the 
triviality of '17"1 (d/i) [1, Theorem 3.2; 7, Lemma 5, §VI]. Namely if 7" is a bounded, 
everywhere-defined, normalized trace on A, which then extends to M(A), then 

Xr: ut ~ 2~i { 7"( ~t ui ) dt 

is a homotopy invariant homomorphism from the piecewise smooth loops in d/i to C, 
and thus defines a homomorphism Xr: '17"i(d/i) ~ C. Furthermore if p is a projection 
in M(A), then Xr(e t2"iP ) = 7"(p), so Xr is nontrivial. 

Thus whenever there is a (finite) trace on A, '17"1(d/i) is nontrivial. The O-dimen-
sionality of A would suggest that '17"0 and '17"1 are the only obstructions to the 
contractibility of d/i; in fact this is true. 

THEOREM. Let A be an AF C*-algebra. Then the unitary group of M(A) is 
contractible iff there are no (finite) traces on A. 

PROOF. By [10, Proposition 9.3] A is stable iff there are no finite traces on A. So 
the theorem follows from Theorem 2.5. 

2.S. It is still unknown to the author whether the unitary group of M( A ® K) is 
connected for arbitrary C*-algebras A. A reasonable restriction might be that A 
have a strictly positive element. Some results are known: when A is separable and 
commutative or when A = fo( d) is a separable continuous trace C *-algebra such 
that A has a finite cover which trivializes d. 

NOTE ADDED IN PROOF. It has recently been shown by J. Cuntz and N. Higson 
that if A has a strictly positive element, then the unitary group of M(A ® K) is 
contractible. Their paper, Kuiper's theorem for Hilbert modules will appear in 
Operator Algebras and Mathematical Physics, Contemporary Mathematics, Vol. 60, 
Amer. Math. Soc., Providence, R. I., 1986. 
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