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Abstract: We construct an effective four-dimensional string-corrected black hole (4D SCBH) by
rescaling the string coupling parameter in a D-dimensional Callan–Myers–Perry black hole. From the
theoretical point of view, the most interesting findings are that the string corrections coincide with
the so-called generalized uncertainty principle (GUP) corrections to black hole solutions, Bekenstein–
Hawking entropy acquires logarithmic corrections, and that there exists a critical value of the coupling
parameter for which the black hole temperature vanishes. We also find that, due to the string
corrections, the nature of the central singularity may be altered from space-like to time-like singularity.
In addition, we study the possibility of testing such a black hole with astrophysical observations.
Since the dilaton field does not decouple from the metric, it is not a priori clear that the resulting
4D SCBH offers only small corrections to the Schwarzschild black hole. We used motion of the
S2 star around the black hole at the center of our galaxy to constrain the parameters (the string
coupling parameter and ADM mass) of the 4D SCBH. To test the weak gravity regime, we calculate
the deflection angle in this geometry and apply it to gravitational lensing. To test the strong field
regime, we calculate the black hole shadow radius. While we find that the observables change as we
change the string coupling parameter, the magnitude of the change is too small to distinguish it from
the Schwarzschild black hole. With the current precision, to the leading order terms, the 4D SCBH
cannot be distinguished from the Schwarzschild black hole.

Keywords: black holes; string corrections; thermodynamics; S2 star; black hole shadows

1. Introduction

Black holes (BHs), as the most interesting solution of Einstein’s equations, are unique
objects that can provide us with both theoretical and phenomenological tests of our new
models. Today, we have numerous ways to test black hole physics on astrophysical scales in
both weak and strong gravity regimes. Different observational techniques using either grav-
itational waves or photons in practically every segment of the electromagnetic spectrum
allow us to study black hole mergers, formation, shadows, accretion disk processes, gravi-
tational lensing, star disruption process due to the presence of a black holes and so on [1–3].
These tests often put very strong constraints on any modification of general relativity.

While general relativity has been successfully tested on solar system scales, it does
appear to run into problems at galactic and larger scales where we are forced to postulate
the existence of exotic components like dark mater and dark energy. We also know that
general relativity is incomplete since it is a classical theory and cannot describe space-
time at the microscopic scales. The best developed candidate that might provide us with
quantum description of gravity is string theory. However, making any testable prediction
of the string theory proved to be notoriously difficult. Thus, any headway in this direction,
albeit not quite conclusive, might be very important for further development of the field.

In this work, we consider the D-dimensional α′-corrected (where α′ is the string
coupling constant) black hole found by Callan, Myers and Perry (CMP) [4]. Originally,
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the CMP solution was found perturbatively, with only leading order stringy corrections.
Nonetheless, such a solution is important since it can give us many important insights about
Hawking evaporation and related information loss paradox. This black hole solution has
attracted a great deal of attention from the theoretical point of view, and was even recently
used to study some potentially observational effects like the quasinormal modes and black
hole shadows in the eiokonal limit [5,6]. To make the original CMP solution relevant for
our observed macroscopic 4D world, we have to find a way to obtain a corresponding
effective 4D solution. For that purpose, we are inspired by the recent formulation of the
Gauss–Bonnet gravity in 4D, which is formulated by rescaling of the coupling parameter
α→ α/D− 4 [7]. In the present work, we aim to rescale the parameter λ (which is directly
proportional to α′) as λ→ λ/D− 4 to find an effective solution in 4D.

In general, 4D Gauss–Bonnet gravity admits many exact spherically symmetric black
hole solutions, which attracted a lot of interest (see Refs. [8–17]). It is important to note that
a regularized 4D theory at the level of action was shown to exist, as a special case of the
4D Horndeski theory [18,19]. For the static and spherically symmetric black hole solutions,
it was shown that the regularized solution (obtained by rescaling the coupling constant)
coincides with the original solution obtained by [7]. However, to go beyond spherical
symmetry, one must use the regularized field equations coming from the regularized action
and not from the rescaling α→ α/D− 4.

This paper is organized as follows: in Section 2, we review the D-dimensional CMP
black hole solution. In Section 3, we rescale the coupling constant to obtain the 4D SCBH
and analyze its properties. We discuss the black hole thermodynamics, Hawking radiation,
the ADM mass, etc. In Section 3, we use the metric we obtained to analyze motion of
the S2 star in order to constrain the geometry of a 4D SCBH. In Section 4, we study the
light deflection angle and the Einstein rings in the weak gravity regime. In Section 5, we
elaborate the shadow images and the electromagnetic radiation of infalling gas model due
to the string corrections. Finally, we discuss our results in Section 6.

2. D-Dimensional String-Corrected Black Hole

We start with the expression for the D–dimensional effective action with purely
gravitational corrections given by [4–6]

S =
1

16πG

∫ √
−g
(

R− 4
D− 2

(∂µφ)
(
∂µφ

)
+ e−

4
D−2 φ λ′

2
RµνρσRµνρσ

)
dDx. (1)

Note that the above effective action encodes the bosonic and heterotic string theories,
to the first order in α′, with λ′ = α′

2 , α′
4 , respectively. We are interested in a general static

and spherically symmetric solution in D dimensions which can be written as follows:

ds2 = f (r) dt2 − f−1(r) dr2 − r2dΩ2
D−2. (2)

where

dΩ2
D−2 = dθ1

2 + sin2 θ1
2dθ2

2 + ... +
D−3

∏
i=1

sin2 θidθ2
D−2 (3)

represents a metric on a (D− 2)-dimensional unit sphere. We will consider only gravita-
tional terms, i.e., we neglect all the fermionic and gauge fields. However, as was pointed
out in [4–6], the dilaton field does not decouple, as it can be seen from the field equations
(neglecting terms which are quadratic in φ) [4–6]:

∇2φ− λ′

4
e

4
2D φ
(

Rρσλτ Rρσλτ
)
= 0, (4)
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λ′ e
4

2D φ

(
Rµρστ Rν

ρστ − 1
2(D− 2)

gµνRρσλτ Rρσλτ

)
+ Rµν = 0. (5)

Thus far, only the first order α′ corrections to φ and gµν have been calculated. In other
words, working perturbatively in λ′, and neglecting λ′2 and higher order terms, the solution
for the D-dimensional black hole is given by the Callan–Myers–Perry metric in terms of the
following relation [4–6]:

f (r) =

(
1−

RD−3
H

rD−3

)(
1 +

λ′

R2
H

δ f (r)

)
, (6)

δ f (r) = − (D− 3)(D− 4)
2

RD−3
H

rD−3

1− RD−1
H

rD−1

1− RD−3
H

rD−3

. (7)

Such a black hole has the following Hawking temperature [4–6]

T =
D− 3
4πRH

(
1− (D− 1)(D− 4)

2
λ′

R2
H

)
. (8)

Obviously, RH is the horizon of the black hole. If we neglect the α′-corrections, we
recover the Tangherlini solution [20] in the limit λ′ = 0, i.e., f (r) = fλ′=0(r). Furthermore,
by setting D = 4, we effectively eliminate α′-corrections in 4D.

3. The 4D String Corrected Black Hole

In order to obtain an effective metric in 4D and still keep stringy corrections, one of
the possibilities is to rescale the parameter λ as follows:

λ′ → λ

D− 4
, (9)

and then take the limit D → 4 in Equations (6) and (7). We thus obtain

f (r) =
(

1− RH
r

)1− λ

2RHr
1− R3

H
r3

1− RH
r

. (10)

This solution can also be written as

f (r) = 1− RH
r

+
λ
(

R3
H − r3)

2RHr4 . (11)

In this paper, we take RH and λ to be free parameters. The original perturbation
parameter λ′, before rescaling in Equation (9), is a small parameter in appropriate units.
In the opposite limit, when λ′ → ∞, we have a tensionless limit of string theory, where in
general one cannot ignore the higher-order corrections. To keep the perturbative corrections
small in Equation (6) after the rescaling (at least in the first order of perturbations), we
have to require that the parameter λ is also small. In most of the analysis in this paper, we
will assume that λ is small; however, we will sometimes relax this condition to extrapolate
the results and obtain some interesting findings. We should note however that, strictly
speaking, we lose the perturbative connection with the original action in (1) and simply
analyze the metric given by the element in Equation (11) for arbitrary values of parameters.
Note that, since λ is proportional to the string coupling, which on the other hand is related
to the string tension, we will assume that λ is a positive quantity.
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Solving for f (r) = 0, we find two real solutions for the horizons located at

rh1 = RH , rh2 =
λ

6RH
+

λ1/3Z1/3

6RH
+

λ(6R2
H + λ)

6RHZ1/3 , (12)

where

Z = 3
√

3
√

108R4
H + 28λR2

H + 3λ2 R2
H + 54R4

H

+ 9λR2
H + λ2. (13)

Using this metric function in 4D, we can compute the scalars

RµναβRµναβ =
12R2

H
r6 +

(
12r6R2

H − 60R5
Hr3

r12R2
H

)
λ

+

(
117R6

H − 30R3
Hr3 + 3r6

r12R2
H

)
λ2, (14)

and

RµνRµν =
3R2

Hλ

r6 . (15)

From these expressions, it looks like there is a singularity in the limit of r → 0,
which means that perturbative string corrections cannot resolve the problem of the central
singularity in this case. In the next section, we shall argue more about the nature of this
singularity. In addition, there will be important effects on the black hole evaporation as we
will see later.

3.1. The ADM Mass

Let us first rewrite the metric (11) in the following form:

f (r) = 1− 2(RH/2 + λ/4RH)

r
+

λR2
H

2r4 . (16)

It is natural to ask if we can identify the quantity RH/2 + λ/4RH with the black hole
mass? We can see that answer to this question is yes! We can compute the ADM mass
for the 4D SCBH and show that, in fact, it is a well defined quantity. Since our metric is
asymptotically flat, to compute the ADM mass, we can apply the relation used in [21],

MADM = lim
r→∞

1
2

[
−r2χ′ + r(ψ− χ)

]
, (17)

where we have identified

ψ(r) =
1

f (r)
, and χ(r) = 1. (18)

After simple calculations, we can see that the ADM mass for our black hole given by

MADM =
RH
2

+
λ

4RH
. (19)

The last equation represents the mass of the 4D SCBH measured by an observer which
is located at the asymptotic spatial infinity. We can also verify that the AMD mass coincides
with the Misner–Sharp mass defined as

M = lim
r→∞

r
2

(
1− gab(∂ar)(∂br)

)
. (20)
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Taking the limit of the last equation, as expected, we obtain Equation (19). We can
now simplify the notation and refer to the ADM mass simply as M = MADM. Thus, we
can write the metric (16) in terms of three quantities: the black hole mass, and parameters
λ and RH as follows:

f (r) = 1− 2M
r

+
λR2

H
2r4 . (21)

We can solve the expression of the ADM mass (19) for RH to obtain two solutions

RH = M±
√

4M2 − 2λ

2
. (22)

In the limit of λ→ 0, we would like to obtain the Schwarzschild BH, hence we accept
only the positive branch as a physical solution. This also means that RH decreases with
due to the stringy corrections. In addition, the last equation requires 4M2 − 2λ ≥ 0 for a
horizon to exist, which gives the following constraint λ/M2 ≤ 2. In Figure 1, we show
the metric function f (r) and the horizons for different values of λ. In Figure 2 (left panel),
we show the parametric region of M and λ. Since λ and RH are just parameters, we can
introduce a new quantity, ξ, and write metric function (21) as follows:

f (r) = 1− 2M
r

+
ξ

r4 , (23)

where

ξ =
λR2

H
2

=
λM2

2

(
1 +

√
1− λ

2M2

)2

, (24)

provided λ/M2 ≤ 2. It is very interesting to note that the Kretschmann scalar and the
Ricci scalar (see Equations (14) and (15)) goes to infinity as r → 0. However, in contrast
with the Schwarzschild black hole, we can see here that, due to the string corrections, light
rays (and particles) never reach the singularity. To see this fact, let us consider a reference
frame of an observer falling from rest towards the black hole. For this purpose, we use the
Painlevé–Gullstrand coordinates. Introducing dT = dt− h(r)dr, in the equatorial plane
(θ = π/2), after fixing h(r) =

√
1− f (r)/ f (r), we obtain the metric

ds2 = f (r)dT2 − 2

√
2M

r
− ξ

r4 dTdr− dr2, (25)

which is regular at the black hole horizon. If we solve for radial light geodesics ds2 = 0,
one can find two solutions

dr
dT

= −
√

2M
r
− ξ

r4 ± 1, (26)

where the positive sign represents light moving in the outward direction, while the negative
sign represents light moving in the inward direction, respectively. In Figure 3, we see that,
for the Schwarzschild black hole (black curve), the velocities of both the inward and
outward light rays go to negative infinity as r → 0; this physically means that anything that
enters the event horizon of the black hole reaches the singularity at the center. In contrast
with this behavior, when we include the string corrections, we find that the velocity reaches
a minimum value at some r but then increases for smaller values of r. The velocity of
an inward light ray reaches −1, and the velocity of an outward light ray reaches 1 (see
Figure 3). Below this value, dr/dT is imaginary, which means that nothing can reach the
center, and the observed curvature scalars remain finite. Such a singularity is known as
a time-like singularity, which is different from the Schwarzschild black hole that harbors
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a space-like singularity. A similar effect was observed in Ref. [22] where the quantum
corrected black hole was investigated.

λ/M2=0.1

λ/M2=0.5

λ/M2=1.5

λ/M2=1.9

0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

1.0

r

f(r)

rh1

rh2

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

λ/M2

rh

Figure 1. Left panel: The plot shows the metric function for different values of λ. Right panel: The
plot shows the two horizons by varying λ while keeping M = 1. The two horizons coincide at λc.

No Black Hole

Black Hole

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

λ [M2]

M

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

λ/M2

ξ/M4

Figure 2. Left panel: Parametric plot between the mass of the black hole and the parameter λ.
Right panel: Parametric plot between ξ and the parameter λ. We have set M = 1.

λ/M2=1.5

λ/M2=0.1

λ/M2=0

0 1 2 3 4
-4

-3

-2

-1

0

1

r

dr

dT λ/M2=1.5

λ/M2=0.1

λ/M2=0

0 1 2 3 4
-5

-4

-3

-2

-1

0

1

r

dr

dT

Figure 3. Left panel: The velocity of light observed in a freely falling frame for light moving inward.
Right panel: The velocity of light observed in a freely falling frame for light moving outward. We
have set M = 1.
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If λ/M2 > 2, the horizon becomes complex and hence physically absent. This would
be usually interpreted as a naked singularity; however, the curvature invariants also become
complex, so interpretation of the solution in that regime is not clear. It might happen that,
in this domain of λ, a gravitational phase transition happens and the transition from the
black hole to a regular objects occurs.

Note that ξ is measured in units of M4. Moreover, one can check analytically, by taking
the first derivative of ξ with respect to λ that the maximum value of ξmax/M4 = 27/16 '
1.68 is obtained at the same critical value λc = 1.5. We can see this in Figure 2 (right panel).
It is important to specify whether we work with metric (11) or (23); of course, the physics
remains the same but the range of parameter changes. Furthermore, if we consider an
expansion around λ, from metric (23), we find

f (r) = 1− 2M
r

+
2M2λ

r4 + . . . (27)

If we compare our solution to the recent 4D Gauss–Bonnet solution

f (r) = 1 +
r2

2α

(
1−

√
1− 8Mα

r3

)
, (28)

and expand the last equation to the leading order term, we find

f (r) = 1− 2M
r

+
4M2α

r4 + . . . (29)

which coincides with (27) if we rescale λ → 2α. This is an indication of the perturbative
equivalence between the 4D Gauss–Bonnet solution and our 4D SCBH.

3.2. Hawking Radiation

Let us write the corrected Hawking temperature using the metric (11) associated with
the horizon rh1 as

T1 =
f ′(r)
4π
|r=rh1 =

1
4πRH

(
1− 3

2
λ

R2
H

)
. (30)

It can be seen that for the critical value of the parameter

λc =
2 R2

H
3

(31)

the Hawking temperature becomes zero, meaning that the black hole will stop radiating.
In that case, small black holes do not disappear and remain as remnants. If now combine
the last condition with Equation (22), we obtain

λc =
3
2

M2. (32)

This equation really shows that, at this critical value of λ = λc, a black hole with mass
M will have zero Hawking temperature and, in general, the critical value of λ depends on
the black hole mass. We can see what exactly happens in Figure 4. If we fix for simplicity the
black hole mass to unity [M = 1], in the interval λ ∈ (1.5, 2), the temperature T1 becomes
negative, which is not physically acceptable. However, as we will explain below, this is a
consequence of the fact that, for λ > λc, the horizons switch places, and the outer horizon
will be located at rh2. Thus, in this region, Hawking temperature should be associated with
the horizon rh2, that is,

T2 =
f ′(r)
4π
|r=rh2 =

1
4π

(
RH

r2 −
λ(4R3

H − r3)

2r5RH

)
|r=rh2 . (33)
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At the same critical value λc = 1.5 where the black hole stops evaporating, the two
horizons coincide, i.e., rh1 = rh2 = 1.5 (see Figure 1, right panel). In the interval λ ∈ (0, 1.5),
the outer horizon is rh1, meaning that rh1 > rh2, at the critical value λc the two horizons
coincide, while at the interval λ ∈ (1.5, 2), the outer horizon is now rh2, meaning that
rh2 > rh1. Therefore, the Hawking temperature in the total interval is only the positive
contribution obtained from the interval

T =

{
T1, λ ∈ (0, 1.5)
T2, λ ∈ (1.5, 2)

(34)

We can see this fact also from the Figure 4. If we take λ/M2 = 1.5, we see that, as
the black hole mass decreases, the Hawking radiation increases and attains a maximum
value when (∂Th1/∂rh1) = 0, we obtain the maximal value of the Hawking temperature at
M = 1.443375673. Now, if we further decrease the mass, we see that, at M = 1, the Hawking
temperature is exactly zero. On the other hand, if we have a black hole with mass in the
range M < 1, then there is a nonzero Hawking radiation coming from the horizon rh2,
with a Hawking temperature that increases and reaches a finite value at some minimal
possible mass. We can obtain the minimal black hole mass using the condition λ/M2 ≤ 2,
in our case [setting λ = 3/2], we obtain Mmin =

√
λ/2 =

√
3/2. This can also be seen in

Figure 2 (left panel) or in Figure 4 (right panel). Beyond this minimal mass, the black hole
cannot exist, so we end up with some regular object or naked singularity.

T1

T2

λc

0.0 0.5 1.0 1.5 2.0
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

λ [M2]

T

λ/M2=1.5 (T1)

λ/M2=1.5 (T2)

λ/M2=0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

M

T

Figure 4. Left panel:The plot showing Hawking temperature of the 4D SCBH as a function of the
coupling parameter λ for a fixed mass of the black hole M = 1. Right panel: The plot showing
Hawking temperature of the 4D SCBH as a function of black hole mass for fixed values of the coupling
parameter λ.

To find the entropy of the black hole, we can use the first law of thermodynamics
∂S
∂M = 1

T along with the expression for the temperature. Again, we will have two intervals
for λ. The black hole horizon rh1 contributes to the entropy in the domain 0 < λ/M2 < 1.5.
It is convenient to express the entropy in terms of the black hole horizon rh1 = RH . For the
entropy in this interval, we find

S =
∫ 1

T1

∂M
∂RH

dRH = πR2
H + πλ ln

(
2R2

H − 3λ
)
+ C, (35)

where C is some constant of integration. Note that the black hole entropy consists of
two terms; the first term is the standard Bekenstein–Hawking area law followed by the
logarithmic string correction term. We can also express this entropy in terms of black hole
mass by using Equation (19).



Universe 2022, 8, 194 9 of 21

On the other hand, inside the interval 1.5 < λ/M2 < 2, due to the contribution from
the horizon rh2, it is not possible to find an analytical closed form for the entropy. However,
one can evaluate it numerically.

The thermodynamical stability of the black hole can be found by using the heat capacity
Ch. The stability of the black hole is related to the sign of the heat capacity. In particular,
when Ch > 0, the black hole is stable, while, for Ch < 0, the black hole is unstable. The heat
capacity of the black hole is given by

Ch =
∂Mh
∂Th

=
∂Mh
∂rh

∂rh
∂Th

. (36)

In Figure 5, we plot the heat capacity of the black hole as a function of M for a fixed
parameter λ/M2 = 1.5. We can see that the total heat capacity Ch of the black hole is
obtained from the contribution of the horizon rh1 noted as C1 (blue line) in the interval
M ≥ 1, and the contribution of C2 (red line) in the interval M < 1. In particular, one
can see that C1 exhibits discontinuity and diverges at some critical points r = rc, which
can be linked to the second order phase transition. At the point r = rc, there is a flip of
sign in the heat capacity where the Hawking temperature attains a maximum value with
(∂Th/∂rh) = 0. In the interval M < 1, we see that C2 is positive and there is a discontinuity
at the minimal mass Mmin =

√
3/2. Beyond this point, the object is not a black hole;

instead, it can be some regular object or a naked singularity. This means that the black
hole is thermodynamically stable for rh < rc, whereas it is thermodynamically unstable
for rh > rc. We also see that, in general, for large M, we have negative heat capacity
Ch < 0, hence the black hole is unstable. For a fixed value λ/M2 = 1.5, the heat capacity is
exactly zero at M = 1, as expected, since the Hawking temperature becomes zero. It is also
interesting to see that, for large values of M, the heat capacity gets closer and closer to the
Schwarzschild black hole heat capacity, and it is also negative i.e., Ch < 0. We note that
there is no phase transition for the Schwarzschild black hole as can be seen from Figure 5
(black line).

λ/M2=1.5 (C2)

λ/M2=1.5 (C1)

λ/M2=0

0.0 0.5 1.0 1.5 2.0 2.5
-100

-50

0

50

100

M

C

Figure 5. The plot showing the heat capacity of the black hole as a function of the black hole mass for
a fixed values of the coupling parameter λ. For Ch < 0, the black hole is unstable.

3.3. Can λ Be a Large Parameter?

As we mentioned earlier, the perturbative parameter λ should be small in appropriate
units. If that is true, then there is a great level of similarity between our 4D SCBH and the
generalized uncertainty principle (GUP) corrected BH. This can be seen in the following.
In the limit λ→ 0, we see from Equation (19) that the ADM mass gives MADM = RH . This
suggests that we can write

RH = 2M0, (37)
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where M0 can be interpreted as the bare mass of the black hole. The ADM mass can then
be written as

MADM = M0

(
1 +

λ/4
2M2

0

)
. (38)

The second term on the right-hand side can be interpreted as the quantum mechanical
hair due to the GUP. We start from the GUP equation in the form

∆x =
1

∆p
+

αGUP l2
Pl

h̄
∆p, (39)

where αGUP is the GUP parameter, lPl =
√

h̄G/c3 ∼ 10−33 cm is the Planck length. We set
∆x → R, ∆p → cM, where M0 is the mass forming an event horizon if it falls within its
own Schwarzschild radius RS = 2GM0/c2 (here, we have restored the constants c, h̄ and
G). Using the β (GUP corrected constant) formalism, it was shown in Ref. [23] that GUP
has an important effect on the size of the black hole as follows:

R′S =
2GM0

c2

(
1 +

β

2

(
MPl
M0

)2
)

(40)

where MPl =
√

h̄c/G ∼ 10−5 g. With appropriate units and the scaling

β→ λ

4
, (41)

it can be easily seen that Equation (40) suggests a modified GUP ADM mass with R′S =
2MADM. As a result, we can write

MADM =
GM0

c2

(
1 +

β

2

(
MPl
M0

)2
)

. (42)

The last equation has been obtained in Refs. [23,24], but it coincides with our result
for the ADM mass of the string corrected black hole given by Equation (38). This indicates
that the string corrections given by (a small) λ can be linked to the the GUP corrections β of
black holes.

However, λ might not necessarily be a small parameter (in appropriate units). The
rescaling given by Equation (9), λ′ → λ/(D− 4), applied in Equations (6) and (7), is fine at
the level of the solution for the metric (the terms D− 4 cancel out), but it is not obviously
justified at the level of the action in Equation (1), where singularity will appear in the limit
of D → 4. However, we can still analyze the metric given by the function in Equation (11),
having in mind that we lost perturbative connection with the stringy action in Equation (1).
Thus, λ might not only encode small stringy corrections to the BH solutions (e.g., like GUP
inspired corrections in Equation (38)), but also large corrections that might completely
change physical interpretation of the solution (e.g., like for the critical value λc in the
previous section). As it was the case with 4D Gauss–Bonnet gravity, one expects a more
general theory with a well defined action under the rescaling in (9). Such a regularized
version of the action in Equation (1) is yet to be found, and is outside the scope of the
present work. However, it is encouraging that solutions obtained by simple rescaling
α′ → α′/(D − 4) in 4D Gauss–Bonnet gravity coincide with solutions following from a
well defined regularized action, so we expect that something similar is happening here.

Incidentally, it was argued in [25] that the string tension necessarily becomes very
low in Planck units when applied to an object like a black hole, which consists of many
individual fundamental quanta. In that case, strings become elongated and “floppy"
reaching the size of the black hole horizon, which gives the so-called fuzzball structure to
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the black hole. In the light of our analysis here, the metric given in terms of the ADM mass
of the system (which is the total mass measured by a distant observer located far away
from the black hole) is given by the function in Equation (23). This indicates that the string
corrections might be hard to detect even if λ is large (and thus tension is low), since the
corrections decrease as r−4.

4. The S2 Star Orbit

Let us first briefly review the basic calculations needed to obtain the orbit of S2 star
assuming that the geometry is described by the 4D QCBH with the metric function (11). We
start with the general D-dimensional spherically symmetric spacetime. Due to the spherical
symmetry, one can assume that the orbit lies in the equatorial hyperplane:

θi(i = 1, . . . , D− 3) = π/2, and θD−2 = φ, (43)

Next, we use the coordinate transformation from spherical Schwarzschild coordinates
to Cartesian coordinates given by

x1 = r sin θ1 . . . sin θD−3 sin θD−2 sin θD−1

x2 = r sin θ1 . . . sin θD−3 sin θD−2 cos θD−1

x3 = r sin θ1 . . . sin θD−3 cos θD−2

...

xD−1 = r sin θ1 cos θ2

xD = r cos θ1. (44)

Using the last two equations, we obtain the polar coordinates

x3 = r cos φ, x1 = r sin φ, x2 = x4 = . . . = 0. (45)

If we identify x3 = x, x1 = y, and z = 0, we can obtain the equations of motion.
We can work with this general D-dimensional case and treat the number of spacetime
dimension as a parameter; however, we know that, at such large distances, the spacetime
will be effectively 4D. For this reason, we shall simplify the problem and use our 4D SCBH.
From the Lagrangian, it follows that

2L =

(
1− RH

r

)1− λ

2RHr
1− R3

H
r3

1− RH
r

ṫ2

− ṙ2

(
1− RH

r

)1− λ
2RHr

1−
R3

H
r3

1− RH
r

 − r2φ̇2 (46)

From the spacetime symmetries, we have two constants of motion

ṫ =
E(

1− RH
r

)1− λ
2RHr

1−
R3

H
r3

1− RH
r

 , φ̇ =
L
r2 (47)

and

r̈ =
1

2 grr(r)

[
dg00(r)

dr
ṫ2 +

dg11(r)
dr

ṙ2 +
dgφφ(r)

dr
φ̇2
]

. (48)
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In terms of Cartesian coordinates, we denote the position of the real orbit as (x, y, z),
and velocity components (vx, vy, vz). In our present case, using the transformation from
spherical Schwarzschild coordinates to Cartesian coordinates:

x = r cos φ, y = r sin φ, z = 0, (49)

we also find the corresponding three-velocities

vx = vr cos φ− rvφ sin φ, vy = vr sin φ + rvφ cos φ. (50)

We will use this to model the orbit of the S2 star in our geometry and compare it
with the observational data to constrain two parameters—the mass M and parameter λ.
To do so, we also need to find the apparent orbit on the plane of the sky by relating the
coordinates (X ,Y ,Z) to the real orbit given by (x, y, z) as follows [26]:

X = xB + yG,

Y = xA + yF,

Z = xC + yF, (51)

The corresponding components of the apparent coordinate velocity are as follows [26]:

VX = vxB + vyG,

VY = vx A + vyF,

VZ = vxC + vyF, (52)

where [26]

B = sin Ω cos ω + cos Ω sin ω cos i (53)

G = − sin Ω sin ω + cos Ω cos ω cos i (54)

A = cos Ω cos ω− sin Ω sin ω cos i (55)

F = − cos Ω sin ω− sin Ω cos ω cos i (56)

C = sin ω sin i (57)

F = cos ω sin i, (58)

where ω, i, and Ω are the argument of pericenter, the inclination between the real orbit and
the observation plane, and the ascending node angle, respectively. Finding an analytical
expression for r(φ) is not possible; therefore, we use numerical integration of the equations
of motion. To fit our 4D SCBH model, we have to solve the equations of motion numerically
using the data presented in [26–29], and assuming the central mass object [30]. We use the
Bayesian theorem according to which the observations O, and the vector containing the
parameters of a model, say P, give the posterior probability density π(P|O)

ln π(P|O) ∝ lnL(O|P) + ln π(P), (59)

where π(P) is the prior probability density of the parameters. The likelihood function is
given by

lnL(O|P) = −1
2

N

∑
i=1

[
(Xobs,i − Xmod,i)

2

σ2
obs,i

]

− 1
2

N

∑
i=1

[
(Yobs,i −Ymod,i)

2

σ2
obs,i

]
, (60)
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where the two observed and theoretical quantities are noted as (Xobs, Yobs), and (Xmod, Ymod),
respectively. To find the best-fitting values, we use the Monte Carlo–Markov Chains analy-
sis, with the uniform priors λ/M2 ∼ [0, 2] along with RH/M ∼ [0, 3]. In Figure 6 we give
the orbit fit for our model. Our analyses show that the best-fitting value for the black hole
parameter RH with 68% confidence level is RH ∼ 1.74+0.12

−0.08[M] as shown in Figure 7. We
also find the best fit value for the parameter λ ∼ 1.10+0.21

−0.36[M
2] within a 68% confidence

level. In SI units, after reinstating G and c, for the string coupling parameter, we obtain the
following value:

λ ' 1.10 ×
(

GM
c2

)2
' 4× 1019 m2. (61)

0.050.00
X (as)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Y 
(a

s) model
Sgr A*
S2

Figure 6. The figure shows the orbit fit of the S2 star using the 4D SCBH geometry using the best
fit parameters RH ∼ 1.74[M] and λ ∼ 1.10[M2]. The Sgr A? black hole is assumed to have a mass
M = 4.07× 106 M�.

1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95
RH

0.6

0.8

1.0

1.2

1.4

1.6

[M
2 ]

Figure 7. The figure shows the parametric plot of λ versus RH with 68% and 96% confidence contours.
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As a comparison, using the precession of the S2 star in orbit around Sgr A?, the 4D
Gauss–Bonnet coupling constant αGB was constrained by an upper bound of αGB ' 1025 m2

(see [16]). For the mass of the black hole, we find

M =
RH
2

+
λ

4RH
' 1.028+0.078

−0.086 [4.07× 106M�], (62)

which is (within the errors) indistinguishable from the result in the Schwarzschild spacetime
reported recently in Refs. [26–28,30]. We can also estimate the parameter ξ = λR2

H/2 '
1.665[M4]. This indicates that the current precision is insufficient to distinguish the 4D
SCBH spacetime from the Schwarzschild spacetime.

5. Einstein Rings in the Weak Field Regime

To study gravitational lensing, due to the spherical symmetry, we again consider the
equatorial hyperplane. The photon trajectory (optical metric) is simply found by letting
ds2 = 0, which gives

dt2 =
dr2(

1− RD−3
H

rD−3

)2
1− λ′

R2
H

(D−3)(D−4)
2

RD−3
H

rD−3

1−
RD−1

H
rD−1

1−
RD−3

H
rD−3

2

+
r2dφ2(

1− RD−3
H

rD−3

)1− λ′

R2
H

(D−3)(D−4)
2

RD−3
H

rD−3

1−
RD−1

H
rD−1

1−
RD−3

H
rD−3

 . (63)

We will closely follow the method in [31] to compute the deflection angle of light.
This geometric method is based on the application of the Gauss–Bonnet theorem (GBT)
on the optical geometry. We consider a non-singular domain AR with boundaries ∂AR =
γg(op) ∪ CR, of an oriented two-dimensional surface S with the optical metric g(op). In terms
of the Gaussian optical curvature (K) and the geodesic curvature (κ), we can write the GBT
as follows [31]: ∫∫

AR

K dS +
∮

∂AR

κ dt + ∑
k

δk = 2πχ(AR). (64)

in which dS is the optical surface element, δk gives the exterior angle at the kth vertex. We
can relate the exterior angels with the interior angles (the jump angle at the source S and
observer O, respectively) using θO = π − δO and θS = π − δS , which for a very large
radial distance, i.e., l ≡ R→ ∞, satisfies the condition θO + θS → π (see [31]). According
to this method, we need to choose the domain of integration to be outside of the light ray
in the (r, φ) optical plane. Moreover, this domain can be thought to have the topology of
a disc having the Euler characteristic number χ(AR) = 1. If we now introduce a smooth
curve defined as γ := {t} → AR, we can find the geodesic curvature in terms of the
following definition:

κ = g(op) (∇γ̇γ̇, γ̈), (65)

along with the unit speed condition g(op)(γ̇, γ̇) = 1, and γ̈ being the unit acceleration
vector. Note that, by definition, the geodesic curvature for the light ray (geodesics) γg(op)

vanishes, i.e., κ(γg(op)) = 0. One should only compute the contribution to the curve CR.
Thus, from the GBT, we find

lim
R→∞

∫ π+α̂

0

[
κ

dt
dφ

]
CR

dφ = π − lim
R→∞

∫∫
AR

K dS. (66)
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The geodesic curvature for the curve CR located at a coordinate distance R from the
coordinate system chosen at the black hole center can be calculated via the relation

κ(CR) = |∇ĊR
ĊR|. (67)

With the help of the unit speed condition, one can show that the asymptotically
Euclidean condition is satisfied:

lim
R→∞

[
κ

dt
dφ

]
CR

= 1. (68)

From the GBT, it is not difficult to solve for the deflection angle, which gives

α̂ = −
π∫

0

∞∫
r= b

sin φ

KdS. (69)

Since we are interested in leading order terms, in the last equation for the integration
domain, we have used an equation for the light ray as r(φ) = b/ sin φ, where b is the impact
parameter. The Gaussian optical curvature takes the form:

K ' − (D− 3)(D− 2)
2

RD−3
H

rD−1

−
(D− 3)2(D− 4)(D− 2)RD−5

H λ′

4rD−1 (70)

Keeping only leading order terms, the deflection angle is

α̂ = −
π∫

0

∞∫
b

sin φ

[
− (D− 3)(D− 2)

2
RD−3

H
rD−1

]
rdrdφ

−
π∫

0

∞∫
b

sin φ

[
−
(D− 3)2(D− 4)(D− 2)RD−5

H λ′

4rD−1

]
rdrdφ. (71)

Solving this integral, in the limit b >> RH , and using the relation

∫ π

0
sinn φ dφ =

√
π Γ
(

1+n
n

)
Γ
( n+2

2
) , (72)

to the leading order, we find

α̂ ' (D− 3)(D− 2)
2

√
π RD−3

H Γ
(

D−2
D−3

)
b3D

Γ
(

D−1
2

)

+
(D− 3)2(D− 4)(D− 2)

4

√
π RD−5

H Γ
(

D−2
D−3

)
b3Dλ′

Γ
(

D−1
2

) . (73)

The leading order term agrees with a similar work in Ref. [32]. Finally, if we perform
the rescaling λ′ → λ/(D− 4) and D = 4, we obtain

α̂ ' 2RH + λ/RH
b

. (74)
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From the last result, it appears that the deflection angle is affected by the string
correction; however, a closer inspection allows for rewriting in terms of the black hole mass

α̂ ' 4(RH/2 + λ/4RH)

b
=

4M
b

, (75)

which is identical to the Schwarzschild case. In fact, one can argue that the string correction
term is proportional to δα̂string ∼ M2λ/b4. Since b >> M, practically, this term is very very
small. This means that we cannot distinguish the 4D SCBH from the Schwarzschild black
hole using the leading term in the weak deflection angle. The small angles lens equation
(in the weak deflection approximation) reads

β = θ − DLS
DOS

α̂. (76)

In the special situation β = 0, when the source lies on (or passes through) the optical
axis, an Einstein ring is formed. The weak deflection approximation, α̂� 1 represents the
angular radius of the Einstein ring given by

θE '
DLS
DOS

α̂(b). (77)

Here, we took into account that DOS = DOL + DLS, when the angular source position
is β = 0. Keeping only the first order of the deflection angle and using the relation
b = DOL sin θ ' DOLθ, the bending angle in the small angle approximation is

θE '

√
4M
DOS

DLS
DOL

. (78)

It follows that, using only the leading order terms in the weak gravity regime, one
cannot distinguish the 4D SCBH geometry from the Schwarzschild by the means of Einstein
rings either.

6. Shadow Images of a 4D SCBH

From the recent observations using the radio images, we know that there are super-
massive black holes in galactic centers. In particular, the black-hole shadows have become
a very useful tool to test not only the general relativity in the strong gravity regime but also
to probe fundamental physics (see, for example, [33–39]). Obtaining a realistic image of
the black hole is not an easy task. The main reason for this is the complicated surrounding
matter near the black hole. In particular, the size, the shape, as well as the composition
of the accretion disk, are all important. In addition, the geometry of magnetic field also
influences the shadow [1,2]. In this work, we will consider a rather simple scenario of
having an infalling gas model to obtain the black hole images [40–44]. For the four-velocity,
we have [44]

ut
e =

1
f (r)

, ur
e = −

√
(1− f (r)), uθ

e = uφ
e = 0. (79)

On the other hand, we have a Hamilton–Jacobi equation

∂S
∂σ

+ H = 0, (80)

where S is the Jacobi action and σ is an affine parameter along the geodesics. For the
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motion of photons in our 4D SCBH, we obtain

1
2

[
− p2

t
f (r)

+ f (r)p2
r +

p2
φ

r2

]
= 0, (81)

where pt = −E and pφ = L, are two constants of motions, namely the energy and the
angular momentum of the photon, respectively. The unstable orbits are characterized by
the conditions [45]

Veff(r)
∣∣
r=rph

= 0,
∂Veff(r)

∂r

∣∣∣
r=rph

= 0. (82)

From the above equations, one can show [45]

dr
dφ

= ±r

√
f (r)

[
r2 f (R)
R2 f (r)

− 1
]

. (83)

Let us consider a light ray sent from a static observer located at a position r0 and
transmitted at an angle ϑ with respect to the radial direction. We therefore have

cot ϑ =

√
grr√gφφ

dr
dφ

∣∣∣
r=r0

. (84)

Finally, the relation for shadow radius of the black hole as observed by a static observer
at the position r0 can be written as

Rsh = lim
r0→∞

R

√
f (r0)

f (R)

∣∣∣∣∣
R=rph

=
rph√
f (rph)

, (85)

where rph represents the unstable photon orbit and r0 is the position of the observer located
at a far distance from the black hole. In Figure 8, we show how the shadow radius changes
with the parameter λ. We observe that the shadow radius decreases initially in the interval
λ ∈ (0, 1.5), it reaches the minimal value (or a reflecting point) at λ/M2 = 1.5, and finally
increases in the interval λ ∈ (1.5, 2). The presence of the reflecting point at λc is explained
by the fact that the shadow radius is proportional to the outer horizon. The minimal
value of the shadow radius is obtained for λ/M2 = 1.5, having Rsh/M2 ' 5.0021 with a
photon sphere

rph =
1
2
+

(19 + 3
√

33)1/3

2
+

2
(19 + 3

√
33)1/3

' 2.7589. (86)
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Figure 8. Black hole shadow radius as a function of the parameter λ. We set the black hole mass to
M = 1.
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We use a numerical technique known as Backward Raytracing to find the shadow cast
by the radiating flow. The total observed flux is given by

Fobs(X, Y) =
∫

γ
Iobs(νobs, X, Y)dνobs, (87)

which can also be written as

Fobs(X, Y) =
∫

γ

∫
g4 j(νe)dlpropdνe. (88)

We shall assume that our emissivity is monochromatic with the radial profile given by

j(νe) ∝
δ(νe − ν?)

r2 , (89)

where δ is the Dirac delta function. If we use the condition pµ pµ = 0, we can first obtain
the relation between the radial and time component of the four momentum, and use the
redshift function g given by

g =
kαuα

o

kβuβ
e

. (90)

We can then obtain the final expression for the observed flux as follows (for the details,
see [44])

Fobs(X, Y) ∝ −
∫

γ

g3kt

r2kr dr. (91)

In Figure 9, we have shown our results for the shadow images and the intensities of
the 4D SCBH. In particular, we have shown four specific cases; the case with the λ/M2 =
{0.1, 0.5, 1.0, 1.5}, where the minimal shadow radius corresponds to the case λ/M2 = 1.5.
From the resulting images and their intensities, one can see that they look apparently the
same in all cases. We can therefore conclude that the 4D SCBH is very difficult to distinguish
from the Schwarzschild black hole. Notice also that, due to the fact that the deflection
angle in leading order terms is the same in units of the black hole mass, this explains why
the intensities of the electromagnetic radiation observed far away from the black hole will
be almost the same as the Schwarzschild black hole. Such a small contribution is to be
expected having in mind our metric (23) according to which the string corrections behave
as the inverse of r4.

Figure 9. Cont.
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Figure 9. Black hole shadow images and the intensities of the 4D SCBH using an infalling gas and
radiation model using different values of λ. We set the black hole mass to M = 1.

7. Conclusions

In this paper, we performed a simple rescaling of the coupling parameter λ in the
D-dimensional Callan–Myers–Perry black hole to obtain a 4D black hole with string cor-
rections. While we lose the direct connection to the original perturbative action, such a
rescaling removes divergences at the level of equations of motion, which may give us a
glimpse of what string corrections may look like in 4D.

Among the other things, we found that the black hole entropy acquires logarithmic
corrections to the usual Bekenstein–Hawking entropy. We also found a critical value of
the coupling parameter for which the Hawking temperature goes to zero. In contrast with
the standard scenario where entropy goes to zero as the black hole evaporates completely,
our black hole solution reaches a minimal entropy at some critical λ. For this value of
λ, black holes leave stable remnants. While the black hole geometry still contains the
central singularity even with stringy corrections, geodesics of the massive particles and
light cannot reach it. We have also found a close connection between the string corrections
and the GUP effects.

We have investigated the possibility of testing such a black hole geometry. We first
constrained its parameters using the S2 star orbit at the galactic center. We calculated
the light deflection angle and the Einstein rings to the leading order terms, as well as
the corresponding shadow images using an infalling gas model. While the corrections
depend on the string coupling parameter, in general, the magnitude of the change is too
small to make a distinction from a Schwarzschild black hole. The maximal change occurs
at λ/M2 = 1.5, with Rsh = 5.0021[M]. Compared to the Schwarzschild shadow radius
(3
√

3M), this implies a change ∆Rsh ' 0.194[M]. In terms of the angular radius, we can use
θs = Rsh M/D, for Sgr A∗ black hole with mass M ' 4.1× 106M� and D = 8.3 kpc, which
implies the decrease on the angular size to be ∆θs ' 1.40 µas. Although this is reasonable
change, such an effect is out of reach using the current astronomical observations, but it
remains an open question if such an effect can be observed in the near future.
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