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Distributed Systems
Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz

Abstract— Many network solutions and overlay networks uti-
lize probabilistic techniques to reduce information processing
and networking costs. This survey article presents a number of
frequently used and useful probabilistic techniques. Bloom filters
and their variants are of prime importance, and they are heavily
used in various distributed systems. This has been reflected in
recent research and many new algorithms have been proposed for
distributed systems that are either directly or indirectly based on
Bloom filters. In this survey, we give an overview of the basic and
advanced techniques, reviewing over 20 variants and discussing
their application in distributed systems, in particular for caching,
peer-to-peer systems, routing and forwarding, and measurement
data summarization.

Index Terms— Bloom filters, probabilistic structures, dis-
tributed systems

I. INTRODUCTION

Many network solutions and overlay networks utilize prob-

abilistic techniques to reduce information processing and net-

working costs. This survey presents a number of frequently

used and useful probabilistic techniques. Bloom filters (BF)

and their variants are of prime importance, and they are heavily

used in various distributed systems. This has been reflected in

recent research and many new algorithms have been proposed

for distributed systems that are either directly or indirectly

based on Bloom filters.

Fast matching of arbitrary identifiers to values is a basic

requirement for a large number of applications. Data objects

are typically referenced using locally or globally unique identi-

fiers. Recently, many distributed systems have been developed

using probabilistic globally unique random bit strings as node

identifiers. For example, a node tracks a large number of peers

that advertise files or parts of files. Fast mapping from host

identifiers to object identifiers and vice versa are needed. The

number of these identifiers in memory may be great, which

motivates the development of fast and compact matching

algorithms.

Given that there are millions or even billions of data

elements, developing efficient solutions for storing, updating,

and querying them becomes increasingly important. The key

idea behind the data structures discussed in this survey is that

by allowing the representation of the set of elements to lose

some information, in other words to become lossy, the storage

requirements can be significantly reduced.

The data structures presented in this survey for probabilistic

representation of sets are based on the seminal work by Burton
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Bloom in 1970. Bloom first described a compact probabilistic

data structure that was used to represent words in a dictionary.

There was little interest in using Bloom filters for networking

until 1995, after which this area has gained widespread interest

both in academia and in the industry. This survey provides

an up-to-date view to this emerging area of research and

development that was first surveyed in the work of Broder

and Mitzenmacher [1].

Section II introduces the functionality and parameters of the

Bloom filter as a hash-based, probabilistic data structure. The

theoretical analysis is complemented with practical examples

and common practices in the underpinning hashing techniques.

Section III surveys as many as twenty-three Bloom filter

variants discussing their key features and their differential be-

haviour. Section IV covers a number of recent applications in

distributed systems, such as caches, database servers, routers,

security, and packet forwarding relying on packet header size

Bloom filters. Finally, Section V concludes the survey with a

brief summary on the rationale behind the widespread use of

the polymorphic Bloom filter data structure.

II. BLOOM FILTERS

The Bloom filter is a space-efficient probabilistic data struc-

ture that supports set membership queries. The data structure

was conceived by Burton H. Bloom in 1970 [2]. The structure

offers a compact probabilistic way to represent a set that can

result in false positives (claiming an element to be part of

the set when it was not inserted), but never in false negatives

(reporting an inserted element to be absent from the set). This

makes Bloom filters useful for many different kinds of tasks

that involve lists and sets. The basic operations involve adding

elements to the set and querying for element membership in

the probabilistic set representation.

The basic Bloom filter does not support the removal of ele-

ments; however, a number of extensions have been developed

that also support removals. The accuracy of a Bloom filter

depends on the size of the filter, the number of hash functions

used in the filter, and the number of elements added to the set.

The more elements are added to a Bloom filter, the higher the

probability that the query operation reports false positives.

Broder and Mitzenmacher have coined the Bloom filter

principle [1]:

Whenever a list or set is used, and space is at a

premium, consider using a Bloom filter if the effect

of false positives can be mitigated.

A Bloom filter is an array of m bits for representing a set

S = {x1, x2, . . . , xn} of n elements. Initially all the bits in the
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filter are set to zero. The key idea is to use k hash functions,

hi(x), 1 ≤ i ≤ k to map items x ∈ S to random numbers

uniform in the range 1, . . .m. The hash functions are assumed

to be uniform. The MD5 hash algorithm is a popular choice

for the hash functions.

An element x ∈ S is inserted into the filter by setting the

bits hi(x) to one for 1 ≤ i ≤ k. Conversely, y is assumed a

member of S if the bits hi(y) are set, and guaranteed not to

be a member if any bit hi(y) is not set. Algorithm 1 presents

the pseudocode for the insertion operation. Algorithm 2 gives

the pseudocode for the membership test of a given element x
in the filter. The weak point of Bloom filters is the possibility

for a false positive. False positives are elements that are not

part of S but are reported being in the set by the filter.

Data: x is the object key to insert into the Bloom filter.

Function: insert(x)

for j : 1 . . . k do

/* Loop all hash functions k */
i← hj(x);
if Bi == 0 then

/* Bloom filter had zero bit at
position i */
Bi ← 1;

end

end

Algorithm 1: Pseudocode for Bloom filter insertion

Data: x is the object key for which membership is tested.

Function: ismember(x) returns true or false to the

membership test

m← 1;

j ← 1;

while m == 1 and j ≤ k do
i← hj(x);
if Bi == 0 then

m← 0;

end

j ← j + 1;
end

return m;

Algorithm 2: Pseudocode for Bloom member test

Figure 1 presents an overview of a Bloom filter. The Bloom

filter consists of a bitstring of length 32. Three elements have

been inserted, namely x, y, and z. Each of the elements have

been hashed using k = 3 hash functions to bit positions in

the bitstring. The corresponding bits have been set to 1. Now,

when an element not in the set, w, is looked up, it will be

hashed using the same three hash functions into bit positions.

In this case, one of the positions is zero and hence the Bloom

filter reports correctly that the element is not in the set. It may

happen that all the bit positions of an element report that the

corresponding bits have been set. When this occurs, the Bloom

filter will erroneously report that the element is a member of

the set. These erroneous reports are called false positives. We

observe that for the inserted elements, the hashed positions

correctly report that the bit is set in the bitstring.

Figure 2 illustrates a practical example of a Bloom filter

through adding and querying elements. In this example, the

Fig. 1. Overview of a Bloom filter

Fig. 2. Addition and query example using a Bloom filter

Bloom filter is a bitstring of length 16. The bit positions are

numbered 0 to 15, from right to left. Three hash functions

are used: h1, h2, and h3, being MD5, SHA1 and CRC32,

respectively. The elements added are text strings containing

only a single letter. The Bloom filter starts out empty, with

all bits unset, or zero. When adding an element, the values

of h1 through h3 (modulo 16) are calculated for the element,

and corresponding bit positions are set to one. After adding

a and b, the Bloom filter has positions 15, 9, 8, 3 and 1 set.

In this case, a and b have one common bit position (8). We

further add elements y and l. After this, positions 15, 14, 13,

10, 9, 8, 7, 5, 3 and 1 are set. When we query for q and z, the

same hash functions are used. Bit positions that correspond

to q and z are examined. If the three bits for an element

are set, that element is assumed to be present. In the case

of q, position 0 is not set, and therefore q is guaranteed not to

be present in the Bloom filter. However, z is assumed to be

present, since the corresponding bits have been set. We know

that z is a false positive: it is reported present though it is not

actually contained in the set of added elements. The bits that

correspond to z (positions 15, 10 and 7) were set through the

addition of elements b, y and l.
For optimal performance, each of the k hash functions

should be a member of the class of universal hash functions,

which means that the hash functions map each item in the

universe to a random number uniform over the range. The

development of uniform hashing techniques has been an

active area of research. An almost ideal solution for uniform

hashing is presented in [3]. In practice, hash functions yielding

sufficiently uniformly distributed outputs, such as MD5 or

CRC32, are useful for most probabilistic filter purposes. For

candidate implementations, see the empirical evaluation of 25

hash functions by Henke et al. [4]. Later in Section II-C we

discuss relevant hashing techniques further.

A Bloom filter constructed based on S requires space O(n)
and can answer membership queries in O(1) time. Given x ∈
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TABLE I

KEY BLOOM FILTER PARAMETERS

Parameters Increase

Number of hash functions (k) More computation, lower false positive rate as k → kopt

Size of filter (m) More space is needed, lower false positive rate

Number of elements in the set (n) Higher false positive rate

S, the Bloom filter will always report that x belongs to S, but

given y 6∈ S the Bloom filter may report that y ∈ S.

Table I examines the behaviour of three key parameters

when their value is either decreased or increased. Increasing

or decreasing the number of hash functions towards kopt can

lower false positive ratio while increasing computation in

insertions and lookups. The cost is directly proportional to the

number of hash functions. The size of the filter can be used to

tune the space requirements and the false positive rate (fpr).

A larger filter will result in fewer false positives. Finally, the

size of the set that is inserted into the filter determines the

false positive rate. We note that although no false negatives

(fn) occur with regular BFs, some variants will be presented

later in the article that may result in false negatives.

A. False Positive Probability

We now derive the false positive probability rate of a Bloom

filter and the optimal number of hash functions for a given

false positive probability rate. We start with the assumption

that a hash function selects each array position with equal

probability. Let m denote the number of bits in the Bloom

filter. When inserting an element into the filter, the probability

that a certain bit is not set to one by a hash function is

1−
1

m
. (1)

Now, there are k hash functions, and the probability of any

of them not having set a specific bit to one is given by

(

1−
1

m

)k

. (2)

After inserting n elements to the filter, the probability that

a given bit is still zero is

(

1−
1

m

)kn

. (3)

And consequently the probability that the bit is one is

1−

(

1−
1

m

)kn

. (4)

For an element membership test, if all of the k array

positions in the filter computed by the hash functions are set

to one, the Bloom filter claims that the element belongs to the

set. The probability of this happening when the element is not

part of the set is given by

(

1−

(

1−
1

m

)kn
)k

≈
(

1− e−kn/m
)k

. (5)
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Fig. 3. False positive probability rate for Bloom filters.

We note that e−kn/m is a very close approximation of (1−
1
m )kn [1]. The false positive probability decreases as the size

of the Bloom filter, m, increases. The probability increases

with n as more elements are added. Now, we want to minimize

the probability of false positives, by minimizing (1−e−kn/m)k

with respect to k. This is accomplished by taking the derivative

and equaling to zero, which gives the optimal value of k

kopt =
m

n
ln 2 ≈

9m

13n
. (6)

This results in the false positive probability of

(

1

2

)k

≈ 0.6185m/n. (7)

Using the optimal number of hashes kopt, the false positive

probability can be rewritten and bounded

m

n
≥

1

ln 2
. (8)

This means that in order to maintain a fixed false positive

probability, the length of a Bloom filter must grow linearly

with the number of elements inserted in the filter. The number

of bits m for the desired number of elements n and false

positive rate p, is given by

m = −
n ln p

(ln 2)2
. (9)

Figure 3 presents the false positive probability rate p as a

function of the number of elements n in the filter and the filter

size m. An optimal number of hash functions k = (m/n) ln 2
has been assumed.

There is a factor of log2 e ≈ 1.44 between the amount of
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space used by a Bloom filter and the optimal amount of space

that can be used. There are other data structures that use space

closer to the lower bound, but they are more complicated (cf.

[5], [6], [7]).

Recently, Bose et al. [8] have shown that the false positive

analysis originally given by Bloom and repeated in many sub-

sequent articles is optimistic and only a good approximation

for large Bloom filters. The revisited analysis proves that the

commonly used estimate (Eq. 5) is actually a lower bound and

the real false positive rate is larger than expected by theory,

especially for small values of m.

B. Operations

Standard Bloom filters do not support the removal of

elements. Removal of an element can be implemented by

using a second Bloom filter that contains elements that have

been removed. The problem of this approach is that the false

positives of the second filter result in false negatives in the

composite filter, which is undesirable. Therefore a number of

dedicated structures have been proposed that support deletions.

These are examined later in this survey.

A number of operations involving Bloom filters can be

implemented easily, for example the union and halving of a

Bloom filter. The bit-vector nature of the Bloom filter allows

the union of two or more Bloom filters simply by performing

bitwise OR on the bit-vectors. Given two sets S1 and S2, a

Bloom filter B that represents the union S = S1 ∪ S2 can

be created by taking the OR of the original Bloom filters

B = B1 ∨B2 assuming that m and the hash functions are the

same. The merged filter B will report any element belonging

to S1 or S2 as belonging to set S. The following theorem

gives a lower bound for the false positive rate of the union of

Bloom filters [9]:

Theorem 1: The false positive probability of BF (A∪B) is

not less than that of BF (A) and BF (B). At the same time,

the false positive probability of BF (A) ∪BF (B) is also not

less than that of BF (A) and BF (B).
If the BF size m is divisible by 2, halving can be easily

done by bitwise ORing the first and second halves together.

Now, the range of the hash functions needs to be accordingly

constrained, for instance, by applying the mod(m/2) to the

hash outputs.

Bloom filters can be used to approximate set intersection;

however, this is more complicated than the union operation.

One straightforward approach is to assume the same m and

hash functions and to take the logical AND operation between

the two bit-vectors. The following theorem gives the proba-

bility for this to hold [9]:

Theorem 2: If BF (A ∩ B), BF (A), and BF (B) use the

same m and hash functions, then BF (A ∩ B) = BF (A) ∩
BF (B) with probability (1− 1/m)k

2|A−A∩B||B−A∩B|.

The inner product of the bit-vectors is an indicator of

the size of the intersection [1]. The idea of a bloomjoin

was presented by Mackert and Lohman in 1986 [10]. In a

bloomjoin, two hosts, A and B, compute the intersection of

two sets S1 and S2, when A has the first set and B the second.

It is not feasible to send all the elements from A to B, and vice

versa. In a bloomjoin, S1 is represented using a Bloom filter

and sent from A to B. B can then compute the intersection

and send back this set. Host A can then check false positives

with B in a final round.

C. Hashing techniques

Hash functions are the key building block of probabilistic

filters. There is a large literature on hash functions spanning

from randomness analysis to security evaluation over many

networking and computing applications. We focus on the best

practices and recent developments in hashing techniques which

are relevant to the performance and practicality of Bloom filter

constructs. For further details, deeper theoretical foundations

and system-specific applications we refer to related work, such

as [4], [11], [12], [13].

One noteworthy property of Bloom filters is that the false

positive performance depends only on the bit-per-element ratio

(m/n) and not on the form or size of the hashed elements.

As long as the size of the elements can be bounded, hashing

time can be assumed to be a constant factor. Considering the

trend in computational power versus memory access time, the

practical bottleneck is the amount of (slow) memory accesses

rather than the hash computation time. Nevertheless, whenever

a filter application needs to run at line speed, hardware-

amenable per-packet operations are critical [13].

In the following subsections, we briefly present hashing

techniques that are the basis for good Bloom filter implemen-

tations. We start with perfect hashing, which is an alternative

to Bloom filters when the set is known beforehand and it is

static. Double hashing allows reducing the number of true hash

computations. Partitioned hashing and multiple hashing deal

with how bits are allocated in a Bloom filter. Finally, the use

of simple hash functions is considered.

1) Perfect Hashing Scheme: A simple technique called

perfect hashing (or explicit hashing) can be used to store a

static set S of values in an optimal manner using a perfect hash

function. A perfect hash function is a computable bijection

from S to an array of |S| = n hash buckets. The n-size

array can be used to store the information associated with

each element x ∈ S [5].

Bloom filter like functionality can be obtained by, given

a set of elements S, first finding a perfect hash function P
and then storing at each location an f = 1/ǫ bit fingerprint,

computed using some (pseudo-)random hash function H .

Figure 4 illustrates this perfect hashing scheme.

Lookup of x simply consists of computing P (x) and check-

ing whether the stored hash function value matches H(x).
When x ∈ S, the correct value is always returned, and when

x /∈ S a false positive (claiming the element being in S) occurs

with probability at most ǫ. This follows from the definition of

2-universal hashing by Carter and Wengman [14], that any

element y not in S has probability at most ǫ of having the

same hash function value h(y) as the element in S that maps

to the same entry of the array.

While space efficient, this approach is disconsidered for

dynamic environments, because the perfect hash function

needs to be recomputed when the set S changes.
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Element 1 Element 2 Element 3 Element 4 Element 5

Fingerprint(4) Fingerprint(5) Fingerprint(2) Fingerprint(1) Fingerprint(3)

Fig. 4. Example of explicit hashing

Another technique for minimal perfect hashing was intro-

duced by Antichi et al. [15]. It relies on Bloom filters and

Blooming Trees to turn the imperfect hashing of a Bloom

filter into a perfect hashing. The technique gives space and

time savings. This technique also requires a static set S, but

can handle a huge number of elements.

2) Double Hashing: The improvement of the double hash-

ing technique over basic hashing is being able to generate

k hash values based on only two universal hash functions

as base generators (or “seed” hashes). As a practical conse-

quence, Bloom filters can be built with less hashing operations

without sacrificing performance. Kirsch and Mitzenmacher

have shown [16] that it requires only two independent hash

functions, h1(x) and h2(x), to generate additional “pseudo”

hashes defined as:

hi(x) = h1(x) + f(i) ∗ h2(x) (10)

where i is the hash value index, f(i) can be any arbitrary

function of i (e.g., i2), and x is the element being hashed. For

Bloom filter operations, the double hashing scheme reduces the

number of true hash computations from k down to two without

any increase in the asymptotic false positive probability [16].

3) Partitioned Hashing: In this hashing technique, the k
hash functions are allocated disjoint ranges of m/k consec-

utive bits instead of the full m-bit array space. Following

the same false positive probability analysis of Sec. II-A, the

probability of a specific bit being 0 in a partitioned Bloom

filter can be approximated to:

(1− k/m)n ≈ e−kn/m (11)

While the asymptotic performance remains the same, in

practice, partitioned Bloom filters exhibit a poorer false posi-

tive performance as they tend to have larger fill factors (more

1s) due to the m/k bit range restriction. This can be explained

by the observation that:

(1− 1/m)k∗n > (1− k/m)n (12)

4) Multiple Hashing: Multiple hashing is a popular tech-

nique that exploits the notion of having multiple hash choices

and having the power to choose the most convenient candidate.

When applied for hash table constructions, multiple hashing

provides a probabilistic method to limit the effects of collisions

by allocating elements more-or-less evenly distributed. The

original idea was proposed by Azar et al. in his seminal work

on balanced allocations [17]. Formulating hashing as a balls

into bins problem, the authors show that if n balls are placed

sequentially into m for m = O(n) with each ball being

placed in one of a constant d = 2 randomly chosen bins,

then, after all balls are inserted, the maximal load in a bin is,

with high probability, (ln ln n)/ln d+ O(1). Vöcking et al.

[18] elaborate on this observation and propose the always-go-

left algorithm (or d-left hashing scheme) to break ties when

inserting (chained) elements to the least loaded one among the

d partitioned candidates.

As a result this hashing technique provides an almost

optimal (up to an additive constant) load-balancing scheme.

In addition to the balancing improvement, partitioning the

hash buckets (i.e., bins) into groups makes d-left hashing

more hardware friendly as it allows the parallelized look-

up of the d hash locations. Thus, hash partitioning and tie-

breaking have elevated d-left hashing as an optimal technique

for building high performance (negligible overflow probabil-

ities) data structures such as the multiple level hash tables

(MHT) [19] or counting Bloom filters [20]. A breakthrough

Bloom filter design was recently proposed using an open-

addressed multiple choice hash table based on d-left hashing,

element fingerprints (a smaller representation like the last f
bits of the element hash) and dynamic bit reassignment [21].

After all optimizations, the authors show that the performance

is comparable to plain Bloom filter constructs, outperforms

traditional counting Bloom filter constructs (see d-left CBF

in Sec. III-B), and easily extensible to support practical

networking applications (e.g., flow tracking in Sec. IV-D).

The power of (two) choices has been exploited by Lumetta

and Mitzenmacher to improve the false positive performance

of Bloom filters [22]. The key idea consists of considering not

one but two groups of k hash functions. On element insertion,

the selection criteria is based on the group of k hash functions

that sets fewer bits to 1. The caveat is that when checking for

elements, both groups of k hash functions need to be checked

since there is no information on which group was initially used

and false positives can potentially be claimed for either group.

Although it may appear counter-intuitive, under some settings

(high m/n ratios), setting fewer ones in the filter actually pays

off the double checking operations.

Fundamentally similar in exploiting the power of choices

in producing less dense (improved) Bloom filters, the method

proposed by Hao et al. [23] is based on a partitioned hashing

technique which results in a choice of hash functions that set

fewer bits. Experimental results show that this improvement

can be as much as a ten-fold increase in performance over

standard constructs. However, the choice of hash functions

cannot be done on an element basis as in [22], and its

applicability is constrained to non-dynamic environments.

5) Simple hash functions: A common assumption is to

consider output hash values as truly random, that is, each

hashed element is independently mapped to a uniform location.

While this is a great aid to theoretical analyses, hash function

implementations are known to behave far worse than truly ran-

dom ones. On the other hand, empirical works using standard

universal hashing have been reporting negligible differences in

practical performance compared to predictions assuming ideal

hashing (see [24] for the case of Bloom filters).

Mitzenmacher and Vadhany [25] provide the seeds to for-

mally explaining this gap between the theory and practice
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of hashing. In a nutshell, the foundation of why simple

hash functions work can be explained naturally from the

combination of the randomness of choosing the hash function

and the randomness in the data. Hence, only a small amount

of randomness in the data is enough to mimic truly random

hash function in practice. These results apply for any hash-

based technique, and as a practical consequence, they suggest

that simple (non-cryptographic) “commodity” hash functions

(e.g., CRC32) are well suited for high performance Bloom

filter applications.

III. BLOOM FILTER VARIANTS

A number of Bloom filter variants have been proposed

that address some of the limitations of the original structure,

including counting, deletion, multisets, and space-efficiency.

We start our examination with the basic counting Bloom filter

construction, and then proceed to more elaborate structures

including Bloomier and Spectral filters.

A. Counting Bloom Filters

As mentioned with the treatment on standard Bloom filters,

they do not support element deletions. A Bloom filter can

easily be extended to support deletions by adding a counter

for each element of the data structure. Probabilistic counting

structures have been investigated in the context of database

systems [26]. A counting Bloom filter has m counters along

with the m bits. Fan et al. [27] first introduced the idea of a

counting Bloom filter in conjunction with Web caches.

The structure works in a similar manner as a regular Bloom

filter; however, it is able to keep track of insertions and

deletions. In a counting Bloom filter, each entry in the Bloom

filter is a small counter associated with a basic Bloom filter

bit. When an item is inserted, the corresponding counters

are incremented; when an item is deleted, the corresponding

counters are decremented. To avoid counter overflow, we need

choose sufficiently large counters.

The analysis from [27] reveals that 4 bits per counter should

suffice for most applications [1], [28]. To determine a good

counter size, we can consider a counting Bloom filter for a set

with n elements, k hash functions, and m counters. Let c(i) be

the count associated with the ith counter. The probability that

the ith counter is incremented j times is a binomial random

variable:

P (c(i) = j) =

(

nk

j

)

(
1

m
)j(1−

1

m
)nk−j (13)

The probability that any counter is at least j is bounded above

by mP (c(i) = j), which can be calculated using the above

formula.

The counter counts the number of times that the bit is set

to one. All the counts are initially zero. The probability that

any count is greater or equal to j:

Pr(max(c) ≥ j) ≤ m

(

nk

j

)

1

mj
≤ m

(

enk

jm

)j

. (14)
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Data: x is the item to be inserted.
Function: insert(x)
for j : 1 . . . k do

/* Loop all hash functions k */
i← hj(x);
/* Increment counter Ci */
Ci ← Ci + 1;
if Bi == 0 then

/* Bit is zero at position i */
Bi ← 1;

end
end

Algorithm 3: Pseudocode for counting Bloom filter inser-

tion

As already mentioned the optimum value for k (over reals)

is ln 2m/n so assuming that the number of hash functions is

less than ln 2m/n we can further bound

Pr(max(c) ≥ j) ≤ m

(

e ln 2

j

)j

. (15)

Hence taking j = 16 we obtain that

Pr(max(c) ≥ 16) ≤ 1.37× 10−15 ×m. (16)

In other words if we allow 4 bits per count, the probability of

overflow for practical values of m during the initial insertion

in the filter is extremely small. Figure 5 illustrates overflow

probability as a function of counter size.

Algorithm 3 presents the pseudocode for the insert operation

for element x with counting. The operation increments the

counter of each bit to which x is hashed. The counting

structure supports the removal of elements using the delete

operation presented in Algorithm 4. The delete decrements the

counter of each bit to which x is hashed. The corresponding

bit is reset to zero when the counter becomes zero.

A counting Bloom filter also has the ability to keep approx-

imate counts of items. For example, inserting element x three

times results in the k bit positions being set, and the associated

counters incremented by one for each insert. Therefore, the k
counters associated with element x are incremented at least

three times, some of them more if there are overlaps with other
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Data: x is the item to be removed.
Function: delete(x)
for j : 1 . . . k do

/* Loop all hash functions k */
i← hj(x);
/* Decrement counter Ci */
Ci ← Ci − 1;
if Ci ≤ 0 then

/* Reset bit at position i */
Bi ← 0;

end
end

Algorithm 4: Pseudocode for counting Bloom filter dele-

tion

inserted elements. The count estimate can be determined by

finding the minimum of the counts in all locations where an

item is hashed to.

In [29], Ficara et al. refine the upper bound presented

above. They obtain an order of magnitude lower upper bound,

producing Pr(max(c) > 15) < 1.51×10−16. The upper bound

is given by the formula below.

Pr(max(c) > j) < Pr(max(c) = j − 1) (17)

Ficara et al. also propose a data structure called MultiLayer

Compressed Counting Bloom Filter (ML-CCBF). The struc-

ture expands upon the idea of the CBF by adding a hierarchy

of hash-based filters on top of the CBF. These are used to

add space to counters that would otherwise overflow. The

authors also employ Huffman coding to compress counter

values, obtaining space savings. The ML-CCBF eliminates

possibility of counter overflow, and retains the quick lookups

of the standard BF. The cost of insert and delete operations

is increased, however. For a detailed performance comparison,

see [29].

B. d-left Counting Bloom Filter

Bonomi et al. [20] presented a data structure based on d-

left hashing and fingerprints that is functionally equivalent to

a counting Bloom filter, but saves approximately a factor of

two or more space.

The d-left hashing scheme divides a hash table into d
subtables that are of equal size. Each subtable has n/d buckets,

where n is the total number of buckets. Each bucket has

capacity for c cells, each cell being of some fixed bit size

to store a fingerprint of the element along with a counter.

When an element is placed into the table, following the d-

left hashing technique, d candidate buckets are obtained by

computing d independent hash values of the element. A hash-

based fingerprint fx = H(x) is stored in the bucket that

contains more empty cells (i.e., least inserted elements per

bucket). In case of a tie, the element is placed in the bucket

of the leftmost subtable with the smallest number of elements

examined.

Element lookups use parallel search of the d subtables to

find the fingerprint and obtain the value of the counter. In

case of a deletion the counter is decremented by one. It is

noteworthy that these counters can be much smaller than

counters in the standard CBF due to the fewer collisions

resulting from the fingerprint-based d-left construction.

The problem of knowing which candidate element finger-

print to delete – in case of fingerprint collisions – can be

neatly solved by breaking the problem into two parts, namely

the creation of the fingerprint, and finding the d locations by

making additional (pseudo)-random permutations.

C. Compressed Bloom Filter

Compressing a Bloom filter improves performance when

a Bloom filter is passed in a message between distributed

nodes. This structure is particularly useful when information

must be transmitted repeatedly, and the bandwidth is a limiting

factor [7].

Compressed Bloom filters are used only for optimizing

the transmission (over the network) size of the filters. This

is motivated by applications such as Web caches and P2P

information sharing, which frequently use Bloom filters to

distribute routing tables. If the optimal value of the number

of hash functions k in order to minimize the false positive

probability is used then the probability that a bit is set in the

bitstring representing the filter is 1/2. Given the assumption

of independent random hash functions, this means that the

bitstring is random, and thus it does not compress well.

The key idea in compressed Bloom filters is that by

changing the way bits are distributed in the filter, it can be

compressed for transmission purposes. This is achieved by

choosing the number of hash functions k in such a way that

the entries in the m vector have a smaller probability than 1/2
of being set. After transmission, the filter is decompressed for

use. The size of k selected for compression is not optimal for

the uncompressed Bloom filter, but may result in a smaller

compressed filter. Compression can result in a smaller false

positive rate as a function of the compressed size compared to

a Bloom filter that does not use compression. The compressed

Bloom filter requires that some additional compression algo-

rithm is used for the data that is transmitted over the network,

for example, Arithmetic Coding [7].

D. Deletable Bloom filter

The Deletable Bloom filter (DlBF) [30] addresses the issue

of enabling element deletions at a minimal cost in memory —

compared to previous variants like the CBFs — and without

introducing false negatives. The DlBF is based on a simple yet

powerful idea, namely keeping record of the bit regions where

collisions happen and exploiting the notion that elements can

be effectively removed if at least one of its bits is reset. The

DlBF divides the bit array of size m into r regions. The

compact representation of the collisions information consists

of a bitmap of size r that codes with 0 a collision-free region

(i.e., bit deletions are allowed) and with 1 otherwise (see

Fig. 6).

Hence, element removal is only probabilistic and depends

on the size r of the bitmap (see Fig. 7). Depending on how

much memory space one is willing to invest, different rates on

element deletability and false positives rates (before and after

element deletions) can be achieved. The DlBF is a simple
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Fig. 6. Example of a DlBF with m = 32, k = 3 and r = 4, representing S = {x, y, z}. The
1s in the first r bits indicate collisions in the corresponding regions and bits therein cannot be
deleted. All elements are deletable as each has at least one bit in a collision-free zone.
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Fig. 7. Deletability estimate as function of the filter density
m/n for different collision bitmap sizes r.

extension that can be easily plugged to existing BFs variants

to enable probabilistic element deletions.

E. Hierarchical Bloom Filters

Shanmugasundaram et al. [31] presented a data structure

called Hierarchical Bloom Filter to support substring match-

ing. This structure supports the checking of a part of string

for containment in the filter with low false positive rates.

The filter works by splitting an input string into a number

of fixed-size blocks. These blocks are then inserted into a

standard Bloom filter. By using the Bloom filter, it is possible

to check for substrings with a block-size granularity. This

substring matching may result in combinations of strings that

are incorrectly reported as being in the set (false positives). For

example, a concatenation of two blocks from different strings

would be incorrectly recognized as an inserted substring.

Figure 8 illustrates the hierarchical nature of this construction.

The hierarchical Bloom filter construction improves match-

ing accuracy by inserting the concatenation of blocks into

the filter in addition to inserting them separately. This means

that two subsequent single block matches can be verified by

looking up their concatenation. This approach generalizes to a

sequence of blocks; however, storage space requirements grow

as more block sequences are added to the structure.

This filter was used to implement a payload attribution

system that associates excerpts of packet payloads to their

source and destination hosts. The filter was used to create

compact digests of payloads. The system works by dividing the

payload of each packet into a set of blocks of a certain fixed

size. Each block is appended with its offset in the payload:

(content||offset). The blocks are then hashed and inserted into

a Bloom filter. A hierarchical Bloom filter is a collection of

the standard Bloom filters for increasing block sizes.

When a string is inserted, it is first broken into blocks

which are inserted into the filter hierarchy starting from the

lowest level. For the second level, two subsequent blocks are

concatenated and inserted into the second level. This block-

based concatenation continues for the remaining levels of the

hierarchy. The resulting structure can then be used to verify

whether or not a given string occurs in the payload. The search

S0S1S2S3 | 0

S0S1 | 0 S2S3 | 1

S0 | 0 S1 | 1 S2 | 2 S3 | 3

S0 S1 S2 S3

offsets 0 1 2 3

Hierarchical Bloom filter

Fig. 8. Example of inserting a string into a hierarchical Bloom filter

starts at the first level and then continues upwards in the

hierarchy to verify whether the substrings occurred together

in the same or different packets.

F. Spectral Bloom Filters

Spectral Bloom filters generalize Bloom filters to storing

an approximate multiset and support frequency queries [32].

The membership query is generalized to a query on the

multiplicity of an element. The answer to any multiplicity

query is never smaller than the true multiplicity, and greater

only with probability ǫ. In this sense, spectral refers to the

range within which multiplicity answers are given. The space

usage is similar to that of a Bloom filter for a set of the same

size (including the counters to store the frequency values).

The time needed to determine a multiplicity of k is O(log k).
The query time is Θ(log( 1ǫ )). The answer estimate is given

by returning the minimum value of the k counters determined
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by the hash functions. Element additions using the minimum

increase (MI) method consist of increasing only the smallest

counter value(s). This helps in reducing the error rate (i.e.,

fraction of answer values larger than the true multiplicity)

at the cost of disabling deletions. A further improvement of

the error rate can be achieved using the recurring minimum

(RM) method, which consists of storing elements with a single

minimum (among the k counters) in a secondary Spectral

Bloom filter with a smaller error probability.

G. Bloomier Filters

Bloom filters have been generalized to Bloomier filters [33]

that compactly store function values. The Bloomier filter can

encode functions instead of sets and allows the association of

values with a subset of the domain elements. Bloomier filters

are implemented using a cascade of Bloom filters.

A Bloomier filter encodes a function f(x) by associating an

arbitrary value with each member x ∈ S. For each member

x ∈ S, it always returns the correct value (no false negatives).

For a non–member, it returns ⊥ as a symbol for an undefined

value not in the range of f(x), with high probability (1− ǫ).
False positives occur with probability ǫ and result in a query

for x /∈ S returning a value within the range of f(x).

The query time of a Bloomier filter is constant and space

requirement is linear. The basic construction of a Bloomier

filter requires O(n log n) time to create; O(n) space to store

and O(1) time to evaluate. Although a Bloomier filter can be

made mutable, the set S is immutable. This means that in a

mutable Bloomier filter, function values can be changed but

set membership (in S) cannot change.

The Bloomier filter can be implemented as a pipeline of

parallel Bloom filters. Each parallel filter is associated with

one of the values of f(x). The filter pipeline is checked in

pairs. Each pair of filters in the sequence are programmed

with the false positives of the previous stage. For example, let

filters F (A0) and F (B0) represent subsets of S that map to

values true and false, respectively. To obtain the value for x,

we check the value of F (A0)(x) and F (B0)(x). If x receives

a non-⊥ value for one filter only, its value is that value. If x
receives a defined value for both filters of the pair, we move

on to the pair F (A1)(x) and F (B1)(x), which contain the

true positives of F (A0) that are false positives in F (B0) and

the true positives of F (B0) that are false positives in F (A0),
respectively. For multiple values, the filters F (Ai), i ≥ 1
contain the pairwise false positives with the filters F (Ji−1)
for all J \A.

Charles and Chellapilla [34] propose alternate construction

methods of Bloomier filters that yield faster alternatives,

O(n) vs. O(nlogn), and more practical and space-efficient

constructs at the cost of increased creation time. Similarly,

Dietzfelbinger and Pagh [35] propose a retrieval data structure

applicable to the approximate membership problem in almost

optimal space and with linear construction time. Similar results

are attainable with the approach by Porat [6] as an alternate

method to hold a succint, one-sided error dictionary data

structure in the spirit of Bloom filters.

H. Decaying Bloom Filters

Duplicate element detection is an important problem, es-

pecially pertaining to data stream processing [36]. In the

general case, duplicate detection in an unbounded data stream

is not practical in many cases due to memory and processing

constraints. This motivates approximate detection of duplicates

among newly arrived data elements of a data stream. This can

be accomplished within a fixed time window. Techniques for

space-efficient approximate counts over sliding windows have

been proposed in [37].

The Decaying Bloom Filter (DBF) structure has been pro-

posed for this application scenario. DBF is an extension of

the counting Bloom filter and it supports the removal of stale

elements from the structure as new elements are inserted. DBF

may produce false positive errors, but not false negatives as

is the case with the basic Bloom filter. For a given space G
bits and sliding window size W , DBF has an amortized time

complexity of O(
√

G/W ) [38]. A variant of DBF has been

applied for hint-based routing in wireless sensor networks [39].

Time Decaying Bloom filters [40] have been proposed to take

time into account by decrementing counter values.

I. Stable Bloom Filter

The Stable Bloom Filter or SBF [41] is another solution

to duplicate element detection. The SBF guarantees that the

expected fraction of zeros in the SBF stays constant. This

makes the SBF suitable for duplicate detection in a stream

of data. The authors show measurements that verify the SBF

performs well in the scenario and outperforms e.g. standard

buffering and standard Bloom filters. The SBF introduces both

false positives and false negatives, but with rates improved

from standard Bloom filters or standard buffering.

Each cell in the SBF is a counter of d bits, and thus has

a maximum value Max = 2d − 1. The adding function for a

SBF differs from the counting Bloom filter. When adding an

element, P counters chosen at random are first decremented

(by one). Then the k counters that correspond to the element

to be added are set to Max. The parameter P can be chosen

based on the other parameters for a Bloom filter, and a user-

specified accepted false positive ratio f , for example f = 0.01.

The authors suggest choosing P using the following formula:

P =
1

( 1
(1−f1/k)1/Max − 1)(1/k − 1/m)

(18)

Please see the full paper [41] for details on setting all the

parameters.

J. Space Code Bloom Filter

Per-flow traffic measurement is crucial for usage accounting,

traffic engineering, and anomaly detection. Previous method-

ologies are either based on random sampling (e.g., Cisco’s

NetFlow), which is inaccurate, or only account for the ”ele-

phants”. A data structure called Space Code Bloom Filter

(SCBF) can be used to measure per-flow traffic approximately

at high speeds.
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A SCBF is an approximate representation of a multiset.

Each element in this multiset is a traffic flow and its mul-

tiplicity is the number of packets in the flow. SCBF employs

a Maximum Likelihood Estimation (MLE) method to measure

the multiplicity of an element in the multiset. Through param-

eter tuning, SCBF allows for graceful tradeoff between mea-

surement accuracy and computational and storage complexity.

SCBF also contributes to the foundation of data streaming by

introducing a new paradigm called blind streaming [42].

K. Adaptive Bloom filters

The Adaptive Bloom Filter (ABF) [43] is an alternative

construction to counting Bloom filters especially well suited

for applications where large counters are to be supported with-

out overflows and under unpredictable collision rate dynamics

(e.g., network traffic applications). The key idea of the ABF is

to count the appearances of elements by an increasing set of

hash functions. Instead of working with fixed c-bit counting

cells like traditional CBFs, an ABF takes the same form as a

plain m-bit BF.

In order to increment the count of an element, the ABF

checks sequentially how many independent hashes (N ) map

to bits set to one (in addition to the k bits set on element

insertion). When the N +k+1th hash hits an empty cell, it is

set to 1 to guarantee that element frequency queries return

at least N + 1, corresponding to the 1s set so far by the

sequential hashes of the element. In membership queries, the

additional number of hash functions N indicates the number

of appearances of each entry. False positives among the first

k bits work like in plain BF constructs. The main caveat is

that the estimate of the multiplicity of a each key element

becomes less precise as the ABF gets filled, since bits set by

other elements result in larger N values. To its benefit, the

ABF requires less memory and does not require knowledge

on the estimated multiplicity of individual key elements (e.g.,

skewed unpredictable data set in real network traffic).

L. Variable Length Signatures and Double Buffering

A Bloom filter with Variable-length Signatures (VBF) is

similar to the BF; however, the construction differs when

inserting and querying elements [44]. When inserting an

element, only t(≤ k) bits of h(x) computed using k hash

functions are set to 1. This effectively allows the setting of a

partial signature. For queries, an element x is reported to be

present if at least q(≤ k) bits are set to 1.

The VBF construction allows to test element membership

when the set is time-varying, e.g., dynamic under insertions

and deletions of elements. The VBF construction has been

applied for network flow management. The key idea is to take

advantage of differing flow sizes and increase or decrease

the signature lengths of flows making them more easy or

less easy to identify in the filter. Flow lengths can also be

examined by analyzing the signature lengths. The construction

can adaptively reduce the false positive rate by removing some

bits of the signature, thus effectively removing the flow from

the structure. The limitation of this approach is that such

removal of bits may result in other valid flows being removed

as well resulting in false negatives. Partial signatures can be

used to alleviate this problem of false negatives. Aging of the

filter can be achieved by resetting the Bloom filter bits in a

round-robin fashion.

A related technique for handling time-varying sets, called

double buffering, uses two bitmaps, active and inactive, to

support time-dependent Bloom filters. When the active bitmap

is half full, new signatures are stored in both bitmaps and

only the active one is queried. When the inactive bitmap gets

half full, it becomes active and the previously active bitmap

becomes inactive and is reset. This cycle is then repeated [45].

M. Filter Banks

The standard BF only answers whether or not an element

is a member of the set with some probability for misclassifi-

cation. In many cases, there is a need to find which element

or elements of a set are related with the input element. There

is thus a requirement to support multiple binary predicates.

One straightforward technique to support multiple binary

predicates is to use a set of standard BFs. For example, in

a caching solution, each BF corresponds to an interface. An

element originating from a certain interface is recorded in the

BF corresponding to the interface. When querying for element

membership, each BF is then consulted and zero or more will

report containment. If multiple interfaces report containment,

a number of techniques can be used to solve the issue, for

example by treating the case as a cache miss and reclassifying

the element in question [46].

A similar technique involving a filter bank is used to real-

ize approximate action classification [44]. This classification

answers the question, which element of S is X? This requires

⌈log2 |S|⌉ filters. This corresponds to the selection of an action

from a set of actions for a given element. This classification

is important for various routing and forwarding tasks.

N. Scalable Bloom filters

One caveat with Bloom Filters is having to dimension the

maximum filter size (m) a priori. This is commonly done by

application designers by establishing an upper bound on the

expected fpr and estimating the maximum required capacity

(n). However, it is often the case that the number of elements

to be stored is unknown, which leads to over-dimensioning

the filters for the worse case, possibly by several orders

of magnitude. Moreover, in some applications, BFs are not

simply preloaded with elements and then used, but elements

are added and queried independently as time passes. This may

result in wasted storage space.

Scalable Bloom Filters (SBF) [47] refer to a BF variant

that can adapt dynamically to the number of elements stored,

while assuring a maximum false positive probability. The

proposed mechanism adapts to set growth by adding “slices”

of traditional Bloom Filters of increasing sizes and tighter error

probabilities, added as needed. When filters get full due to the

limit on the fill ratio (i.e. ρ = 0.5), a new one is added.

Set membership queries require testing for element presence

in each filter, thus the requirement on increasing sizes and

tightening of error probabilities as the BF scales up. Successive
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BFs are created with a tighter maximum error probability on

a geometric progression, allocating m · ai−1bits for its i–th

BF slice, where a is a given positive integer and 1 < i < s.

As a result, the compounded probability over the whole series

converges to the target design value, even accounting for an

infinite series.

Parameters of the SBF in addition to the initial bit size m
and target fpr include the expected growth rate (s) and the

error probability tightening ratio (r). Careful choosing of these

extra 2 parameters ultimately determines the space usage gains

of SBF compared to standard BF constructs.

O. Dynamic Bloom Filter

Standard BFs and its mainstream variations suffer from inef-

ficiencies when the cardinality of the set under representation

is unknown prior to design and deployment. In stand-alone

applications with dynamic sets (i.e., with element addition

and removal operations), the inefficiency arises from the

impossibility of determining the optimal BF parameters (m,k)

in advance. Without knowledge of the upper bound on the

number of elements to be represented, a target false positive

probability threshold cannot be guaranteed unless the BF is

rebuilt from scratch each time the set cardinality changes.

These limitations are not only a challenge for stand-alone

applications. In distributed applications, BF reconstruction is

cumbersome and may hinder interoperability.

Dynamic Bloom filters (DBF) address the requirement for

dynamically adjusting the size of a probabilistic filter [48].

The DBF construction is based on a dynamic s×m bit matrix

that consists of s standard (or counting) Bloom filters. The

filter size m and the number of hash functions k are system

parameters. The number of BF slices is adjusted at runtime to

allow the DBF to grow dynamically.

The DBF is based on the notion of an active Bloom filter.

Only one Bloom filter in DBF is active at a time and others are

inactive. The number of elements inserted into each constituent

Bloom filter in a DBF is tracked. During insertion, the first

BF that has its element counter less than the given threshold

(system parameter) is selected as the active BF. If such an

active BF cannot be found, a new BF is created and designated

as the active BF. The element is then inserted into the active

BF. The query element membership operation iterates the set

of BFs in the DBF and returns true if any of the BFs contain

the element. Removing an element requires first finding the

sub-BF claiming that the element is present. In case only one is

found, the element is removed by decrementing the k counters

by one. If multiple filters return true, the element removal may

result in, at most, k potential false negatives. In this case, to

conserve the false negative free properties, the element bit cells

are not decremented. Such element deletion failures contribute

to a gradual increase in the false positive behaviour.

The DBF has been intended for a number of distributed

environments, especially those in which new data is inserted

(and potentially removed) frequently. The DBF requires that

the filter size and the number of hash functions are consistent

among all nodes. The key applications include Bloomjoins,

informed search, and index search.

P. Split Bloom Filters

A Split Bloom filter (SPBF) [49] employs a constant s ×
m bit matrix for set representation, where s is a pre-defined

constant based on the estimation of maximum set cardinality.

The SPBF aims at overcoming the limitation of standard BFs

which do not take sets of variable sizes into account. The basic

idea of the SPBF is to allocate more memory space to enhance

the capacity of the filter before its implementation and actual

deployment. The false match probability increases as the set

cardinality grows. An existing SPBF must be reconstructed

using a new bit matrix if the false match probability exceeds

an upper bound.

Q. Retouched Bloom filters

The Retouched Bloom filter (RBF) [50] builds upon two

observations. First, for many BF applications, there are some

false positives, which are more troublesome than others and

can be identified after BF construction but prior to deployment.

Second, there are cases where a low level of false negatives is

acceptable. For filter applications fulfilling these two require-

ments, the RBF enables trading off the most troublesome false

positives for some randomly introduced false negatives.

The novel idea behind the RBF is the bit clearing process

by which false positives are removed by resetting individual

bits. Performance gains can be measured by the proportion of

false positives removed compared to the proportion of false

negatives introduced.

In case of a random bit clearing process, the gains are

neutral, i.e., the fpr decrease equals the fnr increase. A better

performance can be achieved using a selective clearing ap-

proach, which first tests for false positives for a given training

set, and then resets only the bits belonging to “troublesome”

elements. The authors propose four algorithms for decreasing

the fpr more than the corresponding fnr increase.

R. Generalized Bloom Filters

The basic idea of the Generalized Bloom Filter (GBF) [51]

is to employ two sets of hash functions, one (g1, . . . , gk0
)

for setting bits and another (h1, . . . , hk1
) to reset bits. A

GBF starts out as an arbitrary bit vector set with both 1s

and 0s, and information is encoded by setting chosen bits

to either 0 or 1, departing thus from the notion that empty

bit cells represent the absence of information. As a result,

the GBF is a more general binary classifier than the standard

Bloom filter. In the GBF, the false-positive probability is upper

bounded and it does not depend on the initial condition of

the filter. However, the generalization brought by the set of

hash functions resetting bits introduces false negatives, whose

probability can be upper bounded and does not depend either

on the bit filter initial set-up.

Element insertion works by setting to 0 the bits defined

by g1(x), . . . , gk0
(x) and setting to 1 the k1 bits at positions

h1(x), . . . , hk1
(x). In case of a collision, the bit is set to 0.

Analogously, membership queries are done by verifying if all

bits defined by g1(x), . . . , gk1
(x) are set to 0 and all bits

determined by h1(x), . . . , hk1
(x) are set to 1. The GBF returns

false if any bit is inverted, i.e. the queried element does not
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belong to the set with a high probability. The false positive

and false negative estimates can be traded off by varying the

numbers of hash functions, k0 and k1.

S. Distance-sensitive Bloom filters

Distance-sensitive Bloom filters (DSBF) [52] were con-

ceived by Kirsch and Mitzenmacher to answer approximate

set membership queries in the form of is x close to an item

of S?, where closeness is measured under a suitable metric.

More specifically, given a metric space (U, d), a finite set

S ⊂ U , and parameters 0 ≤ ǫ < δ, the filter aims to effectively

distinguish between inputs u ∈ U such that d(u, x) ≤ ǫ for

some x ∈ S and inputs u ∈ U such that d(u, x) ≥ d for every

x ∈ S.

The DSBF is implemented using locality-sensitive hash

functions [53], [54] and allows false positives and false

negatives. By comparison, standard Bloom filters are false-

negative-free corresponding to the case where ǫ = 0 and δ is

any positive constant. While false positives and especially false

negatives require special consideration at application design

time, a DSBF can provide speed and space improvements

for networking and database applications, which can avoid

full nearest-neighbor queries or costly comparison operations

against entire sets. Moreover, overarching DSBFs can be

constructed on top of a collection of conventional BFs to

provide a quick (probabilistic) answer to questions of the form,

Are there any sets in the collection very close to this query set?,

which may assist traditional BF-based distributed applications.

T. Data Popularity Conscious Bloom Filters

In many information processing environments, the underly-

ing popularities of data items and queries are not identical,

but rather they differ and skewed. For example in many

networks data popularity has been observed to be similar to

the Zipf distribution. The standard Bloom filter does not utilize

information pertaining to the underlying data element distri-

bution. An intuitive approach to take data item popularity into

account is to use longer encodings and more hash functions

for important elements and shorter encodings and fewer hash

functions for less important ones. A larger number of hash

functions will result in fewer false positives for popular data

elements. It may result in more false positives for unpopular

data items; however, since they are requested less frequently

this is not expected to become an issue [55].

Thus the Bloom filter construction lends itself well to data

popularity-conscious filtering as well; however, this requires

the minimization of the false positive rate by adapting the

number of hashes used for each element to its popularities in

sets and membership queries. To this end, an object importance

metric was proposed in [55]. The problem was modeled as a

constrained nonlinear integer program and two polynomial-

time solutions were presented with bounded approximation

ratios. The aim of the optimization problem, modeled as

a variant of the knapsack problem, is to find the optimal

number of hash functions for each element. The popularities

of elements are used to reduce the solution search space.

The results include a 2-approximation algorithm with

O(N c) running time (c ≥ 6 in practice) and a (2 + ǫ)
approximation algorithm with running time O(N2/ǫ), ǫ > 0.

Experimental evaluation results indicate that the popularity-

conscious Bloom filters can achieve significant false-positive

probability reduction (or reduced filter sizes when the false

positive rate is kept constant) compared to standard Bloom

filters. On the other hand, the popularity-conscious filters

require offline computation for estimating input distribution

popularities and storage for the custom hash scheme.

U. Memory-optimized Bloom Filter

A memory-optimized Bloom filter was proposed in [56] that

uses an additional hash function to select one of the possible

k locations in a Bloom filter. Thus only a single bit is set

for each element instead of k bits leading to memory savings.

The idea of using a separate hash function to make the result

of the k hash functions more uniform has also been proposed

in [46].

V. Weighted Bloom filter

Bruck et al. [57] propose Weighted Bloom filter (WBF), a

Bloom filter variant that exploits the a priori knowledge of

the frequency of element requests by varying the number of

hash functions (k) accordingly as a function of the element

query popularity. Hence, a WBF incorporates the information

on the query frequencies and the membership likelihood of the

elements into its optimal design, which fits many applications

well in which popular elements are queried much more often

than others. The rationale behind the WBF design is to con-

sider the filter fpr as a weighted sum of each individual ele-

ment’s false positive probability, where the weight is positively

correlated with the element’s query frequency and is negatively

correlated with the element’s probability of being a member.

As a consequence, in applications where the query frequencies

can be estimated or collected and result for instance in a step

or the Zipf distribution, the WBF largely outperforms in fpr
the traditional Bloom filter. Even a simple binary classification

of elements between hot and cold can result in false positive

improvements of a few orders of magnitude.

W. Secure Bloom filters

The hashing nature of Bloom filters provide some basic

security means in the sense that the identities of the set

elements represented by the BF are not clearly visible for an

observer. However, plain BFs allow some leak of information

such as the approximate total number of elements inserted.

Morever, BFs are vulnerable to correlation attacks where the

similarity of BFs’ contents can be deduced by comparing

BF indexes for overlaps, or lack thereof. Furthermore, in

applications where the hash functions are known, a dictionary

attack provides probabilistic arguments for the presence of

elements in a given BF.

To overcome these limitations, several proposals have sug-

gested secured BF variants as a natural extension of the prob-

lem of constructing data structures with privacy guarantees.
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TABLE II

KEY FEATURES OF THE BLOOM FILTER VARIANTS, INCLUDING THE ADDITIONAL CAPABILITIES: COUNTING (C), DELETION (D),

POPULARITY-AWARENESS (P), FALSE-NEGATIVES (FN), AND THE OUTPUT TYPE.

Filter Key feature C D P FN Output

Standard Bloom filter Is element x in set S? N N N N Boolean

Adaptive Bloom filter Frequency by increasing number of hash functions Y N N N Boolean

Bloomier filter Frequency and function value Y N N N Freq., f(x)

Compressed Bloom filter Compress filter for transmission N N N N Boolean

Counting Bloom filter Element frequency queries and deletion Y Y N M Boolean or freq.

Decaying Bloom filter Time-window Y Y N N Boolean

Deletable Bloom filter Probabilistic element removal N Y N N Boolean

Distance-sensitive Bloom filters Is x close to an item in S? N N N Y Boolean

Dynamic Bloom filter Dynamic growth of the filter Y Y N N Boolean

Filter Bank Mapping to elements and sets Y Y M N x, set, freq.

Generalized Bloom filter Two set of hash functions to code x with 1s and 0s N N N Y Boolean

Hierarchical Bloom filter String matching N N N N Boolean

Memory-optimized Bloom filter Multiple-choice single hash function N N N N Boolean

Popularity conscious Bloom filter Popularity-awareness with off-line tuning N N Y N Boolean

Retouched Bloom filter Allow some false negatives for better false positive rate N N N Y Boolean

Scalable Bloom filter Dynamic growth of the filter N N N N Boolean

Secure Bloom filters Privacy-preserving cryptographic filters N N N N Boolean

Space Code Bloom filter Frequency queries Y N M N Frequency

Spectral Bloom filter Element frequency queries Y Y N M Frequency

Split Bloom filter Set cardinality optimized multi-BF construct N N N N Boolean

Stable Bloom filter Has element x been seen before? N Y N Y Boolean

Variable-length Signature filter Popularity-aware with on-line tuning Y Y Y Y Boolean

Weighted Bloom filter Assign more bits to popular elements N N Y N Boolean

The secure indexes [58] by Goh enhance the BF insert and

query operations by applying pseudo-random functions twice,

first to generate element codewords using a secret key, and

second to derive the k index bits after including a set-specific

identifier as input to the keyed hash functions.

Finally, Goh proposes a simple technique to further obscure

the BF by randomly setting additional bits increasing the bar

for attackers at the cost of a fpr increase.

Encrypted Bloom filters by Bellovin and Cheswick [59]

propose a privacy-preserving filter variant of Bloom filters

which introduces a semi-trusted third party to transform one

party’s queries to a form suitable for querying the other

party’s BF, in such a way that the original query privacy

is preserved. Instead of undisclosing the keys of all parties

and securing the BF operations with keyed hash functions as

per Goh [58], Bellovin and Cheswick propose a specialized

form of encryption function where operations can be done on

encrypted data. More specifically, their proposal is based on

the Pohlig-Hellman cipher, which forms an Abelian group over

its keys when encrypting any given element.

Yet another refinement on privacy-preserving variants of

Bloom filters is the cryptographically secure Bloom filter

protocol proposed by [60]. In addition to providing a rea-

sonable security definition, the proposed protocol suite avoids

employing third parties by using cryptographic primitives

known as blind signature schemes and oblivious pseudoran-

dom functions.

X. Summary and discussion

Table II summarizes the distinguishing features of the

Bloom filter variants discussed in this section. The different

Bloom filter designs aim at addressing specific concerns

regarding space and transmission efficiency, false positive rate,

dynamic operation in terms of increasing workload, dynamic

operation in terms of insertions and deletions, counting and

frequencies, popularity-aware operation, and mapping to ele-

ments and sets instead of simple set membership tests. For

each variant, table II indicates the output type (e.g., boolean,

frequency, value) and whether counting (C), deletion (D),

or popularity-awareness (P) are supported (Yes/No/Maybe),

or false negatives (FN) are introduced. Bloom filter variants

with counting capabilities can also be used to probabilistically

encode arbitrary functions by considering the cardinality of

each set element being functional value and each set element

being a variable.

Bloom filters come in many shapes and forms, and they

are widely used in distributed systems due to their compact

nature and configurable trade-off between size and accuracy.

Making this choice and optimizing the parameters for the

expected uses cases are fundamental factors to achieve the

desired performance in practice.
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Fig. 9. Bloom filter variants grouped by usage scenarios.

Since there is no Bloom filter that fits all, one key question

that application designers should ask is whether false negatives

are tolerable or not. Relaxing this constraint can help drasti-

cally in reducing the overall false positive rate (cf. retouched

Bloom filters [50]), but raises also the question whether

the Bloom filter is the right data structure choice despite

alternative designs specific to the application domain (cf. [61]),

approximate dictionary-inspired approaches [6], [35], cache-

efficient variants (blocked Bloom filter) and Golomb coding

implementations as proposed by Putze et al [62], space-

efficient versions of cuckoo hashing [63], and more complex

but space-optimal alternatives [5], [6].

Each variant or replacement introduces a specific trade-

off involving execution time, space efficiency, and so on.

Ultimately, which probabilistic data structure is best suited

depends a lot on the application specifics. Indeed, the varia-

tions of the standard Bloom filter discussed in this Section are

commonly the result of specific requirements of network and

distributed system applications, a variety of which we present

in the following survey section.

IV. BLOOM FILTERS IN DISTRIBUTED COMPUTING

We have surveyed techniques for probabilistic representa-

tion of sets and functions. The applications of these structures

are manyfold, and they are widely used in various networking

systems, such as Web proxies and caches, database servers,

and routers. We focus on the following key usage scenarios:

• Caching for Web servers and storage servers.

• Supporting processing in P2P networks, in which prob-

abilistic structures can be used for summarizing content

and caching [28], [64].

• Packet routing and forwarding, in which Bloom filters

and variants have important roles in flow detection and

classification.

• Monitoring and measurement. Probabilistic techniques

can be used to store and process measurement data

summaries in routers and other network entities.

• Supporting security operations, such as flow admission

and intrusion detection.

Figure 9 shows an overview of Bloom filter variants that

can be used in the usage scenarios that this section focuses

on. For more detail, see Figure 15 at the end of this article.

A. Caching

Bloom filters have been applied extensively to caching in

distributed environments. To take an early example, Fan, Cao,

Almeida, and Broder proposed the Summary Cache [27], [28]

system, which uses Bloom filters for the distribution of Web

cache information. The system consists of cooperative proxies

that store and exchange summary cache data structures, es-

sentially Bloom filters. When a local cache miss happens, the

proxy in question will try to find out if another proxy has a

copy of the Web resource using the summary cache. If another

proxy has a copy, then the request is forwarded there.

In order for distributed proxy-based caching to work well,

the proxies need to have a way to compactly summarize

available content. In the Summary Cache system, proxies

periodically transfer the Bloom filters that represent the cache

contents (URL lists). Figure 10 illustrates the use of a Bloom

filter-based summary cache at a proxy. The summary cache

is consulted and used to find nearest servers or other proxies

with the requested content.

Dynamic content poses a challenge for caching content and

keeping the summary indexes up to date. Within a single

proxy, a Bloom filter representing the local content cache

needs to be recreated when the content changes. This can be

seen to be inefficient and as a solution the Summary Cache

uses counting Bloom filters for the maintenance of their local

cache contents, and then based on the updates a regular Bloom

filter is broadcast to other proxies.

The summary cache-based technique is used in the popular

Squid Web Proxy Cache1. Squid uses Bloom filters for so-

called cache digests. The system uses a 128-bit MD5 hash of

the key, a combination of the URL and the HTTP method, and

splits the hash into four equal chunks. Each chunk modulo the

digest size is used as the value for one of the Bloom filter hash

functions. Squid does not support deletions from the digest and

thus the digest must be periodically rebuilt to remove stale

information.

Bloom filters have been applied extensively in distributed

storage to minimize disk lookups. As an example, we consider

1www.squid-cache.org
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Google’s Bigtable system that is used by many massively

popular Google services, such as Google Maps and Google

Earth, and Web indexing. Bigtable is a distributed storage

system for structured data that has been designed with high

scalability requirements in mind, for example capability to

store and query petabytes of data across thousands of com-

modity servers [65].

A Bigtable is a sparse multidimensional sorted map. The

map is indexed by a row key, column key, and a timestamp.

Each value in the map is an uninterpreted array of bytes.

Bigtable uses Bloom filters to reduce the disk lookups for

non-existent rows or columns [65]. As a result the query

performance of the database has to rely less on costly disk

operations and thus performance increases.

Apache Hadoop [66] is a framework for running applica-

tions on clusters of commodity hardware. Hadoop implements

the map/reduce paradigm in which an application is divided

into smaller fragments in order to achieve parallel efficiency.

The Hadoop implementation uses various Bloom filter struc-

tures to optimize the reduce stage.

B. P2P Networks

Bloom filters have been extensively applied in P2P environ-

ments for various tasks, such as compactly storing keyword-

based searches and indices [67], synchronizing sets over

network, and summarizing content.

In [68], the applications and parameters of Bloom filters

in P2P networks are discussed. The applications identified

by the authors include peer content summarization and the

filter length, compression, and hash types used, semantic

overlays using peer Bloom filter similarity, and query routing

by Bloom filter similarity. Updating of peer Bloom filters is

also discussed.

The exchange of keyword lists and other metadata between

peers is crucial for P2P networks. Ideally, the state should be

such that it allows for accurate matching of queries and takes

sublinear space (or near constant space). The later versions of

the Gnutella protocol use Bloom filters [68] to represent the

keyword lists in an efficient manner. In Gnutella, each leaf

node sends its keyword Bloom filter to an ultra-node, which

Ultra node

Ultra node

Ultra node

Ultra node layer

Flooding

(Bloom filters)

Leaf

Leaf Leaf
Leaf

Data transfer

Fig. 11. 2-tier Gnutella

can then produce a summary of all the filters from its leaves,

and then sends it to neighbouring ultra-nodes. The ultra-nodes

are hubs of connectivity, each being connected to more than 32

other ultra-nodes. Figure 11 illustrates this two-tier Gnutella

architecture.

Rhea and Kubiatowicz [69] designed a probabilistic routing

algorithm for P2P location mechanisms in the OceanStore

project. Their aim was to determine when a requested file has

been replicated near the requesting system. This system uses

a construction called Attenuated Bloom filter, which is simply

an array of d basic Bloom filters. The ith basic filter keeps

record of what files are reachable within i hops in the network.

The attenuated Bloom filter only finds files within d hops, but

the returned paths are likely to be the shortest paths to the

replica. In the distributed system, a node maintains attenuated

filters for each neighbour separately, and updates are broadcast

periodically.

The OceanStore system uses a two-tiered model, in which

the attenuated filter is part of the first tier. If the probabilistic

search fails, the search can then fallback to a deterministic

overlay search using Tapestry.

In [70], the authors propose to exploit two-dimensional lo-

cality to improve P2P system search efficiency. They present a

locality-aware P2P system architecture called Foreseer, which
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explicitly exploits geographical locality and temporal locality

by constructing a neighbor overlay and a friend overlay,

respectively. Each peer in Foreseer maintains a small number

of neighbors and friends along with their content filters used

as distributed indices.

Exponentially Decaying Bloom filters probabilistically en-

code routing tables in a highly compressed way that allows for

efficient aggregation and propagation of routing information in

unstructured peer-to-peer networks [71].

Bloom filters can be applied for approximate set recon-

ciliation and data synchronization [72]. This application is

important for P2P systems, in which a peer may send a

compact data structure to another peer that represents items

that the peer already has. Bloom filters are not directly ideal

for this kind of set reconciliation applications, because of the

possibility for false positives. Therefore a number of Bloom

filter-based structures have been developed [73], [74].

Bloom filters have also been used in social networks, for

example in Tribler [75], a social P2P file sharing system.

Tribler uses Bloom filters to keep the databases that maintain

the social trust network synchronized between peers. The

Bloom filters are used to filter out peers already known by

message destination nodes from swarm discovery messages.

Tribler can reach common friends–of–friends of two peers by

using a Bloom filter of 260 bytes in size, enabling a peer to

exchange information with thousands of others in a short time.

C. Packet Routing and Forwarding

Bloom filters have been used to improve network router

performance [76]. Song et al. used a Counting Bloom Filter

to optimize a hash table used in network processing, such

as maintaining per-flow context, IP route lookup, and packet

classification. The small, on-chip Bloom filter eliminates slow,

off-chip lookups when the searched flow is not found, and

minimizes the number of lookups required when the flow

is found. This is done by associating a hash table bucket

with each Bloom filter counter. The bucket associated with

the counter with the lowest value and lowest index is then

always accessed, and the corresponding item is stored in that

bucket. Counters are also artificially incremented to eliminate

collisions. This leads to one worst-case off-chip lookup for

flows stored.

In [77], Bloom filters are used for high-speed network

packet filtering. A regular Bloom filter with a collision list is

implemented in kernel space in a Linux network driver. The

filter is populated by signatures of (protocol, IP address, port)–

tuples. Incoming packets are matched against the filter and

matches given to a user-space network monitoring program.

Wildcards are supported by setting one of the tuple fields to

zero when populating the filter, and on input packets when

querying. The authors also implement a threaded network

packet processor to offload packet processing from the Linux

kernel to a separate thread. With the Bloom filter the authors

almost quadruple the performance of the existing driver, as

compared to when capturing all packets and filtering in user-

space only.

In the remainder of the subsection, we focus on impor-

tant uses of Bloom filter variants in routing and forwarding

1 2 3 �

B1 B2 B3 �

Priority Encoder

Hash Table Interface

IP Address

C1 C2 C3 �

Hash Table Manager

Bloom filter counters C 
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Route Updates

Next Hop

Off-chip Hash Tables

Fig. 12. Longest Prefix Matching with Bloom filters

tasks. These cases include IP lookups, loop and duplicate

detection, forwarding engines, and deep packet scanning. We

also briefly discuss the use of Bloom filters for content-based

publish/subscribe and multicast, which is an active research

area.

1) IP Lookups: Bloom filters can be applied in various parts

in a routing and forwarding engine. Probabilistic techniques

have been used for efficient IP lookups. IP routers forward

packets based on their address prefixes. Each prefix is as-

sociated with the next hop destination. CIDR-based routing

and forwarding uses the longest prefix match for finding the

next hop destination. This is commonly solved using a binary

search, a trie search, or a TCAM. IP lookups can be made

more efficient by dividing the addresses into tables based on

their length and then utilizing binary search to find the longest

common prefix. The d-left hashing technique has been used

to make this lookup more compact and efficient [78].

Many different probabilistic structures have been developed

for fast packet forwarding. To take one example, an algorithm

that uses Bloom filters for Longest Prefix Matching (LPM) was

introduced in [79]. The algorithm performs parallel queries on

Bloom filters, to determine address prefix membership in sets

of prefixes sorted by prefix length. This work indicates that

Bloom filter–based forwarding engines can offer favorable per-

formance characteristics compared to TCAMs used by many

routers. Figure 12 illustrates this design for high–speed prefix

matching. The idea is to have different regular Bloom filters

for different address prefixes. These BFs are implemented in

hardware and updated by a route computation process. The

route manager uses counting Bloom filters to keep track of

how the regular BFs should be instrumented.

Asymmetric Bloom filters that allocate memory resources

according to prefix distribution have been proposed for LPM.

By using direct lookup array and Controlled Prefix Expansion

(CPE), worst-case performance is limited to two hash probes

and one array access per lookup. Performance analysis indi-

cates that average performance approaches one hash probe per

lookup with less than 8 bits per prefix [79].

The system employs a set of W Counting Bloom Filters
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where W is the length of input addresses, and associates one

filter with each unique prefix length. A hash table is also

constructed for each distinct prefix length. Each hash table is

initialized with the set of corresponding prefixes, where each

hash entry is a (prefix, next hop)–pair.

Based on the analysis, the expected number of hash probes

per lookup depends only on the total amount of memory

resources, M , and the total number of supported prefixes, N .

The number of required hash probes is given by ( 12 )
M/N
ln 2 . The

result is independent of the number of unique prefix lengths

and the distribution of prefixes among the prefix lengths.

2) Loop Detection: Bloom filters can be used for loop

detection in network protocols. IP uses the Time-To-Live

(TTL) field to detect and drop packets that are in a forwarding

loop. The TTL counter is incremented for each network hop.

For small loops, TTL may still allow a substantial amount of

looping traffic to be generated.

Icarus is a system that uses Bloom filters for preventing

unicast loops and multicast implosions. The idea is straight-

forward, namely to use a Bloom filter in the packet header

as a probabilistic loop detection mechanism. Each node has a

corresponding mask that can be ORed with the Bloom filter

in the header of a packet, and then determine whether or not a

loop has occurred. Detection accuracy can be traded off against

space required in the packet header [80].

3) Duplicate Detection: In [41], Deng and Rafiei intro-

duce the Stable Bloom filter (SBF), which is a modified

Counting Bloom Filter. In the update process, p randomly

chosen counter values are decremented by 1, and then the k
counters of the added element are set to Max, the maximum

counter value. This causes a probabilistic aging of counters

and eventual convergence of the fpr. This also results in

false negatives. The authors use the SBF in stream duplicate

detection, and achieve an improved false positive rate as

compared to a regular Bloom filter, and an improved false

negative rate compared to simple buffering.

Decaying Bloom filters (DBF) developed in [38] can also

be used for duplicate detection in an unbounded data stream.

The DBF is a Counting Bloom filter, in which the k counters

that map to a new element are set to W , the sliding window

size, when adding. Before adding, all counters are decremented

by one. The authors further improved the performance of the

DBF by dividing the DBF into blocks (b DBF) so that each

addition only takes m/T+k operations, where T is the number

of blocks and m the number of counters. Unfortunately the

authors examine the false positive ratio with a much smaller

sliding window than in [41], so [38] and [41] are not directly

comparable. However, DBF appears, by interpolation, to have

a much lower false positive rate than SBF: less than 2% at

4096 bits, compared to SBF’s 8.2% at 16384 bits. Further-

more, DBF does not suffer from false negatives.

4) Forwarding Engines: Bloom filters can also be used

in multicast forwarding engines. A multicast packet is sent

through a multicast tree. A multicast router maps an in-

coming multicast packet to outgoing interfaces based on the

multicast address. Initially, Grönvall suggests an alternative

multicast forwarding technique using Bloom filters [81]. In

this technique, a router has a Bloom filter for each outgoing

interface. The filters contain the addresses associated with the

interfaces. When a multicast packet arrives on one interface,

the Bloom filters of each outgoing interface are checked for

matches. The packet is forwarded to all matching interfaces.

This technique is interesting, because it does not store any

addresses at the router; however, the addition and removal of

multicast addresses requires that the Bloom filters are updated,

e.g., using any BF variant supporting deletions.

A similar idea has been recently proposed for content-

centric networks [82], where packet forwarding decisions may

be based on a new identifier space for information objects (e.g.,

256-bit flat labels) or novel forwarding identifiers. An abstract

switching element can be built by querying in parallel a bank

of Bloom filters, one for each possible port-out (physical and

virtual). The evaluation of the SPSwitch in [82] argues for

a simpler system design and enhanced flexibility by relying

on a fingerprint-based d-left hash table. The unifying Bloom

principle of information-centric networking applications is to

reduce the state requirements and simplify multicast support

by tolerating some overdeliveries due to false positives.

A similar tradeoff can be applied to enterprise and data

center networks, where the scalability of the data plane be-

comes increasingly challenging with the growth of forwarding

tables and link speeds. Simply building switches with larger

amounts of faster memory is not appealing, since high-speed

memory is both expensive and power hungry. Implementing

hash tables in SRAM is not appealing either because it requires

significant over-provisioning to ensure that all forwarding table

entries fit. The BUFFALO architecture [83] proposes Bloom

filters stored in a small SRAM to compress the information of

the addresses associated with each outgoing link. Leveraging

the flattening of IP addresses and the shortest-path routing,

BUFFALO proposes a practical switch design that gracefully

handles false positives without reducing the packet-forwarding

rate, while guaranteeing that packets reach their destinations

with bounded stretch with high probability. Routing changes

are handled by dynamically adjusting the filter sizes based on

Counting Bloom Filters stored in slow memory.

The other extreme approach to support multicast is to move

state from the network elements to the packets themselves in

form of Bloom filter-based representations of the multicast

trees. This notion has been exploited by Ratnasamy et al.

when revisiting IP multicast [84] and by Jokela et al. [85]

to provide a scalable forwarding plane for publish/subscribe

networks (See Fig. 13). While [84] insert the inter-domain

AS path information into a 800-bit Bloom filter-based header

(called shimheader), LIPSIN [85] departs from the IP inter-

networking model and handles link identifiers more generally,

from network interfaces to virtual links spanning multiple

hops. Link IDs take a Bloom filter form (i.e., m bits with

only k bits set to 1) that can be ORed together to build

a source-routing Bloom filter. Forwarding nodes maintain a

small Link ID table whose entries are checked for presence

in the routing BF to take the forwarding decision. In a typical

WAN topology, using 256-bit BFs, multicast trees containing

around 40 links can be constructed to reach in a stateless

fashion up to 24 users while maintaining the false positive

rate (≈ 3%) and the associated forwarding efficiency within
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reasonable performance levels.

Applying the core idea of compressing source routes into

packet headers, the Switching with in-packet Bloom filters

(SiBF) architecture [86] proposes a Valiant load balanced

forwarding service tailored for data center networks. Based on

OpenFlow-capable switches, iBFs are carried in the Ethernet

source and destination fields which are re-written at Top-of-

Rack switches.

tian et al. have proposed an application-oriented multicast

(aom) protocol [87]. each router uses the standard unicast ip

routing table to determine necessary multicast copies and next-

hop interfaces. all the multicast membership and addressing

information traversing the network is encoded with bloom

filters for low storage and bandwidth overhead. the paper goes

on to prove that the aom service model is loop-free and incurs

no redundant traffic. the false positive performance of the

bloom filter implementation was also analyzed.

5) Deep Packet Scanning and Packet Classification: Bloom

filters have found applications also in deep packet scanning, in

which applications need to search for predefined patterns in

packets at high speeds. Bloom filters can be used to detect

predefined signatures in packet payloads. When a suspect

packet is encountered, it can then be moved for further

investigation. One advantage of Bloom filters is that they can

be efficiently implemented in hardware and parallelized [88],

[46], [89], which can result in high-performance and energy-

efficient operation.

The storage requirements of the well-known crossproduct

algorithm used in packet classification can be significantly

reduced by using on-chip Bloom filters. For packets that match

p rules in a rule set, a proposed algorithm requires 4 + p+ e
independent memory accesses to return all matching rules,

where e is a small constant that depends on the false positive

rate of the Bloom filters [90].

Packet classification continues to be an important chal-

lenge in network processing. It requires matching each packet

against a database of rules and forwarding the packet accord-

ing to the highest priority matching rule. Within the hash-

based packet classification algorithms, an algorithm that is

gaining interest is the tuple space search algorithm that groups

the rules into a set of tuple spaces according to their prefix

lengths. An incoming packet can now be matched to the rules

in a group by taking into consideration only those prefixes

specified by the tuples. More importantly, matching of an

incoming packet can now be performed in parallel over all

tuples. Within these tuple spaces, a drawback of utilizing

hashing is that certain rules will be mapped to the same

location, also called a collision. The negative effect of such

a collision is that it will result in multiple memory accesses

and subsequently longer processing time. The authors of [91]

propose a pruned Counting Bloom Filter to reduce collisions in

the tuple space packet classification algorithm. The approach

decreases the number of collisions and memory accesses in

the rule set hash table in comparison to a traditional hashing

system. They investigate several well-known hashing functions

and determine the number of collisions and show that utilizing

the pruned Counting Bloom Filter can reduce the number of

collisions at least 4% and by at most 32% for real rule sets.

6) Content-based Publish/Subscribe: The content-based

publish-subscribe (pub-sub) paradigm for system design is

becoming increasingly popular, offering unique benefits for

many data-intensive applications. Coupled with peer-to-peer

technology, it can serve as a central building block for devel-

oping data-dissemination applications deployed over a large-

scale network infrastructure. A key open problem in creating

large-scale content-based pub-sub infrastructures relates to
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efficiently and accurately matching subscriptions with various

predicates to incoming events [92], [93]. A Bloom filter-based

approach has been proposed for general content-based routing

with predicates [93].

Bloom filters and additional predicate indices were used

in a mechanism to summarize subscriptions [94], [95]. An

Arithmetic Attribute Constraint Summary (AACS) and a

String Attribute Constraint Summary (SACS) were used to

summarize constraints, because Bloom filters cannot directly

capture the meaning of other operators than equality. The

subscription summarization is similar to filter merging, but

it is not transparent, because routers and servers need to be

aware of the summarization mechanism. In addition, the set

of attributes needs to be known a priori by all brokers and

new operators require new summarization indices. The benefit

of the summarization mechanism is improved efficiency, since

a custom-matching algorithm is used that is based on Bloom

filters and the additional indices.

D. Monitoring and Measurement

Network monitoring and measurement are key application

areas for Bloom filters and their variants. We briefly examine

some key cases in this domain, for example detection of heavy

flows, Iceberg queries, packet attribution, and approximate

state machines. Key functions for monitoring include flow

classification [96], [97] and approximate counting and sum-

marization of flows and packets [98], [99].

1) Heavy Flows: Bloom filters have found many appli-

cations in measurement of network traffic. One particular

application is the detection of heavy flows in a router. Heavy

flows can be detected with a relatively small amount of

space and small number of operations per packet by hashing

incoming packets into a variant of the counting Bloom filter

and incrementing the counter at each set bit with the size of the

packet. Then if the minimum counter exceeds some threshold

value, the flow is marked as a heavy flow [100].

2) Iceberg Queries: Iceberg queries [101] have been an

active area of research development. An Iceberg query is such

that identifies all items with frequency above some given

threshold. Bloom filter variants that are able to count elements

are good candidate structures for supporting Iceberg queries.

In networking, low-memory approximate histogram structures

are needed for collecting network statistics at runtime. For

example, in some applications it is necessary to track flows

across domains and perform, to name a few examples, con-

gestion and security monitoring. Iceberg queries can be used

to detect Denial-of-Service attacks.

Packet and payload attribution is another application area in

measurement for Bloom filters. The problem in payload attri-

bution is as follows. Given a payload, the system reduces the

uncertainty that we have about the actual source and destina-

tion(s) of the payload, within a given target time interval. The

goodness of the system is directly related with how much this

uncertainty can be reduced. The implementation of a payload

attribution system has two key components, namely a payload

processing component and a query-processing component.

3) Packet Attribution: The current Internet architecture

allows a malicious node to disguise its origin during denial-

of-service attacks with IP spoofing. A well-known solution

to identify these nodes is IP traceback. The main types of

traceback techniques are (1) to mark each packet with partial

path information probabilistically, and (2) to store packet

digests in the form of Bloom filters at routers and reconstruct

attack paths by checking neighboring routers iteratively.

The Source Path Isolation Engine (SPIE) [102] implements

a packet attribution system, in which the system keeps track of

incoming and outgoing packets at a router. Simply storing all

the resulting information is not feasible. Therefore, Snoeren

et al. proposed to use Bloom filters to reduce the state

requirements. A Bloom filter stores a summary of packet

information in a probabilistic way. One key observation is that

each router maintains its own Bloom filters and thus their hash

functions are independent.

A SPIE-capable router creates a packet digest for every

packet it processes. The digest is based on the packet’s non-

mutable header fields and a prefix of first 8 bytes of the

payload. These digests are then maintained by a network

component for a predefined time.

When a security component, such as an intrusion detection

system, detects that the network is under attack, it can use

SPIE to trace the packet’s route through the network to the

sender. A single packet can be traced to its source given that

the routers on the route still have the packet digest available. A

false positive in this setting means that a packet is incorrectly

reported as having been seen by a router. When the source of

a packet is traced, false positives mean that the reverse path

becomes a tree (essentially branches to multiple points due to

false positives).

The packet attribution was extended to payload attribution

by Shanmugasundaram et al. [31] with the Hierarchical Bloom

filter. As discussed in this survey, this structure allows the

query of a part of a string. SPIE uses the non-mutable headers

and a prefix of the payload, whereas with Hierarchical Bloom

filters it is sufficient to have only the payload to perform a

traceback.

The key idea of the IP traceback in [103] is to sample only

a small percentage (e.g., 3%) of the digests of the sampled

packets. Relying on a low sampling rate is critical to relax the

storage and computational requirements and allow link speeds

to scale to OC-192 or higher rates.

The Generalized Bloom filter (GBF) [51], introduced in

Sec. III-R, was conceived to address single-packet IP traceback

in a stateless fashion by probabilistically encoding a packet’s

route into the packets themselves. The key feature of the GBF

is the double set of hash functions to set and reset bits hop-

by-hop, which provides built-in protection against Bloom filter

tampering at the cost of some false negatives.

Counter braids [104] revisits the problem of accurate per-

flow measurement. The authors present a counter architecture,

called Counter Braids, inspired by sparse random graph codes.

In a nutshell, Counter Braids ”compresses while counting”.

It solves the central problems (counter space and flow-to-

counter association) of per-flow measurement by ”braiding” a

hierarchy of counters with random graphs. Braiding results in
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drastic space reduction by sharing counters among flows; and

using random graphs generated on-the-fly with hash functions

avoids the storage of flow-to-counter association.

While the problem of high-performance packet classification

has received a great deal of attention in recent years, the

research community has yet to develop algorithmic methods

that can overcome the drawbacks of TCAM-based solutions.

A hybrid approach, which partitions the filter set into subsets

that are easy to search efficiently, is introduced in [105]. The

partitioning strategy groups filters that are close to one another

in tuple space, which makes it possible to use information from

single-field lookups to limit the number of subsets that must

be searched. Running time can be traded off against space

consumption by adjusting the coarseness of the tuple space

partition. The authors find that for two-dimensional filter sets,

the method finds the best-matching filter with just four hash

probes while limiting the memory space expansion factor to

about 2. They also introduce a novel method for Longest Prefix

Matching (LPM), which is used as a component of the overall

packet classification algorithm. The LPM method uses a small

amount of on-chip memory to speed up the search of an off-

chip data structure, but uses significantly less on-chip memory

than earlier methods based on Bloom filters.

4) Approximate State Machines: Efficient and compact

state representation is needed in routers and other network

devices, in which the number and behaviour of flows needs

to be tracked. The Approximate Concurrent State Machine

(ACSM) approach was motivated by the observation that

network devices, such as NATs, firewalls, and application

level gateways, keep more and more state regarding TCP

connections [106]. The ACSM construction was proposed to

track the simultaneous state of a large number of entities

within a state machine. ACSMs can return false positives,

false negatives, and ’do not know’ answers. Their construction

follows the Bloom filter principle and proposes a space-

efficient fingerprint compressed d-left hash table design.

E. Security

The hashing nature of the Bloom filter makes it a natural

fit for security applications. Spafford (1992) was perhaps the

first person to use Bloom filters to support computer security.

The OPUS system [107] uses a Bloom filter which efficiently

encodes a wordlist containing poor password choices to help

users choose strong passwords. Two years later, Manber and

Wu [108] presented two extensions to enhance the Bloom-

filter-based check for weak passwords.

The privacy-preserving secure Bloom filters by Bellovin

and Cheswick [59], described in Sec. III-W, allows parties to

perform searches against each other’s document sets without

revealing the specific details of the queries. The system

supports query restrictions to limit the set of allowed queries.

Bloom filters have been used by Aguilera et al. [109] to

detect hash tampering in a network-attached disks (NADs)

infrastructure. Also in the field of forensic filesystem prac-

tices, the md5bloom manipulation tool [110] employs Bloom

filters to efficiently aggregate and search hashing information,

demonstrating its practicality of identifying object versioning

in Linux libraries.

Moving over to the field of network security, Attig, Dharma-

purikar and Lockwood [111] describe an FPGA implemen-

tation of an array of Bloom filters and a hash table used

for string matching to scan malicious Internet packets. The

system searches 25 Bloom filters with string signature lengths

from 2 to 26 bytes in parallel. False positives are resolved

by exact match search using the hash table. Matches generate

UDP packets that notify the user, a monitoring process, or a

network administrator.

Antichi et al. [112] used Counting Bloom Filters to detect

TCP and IP fragmentation evasion attacks. Attack signatures

were split to 3-byte substrings which were inserted into a

CBF. One CBF per attack signature string per flow was used.

Incoming fragmented packet data was then matched against the

CBF’s and attack substrings detected. Each substring detected

was removed from the corresponding CBF. Corresponding

full string matchers were also enabled when a substring was

detected. When the CBF was empty to the degree α, the attack

string was considered detected, and the full string matcher was

used to check for false positives. In case the full string matcher

detected the attack, the flow was blocked. The authors report

a greater than 99% detection rate and false positive ratios of

1% or less.

Bloom filters are used in the Trickles stateless network

stack and transport protocol for preventing replay attacks

against servers. Two Bloom filters of identical size and using

the same family of hash functions are used to simplify the

periodic purge operation [113]. The counting variant (CBF)

is used in [114] to provide a lightweight route verification

mechanism that enables a router to discover route failures

and inconsistencies between advertised Internet routes and the

actual paths taken by the data.

Focusing on the distributed denial-of-service (DDoS) issues,

Ballani et al. [115] were among the first to use in-network

Bloom filters to pro-actively filter out attacks, allowing each

host to explicitly declare to the network routing infrastructure

what traffic it wants routed to it. In addition to performing

the standard longest-prefix match before forwarding packets, a

router performs a reachability check using Bloom filters. Sim-

ilar in their reliance on Bloom filters, Phalanx [116] combines

the notion of capabilities with a multi-path-aware overlay,

implementing Bloom filters to reduce state requirements while

still providing probabilistic guarantees for in-network security.

Wang et al. [117] propose congestion puzzles to mitigate

bandwidth-exhaustion attacks. Congested routers challenge

clients to generate hashes that match certain criteria in order

to obtain bandwidth. Basic Bloom filters are maintained at

routers to detect duplicate solutions.

In [118], Wolf presents a mechanism where packet forward-

ing is dependent on credentials represented as a packet header

size Bloom filter. Credentials are issued by en-route routers on

flow initiation and later verified on a packet-basis. Also based

on in-packet Bloom filters (iBF), the self-routing capabilities

in [119] enhance the security properties of LIPSIN [85] by

using iBFs as forwarding identifiers that act simultaneously as

path designators, i.e. define which path the packet should take,

and as capabilities, i.e. effectively allowing the forwarding

nodes along the path to enforce a security policy where
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Fig. 14. Overview of device wakeup using a Bloom filter

only explicitly authorized packets are forwarded. Link IDs

are dynamically computed at packet forwarding time using a

loosely synchronized time-based shared secret and additional

in-packet flow information (e.g., invariant packet contents).

The capabilities are thus expirable and flow-dependent, but

do not require any per-flow network state or memory look-

ups, which are traded-off for additional, though amenable, per-

packet computation.

In wireless sensor networks (WSNs), a typical attack by

compromised sensor nodes consists of injecting large quan-

tities of bogus sensing reports, which, if undetected, are

forwarded to the data collector(s). The statistical en-route

filtering approach [120] proposes a detection method based

on a Bloom filter representation of the report generation

(collection of keyed message authentications), that is verified

probabilistically and dropped en-route in case of incorrectness.

In order to address the problem of multiuser broadcast authen-

tication in WSNs, Ren et al. [121] propose a neat integration

of several cryptographic techniques, including Bloom filters,

the partial message recovery signature scheme and the Merkle

hash tree.

F. Other Applications

This section summarizes use of Bloom filters in several

other interesting applications.

In web services, Counting Bloom Filters have been used for

accelerated service discovery [122]. To manage a large number

of services based on quantified service features, the features

were stored in text form and mapped into the Bloom filter.

A Bloom filter-based wakeup mechanism has recently been

proposed [123]. This work proposes an identifier-matching

mechanism that uses a Bloom filter for wake-up wireless

communication. The devices and services agree on wake-on

wireless identifiers beforehand. The simulation results suggest

that this approach can be used to reduce mobile device

energy consumption. The identifier-matching mechanism can

be implemented with a simple circuit using a Bloom filter, in

which a query only uses an AND circuit. Figure 14 shows an

overview of device wakeup using a Bloom filter.

The authors of [124] introduce a novel approximate method

for XML data filtering, in which a group of Bloom filters

represented a routing table entry and filtered packets according

to XPath queries encoded to it. In this method, millions of path

queries can be stored efficiently. At the same time, it is easy

to deal with the change of these path queries. Performance

is improved by using Prefix Filters to decrease the number

of candidate paths. This Bloom filter-based method takes less

time to build a routing table than an automaton-based method.

The method has a good performance with acceptable fpr when

filtering XML packets of relatively small depth with millions

of path queries.

Achieving expressive and efficient content-based routing in

publish/subscribe systems is a difficult problem. Traditional

approaches prove to be either inefficient or severely limited

in their expressiveness and flexibility. The authors of [93]

present a novel routing method, based on Bloom filters, which

shows high efficiency while simultaneously preserving the

flexibility of content-based schemes. The resulting implemen-

tation is a fast, flexible and fully decoupled content-based

publish/subscribe system.

As pervasive computing environments become popular,

RFID tags are introduced into our daily life. However, there

exists a privacy problem that an adversary can trace users’

behavior by linking the tag’s ID. Although a hash-chain

scheme can solve this privacy problem, the scheme needs a

long identification time or a large amount of memory. The au-

thors of [125] propose an efficient identification scheme using

Bloom filters. Their Bloom pre-calculation scheme provides

high-speed identification with a small amount of memory by

storing pre-calculated outputs of the tags in Bloom filters.

The authors of [126] propose a simple but elegant modifi-

cation to the Bloom filter algorithm for hardware implementa-

tions that uses banking combined with special hash functions

that guarantee all hash indexes fall into non-conflicting banks.

They evaluate several applications of this Banked Bloom filter

(BBF) in prediction in processors: BBF branch prediction,

BBF load hit/miss prediction, and BBF last-tag prediction.

The BBF predictors can provide accurate predictions with

substantially less cost than previous techniques.

A power management proxy for P2P applications used N
sets of hash functions and picked the Bloom filter with the

least 1 bits to improve the false positive rate [127]. The hash

functions were generated from a seed hash using a RNG. The

system was used to allow a smart NIC to answer peer queries,

and the computer was only woken up for download and upload

tasks to conserve energy.

Bloom filters have been used for differential file access in

a DBMS [128]. The differential file, with updated records,

would be accessed only when the record to fetch was contained

in the Bloom filter, indicating that the record in the database

is not up-to-date. Otherwise the system would know that the

record has not been changed, and it is sufficient to read the

record from the database.

Bloom filters were used in probabilistic finite state transi-

tion system verification in [129]. The authors optimize hash

calculation by shortening the state name using hashing, and

then re-hashing the resulting value to obtain the k Bloom filter

indices. A Bloom filter allows all states to be kept in memory

in a compact manner so that verification can proceed without

swapping.
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Fig. 15. Summary of Bloom filter variants

In [130], Bloom filters are used to represent and query

ranges of multi-dimensional data. Range queries are handled

by segmenting the attribute range into separate Bloom filters

that represent membership in that segment.

V. SUMMARY

Bloom filters are a general aid for network processing

and improving the performance and scalability of distributed

systems. In Figure 15, The Bloom filter variants introduced in

this paper are categorized by application domain and supported

features. The Figure aims to help domain experts select an

appropriate Bloom filter based on their application. An expert

need only find their domain on the left side and pick a Bloom

filter on its right. Each rectangular bubble represents a Bloom

filter variant. Variants that support a certain feature are found

inside a highlighted area labeled with the name of that feature.

Approximate count and deletion support refers to the ability

to support approximate multiplicity and deletion of elements.

The variants that support this are derived from the Counting

Bloom Filter and include an array of fixed or variable size

counters. Memory efficiency means that the variant optimizes

the memory use of a Bloom filter in some fashion. These

are recommended for applications in which memory is scarce.

Partial matching means the ability to answer the question

if x is near an element contained in the filter. These allow

for example in-word matches for text search. High variability

variants allow rapid changes in the set of items stored in the

filter, such as those required by per-flow traffic monitoring.

Finally, Unbounded duplicate detection is a class of Bloom

filter that aims to represent a continuous stream of incoming

elements and detect duplicate elements in the stream. The

Figure also includes five variants that have been grouped

into General add-ons. These Bloom filter techniques can be

employed alone, or combined with another variant in the

Figure. For example, many Bloom filters can be combined

with Scalable Bloom Filter by increasing their length with

a new block of space after the false positive ratio reaches a

certain value.
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