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Theory and practice of modeling van der Waals
interactions in electronic-structure calculations

Martin Stöhr, a Troy Van Voorhisb and Alexandre Tkatchenko *a

The accurate description of long-range electron correlation, most prominently including van der Waals

(vdW) dispersion interactions, represents a particularly challenging task in the modeling of molecules and

materials. vdW forces arise from the interaction of quantum-mechanical fluctuations in the electronic

charge density. Within (semi-)local density functional approximations or Hartree–Fock theory such inter-

actions are neglected altogether. Non-covalent vdW interactions, however, are ubiquitous in nature and

play a key role for the understanding and accurate description of the stability, dynamics, structure, and

response properties in a plethora of systems. During the last decade, many promising methods have been

developed for modeling vdW interactions in electronic-structure calculations. These methods include vdW-

inclusive Density Functional Theory and correlated post-Hartree–Fock approaches. Here, we focus on the

methods within the framework of Density Functional Theory, including non-local van der Waals density

functionals, interatomic dispersion models within many-body and pairwise formulation, and random phase

approximation-based approaches. This review aims to guide the reader through the theoretical foundations of

these methods in a tutorial-style manner and, in particular, highlight practical aspects such as the applicability

and the advantages and shortcomings of current vdW-inclusive approaches. In addition, we give an overview

of complementary experimental approaches, and discuss tools for the qualitative understanding of non-

covalent interactions as well as energy decomposition techniques. Besides representing a reference for

the current state-of-the-art, this work is thus also designed as a concise and detailed introduction to

vdW-inclusive electronic structure calculations for a general and broad audience.

1 Introduction

Thebasic challengewhenmodelingmolecules ormaterials from first
principles of quantum mechanics is that it is impossible to exactly
solve the many-body problem for a system with many electrons.
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The vast majority of practical methods in electronic structure theory
approaches this problem by reformulating theN-electron problem
to N effective independent-particle problems. Examples of this are
the Hartree–Fock (HF) equations in wavefunction-basedmethods or
the Kohn–Sham (KS) reference system in density functional theory
(DFT). This seminal reformulation paves the way to first-principles
modeling of molecules andmaterials and already captures, depend-
ing on the system, 99 per cent ormore of the total electronic energy.†
Unfortunately, the remaining fraction of the total electronic energy
can be crucial for various observables and properties of interest,
such as relative energies,1–4 binding properties,5–9 and structural
features3,4,10,11 as well as the mechanical,12,13 thermodynamic,4,14

kinetic,15–17 and electronic18,19 signatures of a given system. In the
simple case of an Argon dimer for instance, KS-DFT calculation
with the hybrid PBE0 functional captures about 99.95%of the total
energy, but it gives no more than roughly 15% of the interaction
energy. HF does not even bind an Argon dimer. The major part of
the missing electronic energy is due to the correlated motion of
electrons, or correlated quantum-mechanical fluctuations of the
average electron distribution in the DFT picture. It is thus referred
to as (long-range) electron correlation energy.‡ In particular, the

long-range correlation energy represents a challenging task in
electronic structure calculations due to its highly non-local
character. The main component of this long-range contribution
iswhat is knownas the vanderWaals (vdW)dispersion interaction.
As such, vdW interactions are inherently quantum-mechanical
and many-body (‘‘collective’’) in nature and, moreover, they are
ubiquitous in molecular systems and materials. The strongly non-
linear scaling with size in polarizable systems2,23 presents further
challenges for modeling such long-range correlation forces.

Describing (long-range) electron correlation has been a
central topic in the quantum chemistry community, which
since the early days mainly focused on wavefunction-based
methods typically starting from the HF mean-field picture.
Thanks to extensive methodological developments a number
of asymptotically correct and to some extent practical methods
have been devised. Among those the coupled cluster technique
has established itself as one of the most prevalent post-HF
methods in quantum chemistry. Coupled cluster theory starts
from a Slater determinant based on the mean-field HF orbitals
and includes excitations by the use of the exponential cluster
operator. Such intrinsic electronic excitations represent the
analogue of electron density fluctuations in a perturbation
picture. Accounting for up to double excitations together with
a perturbative treatment of triple excitations, labeled as
CCSD(T), is usually referred to as the gold standard and often
relied upon as a reference method for more approximate
models. However, CCSD(T) and comparably accurate methods
are still limited to small- and medium-sized systems (typically
less than B200 atoms) due to the immense computational
costs characterized by a scaling of the computation time with
the number of electrons to the power of 7. A quite different, yet
similarly accurate, approach is Quantum Monte-Carlo (QMC).
Here, one solves the many-body Schrödinger equation in a
stochastic manner. The most relevant flavors of QMC in the
context of modeling molecules and materials are: Variational
Monte-Carlo, Green’s Function Monte-Carlo and Diffusion
Monte-Carlo, which exploits the similarity between Schrödinger’s
equation and a diffusion equation in imaginary time. Thanks to
its stochastic character one can even estimate the expected
deviation from the exact solution. Parallelization of this
approach is straightforward and tractable system sizes have
reached a few hundreds of atoms,24 which has boosted its use
as a benchmark method in recent years. In the end, both
CCSD(T) and QMC are typically only used to benchmark
(interaction) energies based on a given structure, as force
evaluation can become extremely intricate as a result of their
perturbative or stochastic character.

In contrast to accurate quantum-chemical methods, density
functional approximations (DFAs) require less computational
workload and offer access to atomic forces. Since the first
successful applications of DFT, however, the lack of explicit
electron correlation has proven itself an important issue when
modeling molecular systems and gave rise to numerous devel-
opments. As of today, a vast number of possible remedies
has been proposed. Thereby, an a posteriori inclusion of long-
range correlation forces is the most widely used approach.
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† Even though the KS equations in DFT are, in principle, exact, the universal
exchange–correlation functional is yet unknown and the (semi-)local approxima-
tions to it based on the uniform electron gas give rise to similar shortcomings.
‡ For completeness: electron correlation is often divided into dynamic and static (or
non-dynamic) correlation.20,21 The dynamic correlation energy, to which vdW inter-
actions can be assigned, represents the energy difference due to approximating the
instantaneous interaction of electrons by the interaction of each electron with the
average field due to all other electrons (mean field formalism).20 The energy
difference arising when a system cannot be described by a single, pure electronic
state e.g., due to (near-)degeneracies of electronic states, is referred to as static (non-
dynamic) correlation energy. Proper description of this effect requires so-called
multi-reference methods and is beyond the scope of this work, see ref. 22, for
instance. In this work, correlation energy shall refer to dynamic correlation only.
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Nevertheless, it is worthwhile to point out that long-range
correlation is, in principle, part of the electronic Hamiltonian
and can thus also affect the solution of the self-consistent field
procedure.18,19

In this work, we review the origin of vdW forces and
particularly focus on practical approaches how to qualitatively
understand and quantitatively model dispersion interactions in
electronic structure calculations. We start out by giving an exact
formulation based on the non-local electron correlation energy
and the approximate reduction to additive two-body interaction
potentials and its fundamental limitations in Section 2. Section 3
gives a brief overview of relevant experimental techniques and
observations. We then present analysis tools for understanding
vdW interactions in Section 4 before describing quantitative
and practical approaches for calculating dispersion forces in
Section 5. In Section 6, we showcase the performance and some
of the strengths and weaknesses of the most widely-used models
and Section 7 gives a summary and conclusion of current
methods and a short outlook on open problems and future
developments. Throughout this work we will focus on approaches
within the scope of DFT, being the main workhorse in first-
principles modeling of molecules and materials, but we draw
connections to wavefunction-based techniques where applicable.

2 van der Waals interactions:
formulation from non-local electron
correlation

The electron correlation energy, Ecorr, is typically defined as the
difference between the exact (non-relativistic) solution of the
Schrödinger equation and the effective mean-field description
such as the HF or KS reference system. Hence, it depends on
the definition of the mean-field description and can be rigorously
formulated in multiple ways.21 In this work, we rely on the
so-called adiabatic-connection fluctuation–dissipation (ACFD)
theorem, as it provides a common basis for the majority of
methods presented in this article. The ACFD theorem provides
an exact formulation of the non-relativistic (non-retarded)
exchange and correlation energy of a system in terms of the
Coulomb-coupled density response on top of an independent-
particle framework such as the HF or KS reference system.
Relativistic effects such as retardation and scattering as well as
thermal field fluctuations can play an important role for extended,
mesoscopic systems (cf. Casimir forces), but will not be covered in
this work. For reviews on this topic, see ref. 25 or 26, for instance.

2.1 Exact formulation from the adiabatic-connection

fluctuation–dissipation theorem

The ACFD formula originates from linear response theory§ and
relies on the non-local, time-dependent density–density

response function, w(r,r0,t,t0), which describes the response of
an electron density at point r and time t to a perturbation at
position r0 at time t0. Under the assumption of time invariance,
which holds for stationary states in quantum mechanics, the
time-dependent density response can be Fourier-transformed
to the frequency domain yielding the non-local, frequency-
dependent, and complex-valued density response, w(r,r0,o).
Thereby, the imaginary part describes the contribution due to
dissipation.28 Hence, integrating over the Coulomb-coupled
imaginary part of w(r,r0,o) gives the energy due to dissipation
of a (scalar) perturbation.

In quantum mechanics, any charge density is subject to
instantaneous fluctuations, which gives rise to intrinsic fluc-
tuations of the electric field within the system (or vice versa).
The electron correlation energy is the dissipation energy of this
fluctuating electric field. The ACFD theorem states that the
energy due to dissipation of such internal perturbations is the
same as for external perturbations and can thus be calculated
via the imaginary part of w(r,r0,o). Evaluation of the correlation
energy on top of an independent-particle formalism is then
carried out by means of the adiabatic theorem,29,30 meaning via
coupling parameter integration from the non-correlated system
to the fully correlated density response (atomic units used
throughout this work):

Ecorr ¼ � 1

2p

ð1

0

do

ð1

0

dl

ðð

drdr0 wl r; r
0
; ioð Þ½

� wl¼0 r; r
0
; ioð Þ�VCoul r; r

0ð Þ
(1)

with l as the coupling constant, where l = 1 corresponds to the
real, fully correlated system and l = 0 to the non-correlated
system of independent electrons, e.g., the KS (or HF) reference
system.VCoul = 1/8r � r08 is the Coulomb potential, with 8r � r08

being the (Euclidean) distance between the points r and r0. For the
integration of the imaginary part of w(r,r0,o) we have used:28

ð1

0

Imw r; r
0
;oð Þdo ¼

ð1

0

w r; r
0
; ioð Þdo: (2)

To further simplify the derivation and explanation of the practical
approaches outlined below, we may also reformulate the ACFD
formula (1) in terms of the non-local, frequency-dependent
polarizability tensor a(r,r,io), which is connected to the density
response via w(r,r0,io) = rrrr0a(r,r0,io). Introducing the dipole
coupling tensor T(r,r0) = �rr # rr0VCoul(r,r0), one can rewrite
eqn (1) as,

Ecorr ¼ 1

2p

ð1

0

do

ð1

0

dl

ðð

drdr0Tr al r; r
0
; ioð Þ½f

� al¼0 r; r
0
; ioð Þ�T r; r

0ð Þg;

(3)

where Tr{�} denotes the trace operator over Cartesian com-
ponents.27 The non-local polarizability within the independent-
particle framework (al=0) can be directly calculated based on the
single-particle states via the Adler–Wiser formula31,32 and the
polarizability tensor of the correlated system can be defined via

§ We point out, that while the response of a material can be highly non-linear, the
electron correlation energy can be fully recovered solely based on linear response
functions, which allows linear response theory and the ACFD theorem to be
exact.27
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the self-consistent Dyson equation,

al r; r
0
; ioð Þ ¼ al¼0 r; r

0
; ioð Þ �

ðð

al¼0 r; r
00
; ioð Þ

� lTxc;l r
00
; r

000
; ioð Þal r

000
; r

0
; ioð Þdr00dr000

� a0 � la0Txc;lal
� �

r00 ;r000

¼
X1

n¼0

a0 �lTxc;la0
� �n� �

r00 ;r000 ;

(4)

where we have introduced the shorthand h�ir00,r00 0 for the integra-
tion over spatial coordinates, r00 and r00 0, and skipped the
explicit notion of the variables of a and Txc,l for clarity. The
coupling tensor Txc,l is defined for each coupling constant
l as,27

Txc;l r
00
; r

000
;oð Þ ¼ T r

00
; r

000ð Þ � 1

l
rr00 �rr000 fxc;l r

00
; r

000
;oð Þ: (5)

In practice, the exact exchange–correlation kernel, fxc,l, in
eqn (5) is not known. Thus, direct evaluation of the ACFD
formula, both in terms of w and a, is not possible. Practical
approaches that directly involve the ACFD formulation there-
fore involve the neglect of the explicit dependence on l and
additional approximations for the exchange–correlation kernel.
The most prominent method among those relies on the ran-
dom phase approximation and is covered in further detail in
Section 5.1.

For the purpose of discussing vdW interactions, i.e., long-
range correlation forces, and especially for comparing the
various approaches to describe vdW interactions, it is worth-
while to further separate the above exact formulation of the
electron correlation energy into short- and long-range con-
tributions as detailed in ref. 27 and 33. For this, we split the
coupling tensors in eqn (3) and (4) by means of a range-
separating function grs(8r � r 08), which satisfies grs(0) = 0 and
grs(8r � r 08 - N) = 1. This separates the total electron
correlation energy into a short- and a long-range contribution,
where the latter can be seen as an analogue to the original
definition of vdW dispersion interactions based on a perturba-
tive picture of intermolecular interactions.27 In the Dyson
eqn (4), we may range-separate the full coupling tensor, Txc,l,
into a short- and a long-range screening tensor (T(sr)

xc,l and T(lr)
xc,l,

respectively) according to

Txc;l ¼ 1� grs r� r
0k kð Þ½ �Txc;l

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ grs r� r

0k kð ÞTxc;l
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ T
ðsrÞ
xc;l þ T

ðlrÞ
xc;l;

(6)

which in turn account for short- and long-range screening of
the non-local polarizability, respectively. Inserting this into
eqn (4) and subsequently contracting all short-range screening
components lets us define an effective, non-local polarizability,
a(sr), which already includes short-range screening. By the use

of this definition, eqn (4) becomes

al ¼
X1

n¼0

aðsrÞ �lT
ðlÞ
xc;lra

ðsrÞ
� �nD E

r00 ;r000
: (7)

Finally, combining eqn (7) and the long-range part of the ACFD
formula (3) gives the long-range electron correlation energy,

EðlrÞ
corr ¼ �

X1

n¼1

1

2p

ð1

0

do

ð1

0

dl

� Tr aðsrÞ lT
ðlrÞ
xc;la

ðsrÞ
� �nD E

r00;r000

	 


Tlr r; r
0ð Þ

� �
 �

r;r0
;

(8)

where Tlr is the long-range part of the bare dipole coupling tensor
and then=0 termcancels out.Note thatwehavenot introducedany
approximationsup to thispoint and thesumofeqn (8) and its short-
range analogue still equals the exact total correlation energy as
defined by eqn (3). In this work, we use the above definition of the
long-range correlation energy (8) as the vdW energy for all non-
perturbative approaches to dispersion interactions and as we shall
see,manywidely-used vdWmodels can be traced down to this form
of the ACFD formula, where each flavor involves a given approxi-
mation for the effective polarizability after short-range screening,
a(sr), and the exchange–correlation kernel in T(lr)xc,l or combinations
thereof.

2.2 Approximate reduction to interaction coefficients

As can be seen from the definitions in Section 2.1, the polariz-
ability and the electron correlation energy have a highly complex,
non-local character. As of today, numerous experimental and
theoretical works have clearly shown the many-body nature of
dispersion forces. Nonetheless, one of the most common appro-
aches to model vdW interactions is by the use of pairwise-additive
potentials. In this section, we sketch the approximations and basic
steps leading to the fundamental form of pairwise potentials for
long-range correlation forces based on the long-range ACFD for-
mula (8). At this point, we would like to note that the functional
form derived below can be, and was obtained, in multiple ways
including (many-body) perturbation theory and other approxima-
tions to the ACFD formula.

One of the most successful and common approximations is
the so-called random phase approximation (RPA), which corre-
sponds to the neglect of the unknown exchange–correlation
kernel ( fxc,l = 0). Within the range-separated ACFD formula, we
may apply that approximation only in the long-range part,
where fxc,l indeed barely contributes, such that T(lr)

xc,l in eqn (8)
no longer explicitly depends on l and reduces to Tlr. This allows
us to analytically carry out the integration over the coupling
constant, which leads to the series

Eðlr;RPAÞ
corr ¼ �

X1

n¼2

�1ð Þn
n

1

2p

ð1

0

do

� Tr aðsrÞTlr

� �nD E

r00 ;r000

� �
 �

r;r0

(9)

where the index n is shifted by +1 due to integration over l.
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Next, we approximate the non-local polarizability by a sum
of point-like, local polarizabilities situated at the N atomic
positions, {RA}, by the use of the three-dimensional Dirac
delta-function, d3(r):

aðsrÞ �
XN

A¼1

a
ðsrÞ
A ioð Þd3 r� RAð Þd3 r� r

0ð Þ �
XN

A¼1

a
ðsrÞ
A : (10)

Inserting this into the long-range RPA correlation energy gives,

Eðlr;RPAÞ
corr ��

X1

n¼2

�1ð Þn
n

1

2p

ð1

0

do

� Tr
XN

A¼1

a
ðsrÞ
A Tlr

 !n* +

r00 ;r000

8

<

:

9

=

;

* +

r;r0

:

(11)

It can be seen that we get a(sr)A Tlra
(sr)
B Tlr for n = 2, a(sr)A Tlra

(sr)
B Tlra

(sr)
C Tlr

for n = 3, and so on. Thus, the expansion series (11) is a series
of all the nth-order correlation terms. As such, the order n does
not represent a pure n-body (in this work, body refers to atom)
vdW interaction term, as for instance defined in the perturba-
tional approach. For example, n = 3 contains non-vanishing
terms with C = A, which correspond to screened two-body
interactions.

n = 2, on the other side, only involves non-vanishing terms
with two different polarizability centers A and B and is therefore
a pure (yet incomplete) two-body vdW interaction. If we limit
ourselves to this second-order term, E(2)corr, we can carry out the
integration over spatial coordinates to arrive at,

Eð2Þ
corr ¼ �1

2

1

2p

ð1

0

doTr
X

A;B

a
ðsrÞ
A T

ðlrÞ
ABa

ðsrÞ
B T

ðlrÞ
BA

( )

; (12)

where T(lr)
AB � Tlr(RA,RB). As a final approximation, we assume

the point polarizabilities to be isotropic, i.e., a(sr)A = a(sr)A 1, with 1
being (3 � 3) unity. As a result, the polarizabilities and dipole
tensors commute and

Eð2Þ
corr ¼ �1

2

X

A;B

3

p

ð1

0

a
ðsrÞ
A a

ðsrÞ
B do

1

6
Tr T

ðlrÞ
ABT

ðlrÞ
BA

n o

: (13)

The integral in the above equation is known as the Casimir–
Polder integral34 and corresponds to the so-called C6-
interaction coefficient (Hamaker constant for macroscopic
spherical bodies35). Noting that T(lr)

AB = grs(8RA � RB8)TAB,
TAA = 0, and Tr{TABTBA} = 6/8RA � RB8

6 leads to

Eð2Þ
corr ¼ � 1

2

X

AaB

3

p

ð1

0

a
ðsrÞ
A a

ðsrÞ
B do

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

grs RA � RBk kð Þ2
RA � RBk k6

¼ � 1

2

X

AaB

C
ðeffÞ
6;AB

fdamp RABð Þ
RAB

6
;

(14)

where we have used RAB = ||RA � RB|| and introduced the
damping function fdamp(RAB) = grs(RAB)

2. This is the well-known
formula for the vdW dispersion interaction between two micro-
scopic bodies within the dipole approximation as first derived
by London.36 As of today, a manifold of pairwise-additive vdW

models has been devised and widely used.37–45 The general
difference between those models lies in the damping function,
fdamp, and how effective, short-range screened interaction coeffi-
cients are obtained. It is worthwhile to point out that the same
functional form can be derived based on a full-range RPA of
eqn (3), by invoking the so-called full potential approximation,
i.e., al = a1,

46 from a model system of Quantum Drude
Oscillators47 or in various ways from (second-order) perturba-
tion theory invoking a multipole expansion and subsequent
dipole approximation for the interaction potential.47

2.3 Non-additive aspects of van der Waals interactions

The above derivations show the theoretical foundation of vdW
dispersion interactions and with eqn (14) we have derived an
approximated expression. However, no seamless way of obtaining
the damping function, the short-range screened polarizabilities,
or the resulting C6-interaction coefficients has been put forward
as of the time of this article. In addition, the expansion (or
corresponding perturbation) series is truncated at second order
and one has to invoke an additional approximation for the – at
least long-range part of the – coupling potential, Txc,l, to arrive at
the pairwise formula (14). As classified by Dobson, effects beyond
this pairwise-additive expression for vdW interactions can, in
general, be understood in terms of three types of non-additivity,48

	 Type A: the effect of the local chemical environment on
the polarizability apart from short-range screening. One often
relies on partitioning the system into its constituent atoms for
the construction of the polarizability of the (sub)system. Type A
non-additivity can be understood by the fact that the polariz-
ability in the KS reference system does not correspond to a
superposition of a0 of isolated atoms. This type of non-
additivity is accounted for in almost all modern vdW models.

	 Type B: electron correlation and screening are defined by
multi-center integrals. This enters the ACFD formalism both in
form of the electrodynamic screening in the Dyson-like eqn (4)
as well as in the expansion series of the (long-range) correlation
energy to finite orders of n in eqn (8), i.e., many-body inter-
actions and higher-order correlation terms. The difference of
coupled N-center interactions and a sum of pairwise terms is
illustrated in Fig. 1: in the pairwise formula, the energy arises
as the sum of the interaction of pairs of instantaneous dipoles,
which fluctuate in ideal alignment. However, all fluctuations
are coupled simultaneously (multi-center interaction), which
does not necessarily correspond to a sum of ideally correlated
dipoles as shown by select collective density fluctuation patterns
for the simple example of an Argon trimer in Fig. 1 (right). This
type of non-additivity manifests itself particularly in (sub)systems
with strong anisotropy, complex geometrical arrangements, or
reduced symmetry (1D, 2D materials) and can substantially alter
the scaling laws for vdW interactions.2,23,27,48–50

	 Type C: assigned to systems with extremely large deloca-
lization lengths, basically corresponding to intrinsic electron
hopping between atomic centers. Such phenomena cannot fully
be described within an atom-centered framework of polariz-
ability and electronic fluctuations. Understandably, type C
non-additivity almost exclusively appears in systems with a
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(near-)zero band (or HOMO–LUMO) gap, which allow for
quantum-mechanical fluctuations to cause instantaneous
electron hopping.48

3 van der Waals forces in experiment
3.1 Experimental assessment

As a result of the non-additive and non-pairwise effects outlined
above, the simplified additive description in eqn (14) has been
found to be insufficient for a variety of systems and an increasing
number of experiments showcase the non-local and non-additive
character of vdW dispersion interactions. In this regard, it has to
be mentioned that direct experimental assessment of vdW inter-
actions is intrinsically difficult as they are typically intertwined
with several other (non-covalent) interactions and appear on all
scales including intra- as well as intermolecular forces. This,
obviously, complicates a clear-cut direct analysis from experi-
mental observables. A very successful approach to disentangle
non-covalent interactions is via competition methods (see e.g.,
ref. 51 and 52), where one relies on a comparison of the binding
energies among well-controlled complementary systems or
interaction mechanisms. Such complementary systems include
structural mutations, varying binding partners, or different
solvents. This, however, has the disadvantage that the molecule
or material must not exhibit significant structural distortions
or different interaction mechanisms among the modifications,
which is mostly not given for complex systems like biopolymers,
for example. In addition, measurements require highly accurate
force measurements under well-defined experimental conditions
on a microscopic level,26 which ideally involves accurate control
over position and balancing potentials on the level of individual
atoms or molecules. For instance, Chemical Force Microscopy
(CFM),53 which relies on chemical functionalization of Atomic
Force Microscopy (AFM) probes, represents a very promising tech-
nique to directly measure non-covalent interactions, but requires
special position control of one of the binding partners.54

The common experimental techniques to study vdW inter-
actions can be categorized into measurements of binding

affinities and kinetics of vdW-bound systems and spectroscopy.
Among others, the former group includes AFM/CFM, Surface
Plasmon Resonance experiments, as well as (spectroscopic)
titration techniques and sublimation experiments like (micro-)-
calorimetry. On the one side, these methods by now undoubt-
edly provide highly accurate results and vital insights into the
properties and behavior of the system under consideration.
On the other side, the computational costs of most electronic
structure methods prohibit a sufficiently complete description
of the thermodynamics to be directly compared to these
experiments. Comparisons to this kind of experiment therefore
usually rely on ‘‘experimentally derived’’ interaction energies,
where approximate models are used to estimate the effect of
experimental conditions such as finite temperature and solvent
(see e.g., the S12L and X23 benchmark set introduced in Section
6.1). Of course, this can introduce considerable uncertainties in
the experimental reference.8,55

Spectroscopic techniques like Nuclear Magnetic Response
measurements, Terahertz (THz) experiments, or X-ray spectro-
scopy, for example, mostly provide information on the system’s
structure and (roto-)vibrational response. THz spectroscopy
thereby represents a versatile and particularly promising
approach in our view as it probes more collective vibrations,
for which long-range interactions naturally play a pivotal role.
Non-linear, i.e., multi-dimensional, THz spectroscopy then
even allows to investigate long-range dynamics and non-local
response properties as shown in ref. 56, for instance. In
general, multi-dimensional approaches, also including 2D elec-
tronic spectroscopy, can provide insights into long-range and
long-timescale (relaxation) dynamics, where we expect an
important role of non-local interactions for the dynamics and
dissipation channels of a system. Disentangling the spectro-
scopic features for complex systems beyond a few atoms usually
poses a very challenging task, however. The increased popula-
tion of rotationally and vibrationally excited states due to
temperature further complicates this problem. To limit this
aspect, spectroscopic measurements are typically combined
with jet-cooling techniques.57 In addition, the analysis of
experimental spectra is usually performed in conjunction with
computationally demanding simulations and thus limited to
small- or medium-sized systems.54 This, of course, limits the
exploration of the highly non-trivial behavior of electron corre-
lation at increased system size and complexity.

Despite or maybe even due to the challenges and limitations,
the experimental assessment of vdW forces represents a rapidly
progressing field, in which probably three classes of systems have
emerged as main work horses: hybrid inorganic–organic systems
(non-covalent surface bonding), supramolecular complexes, and
layered materials (multiple two-dimensional systems bound by
vdW forces – often even referred to as vdW materials). Obviously,
the main characteristic is that within these classes one can realize
systems that are predominantly or almost exclusively vdW-bound.
In addition, hybrid inorganic–organic systems are naturally pre-
destined for AFM/CFM measurements and therefore allow
for accurate and direct probing of non-covalent interactions.
(Synthetic) supramolecular complexes are most often stable

Fig. 1 Illustrative comparison of the (assumed) physics behind pairwise-
additive (left) and many-atom (right) van der Waals interactions in an
interatomic picture for an Argon (cyan) trimer. The arrows of a given color
each depict an ‘‘eigenmode’’ of simultaneous electron density fluctuations.
In the dipole-limit, these represent the alignment of fluctuating, instanta-
neous dipoles. See text for further discussion.
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over a wide range of conditions including varying temperature
and solvents and can easily be mutated, which enables reliable
competition methods.54 Layered materials offer a wide range of
hetero- and homo-structures, which can be realized on various
length scales. This allows to observe interlayer (vdW) inter-
actions for a variety of mono-layer properties and different
contact areas through mechanical or chemical exfoliation, for
instance. This feature, which is also true for hybrid inorganic–
organic systems, enables studies on the scaling behavior of
vdW forces with increasing ‘‘interaction area’’. Additionally, the
interlayer interaction is almost exclusively due to dispersion
forces, which reduces the otherwise complicated disentangle-
ment from other non-covalent contributions.

Ultimately, vdW forces play a significant role for the stability,
dynamics, and response of a molecular system or material. Thus,
they can be readily observed indirectly from a variety of experi-
mental measurements in combination with complimentary
vdW-inclusive modeling. Deviations from an experimental
reference in terms of such (indirect) manifestations of vdW
interactions, however, represent a conglomeration of potential
errors and a seamless conclusion about dispersion forces is
often very limited. For further details on the experimental
assessment of vdW interactions and non-covalent forces in
general, we refer the interested reader to the rich set of reviews
on this topic.54,57,58

3.2 Non-additivity in experiment

Following up on the discussion of effects beyond pairwise
additivity in Section 2.3, we will conclude this section by high-
lighting some of the experimental observations of the non-
additive nature of dispersion forces. One of the most well-known
deviations from pairwise additivity thereby appears when a single
atom or molecule is interacting with a metallic surface. Since the
early theoretical works by Lifshitz59 and Zaremba and Kohn60 it is
known that, at larger separations, the interaction energy follows a
D�3 power law, where D is the distance of the atom or molecule to
the surface. AFM measurements by Wagner et al.61 confirmed this
scaling law and quantified the non-additivity. Also between
adsorbed molecules, several experiments observed strongly non-
additive long-range interactions.62–64

In a study on the adsorption of gold nanoparticles on multi-
walled carbon nanotubes, Rance et al. showed that the adsorp-
tion affinity scales quadratically with the accessible surface area
of the nanotubes and is highly non-linear for more complex
nanostructures.65 In constrast, pairwise-additive vdW models,
neglecting molecular anisotropy and collective behavior, predict
a simple linear dependence in those cases. Batista et al. empha-
size that the non-additivity of interactions, including dispersion
forces, arise particularly at the nanoscale66 due to complex
geometrical arrangements and the resulting polarizability aniso-
tropy. Such behavior beyond pairwise additivity, however, also
extends from the nano-scale to the meso- and macro-scale as
shown by the interaction range of proteins, bacteria, and gecko
feet with bulk silicon. By separating the respective adhesive
partner and the silicon substrate with an increasing layer of
silicon dioxide, Loskill et al. showed that the interaction extends

up to a separation of 10–20 nm,67,68 while a pairwise formalism
predicts only 1 nm. On the other side, covering dielectric
bulk materials with strongly anisotropic monolayers can also
screen the vdW interaction between the surface and an
adsorbed molecule. Using AFM, it has been shown that the
D�3-dependence predicted by Lifshitz–Zaremba–Kohn theory
holds for the interaction of the metallic AFM tip with pristine
silicon dioxide. When the surface is covered by a 2D-material,
such as graphene or molybdenum disulfide, the tip seems to
only interact with the adsorbed 2D-material.69 This unexpected
behavior could be explained by in-plane electronic fluctuations
within the 2D-material being decoupled from the fluctuations
at the surface and within the bulk and with that screening
electronic fluctuations perpendicular to it, i.e., those responsible
for the interaction of the AFM tip with the surface through the
adsorbed monolayer.

As most of our experience and understanding of vdW inter-
actions is based on rather small systems, where a pairwise
approximation tends to be qualitatively sufficient, many of the
phenomena arising at larger length-scales are still not entirely
understood. This and the growing interest in nano-structured
and low-dimensional materials motivate on-going studies
including a quantum-mechanical many-body treatment of vdW
interactions. The ability to reliably model and understand the
interactions in such systems is of utmost importance for the
design of composite nanostructures65 and future (nano)techno-
logical developments.

4 Qualitative description and analysis
of non-covalent interactions

In the field of covalent and electrostatic interactions, concep-
tual understanding of molecules and materials has largely
benefited by the aid of qualitative models, ranging from the
basic concept of chemical bonding dating back to Frankland,
Kekulé, Erlenmeyer, and Lewis structures70 to more advanced,
electronic structure-based descriptions like the quantum theory
of atoms in molecules (QTAIM),71 the electron localization
function,72,73 the orbital-free single exponential decay detector
(SEDD),74,75 or electrostatic potential maps.76 As of today, also a
few insightful models for the description and analysis of non-
covalent interactions have been devised to aid our understand-
ing. These models can, in general, be separated into two main
categories: electron density-based approaches and energy
decomposition methods. Below we will shortly outline the most
prominent examples from both categories and showcase how
they can help to analyze, illustrate, and understand non-
covalent interactions.

4.1 Density descriptors

According to the seminal work by Hohenberg and Kohn,77 the
electronic charge density, r(r), provides all chemical informa-
tion of a system. It, thus, represents the starting point for DFT
and numerous qualitative and quantitative a posteriori analysis
models. For non-covalent interactions, the (reduced) density
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gradient, as also utilized in advanced density functionals
and some QTAIM approaches, is particularly useful. Electron
density-based approaches are usually employed to obtain a
spatial illustration of the relevant interactions, which can be
vital to understand supra- or macro-molecular systems and to
design novel compounds. However, these models typically do not
discriminate between vdW interactions and other (intermolecular)
forces.

The first approach filling the gap of the abovementioned
models to characterize physical interactions, was put forward
by Johnson et al. and termed non-covalent interaction index
(NCI).78,79 In their study, the authors realized that the predo-
minant region of non-covalent interaction is characterized by a
peak in the regime of low electron densities and a low reduced
density gradient, which is a unit-less measure for the deviation
from an homogeneous electron gas77 given by

s ¼ rrr rð Þk k

2r rð Þ 3p2r rð Þ½ �
1
3

¼ rrr rð Þk k
2r rð ÞkF

; (15)

where 8�8 is the (L2-)norm and kF is the Fermi wave vector in
the homogeneous electron gas. This can be explained by the
fact that density tails are mainly responsible for intermolecular
interactions and the reduced gradient approaches zero upon
formation of a bond. This feature is also used to identify atomic
fragments in the QTAIM approach by Bader.71

To further characterize the type of interaction occurring in
such low-density, low-reduced gradient regions, Johnson et al.

found an intriguing connection between the sign of the second-
largest eigenvalue of the Hessian of the electron density and
bonding/non-bonding interactions. This connection initially
seems ad hoc, but can be rationalized by concepts from the
analysis of chemical bonds.78 Combining their approach to
locate non-covalent interactions together with the discrimina-
tor for attractive and repulsive interaction with the absolute
value of the electron density as a measure of the strength of the
interaction, ultimately yields an insightful tool to analyze
intermolecular interactions. Curiously, both a self-consistently
obtained electron density from DFT and a crude promolecular
density (superposition of atomic densities) lead to qualitatively
the same results in most cases. Hence, the NCI approach often
does not necessarily require a full DFT calculation78 and has
been successfully applied also to large-scale systems including
porous crystalline materials, metal and guest–host complexes,
OH-p interactions, and proteins.78–83 Especially regarding
repulsive interactions, we would like to point out that care
must be taken when using a non-self-consistent density. In a
promolecular density there is no Pauli-repulsion between the
atomic densities to cause charge depletion. As a result, the NCI
approach does not capture the repulsive character in those
cases and in contrast to the authors original conclusion78

relying on a self-consistent density can in fact be essential
(see the simple case of a water dimer in Fig. 2). The necessary
level of theory in obtaining the self-consistent density and the
resulting limitations for the applicability of the NCI method to
large-scale systems remains to be investigated.

The connection between the geometric signatures of the electron
density and the energetic features of the corresponding system
is also exploited in the SEDD approach and its adaption to
reliably illustrate also non-covalent interactions called Density
Overlap Regions Indicator (DORI).84 Being a modification of
the SEDD, the DORI model by construction provides a descrip-
tion of both covalent and non-covalent interactions within the
same framework and thanks to renormalization within the
same scalar range. The basic idea behind DORI and SEDD is
to identify areas, where the electron density shows a (nearly)
singly exponential decay, which is characteristic of electrons
close to nuclei and in the long-range limit.85,86 Based on this
idea, de Silva et al. proposed the unitless descriptor

DORI rð Þ ¼ y rð Þ
1þ y rð Þ; y rð Þ ¼ rr kk k2

�
�

�
�2

kk k6 and k ¼ rrr rð Þ
r rð Þ ; (16)

which can be interpreted in terms of the local wave vector, k.
In fact, DORI(r) approaches 1 in bonding regions, where the
reduced density gradient (15) goes to 0, i.e., at the zero curl of
(overlapping) densities. Close to nuclei and far from any atom
in the molecule, on the other side, the electron density shows
(nearly) singly-exponential decay and DORI(r) approaches 0.
Combining this approach with the sign of the second-largest
eigenvalue of the Hessian of the electron density to distinguish
attractive and repulsive interactions and the absolute magni-
tude of the electron density as a measure for the strength of the
interaction as done for the NCI (vide supra), allows for a
comprehensive description of both covalent and non-covalent
interactions within the same framework and on the same scale.
It has been shown to provide conceptual insight into the
relevant interactions in molecular dimers, complex organic
molecules, supramolecular complexes,84,87–89 and an adaptive
QM/MM approach making use of both SEDD and DORI to
tessellate the system into QM and MM regions.90

The NCI as well as the DORI rely on identifying bonding
regions based on the (reduced) gradient of the electronic charge
density. As a result, they do not capture electrostatic interactions
of non-overlapping fragments nor secondary effects like accumu-
lation and especially depletion of electron density or its intrinsic
quantum-mechanical fluctuations. For this matter it is some-
times useful to combine these qualitative techniques with
electrostatic potential maps (for electrostatic interactions) or
differences in the electron density between the full system and
its fragments (charge accumulation/depletion, i.e., charge
transfer and induction/polarisation). For the visualization of
both NCI and DORI the MULTIWFN package91 can be used. For
the NCI approach there also exists a separate program
NCIPLOT,79,92 which has been used here together with VMD93

to create Fig. 2.

4.2 Energy decomposition analysis

The second category, in its idea, is rooted in the description of
intermolecular interactions in terms of the various energy
contributions as formulated in perturbation theory. The aim
is to decompose the total interaction energy into contributions from
electrostatic interactions, induction (also referred to as polarisation),
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exchange-repulsion, dispersion interactions, and higher-order
terms. So, in contrast to the models outlined in Section 4.1,
these methods do not provide a spatial representation of the
relevant interactions, but rather give a measure of how much
a given type of interaction contributes. This can also provide
essential insights for the development of force field appro-
aches.94,95 It has to be mentioned that there is no unique way
of decomposing interaction energies and albeit qualitative
agreement different models yield different numerical results.
In general, energy decomposition techniques can be classified
according to two fundamental approaches: variational or
perturbational. In principle, energy decomposition methods
provide a quantitative analysis of intermolecular interactions.
Variational approaches, however, represent a decomposition
of energies calculated within a given framework, contrary to
explicit modeling of vdW interactions. The majority of pertur-
bational approaches are highly limited in terms of tractable
system sizes and rarely used in the modeling of molecular
systems and materials. Thus, we do not consider energy decom-
positions among the practical methods for vdW modeling
described in Section 5.

4.2.1 Variational energy decomposition techniques. Varia-
tional energy decomposition approaches, as first developed by
Morokuma and Kitaura96,97 and Ziegler,98 are formulated within a
molecular orbital picture of intermolecular interactions: first, the
independent-particle states of the individual monomers are
obtained at a given level of theory and then a variational space
is constructed on those to obtain the intermolecular interaction
between the monomers. The original formalism was based on the
HF reference system, but has been adapted to the KS picture of
DFT. The different energy contributions are finally obtained by
calculating the interaction energy via constrained SCF calculations,
keeping some of the monomer states frozen (unchanged) during
the SCF procedure. Depending on which states are frozen or which
terms in the Fock operator are neglected, one can extract the
individual contributions to the total interaction energy.94

The variational category involves methodologies such as
Constrained Space Orbital Variation,99 Restricted Variational

Space,100 or the self-consistent field method for molecular
interactions.101–103 The different flavors are distinguished by
which integrals or elements in the construction of the KS
equivalent of the Fock operator from the monomer states are
neglected or by which number of monomer orbitals are kept
frozen throughout the calculation. This approach has also been
employed using intermediate single-particle states based on the
natural bond orbital approach to avoid problems with basis set
superposition and the Pauli exclusion principle in the original
Morokuma–Kitaura scheme.104,105 The general framework set
by Morokuma and Kitaura is formulated in terms of only two
interacting fragments. Chen and Gordon106 later extended the
original framework to an arbitrary number of fragments.

In contrast to the above molecular orbital-based models, Wu
et al.107 proposed a purely density-based energy decomposition
method, which employs constrained DFT to also account
for charge transfer effects, and allows for a clean decomposi-
tion of the interactions captured by the underlying density
functional.95,107 This already hints at a very important point:
In order to obtain the contribution of vdW interactions, the
underlying method used for the constrained SCF procedure
must explicitly account for dispersion forces and desirably,
higher-order terms too. Because of this, many schemes have
been re-expressed at higher levels of theory, such as coupled
cluster108–110 or dispersion-corrected DFT.111–113 As of today, a
vast number of methodologies and flavors of variational energy
decomposition techniques has been devised and above we only
presented a few, select examples. For a more comprehensive
list, see e.g., ref. 114 and references therein.

4.2.2 Perturbational energy decomposition. Perturbational
approaches treat intermolecular interaction as a perturbation to
the Hamiltonian of non-interacting subsystems. With increasing
order of the perturbation, one can identify the classic definitions
of the different types of intermolecular interactions including
electrostatics, induction, and dispersion interactions. The typically
covered terms are given in Table 1 and Fig. 3. As known from basic
perturbation theory this expansion reaches the exact limit at
infinite order given that the perturbation, i.e., the intermolecular

Fig. 2 Intermolecular interactions within the non-covalent interaction index (NCI) approach. Left: Visualizing the hydrogen bond between hydrogen
(white) and fluorine (ocher) and weak van der Waals interactions between functionalized benzene molecules. Right: Correctly describing the repulsive
character of intermolecular interactions illustrates a so far unnoticed importance of using self-consistent densities.
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interaction, is small. With that, it also represents a well-defined
ab initio method for modeling vdW interactions. Nevertheless, for
practical calculations and especially in the context of DFT, the
series is truncated at second order. Due to the still large computa-
tional workload associated with such approaches, however, they
are typically less commonly used in practical electronic structure
calculations. Mostly they serve as a benchmark for the develop-
ment and parametrization of more approximate models and in
energy decomposition analysis for a quantitative understanding of
intermolecular interactions.

The main problem when starting from non-interacting
subsystems is the neglect of anti-symmetry of the total wave-
function with respect to particle exchange: the total wavefunction
for non-interacting subsystems is the Hartree-product of the
respective subsystem wavefunctions, which does not obey the Pauli
principle. To account for this shortcoming, a variety of symmetry-
forcing methods have been put forward.47 The most successful and
well-established approach among those is the so-called (inter-
molecular) symmetry-adapted perturbation theory (SAPT),116,117

which accounts for the Pauli principle in form of using an anti-
symmetrization operator. SAPT has traditionally been employed
in conjunction with wavefunction-based methods, but has also
been formulated in the context of KS-DFT, which allows to
study larger molecular systems.118 After this initial formulation,
Heßelmann and Jansen119–121 and Misquitta et al.122–124 inde-
pendently devised the nowadays practical methods termed
SAPT(DFT)119 and DFT-SAPT,122 respectively. Both approaches
are essentially identical and rely on asymptotically corrected
density functionals, e.g., PBE0-AC,125 and density–density
response functions (susceptibilities). For the remainder of
this section, we will collectively refer to these methods as
SAPT@DFT.

In the DFT-based SAPT formalism, the monomers are
calculated within DFT and the respective (anti-symmetrized)
KS determinants serve as a starting point for the perturbation
expansion. Thereby using asymptotically corrected functionals
especially improves the otherwise poorly reproduced exchange-
repulsion term in SAPT@DFT.122 The second-order induction
(polarization) and dispersion energies are calculated from charge
density susceptibilities, which are obtained by time-dependent
DFT. For this, it is often recommended to also include response
effects, i.e., the effect of the perturbing intermolecular potential
on the density–density response, which ultimately leads to
coupled susceptibilities.126 In many cases, the error associated
with using uncoupled susceptibilities has been found to cancel
out with errors in the charge penetration contribution.124,127

Especially at large monomer separations, however, usage of
uncoupled susceptibilities often leads to larger errors in inter-
action energies,124 while using coupled susceptibilities yields
excellent agreement with accurate results from coupled cluster
theory.128 The difference of dispersion interactions from coupled
and uncoupled KS theory is also exploited in the so-called MP2C
method based on second-order Møller–Plesset perturbation
theory.129 In MP2C, the dispersion energy based on uncoupled
HF of KS states is replaced with the dispersion components
calculated in the corresponding coupled perturbation formalism,
which has been shown to significantly improve interaction ener-
gies for dispersion bound systems.130–132 Another successful
application is the use of SAPT-derived potential energy surfaces
(PESs), where the PES is calculated on a representative grid using
SAPT(@DFT). This PES is then interpolated at runtime to perform,
e.g., extended molecular dynamics simulations with quantum-
chemical accuracy nearly at the cost of molecular mechanics,
which has been proven a viable tool for studying simple bio-
molecular assemblies, vdW complexes, crystal structures, or
condensed phase systems, for instance.133–136

For practical calculations, the wavefunctions are represented
in a basis set. In SAPT@DFT, the monomer wavefunctions can be
described in a monomer-centered basis set or in a dimer-centered
basis. In the former both monomers are represented as if they
were isolated molecules. Perturbed states are then constructed
from the orbitals of each monomer individually. This excludes
excitations from monomer A to monomer B in perturbed states,
which excludes charge transfer – a possible significant contribution
to the interaction energy. To further avoid basis set superposition

Table 1 Interaction terms covered by (DFT-based) Symmetry-Adapted
Perturbation Theory (SAPT). The order of the perturbation expansion in
which the term appears is indicated as superscript47

Term(order) Physical interpretation

E(1)es Electrostatics
E(1)ex Exchange-/Pauli-repulsion
E(2)ind

Eind Typically combined into induction (‘‘polarization’’)E(2)ex-ind

E(2)disp
Edisp Typically combined into (second-order) dispersionE(2)ex-disp

dHF Estimate of higher-order contributions to induction
Eint = E(1)es + E(1)exch + Eind + Edisp + dHF

Fig. 3 Energy contributions along dissociation curve of Argon dimer as
obtained by SAPT when based on CCSD, HF, or DFT description of
monomers. Data taken from ref. 115.
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errors, one can use the dimer-centered basis, in which both
monomers are described in the full basis set of the dimer
including ghost orbitals situated on the other monomer in
dimer configuration. In addition, so-called mid-point functions
placed in between the monomers can considerably improve
accuracy and convergence by augmenting the representation of
the bonding region.124 Besides this fundamental choice of
representation, the actual basis sets are of utmost importance.
As intermolecular interactions are particularly sensitive to the
outer regions of the wavefunction, i.e., the density tails, this
region has to be properly described. One measure is using
asymptotically correct density functionals as mentioned above.
Another important point is a sufficiently large basis set to
describe the density tails. Typically, augmentation with addi-
tional diffuse basis functions is recommended.47 The need for
large basis set sizes is one reason for the high computational
work load in SAPT(@DFT). As an additional ramification, the
calculations can be very memory-demanding and can cause
severe limitations in terms of tractable system sizes. A typical
problem when trying to obtain the total interaction energy from
intermolecular SAPT, and perturbation theory in general, is the
slow convergence of the induction energy due to consecutive
polarization terms at increasing orders.47 The most common
approach to deal with this is by obtaining an estimate for the
higher-order contributions to the induction energy, dHF, from
HF calculations for the dimer,137,138 which can however further
limit the applicability due to the associated computational
costs of a self-consistent dimer calculation.

One of the central drawbacks of the well-established inter-
molecular SAPT approaches is that they are formulated in terms
of two separated, i.e., not covalently-bond, fragments such that
their interaction can be treated as a small perturbation of the
individual fragments. Calculating many-fragment interactions
represents a difficult and especially time-consuming task
within such an perturbational approach. Significant progress
has been made for three-body corrections.139,140 This has
allowed the investigation of three-fragment contributions in
the benzene crystal, endohedral fullerene complexes, or water
clusters, for example.141–143 Three-fragment SAPT calculations
considerably increase the already high computational demands
of SAPT and the impact of many-fragment interactions beyond
three is rarely reported. One approach to go beyond these
limitations in terms of system size and the number of frag-
ments is the Extended SAPT (XSAPT) family.144,145 While originally
accounting only for many-fragment polarization, the XSAPT
framework has recently been extended to also incorporate
many-fragment dispersion via an adaption of the Many-Body
Dispersion formalism (cf. Section 5.4).146

Another limitation is the modeling of non-covalent intra-
molecular interactions in the perturbational framework.
In conventional wavefunction-based SAPT, this is tackled in
form of a three-perturbation expansion, where one is the
intermolecular interaction and the other two are intra-fragment
electron correlation.47 In SAPT@DFT, on the other hand, one
typically performs a single perturbation with the intermolecular
electron–electron interaction and the DFT-functional is meant

to capture intra-fragment exchange and correlation. Systems
with strong, yet non-covalent, intramolecular interactions, such
as extended biomolecules for instance, cannot be cut at cova-
lent bonds and treated as individual fragments, which compli-
cates calculations in a perturbational framework. Based on the
Chemical Hamiltonian approach,147 this issue has recently
been addressed by Corminboeuf and co-workers, who devised
a SAPT methodology for intramolecular interactions.148,149

In this intramolecular SAPT variant, the system under consid-
eration is partitioned into non-covalently interacting molecular
fragments by means of strictly localized orbitals.148,150 The
starting wavefuctions for the fragments are obtained while
being embedded in the HF-wavefunction of a covalent linker,
which connects the two fragments. The intramolecular inter-
action ultimately is obtained in a perturbation expansion
ontop of the fragments’ starting wavefunctions.148,149 This has
allowed to accurately decompose intramolecular interactions
among functional groups, in hairpin-configurations of extended
alkanes, stacked aromatic residues, and ionic guest–host
complexes.148,149,151 It is worthwhile to point out, that this
method remains ill-defined in the complete basis set limit151

and, to the best of our knowledge, has not been formulated in
the context of DFT. For the latter, subsystem DFT with three-
partition frozen density embedding (3-FDE)152–154 might repre-
sent a promising framework to provide the necessary fragment
KS determinants.

For SAPT(@DFT), there also exists a derived formalism,
known as A/F-SAPT,155 which maps intermolecular forces to
the interaction of pairs of atoms/fragments. This provides an
insightful, conceptual analysis and also spatial illustration of
individual contributions to intermolecular interactions and can
help to significantly boost the derivation of ab initio-based
molecular mechanics force field approaches.

In general, an accurate, quantitative energy decomposition
analysis for vdW interactions is usually limited to small-sized
systems due to the computational cost given by the required
level of theory or basis set size.114 For larger-scale systems, this
calls for more efficient, practical models, which we will present
in the section below (in particular Sections 5.2–5.5).

5 Practical methods for van der Waals
interactions

In Section 4, we introduced some qualitative and quantitative
tools, which can guide our understanding of vdW interactions
and serve as benchmark reference, but are limited in terms of
system size and complexity due to the associated computa-
tional costs. As discussed above, the inclusion of vdW interactions
is essential to obtain quantitatively and even qualitatively correct
results for a variety of molecular systems and materials. This
realization together with the limitations of higher-level approaches,
motivated the development of more practical methods, that allow
us to describe and understand long-range correlation forces in
more realistic and practically relevant systems. In the following
section, we outline some of the currently widely-used vdW models,
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their theoretical background as well as some direct consequences
for practical applications connected to the individual methodo-
logies. A short, but by no means complete, overview of the
availability and usage of each method in electronic structure
codes is given at the end of each subsection.

5.1 Random-phase approximation of the ACFD formula

A first, rigorous approach to model long-range correlation
forces is to directly evaluate the ACFD formula, for clarity
repeated from eqn (1):

Ecorr ¼ � 1

2p

ð1

0

do

ð1

0

dl

ðð

drdr0 wl r; r
0
; ioð Þ½

� wl¼0 r; r
0
; ioð Þ�VCoul r; r

0ð Þ
(17)

where the density–density response for the non-correlated
system, wl=0(r,r0,io), can be obtained from the KS (or HF)
independent-particle orbitals, fi, with corresponding eigen-
energies, ei, and occupation numbers, fi, via the Adler–Wiser
formula,31,32

wl¼0 r; r
0
; ioð Þ ¼

X

i;j

fi � fj
� �fi



rð Þfi r

0ð Þfj r
0ð Þfj



rð Þ

ei � ej þ io
: (18)

Just as the definition of the non-local polarizability according
to the self-consistent Dyson eqn (4), the interacting density
response function wl depends on the exact exchange–correlation
kernel, fxc, which is in general not known. A widely employed and
successful approximation that allows evaluation of the ACFD
formula is the random phase approximation (RPA). In the RPA,
we neglect the exchange–correlation kernel in the Dyson-equation
( fxc = 0). This leads to the RPA-variant of the Dyson equation (here
we skip the notion of the io-dependency for reasons of clarity),

w
ðRPAÞ
l r; r

0ð Þ ¼ wl¼0 r; r
0ð Þ þ l

ðð

dr00dr000

� wl¼0 r; r
00ð ÞVCoul r

00
; r

000ð Þwl r
000

; r
0ð Þ:

(19)

Within the framework of RPA, the ACFD formula (17) is typically
not reformulated in terms of the non-local polarizability as done
in Section 2.1, but stated in terms of the non-local density–density
response, which according to eqn (19) is now fully defined by wl=0.
Solving eqn (19) and inserting the result into the ACFD formula
(17) allows to analytically integrate over the coupling constant, l,
and gives the expansion series for the full-range RPA correlation
energy,

EðRPAÞ
corr ¼ � 1

2p

ð1

0

do
X1

n¼2

1

n

ðð

drdr0

� wl¼0 r; r
0
; ioð ÞVCoul r; r

0ð Þ½ �n:
(20)

In order to get a complete description of a system, the RPA
correlation energy is then combined with KS-DFT, usually further
augmented by using exact exchange (EXX). This combination of
the RPA correlation energy from the ACFD formula and EXX156,157

is long known as a promising avenue in electronic structure
theory and was also adapted158–160 and explored161–169 in combi-
nation with DFT. This combined approach is referred to as ‘‘exact

exchange with correlation from RPA’’ (EXX/cRPA) and the total
energy functional in that case is composed of the kinetic energy of
the non-interacting KS reference system, the external (nuclear)
potential energy, and the Hartree energy just as in conventional
KS-DFT. Exchange and correlation, on the other side, are treated
via RPA of the ACFD formula instead of an approximate
exchange–correlation functional at the Local Density Approxi-
mation (LDA), Generalized Gradient Approximation (GGA), or
Hybrid level. In modern implementations, the RPA approach
and many of its flavors discussed below typically scale
between O(N4) and O(N5) with the number of basis functions
N (comparable to canonical, second-order Møller–Plesset
perturbation theory) and are usually employed in an a posteriori

fashion.164,170–172 Also, analytical nuclear gradients, i.e., inter-
atomic forces, and many other first-order molecular properties
are available in modern codes.172

As can be seen more easily when reformulated in terms of
the non-local polarizability, the RPA essentially corresponds
to a saddle point approximation (cf. eqn (5) in Section 2.1).
In addition, RPA does not rely on a full multi-electron wave-
function and therefore the resulting correlation energy is not
necessarily based on antisymmetric states, which in particular
affects the short-range. As a consequence, the RPA formalism
tends to show significant deficiencies especially in the descrip-
tion of short-range correlation, where it tends to overestimate
the correlation energy.173,174 Despite the shortcomings of the
original formulation, the EXX/cRPA approach has been estab-
lished as a reliable, yet computationally demanding, method
for total (interaction) energies within the context of KS-DFT
thanks to appropriate reformulations, which we will shortly
summarize below after discussing the connections of the RPA
correlation energy and electron correlation in wavefunction-
based methods.

5.1.1 ACFD/RPA and wavefunction-based methods. Besides
forming the basis for the variety of vdW models used in the
context of DFT, the ACFD theorem also allows to connect the
two fundamental approaches of describing electron correlation:
post-HF methods in the form of coupled cluster theory and the
ACFD/RPA formalism including the models derived thereof.
Scuseria et al.164 were able to show that the ground-state ACFD/
RPA correlation energy mathematically equals the result from a
particle-hole ring diagram approximation to the coupled cluster
doubles (rCCD) theory. In the particle-hole ring approximation,
one only considers a single excitation with corresponding creation
of a hole and subsequent deexcitation into the original state,
thus representing a ring diagram.164,175 This can also be seen as
electron density fluctuations within dipole approximation, where
the dipole is spanned by the particle and the hole and the
fluctuation corresponds to continuous excitation–deexcitation. It
can further be concluded that, in the RPA, the corresponding
fermionic product operator for excitation–deexcitation is approxi-
mated by a single effective bosonic excitation operator.175 The
equivalence of the resulting correlation energies has been shown
to hold between direct RPA and direct rCCD, i.e., neglecting
the effect of exchange on the correlation energy, as well as for
the full RPA and full rCCD correlation energies.164 Based on this
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connection a myriad of rCCD-derived RPA flavors has been
proposed175–178 and further connections between ACFD/RPA and
rCCD, such as between amplitudes and densities,179 can be
drawn. In fact, many of the general extensions to the original
EXX/cRPA formalism outlined below, which particularly address
the improvement of the description of short-range correlation,
have been motivated or can even be expressed in terms of this
connection.179

5.1.2 ACFD/RPA and density functional theory. A first
approach to reduce the deficiency in describing short-range
correlation in RPA, was put forward by Perdew and
co-workers.180,181 In their scheme, termed RPA+, the short-
range correlation energy is adapted by a local correction via

the corresponding energy of the homogeneous electron gas as
given by DFT in the LDA or GGA, such that

E(RPA+)corr = E(RPA)corr � (E(LDA/GGA–RPA)corr � E(LDA/GGA)corr ), (21)

where E(LDA/GGA–RPA)corr is the LDA/GGA of the RPA correlation
energy and E(LDA/GGA)corr is the correlation energy for the system as
obtained by LDA/GGA-DFT.174,180,181 This modified approach
converges to the correct solution for the homogeneous electron
gas and already significantly improves total correlation
energies,162,165,182 but can still show considerable short-
comings for binding properties.183

Another approach is to avoid spurious one-electron self-
correlation arising from using a not necessarily antisymmetric
many-electron wavefunction as basis of the RPA treatment. This
can be achieved via the inclusion of second-order screened
exchange (SOSEX).166,170 Despite being numerically more
demanding, EXX/cRPA with SOSEX correction usually performs
well for molecules and solids.166,170 However, adding SOSEX
can lead to a reduced accuracy of the calculated height of
reaction barriers,184–186 which can be explained in terms of
a less accurate treatment of static correlation.187 Within the
EXX/cRPA + SOSEX framework, this issue has recently been
addressed by introducing a short-range SOSEX correction.187

The spurious overestimation of short-range correlation by the
original EXX/cRPA scheme can also be avoided in the spirit of
range-separated Hybrid DFT. Here, the RPA-ACFD formula,
together with the HF exchange kernel167 or coupled cluster
theory,168 is only employed in the long-range (as was also
introduced in eqn (9) in Section 2.2), while the short-range
correlation (and exchange) is treated by a short-range density
functional.167–169 This approach yields reliable and accurate
results for thermochemical properties and vdW dimers,168,169

yet introduces an empirical range-separation and scaling
parameter,167–169,171 which might affect generality and trans-
ferability.

Ren et al. presented a slightly different approach to go
beyond the original EXX/cRPA model motivated by considera-
tions from perturbation theory.171 Most RPA flavours described
above, when based on KS-DFT or HF, can also be interpreted in
terms of many-body perturbation theory based on the corres-
ponding (generalized) KS or HF reference states, respectively.
Thereby, within Rayleigh–Schrödinger perturbation theory, the
RPA correlation energy corresponds to the sum of all zeroth and

first-order terms of the perturbation expansion independent of
whether one starts from a (generalized) KS or HF reference
state.129,171 For the exchange energy, however, RPA and SOSEX
miss single excitation (SE) terms, when based on DFT. This
term can easily be obtained based on the independent-particle
KS states and including the SE term has been shown to lead to
significant improvements for weakly interacting systems.171

Later, a renormalization based on higher-order terms (-rSE)
and Coulomb screening in the form of self-energies as obtained
within the GW approximation (-GWSE) have been introduced
to avoid problems in (nearly) zero band gap systems.185,188

Keeping most of the improvements of the SE term, the com-
bined approach of EXX/cRPA + SOSEX + rSE also provides a
remarkable transferability and has been shown to yield highly
accurate results for atomisation, binding, and reaction energies
as well as for reaction barrier heights.184,185 For hydrogen-bond
systems, on the other side, the combination of RPA with both
SOSEX and (r)SE turned out to be unprofitable.185 Employing
the EXX/cRPA + GWSE formalism, Klimeš obtained remarkably
accurate lattice energies for molecular solids.189 A similar route
was taken by Bates and Furche, who devised a renormalized
many-body perturbation theory directly starting from RPA.186

Account for the resulting leading-order term, referred to as
‘‘approximate exchange kernel’’ (AXK), considerably improves
RPA energies and has been found to provide a more balanced
correction to RPA than the SOSEX approach, when treating
main-group compounds.190

5.1.3 ACFD/RPA in electronic structure codes. As a general
remark, it has unanimously been found that EXX/cRPA calcula-
tions are more reliable when based on KS states obtained from
GGA-DFT calculations rather than Hybrid density functionals.
Also, proper testing with respect to convergence of the basis set
size is highly recommended and if possible corrections to
potential basis set superposition errors should be included.
Calculation of the RPA correlation energy is available in the
following codes (this does not represent a complete list, but
covers most major electronic structure codes):

	 ABINIT:191–193 the total and long-range RPA correlation
energy can be calculated for periodic systems in a plane-wave
basis set in the GW-module. It allows to specify the number of
states/bands to be used to obtain w0 via eqn (18) (large values
recommended for convergence) and the cut-off energy of the
plane-wave basis set for the representation of the dielectric
matrix. Additional speed-up can be obtained when taking
advantage of time-reversal symmetry or using an extrapolation
scheme with respect to the number of empty states/bands.

	 CP2K186,194 features EXX/cRPA calculations within the
resolution-of-identity (RI) approximation for gas-phase and
periodic calculations. In addition, the AXK correction to RPA
is available.

	 FHI-aims:195 following the EXX/cRPA scheme the total
energy is calculated via

E(RPA)tot = E(DFT)tot � E(DFT)xc + E(EXX)x + E(RPA)corr . (22)

Currently, FHI-aims allows for plain cRPA, cRPA + SOSEX,
RPA + (r)SE, and cRPA + rSE + SOSEX (�rPT2) calculations for
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non-periodic systems relying on the RI approximation. These
‘‘RPA and beyond’’-methods are prone for considerable basis
set superposition errors. Hence, using counterpoise correction
is recommended for accurate energies. Using a correlation
consistent basis set is in general recommended for use in
RPA calculations. For the number of empty states, large values,
typically beyond the basis set size to include all available states,
is recommended. Due to a significant loss in accuracy, usage of
the accelerated RI method is not recommended. Calculation of
the RPA correlation energy along the coupling constant, l, and
output of the (linear) dielectric tensor within RPA is also
implemented.

	 TURBOMOLE:196 calculation of the RPA correlation energy
and gradients within RI is available. Additional options such as
the frequency grid-size for numerical integration and skipping
of the EXX calculation can be set manually. Orbitals can be
excluded from correlation treatment (recommended for inner-
level orbitals) and usage of high angular momentum (diffuse)
basis function and inclusion of auxiliary basis (for the calcula-
tion of HF exchange) is required.

	 VASP197–201 allows for direct ACFD/RPA calculations for
periodic systems in plane-wave basis. This however, requires
several individual calculations and can not be obtained in a
single run as of the time of this publication. After performing a
standard DFT calculation, obtaining EXX from the resulting
KS states, and running a refined DFT calculation using the
maximum number of plane-waves, one can obtain the ACFD/
RPA correlation energy. Thereby, using the maximum number
of plane-waves is recommended. For convergence tests with
respect to reciprocal space summation and basis set size, the
energy cutoff should be changed already in the first standard
DFT calculation and all four steps are to be repeated.

5.2 Non-local density functionals

5.2.1 Theory and connection to ACFD formula. The maybe
most obvious way to approximate vdW interactions within DFT
would be to modify the underlying energy functional to include
the proper physics for describing weak, dispersive interactions.
The general idea is to begin with the ACFD formula of eqn (1),
postulate an approximate form for wl(r,r0,io) and then simplify
the integrals. Invariably, the goal is to avoid the summation
over unoccupied states that is explicit in the full RPA expression
of eqn (20). Functionals of this type have the appealing feature
of potentially being computationally less demanding compared
to RPA or EXX calculations, while still being seamless in the
sense of not requiring any partitioning of the system into
fragments.

In order to simplify the ACFD formula, one might naively try
a local density approximation to the response function:

wl(r,r0,io) E f̃(r(r),io)d3(r � r0), (23)

for some appropriate function f̃(r(r),io). However, as shown by
Dobson,202 this corresponds to unphysical fluctuations in the
total number of electrons rather than the number-conserving
fluctuations implied by the ACFD formula of eqn (1). To make a

proper local approximation, one must instead approximate the
polarizability:

al(r,r0,io) E f(r(r),io)d3(r � r0), (24)

which can be used to construct the ACFD correlation energy via
eqn (3). The first explicit density functional to successfully
apply these ideas was proposed by Dobson.203 The resulting
functional was only applicable to jellium-like systems, but
seamlessly connected short- and long-range interactions.

To extend this idea to general systems, one requires a more
general ansatz for the local polarizability of eqn (24). A tremen-
dous amount of effort has been devoted to this topic,204–207

much of which has centered around plasmon-pole-type approxi-
mations to the local polarizability:

aðr; r0; ioÞ ¼ 1

4p

op
2ðrÞd3ðr� r

0Þ
op

2ðrÞ � o2
with op

2ðrÞ ¼ 4prðrÞ; (25)

which is thought to be a good approximation for uniform systems.
The big breakthrough came with the development of the vdW-DF
functional in the Rutgers–Chalmers group.208,209 Here, in order to
simplify the algebra, one truncates the Dyson equation for al in
eqn (4) at second order so that¶

al E a0 � hla0Txc,la0ir00,r00 0. (26)

This truncation has the unfortunate side effect of discarding
screening effects (type B non-additivity), but otherwise the
algebra becomes too cumbersome to be tractable for practically
relevant systems. One then proceeds to make a semi-local,
plasmon-pole-like approximation to a0, constructed to satisfy
several exact constraints: (1) the f-sum rule (Thomas–Reiche–
Kuhn), (2) the short wave-vector (small q) limit, (3) time reversal
symmetry, and (4) the volume of the xc hole. The resulting
functional can be expressed in non-local form as,

EðnlÞ
corr ¼

1

2

ðð

rðrÞfðr; r0Þrðr0Þdrdr0; (27)

where f is itself an integral that is in practice approximated
numerically via interpolation of a dense grid of pre-computed
values. The vdW-DF functional is in principle non-empirical
and seamless and produced an explosion of activity applying
density functional theory to weakly interacting systems.6,210–213

Numerous variants of vdW-DF have arrived in the intervening
years, including the vdW-DF2 functional,214 which improves
upon the accuracy of the original functional for a variety of
systems. A recent review nicely summarizes the important
progress in this area.215

The original non-local vdW-DF was intended to be used with
a semi-local exchange functional that was close to HF exchange
(or EXX). However, a number of initial studies noted that the
results were extremely sensitive to the choice of semi-local
exchange216 and a number of authors proposed re-parameterizing

¶ It should be noted that most of the literature on the vdW-DF is formulated in
terms of the dielectric permittivity, e, rather than the polarizability, a. In the
context of the present work, however, we will phrase the discussion in terms of
polarizability for consistency with the other sections.
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the semi-local exchange functional for the specific purpose of
producing good intermolecular forces when paired with vdW-
DF.212,217 This approach has the obvious negative consequence
that re-parameterizing the exchange will also have a significant
impact on intramolecular forces and on the molecular electron
density itself. A more natural approach would be to re-parameterize
the vdW-DF to match the semi-local exchange functional, but the
extremely complicated nature of the vdW-DF functional makes this
a daunting task.

Vydrov and Van Voorhis made progress in this direction218

by dropping the constraint that the approximation to a0 has to
be correct in the short wave vector limit. That limit is not
relevant for long-range intermolecular interactions and intro-
duces a numerically troublesome short-range divergence of the
integral kernel f in eqn (27). Proposing a new approximate a0

that ignores this constraint, the resulting VV09 functional takes
the form

EVV09
corr � 3

64p2

ðð
op

2ðrÞop
2ðr0ÞDðKÞdrdr0

o0
2ðrÞo0

2ðr0Þ o0
6ðrÞ þ o0

6ðr0Þ½ � r� r0k k6; (28)

where o0
2 = op

2/3 + og
2 is the plasmon response with band gap

determined by og and D(K) is a non-empirical damping func-
tion. While eqn (28) may look more complicated than the
original vdW-DF, it is in practice easier to deal with because
the function D(K) is an explicit, analytic function of the local
density variables. Subsequently, VV09 was simplified further219

by discarding the semi-local model for a0 altogether and
instead directly proposing a form for f in eqn (27):

fVV10 � �3

2gðrÞgðr0ÞðgðrÞ þ gðr0ÞÞ; (29)

where g is a function of the local density variables. The
resulting VV10 functional is equivalent to VV09 as the fragment
separation approaches infinity, but is manifestly simpler in
construction and in practice seems to be significantly more
accurate than the original VV09 functional.220 Because of the
semi-empirical nature of its construction, VV10 contains two
parameters (C and b) that must be chosen in practice. The first,
C, controls the effective local band gap and is typically chosen
such that the non-local functional gives accurate C6 coefficients,
which are very sensitive to the size of the gap. The second
parameter, b, controls the strength of the damping function
and thus has no impact on long-range properties like the C6

coefficients. Instead, b is typically chosen differently for different
semi-local functionals so that the short-range repulsion from
exchange and the damping of dispersion interactions in E(nl)corr

balance appropriately. The flexibility implied by the choice of b
has allowed VV10 to be paired with a wide array of different semi-
local exchange–correlation functionals – GGAs,219,221 hybrids,221

meta-GGAs222,223 and range-separated hybrids219,223,224 have all
been successfully combined with VV10.

5.2.2 Practical aspects. The six dimensional integral
implied by eqn (27) is typically the computational bottleneck
in evaluating non-local xc-functionals, having a formal scaling
of O(N2) with system size and a large prefactor. The complicating
element is that the kernel, f, is a function not only of R� 8r� r08

but also of the local density and density gradient values at r and r0.
If it only depended on R, the integral could be done rapidly by
convolution. Fortunately, f(r,r0) only depends on the density
through a single function, q[r,8rr8] evaluated at the points r

and r0. As a result, one can write:225

fðq; q0;RÞ �
X

i;j

f qi; qj ;R
� �

piðqÞpjðq0Þ; (30)

where qi is a mesh of points and pi is some complete set of
functions. For each fixed pair {qi,qj} the six dimensional integral in
eqn (27) can be evaluated via convolution. Therefore, for some
fixed number of grid points, G, eqn (30) allows one to compute the
energy and forces for vdW-DF inO(N logN) time – a huge speed-up
relative to the brute force implementation. In practice, relatively
modest values of G (B20) suffice, in which case the vdW inter-
actions in a typical vdW-DF simulation do not noticeably affect
the overall timing, making vdW-DF and its derivatives modern
workhorses for the simulation of weakly bound solids.215

Unfortunately, the non-local kernels for VV09 and VV10 do
not share the same structure as vdW-DF: instead of depending
on one function (q), VV09 and VV10 depend on two functions
(o0 and op). As a result, eqn (30) cannot easily be applied to
VV10. However, one can introduce an approximation in which
the damping factor in g is assumed to be the same at both r and
r0, resulting in the revised VV10 (rVV10) kernel:226

frVV10 � �3

2ðhR2 þ 1Þðh0R2 þ 1ÞðhR2 þ h0R2 þ 2Þ; (31)

where h is a function of the local density and its gradient. This
revised functional is numerically very similar to VV10, but has
the distinct advantage that it can be expanded using eqn (30)
and thus evaluated in O(N logN) time.

5.2.3 Non-local (vdW) density functionals in select electronic

structure codes. vdW-DF, VV10 and their variants are available
in a wide array of electronic structure codes. Broadly speaking,
plane-wave codes tend to implement the convolution approxi-
mation to speed up the evaluation of the xc energy and thus
implement only rVV10. Gaussian orbital-based codes some-
times implement the full six dimensional integral either by
quadrature or by Monte Carlo, leading to facile implementation
of VV10. In the latter case, the evaluation of the non-local
energy can become prohibitive for very large systems. Some
examples of electronic structure codes featuring non-local vdW-
DFs include:

	 Q-Chem:227 calculation of vdW-DF, vdW-DF2, VV10 and
rVV10 energies and forces. Note that the C and b parameters for
VV10 and rVV10 have to be specified via additional keywords.

	 Quantum espresso228 allows for calculation of dispersion-
inclusive electronic energies and forces as obtained by vdW-DF,
vdW-DF2 and rVV10.226,229,230

	 SIESTA231 features vdW-DF, vdW-DF2 and rVV10 energies
and forces.

	 VASP:197–201 The vdW-inclusive functionals vdW-DF, vdW-
DF2 and rVV10 are implemented.212,213 Manual specification of
b parameter for rVV10 and switch between vdW-DF and vdW-
DF2 required.
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5.3 Effective non-local core potentials

Above (Section 5.2), we introduced non-local density functionals
as a promising approach to model vdW interactions. It is aimed to
include non-local, long-range correlation interactions directly in
the form of the potential of the density functional instead of using
post-processing of any sort. While the above vdW-DFmodels use a
physically motivated two-point potential between positions in the
electronic charge density, such a path can also be pursued in a
data-driven manner, i.e., by adding a non-local two-point or core
potential, which can be optimized to comply with accurate
reference results.

The basic idea and framework of optimizing the core potential
referred to as optimized effective potential (OEP) is due to Sharp
and Horton232 and has later been picked up in the context of
describing electron correlation within DFT as an alternative to
common density functional approximations (DFAs).233–236 von
Lilienfeld et al. generalized the previously still first principles-
based framework to so-called dispersion-corrected atom-
centered potentials (DCACPs), which aim at accurately repro-
ducing dispersion interactions and other complex molecular
properties as predicted from higher-level theoretical methods
(or experiment).237 In their approach they include angular
momentum-dependent non-local effective core potentials, as
also used in norm-conserving pseudo-potentials in DFT calcu-
lations with a plane wave basis set,238 composed of spherical
harmonics and Gaussian-type radial projectors.237 To model
dispersion interactions, the parameters, {si}, entering the
effective non-local core potential are then optimized by mini-
mizing the penalty functional,

P r Mrefð Þ½ � ¼ Eref r Mrefð Þ½ � � E r Mrefð Þ; sif g½ �j j2

þ
X

A

cA FA r Mrefð Þ; sif g½ �k k2
(32)

via a second Gaussian-type projector. Above, Eref[r(Mref)] and
E[r(Mref);{si}] are the energy obtained for the reference system
Mref using the reference method and the parametrically depen-
dent DCACP energy, respectively, and FA is the nuclear force on
atom A as obtained in the DCACP method. For the evaluation
of the penalty functional, one chooses reference systems, Mref,
which are minima on the potential energy surface in the
reference method. Thus, Fref = 0. cA, finally, is a weighting
factor, which allows to exclude the nuclear gradient A in the
optimization.237,239 Using the gradient of the penalty function
with respect to {si}, this procedure can be used to variationally
tune common DFAs to (re-)produce accurate results for a given
molecular property. It has to be kept in mind though, that a
given application requires a given choice of reference systems,
the penalty function(al) and the weighting factors,237 which
adds a certain degree of empiricism and potentially limits
transferability.6

Typically, second-order Møller–Plesset theory or more recently
also CCSD(T) serves as a reference method and it has been shown
that DFT+DCACP can be used to accurately reproduce the binding
properties of noble gases, a variety of hydrocarbon complexes
as well as condensed matter systems like graphite, multilayer

graphene, molecular crystals, liquid water, and adsorption
phenomena.237,239–243 Approaches to include vdW dispersion
interactions via effective core potentials are, in general, avail-
able in pseudo-potential DFT codes, such as CPMD,244 for
instance. As the DCACP approach relies on optimizing effective
core potentials, one can use the obtained potentials in the form
of pseudo-potentials in a variety of electronic structure codes.

5.4 Interatomic many-body method from ACFD/RPA:

many-body dispersion formalism

The most common and successful approach to model electron
correlation in realistic systems in the context of DFT is to
combine a (semi-)local DFA for the short-range exchange and
correlation contribution with a model for long-range correla-
tion (vdW interactions) as a post-processing step.

5.4.1 Theoretical background. Typically, post-DFT vdW
models are based on a dipole approximation or RPA and
written in an interatomic framework. The latter can be inter-
preted as coarse-graining the response functions entering the
long-range ACFD/RPA formula (9), which we will repeat here for
reasons of clarity:

Eðlr;RPAÞ
corr ¼ �

X1

n¼2

ð�1Þn
n

1

2p

ð1

0

do

� Tr aðsrÞTlr

� �nD E

r00 ;r000

� �
 �

r;r0
:

(33)

The coarse-graining is usually chosen such that the spatial
integrations in eqn (33) can be performed analytically, which
significantly reduces the computational cost. In Section 2.2, we
already introduced such a coarse-grained polarizability in terms
of atomic point polarizabilities, see eqn (10). In the Many-Body
Dispersion (MBD) formalism,49,245 a less approximate approach
is chosen. Here, the total polarizability is contracted to a sum of
effective isotropic atomic (dipole) polarizabilities.8 Such
atomic/molecular response properties have been shown to be
accurately described by a Quantum Harmonic Oscillator (QHO)
model.49,245–249 In fact, the leading Padé approximant of
the dynamic isotropic atomic dipole polarizability250 follows
the same formula as the dynamic dipole polarizability of an
isotropic QHO,

a
ðQHOÞ
A ioð Þ � aA ioð Þ ¼ aA;0 1þ o

ZA

� �2
" #�1

; (34)

where aA,0 � a(QHO)
A (0) is the effective static QHO polarizability

and ZA is the characteristic excitation frequency of QHO A.
Hence, the remaining step is the parametrization of such QHOs
to model atoms in molecules. In MBD, the two vdW parameters
are obtained from accurate atomic reference data taking into
account the local chemical environment (type A non-additivity,

8 We would like to point out that the MBD formalism does not fundamentally
exclude anisotropic polarizabilities on the atomic scale. The choice of isotropic
atomic polarizabilities, however, allows for an efficient, analytical evaluation of
the dipole coupling.
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see Section 2.3) via

xA � aA;0

a
ðrefÞ
A;0

�
ffiffiffiffiffiffiffiffiffiffiffiffi

C6;AA

C
ðrefÞ
6;AA

s

and ZA ¼ 4

3

C6;AA

aA;0
2

; (35)

where the rescaling factor x is derived from the electronic
structure, conventionally as the ratio of the volumes of the
atom in the system and the reference atom as obtained via

Hirshfeld analysis251 (this is further detailed for the vdW(TS)
model in Section 5.5.1 below). It is worthwhile to mention, that
a QHO has a natural width and thus goes beyond point-like
dipoles, while the short-range dipole coupling tensor between
QHOs with overlapping densities can still be evaluated analy-
tically.252 This short-range dipole tensor, T(sr)

QHO, is then used to
explicitly account for the short-range screening according to the
inverted coarse-grained Dyson equation,

a
ðsrÞ
A � ~aA ioð Þ ¼ 1

3
Tr

X

C

BAC

( )

; B ¼ P
�1 þ T

ðsrÞ
QHO

h i�1

;

(36)

where P = diag{aA(io)�13} is a diagonal matrix containing three
times aA(io) for each atom A, i.e., the xx, yy, and zz component
of the corresponding isotropic atomic polarizability tensor. The
summation over all atoms C corresponds to the integration
over the whole space in the Dyson equation and the factor 1

3,
together with the trace operator, restores an isotropic effective
polarizability, ~aA(io). This is the model response used to define
a(sr)A , which already significantly improves the description of the
polarizability compared to the superposition of effective atomic
polarizabilities49,253 and then enters a coarse-grained ACFD/RPA
formula for the long-range correlation energy of the form of
eqn (11), see also Fig. 4. For the long-range coupling there is a
negligible overlap between the QHOs. Therefore, the bare point-
dipole potential is applied. So, to a very good approximation, the
long-range ACFD/RPA formula for an N atom system can be eval-
uated based on a set of N dipole coupled QHOs. Such a set of N
three-dimensional QHOs can be described in terms of mass-
weighteddisplacements, fA ¼ ffiffiffiffiffiffiffi

mA
p

rA � RAð Þ and theHamiltonian,

HMBD fð Þ ¼
XN

A¼1

�1

2
rfA

2 þ
XN

A¼1

ZA
2

2
fAk k2

þ
XN

B¼1

ZAZB
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~aA;0~aB;0

p

fTAT
ðlrÞ
ABfB

(37)

¼ Tf þ
1

2
fTVf; (38)

with

V
ði;jÞ
AB ¼ ZAZB dij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~aA;0~aB;0

p

T
ði;jÞ
AB;lr

� �

;

where the collective variable f is the direct sum of all fA and (i, j)
denotes the Cartesian components of the AB-subblocks of
the potential matrix V and the long-range dipole coupling tensor
T(lr)AB. Similar models to describe (many-body) dispersion interactions
within thedipole limitwere alreadyknownandusedearlier.246,254–260

These methods, however, were typically based on simpler model
polarizabilities and did not offer general parametrization and applic-
ability for realistic systems.

As a mathematically equivalent, yet much more efficient,
alternative approach, it has been shown that the long-range RPA
correlation energy of this dipole-coupled set of QHOs equals
its (zero-point) interaction energy.46,245 Thanks to the bilinear
form (38), this can be obtained numerically exact via unitary
transformation to a new collective variable, x = Cf, where the
transformation matrix C diagonalizes the potential matrix:

CVC† = diag{~oi
2}. (39)

With the kinetic energy operator, T, being invariant under
unitary rotations, C transforms the MBD Hamiltonian into an
uncoupled set of 3N one-dimensional QHOs,

HMBD nð Þ ¼ Tn þ
1

2
fyCy

CVC
y
Cf

¼ Tn þ
1

2
nydiag ~oi

2
� �

n ¼
X3N

i¼1

Tni
þ ~oi

2

2
nik k2:

(40)

This set of QHOs can be solved according to textbook and its
total energy is given by half the sum of its characteristic
frequencies ~oi. The (zero-point) interaction energy, ultimately
corresponding to the RPA long-range correlation energy within
the QHO model of electronic response, is given by

E
ðMBDÞ
vdW ¼ E

ðcoupledÞ
QHO � E

ðnon-interactingÞ
QHO

¼ 1

2

X3N

i¼1

~oi �
3

2

XN

A¼1

ZA:

(41)

The range-separation function to define Tsr and Tlr, is chosen of
Fermi-type,

f
ðMBDÞ
damp RAB;R

ðABÞ
vdW

� �

¼ 1þ exp �a
RAB

b � RðABÞ
vdW

� 1

 !" #( )�1

;

(42)

Fig. 4 Schematic illustration of the MBD model with range-separated
self-consistent screening (rsSCS): Effective atomic polarizabilities are
obtained from electrodynamic screening using the short-range part of
the range-separated dipole tensor for quantum harmonic oscillators. The
interaction between the oscillators is then obtained using the long-range
part of the dipole coupling tensor.
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where a = 6 and the effective vdW distance, RðABÞ
vdW ¼ ffiffiffiffiffiffi

xA3
p

R
ðA;refÞ
vdW þ

ffiffiffiffiffiffi
xB3

p
R

ðB;refÞ
vdW , where one relies on a rescaling of accurate reference

data of vdW radii (for further details, see Section 5.5.1). The range-
separation parameter, b, is finally an empirical parameter fitted to
provide optimal results in combination with a given DFA for small
molecular dimers.49 As the range-separation parameter also repre-
sents ameasure of when the long-range correlationmodel has to be
included, it gives an estimate of the range of correlation already
captured by the underlying DFA.261

5.4.2 Practical aspects and related models. Being formally
equivalent to the full long-range RPA correlation energy for a
set of QHOs, the MBD formalism includes many-body inter-
actions up to N atoms and incorporates correlation effects up to
infinite order. The two main differences are the assumption of
isotropic polarizabilities and that those can be modeled via

a single QHO per atom. Relying on the QHO model polariz-
ability, on the other side, fundamentally binds the charge
fluctuations to a given atom (no electron hopping), which
limits the validity and applicability of MBD for metallic systems
(does not capture type C non-additivity, see Section 2.3). For a
variety of non-metallic systems in different chemical environ-
ments, on the other side, the two approximations have been
found to be very reliable and accurate. In fact, in various cases
the MBD formalism yields the same results as the RPA-
approach, while requiring only a fraction of the computational
workload: The MBD method scales as O(N3) with the number
of atoms N for inversion and diagonalization of the B and V
matrices (comparably small prefactor thanks to no integra-
tions at runtime and only a few inversions and a single
diagonalization). After its original formulation for the vdW
energetics of finite-gap molecules, the applicability and effi-
ciency of MBD was further boosted by the derivation of the
analytical gradient expression245,262 and a reciprocal space
formulation,263 which allows for efficient simulations within
periodic boundary conditions and advanced the applicability
of the MBD formalism to molecular crystals and layered
materials.

As mentioned above, for a set of QHOs, the MBD formalism
is even mathematically equivalent to the full long-range RPA
correlation energy. For this to yield accurate energies for
realistic systems, however, the set of QHOs has to accurately
model the response properties of the system. For that, the MBD
model relies on the procedure originally proposed in the
vdW(TS) scheme (vide infra), which is based on the rescaling
of accurate reference data according to Hirshfeld volume ratios.
As a result, MBD can also suffer from the common short-
comings of the Hirshfeld partitioning scheme, which tends to
underestimate charge transfer264,265 and in line with that the
volume ratios tend to underestimate the corresponding effect
on the atomic polarizability. This can lead to considerable
deficiencies in the description of the vdW parameters of ionic
systems.253,266 We would like to emphasize that this is a short-
coming of the underlying (Hirshfeld) partitioning scheme and
not the MBD framework itself. Significant improvements can be
achieved when relying on the computationally more demanding,
but muchmore accurate, iterative Hirshfeld scheme253,265 or when

using a charge-dependent reference state for the polarizability,267

for instance.
Modeling electron density fluctuations and their interactions

within the so-called Drude approximation, i.e., via negatively
charged pseudo-particles harmonically oscillating around atomic
centers, has already been known and used in the context of
vdW interactions by London in the 1930s.36,268,269 Based on this
picture, Whitfield and Martyna270 proposed a more general
approach to model (many-body) induction and dispersion: the
Quantum Drude Oscillator (QDO) model, which also largely
motivated the development of the MBD framework. In the QDO
model, the oscillating pseudo-particles interact via the full Cou-
lomb potential, with that going beyond the typically invoked RPA
or dipole approximation. The model is defined by the charge and
mass of the pseudo-particles and the characteristic frequency of
their oscillation. With an appropriate choice of these three para-
meters, the QDO model can accurately describe the response
properties, many-body induction and dispersion interactions of a
given system up to infinite order.248 Direct derivation of effective
parameters for realistic systems, however, represents a challen-
ging task. Also the evaluation of the interaction energy, which is
typically done via imaginary-time path integration270 or Diffusion
Monte-Carlo,271 limits its applicability in terms of system size.
Recently, this model has been used to showcase the relevance of
many-body and multipolar vdW interactions in water and at its
surfaces.249,272

5.4.3 Many-body dispersion formalism in select electronic

structure codes. The MBD formalism is implemented in the
following set of select electronic structure codes:

	 ADF273–275 features the MBD formalism with and without
self-consistent electrodynamic screening.

	 CASTEP:276 being a plane-wave DFT code for periodic
systems, the efficient reciprocal space formulation has been
implemented.

	 FHI-aims195 allows for usage of the MBD formalism with
range-separated short-range screening for periodic (reciprocal
space formulation) and non-periodic calculations in a serial,
MPI-parallel, and a fully memory-parallel implementation
including analytical gradients.

	 Q-Chem:227 MBD contribution to total energy and option-
ally forces available.

	 Quantum espresso:228 MBD contribution to forces and
energies has been implemented.

	 VASP197–201 features a reciprocal space formalism for
periodic boundary conditions and analytical gradients (default
range-separation parameter only available for the PBE xc
functional). It also allows to output the first five nth-order
contributions to the dispersion energy (obtained in the form
of eqn (11) with short-range screened atomic polarizabilities as
used within the MBD model).

5.5 Pairwise-additive van der Waals Models

Augmenting (semi-)local DFT calculations a posteriori with a
London-type vdW term, as first put forward by Wu and Yang277

and popularized as a general framework by Grimme,37 repre-
sents an early and efficient approach to correct for the lack of
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long-range electron correlation. As detailed in Section 2.2, the
fundamental mathematical form can be derived from a coarse-
grained ACFD/RPA formula. For the purpose of comparing the
rich set of pairwise-additive vdW models devised to date, we
will use the ACFD/RPA-derived expression (14) to define the
pairwise vdW energy,

E
ðpwÞ
vdW ¼ �1

2

X

AaB

3

p

ð1

0

a
ðsrÞ
A a

ðsrÞ
B do

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

fdamp RAB;R
ðABÞ
ref

� �

RAB
6

(43)

¼ �1

2

X

AaB

C
ðeffÞ
6;AB

fdamp RAB;R
ðABÞ
ref

� �

RAB
6

; (44)

with A, B labeling atoms, fdamp denoting the damping function
arising from range-separation, and RAB as interatomic distance.
Note that from our derivation, the C6-coefficients are defined
via the Casimir–Polder formula based on isotropic, static
atomic polarizabilities, which should already include short-
range screening. However, almost none of the pairwise-additive
approaches explicitly accounts for the electrodynamic screening.
Instead, most methods rely on effective polarizabilities or
C6-coefficients, which are meant to implicitly include such screen-
ing effects. The various pairwise models we have today basically
differ in the way those effective vdW parameters are determined.
As indicated in eqn (43) and (44), these typically also involve an
atom-pair dependent reference distance, R(AB)ref , which parametri-
cally enters the damping function. Thereby, the actual mathe-
matical form of this damping function has been shown to have a
minor effect on the final vdW energetics.45

5.5.1 Electronic structure-based pairwise-additive inter-

atomic methods. One very successful way to model the polariz-
ability of the KS reference system without recourse to the Adler–
Wiser formalism (18), is by incorporating information of the
local chemical environment via the electron density. This
represents an approximate, yet reliable and efficient method
to account for type A non-additivity (see Section 2.3). A variety of
successful schemes in this spirit has been devised to date, e.g.,
the LRD model,42 the non-local density functional for multi-
polar interaction coefficients by Tao et al.,278,279 or the vdW-WF
method.280,281 In this work, we focus on some of the most widely
used approaches: the vdW(TS) scheme41 and the exchange-hole
dipole moment model (XDM)38,39 including the related density-
dependent dispersion correction (dDsC) scheme.44

The vdW(TS) scheme

Just as the MBD model (see above), the vdW(TS) approach starts
from the leading Padé approximant250 based on an effective static
atomic polarizability, a(TS)A,0 � a(TS)A (io = 0). While MBD subse-
quently explicitly accounts for screening effects (type B non-
additivity), vdW(TS) directly uses this polarizability to approximate
the short-range screened polarizability entering eqn (43):

a
ðsrÞ
A ioð Þ � a

ðTSÞ
A ioð Þ ¼ a

ðTSÞ
A;0 1þ o

ZA

� �2
" #�1

; (45)

where ZA corresponds to an effective excitation frequency as
introduced in Section 5.4.41 Inserting this into the Casimir–Polder
integral in eqn (43) yields the London formula,282 from which we
can define the C6-interaction coefficients entirely based on effec-
tive static atomic polarizabilities via

C
ðeffÞ
6;AB � C

ðTSÞ
6;AB ¼

2C
ðTSÞ
6;AAC

ðTSÞ
6;BB

a
ðTSÞ
B;0

a
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C
ðTSÞ
6;AA þ
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ðTSÞ
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a
ðTSÞ
B;0

C
ðTSÞ
6;BB

and C
ðTSÞ
6;AA ¼ 3

4
ZA a

ðTSÞ
A;0

h i2

:

(46)

Hence, the key quantity is the effective static atomic polarizability.
To obtain this polarizability, one takes advantage of the linear
correlation between the atomic volume, VA, and the (static) atomic
polarizability,283 i.e., aA(io = 0) = kA�VA with k as proportionality
constant. This allows the definition

a
ðTSÞ
A;0 ¼ k

ðAÞ
eff V

ðAÞ
eff

k
ðAÞ
freeV

ðAÞ
free

a
ðfreeÞ
A;0 ¼ k

ðAÞ
eff

k
ðAÞ
free

� xðAÞV � aðfreeÞA;0 ; (47)

where a(free)A,0 is the static polarizability of the corresponding atom
in vacuo.41 The atomic volume can be determined as the expecta-
tion value of the cube of the electron-nucleus distance, r, based on
the atomic density of the atom in its chemical environment or of
the corresponding isolated atom, respectively. The effective atomic
density is conventionally obtained via Hirshfeld analysis,251 from
which the rescaling factor, xV, is given by

x
ðAÞ
V ¼ V

ðAÞ
eff

V
ðAÞ
free

¼
Ð
r3wA rð Þr rð Þdr
Ð
r3r

ðAÞ
free rð Þdr

; wA rð Þ ¼ r
ðAÞ
free rð Þ

P

B

r
ðBÞ
free rð Þ

(48)

where wA is the Hirshfeld weighting factor and r(r) is the total
electron density of themolecule ormaterial. All densities, including
the in vacuo atomic density, are evaluated at runtime with the same
DFA. Finally, inserting the effective atomic polarizability into the
second part of eqn (46), together with an equivalent consideration
of (46) for an isolated atom, gives

C
ðTSÞ
6;AA ¼ ZA

Z
ðfreeÞ
A

k
ðAÞ
eff

k
ðAÞ
free

" #2

x
ðAÞ
V

h i2

C
ðfreeÞ
6;AA ’ x

ðAÞ
V

h i2

�CðfreeÞ
6;AA (49)

where, upon closer inspection, the two prefactors involving Z and k

together have been found to be well approximated by unity.41

Relying on accurate reference data for the C6-coefficients of the
corresponding isolated atoms, C(free)

6,AA , this approach has been
shown to yield accurate effective interaction coefficients within
5.5% from values derived from experimental Dipole Oscillator
Strength Distributions.41 For the final ingredient of the energy
expression (44), the damping function, a Fermi-type range-
separation function was proposed,

f
ðTSÞ
damp RAB;R

ðABÞ
vdW

� �

¼ 1þ exp �d
RAB

sR � RðABÞ
vdW

� 1

 !" #( )�1

;

(50)
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where the steepness of the damping, d, has been found to have a
negligible effect on binding energies and is therefore fixed to d = 20.
The onset of the range-separation, finally, is determined by the
DFA-dependent scaling parameter sR (typical values: 0.94 for PBE,
0.96 for PBE0, 0.84 for B3LYP) and an effective vdW distance, R(AB)vdW,
given by the sum of the corresponding effective vdW radii of atoms
A and B. Based on the definition of the vdW radius by Pauling and
considerations from classical physics, the vdW radius of an atom is
proportional to the cube-root of its volume.** This allows to define
an effective vdW radius of an atom in a similar manner from its in
vacuo counterpart:

RvdW /
ffiffiffiffi

V
3
p

) R
ðAÞ
vdW ¼

ffiffiffiffiffiffiffiffi

x
ðAÞ
V

3

q

� RðA;freeÞ
vdW : (51)

Combining eqn (44) and eqn (48)–(51), ultimately defines the vdW
dispersion energy in vdW(TS),

E
ðTSÞ
vdW ¼ �1

2

X

AaB

f
ðTSÞ
damp RAB;R

ðABÞ
vdW

� �C
ðTSÞ
6;AB

RAB
6
: (52)

Effective, electronic structure-based vdW parameters can
also be obtained via an alternative, yet similarly accurate and
reliable, approach, which relies on net atomic populations
instead of the real-space representation of the electron density
as used in the Hirshfeld scheme outlined above. Atomic
populations as initially classified by Mulliken, can be calcu-
lated in Fock space, i.e., from the density-matrix in an atom-
centered basis set representation. The alternative rescaling
factor xD is defined as,285

x
ðAÞ
D

¼ hA

ZA

; hA ¼
X

a

fa
X

i2A
Diik k2; (53)

where ZA is the nuclear charge (atomic number) of atom A

corresponding to hA for an atom in vacuo. We would like to point
out that hA, being the atom-projected trace of the Mulliken
population matrixD, does not involve off-diagonal (mixed) terms
of the density matrix. As such, it does not suffer from the
arbitrariness of partitioning the electron population of overlap
regions, which represents the main and fundamental pitfall of
Fock-space charge partitioning schemes. This approach yields
interaction coefficients en par with the original scheme285 and
allows for the usage of the vdW(TS) model and the MBD
formalism in conjunction with electronic structure methods
without real-space representation of the electron density, such
as the semi-empirical Density-Functional Tight-Binding method
or other density matrix-based approaches. Similar in spirit,
yet neglecting some hybridization effects and relying on the not
well-defined full Mulliken charge, is the dDMC vdW model by
Petraglia et al.286 (see below).

The vdW(TS) method uses the same starting point as the
MBD formalism. The interaction coefficients used in eqn (52)
can thus also be adapted via the coarse-grained Dyson eqn (36)
to account for electrodynamic (short-range) screening. Such an
approach can be used to dissect the importance of screening

and multi-center interactions for dispersion interactions
(further sub-classifying type B non-additivity). Furthermore,
the vdW(TS) scheme can be used to investigate the effect of
dispersion interactions on the electronic structure and derived
properties.19 As the interaction coefficients are a functional of
the electron density (or density matrix), the effective potential
arising from long-range correlation forces can be derived.
Inclusion of this term in the self-consistency procedure of the
DFT calculation, termed self-consistent vdW(TS), has been
shown to affect the work function of metals, for instance.19

As already mentioned for the MBD model, see Section 5.4,
usage of Hirshfeld analysis for the calculation of the vdW
parameters can lead to a considerable underestimation of the
effect of charge transfer. Also in the case of vdW(TS), this defi-
ciency can be alleviated via the iterative Hirshfeld scheme265,266

or by the use of a charge-dependent reference for the isolated
atom.267 For the simulation of hybrid organic–inorganic inter-
faces, an adapted version vdWsurf has been devised,287 which
accounts for the metallic screening in the substrate according
to Lifshitz–Zaremba–Kohn theory.59,60 The vdWsurf model
significantly improves upon the original scheme and provides
an description of the binding properties of metal surface-
adsorbed organic molecules.287–291

The XDM model and the dDsC scheme

In the exchange-hole dipole moment (XDM) model, vdW disper-
sion interactions are interpreted as the interaction of electronic
multipoles spanned by the moving electron and its accompanied
exchange- or Fermi-hole: the instantaneous depletion of the prob-
ability to find a second electron near the position of an electron
with equal spin. For a single atom the total atomic moment
integrals, hMl

2i can be calculated via

Ml
2

� �
¼
X

s

4p

ð

drrs rð Þ r� Rk kl � r� Rk k �Ds rð Þ½ �l
n o2

;

(54)

where rs is the electron density in spin-channel s, r is the spatial
coordinate and R is the position of the nucleus. Ds is the
magnitude of the exchange-hole dipole moment, which can be
obtained exactly from occupied orbitals, referred to as XDM(EXX)
and typically used as post-HF method, or approximated from the
Becke–Roussel model292 for the exchange-hole, referred to as
XDM(BR) and typically used in the context of DFT.293 For an
N-atom system, this is partitioned into N atomic contributions
by means of the Hirshfeld scheme. The dipole moment integral of
atom A in a many-atom system, for instance, is given by

M1
2

� �

A
¼
X

s

4p

ð

drwAðrÞrsðrÞDs
2ðrÞ; (55)

with wA as Hirshfeld weighting factor, see eqn (48). Using a
closure or Unsöld-approximation, as also employed in MBD or
vdW(TS), one can obtain a relation between these atomic
exchange-hole dipole moment integrals and the dipole–dipole

** We note that a recent study284 predicts such classical considerations to be
insufficient and that, in quantum systems, different scaling laws can apply.
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interaction coefficients for pairwise vdW interactions given by
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(56)

with DA as average excitation energy into unoccupied orbitals of
atom A, which can be expressed in terms of (effective) atomic
polarizabilities by comparison to London’s formula based on
the first Padé approximant of the dynamic polarizability to yield
the final expression.294,295 Ultimately, effective atomic polariz-
abilities are obtained via rescaling of accurate reference data
using Hirshfeld volume ratios as in the vdW(TS) model,
eqn (47). The XDM model typically also involves evaluation of
higher multipole vdW interactions. This gives rise to expres-
sions similar to eqn (44) with corresponding Cn-interaction
coefficients and a R�n-dependence. The resulting total vdW
energy is typically well-converged when accounting for n = 6, 8,
10. The C8/10-coefficients are calculated based on the same
footing using the atomic quadrupole and octopole moment
integrals (l = 2, 3) and KAB from eqn (56) via294
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To couple the XDM approach as a long-range correlation model
with (semi-)local DFAs, a rational damping was proposed, such
that the final energy can be written as39
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1þ a1 � RðABÞ
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�1

; (58)

with a1 and a2 as DFA-dependent damping parameters.294

In addition, three-body vdW interactions can be included
according to the Axilrod–Teller–Muto formula,296,297

E
ðATMÞ
vdW ¼

X

A;B;C

cos jð Þ cos Wð Þ cos yð Þ þ 1½ � C9;ABC

RABRBCRCAð Þ3
; (59)

where j, W, y are the angles enclosing the triangle spanned by
the atomic positions of atoms A, B, and C. The corresponding
C9-interaction coefficients in the XDM-framework are given
by,295

C
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6;AA :

(60)

In order to use the ATM expression in conjunction with (semi-)-
local DFAs, it is damped at short internuclear separations.
Thereby, an obvious ambiguity arises in the definition of an

effective distance in the damping function. Various forms have
been formulated1,298–300 and the convoluted interplay of intricate
error cancellations with(in) different DFAs often leads to the some-
times unpredictable performance of adding the ATM term.1,301–303

As a further adaption of the XDM approach, Steinmann and
Corminboeuf introduced a combination of XDM interaction
coefficients with a more rigorous, density-dependent damping
function based on the universal damping functions by
Tang and Toennies304 and the more robust iterative Hirshfeld
partitioning scheme265 to obtain atomic polarizabilities in
eqn (56).305 As in the case of the vdW(TS) scheme, this model,
termed dDXDM, has been shown to provide significant
improvements in particular for ionic systems thanks to the
more reliable and robust partitioning scheme.305 Building
ontop of this approach, a simplification of the Becke–Roussel
model tailored for the derivation of long-range interaction
coefficients has been derived by the same authors and has
been given the name dDsC.306 It typically employs an (iterative)
Hirshfeld-dominant partitioning scheme306,307 and has been
shown to yield accurate results for a variety of benchmark sets
for vdW complexes, ionic systems, and reactions while affording
rather low computational costs in comparison to vdW-optimized
(non-local) density functionals.44,306 With the C6-coefficients and
the damping function being a functional of the electron density,
the dDsC model can also be used self-consistently in order to
investigate vdW effects on the electronic structure at acceptable
computational cost.18

The dDsC scheme has also been adapted for use in Tight-
Binding approaches, where the Hirshfeld partitioning has been
replaced by Mulliken charge analysis. Despite neglecting
important hybridization effects (vdW parameters of homonuc-
lear systems correspond to in vacuo parameters, for instance),
the resulting dDMC model has been shown to substantially
augment the semi-empirical Density-Functional Tight-Binding
method for the description of non-covalent interactions.286

5.5.2 (Semi-)empirical pairwise approaches. The first widely
used vdWmodel in the context of DFT was the DFT-D approach by
Grimme, which followed the form of eqn (44) and featured
effective, but fixed C6-interaction coefficients and a Fermi-type
damping function.37 The applicability was later (DFT-D2) extended
by deducing effective interaction coefficients from atomic
properties.40 It is worthwhile to mention that both approaches
did not account for any effects of the chemical environment (type A
non-additivity) nor did they yield the correct asymptotic
behavior.43 These obsolete methods can thus not be recom-
mended for use in electronic structure calculations today. After
careful numerical investigation of the effect of the local chemical
environment, a new semi-empirical variant, termed D3, was
devised. The scheme is based on atom-pair specific C6 coefficients
and includes local information in the form of geometry-motivated,
fractional coordination numbers,43

CNA ¼
X

BaA

1þ exp �p1 � p2 �
R

ðAÞ
cov þ R

ðBÞ
cov

RAB

� 1

 !" #( )�1

;

(61)
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where the parameters p1 = 16 and p2 = 4/3 have been chosen
based on a set of organic molecules, RAB is the distance between
atoms A and B, and R(A)

cov is the (scaled) covalent radius of atom
A. The final procedure has been shown to yield chemically
sensible coordination numbers for a variety of organic and non-
organic systems.43 The interaction coefficient for atoms A and B

is then calculated for a number of different coordination
numbers, which are achieved by considering the corresponding
hydrides and approximately decomposed to provide reference
values for C6,AB. This collection of coordination number-
dependent C6 coefficients then serves as a reference database
and the final effective interaction coefficient, C(D3)

6,AB, which
enters eqn (44), is obtained from interpolation of the reference
coefficients based on their coordination numbers via

C
ðD3Þ
6;AB CNA;CNBð Þ ¼ 1

L

X

Aref

X

Bref

C6;ArefBref
L Aref ;Brefð Þ; (62)

where

L Aref ;Brefð Þ ¼ e�p3 CNA�CNArefð Þ2þ CNB�CNBrefð Þ2
� �

(63)

and L is the sum of all Gaussian distances L(Aref,Bref), The last
global ad hoc parameter p3 = 4 to assure smooth behavior at
integer coordination numbers.43 Thus, the effective interaction
coefficients are interpolated from reference values based on
their local coordination. The general procedure for the defini-
tion of coordination numbers and the interpolation scheme is
thereby, in principle, completely arbitrary and was motivated by
numerical results.43 The geometry-based D3 model neglects any
electronic structure and explicit screening effects, but at the
same time models dispersion interactions beyond the dipole
approximation and allows for a vdW correction for any given
total energy method including molecular mechanics. As show-
cased by Ehrlich et al. strong electronic structure effects like
far-from-neutral species, can be incorporated by a suitable
choice of reference systems for the interpolation scheme.308

For general applications however, such an approach introduces
a certain degree of empiricism and requires a careful choice
and testing. Recently, also a more straightforward approach to
include such effects via rescaling of interaction coefficients
based on atom-in-a-molecule charges was proposed (D4) and
shown to significantly improve transferability and general
applicability.309 The D3 scheme also involves an additional term
for pairwise dipole–quadrupole vdW interactions, which scales
as 1/R8 (derived from perturbation theory). The C8-interaction
coefficients, i.e., the equivalent of C6 for dipole–quadrupole
vdW interactions, are computed recursively304,310,311 based on
the corresponding C6-coefficients.

43 For the damping two
mathematical forms are commonly used: the original scheme
employed a formulation proposed by Chai and Head-
Gordon.312 Including the quadrupolar interaction term, this
defines the vdW energy in D3 as
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respectively. Above, nb = 2 for two-body interaction and m = 6, 8
denotes dipole–dipole and dipole–quadrupole interaction. p4 is
a rescaling factor for the dipole–quadrupole interaction (p4 = 1
for m = 6), while p5 is a DFA-dependent damping parameter,
which together with the atom pair-dependent cutoff radius,
RD3, determines the onset of the vdW correction. The cutoff
radius RD3 is determined from the attenuation of the DFT
interaction energy below a certain threshold for the corres-
ponding dimer.43 Such a choice of cutoff parameters instead of
vdW radii in the damping function can conceptually be justi-
fied as the appropriate range-separation is not necessarily a
function of vdW radii, but depends on the range of electron
correlation captured by the underlying DFA. This, however, is
highly system-dependent and a rigorous and seamless scheme
for arbitrary systems has not been derived so far. As an
alternative range-separation, Becke and Johnson proposed to
use a rational damping as in the XDM model (cf. eqn (58)) also
in D3, which is widely used and referred to as D3-BJ.38,39,45

The cutoff radius entering the damping function in the case of
D3-BJ is defined by45
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
ðD3Þ
8;AB

.

C
ðD3Þ
6;AB

r

: (65)

A nowadays common extension of the DFT-D3 framework is
to also include beyond-pairwise terms in the form of the three-
body term according to Axilrod and Teller296 and Muto,297

eqn (59). In the context of D3, the effective three-body
C9-interaction coefficients are approximated via the effective
two-body C6-coefficients according to

C
ðD3Þ
9;ABC ¼ �
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Finally, the three-body term is damped at short distances
equivalently to the two-body interaction in eqn (64) using
p4 = 4/3, nb = 3 and m = 6. As mentioned above in the context
of the XDM model, formulating a rigorous damping function
for the three-body ATM energy in terms of internuclear distances
leads to an obvious ambiguity and can give rise to a considerable
uncertainty whether the additional three-body term improves the
final vdW energies.302,303

5.5.3 Pairwise-additive vdW models in select electronic

structure codes. As of today most electronic structure packages
feature pairwise-additive vdW models to correct for the lack of
long-range correlation in common (semi-)local DFAs. Among
others the following approaches are available:

	 ABINIT191–193 features the D3 dispersion correction (64),
D3-BJ, and the three-body D3-ATM term, eqn (59) with defini-
tion (66).

	 ADF273–275 allows for inclusion of D3, D3-BJ, and dDsC as
post-DFT vdW models.

	 CASTEP:276 pairwise-additive vdW models can be included
in an a posteriori fashion. Available methods include vdW(TS),
vdWsurf, and D3.

	 DFTD3:313 being independent of the electronic structure,
the D2, D3 and D3-ATM models can be employed a posteriori to
any electronic-structure calculation via a standalone calculator.
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For instance, a library version of Grimme’s DFTD3 code is
available at https://github.com/aradi/dftd3-lib.

	 FHI-aims:195 the vdW(TS) model can be applied for peri-
odic and non-periodic systems in an a posteriorimanner as well
as self-consistently, which accounts for long-range correlation
effects on the self-consistent solution for the electron density
and derived properties.

	 Gaussian:314 D3 and D3-BJ can be included natively. For
the XDM model, Otero de la Roza and co-workers, developed
the post-processing program postg315,316 available as free soft-
ware on https://github.com/aoterodelaroza/postg. Further
information on the usage of the program and damping para-
meters are available at http://schooner.chem.dal.ca/wiki/XDM.

	 NWChem317 features the original dispersion model by Wu
and Yang277 and Grimme’s D1, D2, D3, and D3-BJ including
default parameters for a variety of xc functionals. The XDM
model is available. As of the time of this publication, this
requires manual specification of the damping parameters a1
and a2 for a given xc functional, which can be obtained from
ref. 316 or at http://schooner.chem.dal.ca/wiki/XDM.

	 Q-Chem227 allows for inclusion of several (semi-)empirical
dispersion corrections including the scheme by Chai and Head-
Gordon312 as well as Grimme’s D3 with a number of options
for the damping function. In addition, the ATM three-body
term can be included. Also, the electronic structure-based
XDM (post-DFT and self-consistent) and vdW(TS) models are
available.

	 Quantum espresso:228 the XDM model can be used (only
together with PAW pseudopotentials, however). The corres-
ponding a1 and a2 parameters can again be obtained, for
instance, at http://schooner.chem.dal.ca/wiki/XDM. The vdW(TS)
scheme is implemented as post-DFT model as well for self-
consistent inclusion of vdW interactions.

	 TURBOMOLE:196 the D3, D3-BJ and the D3-ATM vdW
model can be added.

	 VASP:197–201 the pairwise-additive models D3, D3-BJ, or
vdW(TS) can be enabled. Also, the extension of the vdW(TS)
model by using iterative Hirshfeld partitioning as well as Ewald
summation of the vdW(TS) energy for periodic systems is
implemented and the dDsC scheme is available with conven-
tional Hirshfeld-dominant partitioning.

6 Performance

With the exception of the fully first-principles EXX/cRPA
approach, all of the above methods involve minimum one
empirical parameter and in the end all of the practical methods
outlined above rely on a given model for the non-local density–
density response and approximations to the evaluation of the
ACFD formula. Therefore, the importance of careful analysis of
the transferability and validity of the employed approximations
cannot be overestimated. However, the applicability of highly
accurate quantum-chemical approaches, including (local) coupled
cluster theory, Quantum Monte-Carlo (QMC), and SAPT, as refer-
ence methods is limited to a maximum of a few hundred atoms in

the best case. Due to the often still substantial gap between
experimentally and theoretically accessible length-scales, com-
parison to experimental data also does not represent a seamless
and adequate way of assessing the accuracy of vdW models in
all but a few cases. As a result, most of the practical approaches
for modeling vdW interactions are parametrized and tested
against benchmark sets of small (and medium) size complexes
or simple molecular materials. As we shall see in the following
section, the majority of schemes provides comparable accuracy
for these standard test sets. Yet, long-range correlation forces
show a far from trivial, strongly non-linear behavior with
increasing system size due to their inherently quantum-
mechanical and non-local character. As such, the performance
of different models often strongly depends on the size and
complexity of the systems under consideration (see Section 6.2).
A careful analysis and comparison among models that rely on
different approximations can provide tremendous insight into
the failure of certain models or approximations and is invalu-
able for further methodological developments. In the following
we will present a few exemplary test sets and reference systems
to illustrate such cases. Please note, that most of the numerical
data presented herein has not been based on maximally
accurate DFT calculations (consistent improvements of up to
1% possible, yet negligible for the relative accuracy of the vdW
models). Instead, we have used settings as they are employed in
typical production calculations, which in our opinion offers an
optimal way to discuss general trends and features of the
models and particular systems in the context of practical
applications.

6.1 Benchmark sets with high-level reference data

Typically, vdW models are judged based on the interaction
energies they provide in comparison to high-level quantum-
chemical calculations. An important advantage of such an
approach is that it allows to evaluate the different models
based on a given (fixed) geometry of the test system and does
not involve an intricate interplay of the interaction energy and,
e.g., finite-temperature effects, which can be hard to disentan-
gle. At the same time, it allows to evaluate the accuracy of
interaction energies as a function of nuclear positions, i.e., the
overall shape of the potential energy surface.

Over the last decade, especially the group of Hobza has
designed and obtained a number of benchmark sets in this
spirit. Among others,321–324 this includes sets of small molecular
dimers in equilibrium configuration (S22, S66)318,320 featuring a
variety of types of intermolecular interactions (vdW-bound,
hydrogen-bonded, mixed) and the corresponding dissociation
curves (S22x5, S66x8).319,325 The remaining empirical (damping)
parameter(s) in almost all of the above practical models, have
been obtained based on an optimal performance for these bench-
mark sets. As a result, the different vdW models overall perform
comparably well on these sets of molecular dimers (cf. Table 2)
and as a main conclusion it underlines the importance of vdW
interactions for a reasonable description (accuracy of bare PBE
more than four times worse than any vdW-inclusive method!).
Upon closer inspection, we see that, as one might expect, the
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empirical D2 scheme with its neglect of the local chemical
environment typically yields the least accurate results. Never-
theless, employing any of the vdW models drastically improves
upon the bare (semi-)local description with PBE or other DFAs for
that fact. When testing such combined approaches of a (semi-
)local DFA and a given vdW model, one should also consider the
error in the short-range description associated with the chosen
DFA. Any discussion or optimization of dispersion methods
beyond this intrinsic error is not physical and should be avoided.

For years, small organic dimers as discussed above repre-
sented the only class of systems, where accurate reference data
was available. The accuracy of simple, pairwise vdW models for
these systems motivated their wide-spread use and even gave
rise to the impression that dispersion interactions can univer-
sally be well approximated by pairwise-additive interatomic
potentials as still concluded in many standard textbooks.
A first step to go beyond these typical reference sets was the
investigation of molecular crystals, where an accurate treat-
ment of dispersion interactions is vital.3,4,301,303,326 As a test

suite, the C21 benchmark set327 and its extended version X23328

have been proposed. Here one relies on lattice energies derived
from experimental sublimation enthalpies. For such an approach
and the comparison to experimentally derived reference data, in
general, it is important to keep in mind possible experimental
errors or uncertainties - both in the experimental measurement
and for the derivation of (electronic) interaction energies, where
one typically relies on some (simple) model to account for
the experimental conditions. As can be seen from Fig. 5, many
modern vdWmodels (MBD, XDM, D3, D3-ATM) almost reach this
experimental accuracy of roughly 4.3% (4.6 kJ mol�1), while
vdW(TS) and rVV10 give a mean absolute relative error (MARE)
of 17.2 and 15.0%. This divergence between the pairwise models
and in particular the poor performance of the vdW(TS) model can
be explained by two major points. First, the (Hirshfeld) rescaling
procedure does not sufficiently capture the effect of the local
environment due to the strong anisotropy in the system, which
is exemplified by the significant improvement when explicitly
accounting for short-range screening (see ‘‘with SCS’’ in Fig. 5).
Second, as pointed out by Otero de la Roza and Johnson, the
neglect of higher multipole vdW interactions can lead to an
overestimation due to a spurious damping/range separating
function for the dipolar C6/R

6-interaction.295,329 Neglecting higher
multipole vdW interactions in the D3 model, for instance, leads
to a similar performance as for the C6/R

6-only vdW(TS) scheme
(cf. ‘‘only dip.’’ in Fig. 5). The performance of rVV10 for these
systems can mainly be traced down to the neglect of screening
effects (type-B non-additivity, see Section 5.2), which have been
shown to be important for anisotropic systems. In addition,
experience has shown that rVV10, and VV09 for that matter,218

perform best with more ‘‘repulsive’’ semi-local functionals,
i.e., functionals capturing a sufficient portion of exchange-
repulsion. Hence, the PBE functional might not represent an
optimal choice for combination with rVV10. For consistency
with the remaining calculations, however, we will stick to the
PBE xc-functional throughout this work.

In another approach to study vdW interactions in larger-scale
systems, Grimme and Risthaus330,331 made use of experimentally

Table 2 Mean absolute deviations (MADs) of interaction energies
obtained by MBD, vdW(TS), XDM, D2, D3, and D3-ATM in conjunction
with the PBE-GGA density functional for the S22, S66, and S66x8 bench-
mark sets in kJ mol�1. The calculations have been performed using
standard production settings in FHI-Aims,195 NWChem,317 and the DFTD3
code.313 Reference data from CCSD(T)/CBS calculations318–320

S22 S66 S66x8 Average

PBE 10.88 9.00 6.44 8.77

PBE +

MBD 2.01 1.55 1.34 1.63
vdW(TS) 1.42 1.42 1.38 1.41
XDM 1.72 1.59 1.72 1.67
D2 2.13 2.34 1.76 2.08
D3 1.80 1.26 1.13 1.39
D3-ATM 2.01 1.38 1.26 1.55

vdW-DF2a,b 2.13 2.01 2.07
VV10a,c 1.30 1.26 1.28
LC-VV10a,c 0.88 0.63 0.75

a Data taken from ref. 220. b Data taken from ref. 214. c Data taken
from ref. 219.

Fig. 5 Mean absolute relative error (MARE) of PBE in conjunction with van der Waals models. Left: With respect to experimentally derived lattice energies
for X23 set of molecular crystals327,328 (rVV10 result taken from ref. 261). Results for D3 with neglect of higher multipole interactions and vdW(TS) with
account for electrodynamic screening shown as empty bars. Right: Interaction energies as compared to Diffusion QuantumMonte-Carlo (DQMC) results
for the SMC13 set of supramolecular complexes (see Fig. 6). Note that the MARE for plain PBE is 61% and 128% for X23 and SMC13, respectively.
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derived association energies, when they compiled the S12L bench-
mark set of supramolecular guest–host complexes. The reference
data was derived from experimental Gibb’s free energies in
solution. Thanks to ongoing methodological developments in
the quantum-chemistry community and the ever-growing compu-
tational power, accurate QMC results are also available for a
subset of S12L. These calculations provide a reliable benchmark
at a given geometry, which is free of any thermal or solvation
effects. Noteworthy, these results show that the approximations
in the ‘‘back-correction’’ from experimental free energies can
introduce errors of up to 16% (or 15 kJ mol�1).8 In addition to
the subset of S12L set covered in ref. 8, Hermann et al. obtained
QMC reference results for additional guest–host complexes of
the C70 fullerene.

9 For the purpose of this work, we compiled 13
supramolecular complexes for which QMC reference data is
available. This set, to which we will refer to as ‘‘SMC13’’, is
shown in Fig. 6. The complexes are characterized by strongly
anisotropic molecular polarizabilities and represent showcase
examples for the non-additivity of (short-range) screening and
multi-center interactions. It also shows the absolute inapplic-
ability of bare (semi-)local DFAs for non-covalently bound
systems with increasing size. In fact, PBE predicts attractive
interaction for only three of the 13 complexes and yields a
MARE of 128%.

Including vdW forces in form of the atom-pairwise vdW(TS)
model or two-point non-local rVV10 density functional already
drastically improves the description of supramolecular

complexes as contained in the SMC13 set down to a MARE of
17–25% (see Fig. 5). One main part of the remaining error can
be traced down to the strong anisotropy of the systems. This
gives rise to significant many-body effects in form of (short-
range) screening, which are not captured by the Hirshfeld
rescaling procedure in vdW(TS) and the semi-local polarizability
functional in rVV10. Thanks to an improved description of
screening effects via additional gradient information, the still
pairwise XDM model yields significantly better results.329 Also
in the case of D3, considerable improvements can be obtained.
How much of the improvements in XDM and D3 stem from the
inclusion of higher-multipolar interactions is still often under
debate. Inclusion of the ATM three-body term, for example, in
both cases reduces the accuracy. This might be connected to the
ambiguous definition of the damping function for the three-body
energy, but on the other side might raise the question in how far
the increased functional space in form of multipolar interactions
facilitates error cancellation and overfitting. In the case of VV10,
on the other side, it has been shown, that inclusion of the ATM
vdW energy leads to considerable improvements in the descrip-
tion of supramolecular complexes.332 Accounting for (short-range)
dielectric screening as well as (long-range) electron correlation to
all orders in the MBD formalism, ultimately, yields mean devia-
tions just above the uncertainty of the reference method.

Overall, the X23 and SMC13 test sets allow to get a glimpse
at the non-additivity of vdW interactions in systems beyond the
typically considered simple dimers and further benchmark sets

Fig. 6 SMC13 complexes. First row, left to right: C60@catcher, 1,4-dicyano benzene@tweezer, C70@catcher, and gycine anhydride@macrocycle.
Second row: tetracyano quinone@tweezer, two configurations of C70@[6]-CPPA (cycloparaphenylacetelyne), C70@[10]-CPP (cycloparaphenylene), and
C70@[11]-CPP. Third row: four configurations of C70@[8]-CPPA.
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in this direction are being compiled and have already been
proposed, e.g., the S8 or L7 set.333,334 It is worthwhile to point
out that this can be assumed to only be the tip of the iceberg of
the many-body nature of long-range correlation forces, which
are expected to occur in more complex systems and materials.

6.2 Beyond typical benchmarking

Above, we outlined the general benchmarking scheme for (vdW)
approaches in electronic structure modeling: Determining and
discussing the overall deviation from high-level reference data of
interaction energies based on a select set of hopefully diverse
systems, which then serves as an estimate for the expected
accuracy. For many studies in molecular and materials modeling,
however, the average performance in terms of electronic inter-
action energies does not represent an optimal testing ground
for the accuracy of the studied quantity or property. For study-
ing the critical points on a potential energy surface, for exam-
ple, the average accuracy of interaction energies in equilibrium
geometries provides only limited information. Therefore, it is
worthwhile to also analyze more specific quantities a given
(combined) electronic structure method yields. In recent years a
number of studies showed that while providing similar accura-
cies for the common benchmark sets, the results for specific
applications can substantially differ when employing different
vdW models. In the following we will showcase some of these
findings.

6.2.1 Precision and reproducibility. As a first important
point, we would like to remind about one of the fundamental
necessities of science: the replicability of results. One major
concern in molecular and materials modeling in general is that
by now we have a wide array of software available to perform
computational studies. Typically, each of these (electronic
structure) codes uses a different computational and sometimes
theoretical framework in order to perform calculations (different
approaches to diagonalization, integration, etc.). Additionally,
there exists a variety of potential basis set representations for
the wavefunction or electron density. As a result of all this, it has
been shown for DFT calculations that careful testing is needed
such that different implementations of the same theoretical
approach also yield the same results.335 In the same way, different
implementations of vdWmodels have to be carefully checked and
compared in terms of consistency. Experience has shown that,
different codes can yield different results for the same vdW
approach. This especially holds true for electronic structure-
based methods, as different electronic structure codes are typi-
cally tested and benchmarked with respect to energies and not for
the parameters entering the vdW model. Thus, a collective effort
to unify the results from different implementations is of utmost
importance and on-going work.

6.2.2 Beyond (single) equilibrium structures. Another
important point, which remains largely under-explored in the
typical benchmark procedure outlined above, is the perfor-
mance of vdW-inclusive electronic structure methods beyond
individual equilibrium geometries.

Relative energies of (meta-)stable states. Predicting a correct
energetic ranking is of utmost importance in the field of crystal

structure prediction, for instance.4,303 Molecular crystals are
often characterized by a variety of possible and meta-stable
polymorphs (crystalline systems with equivalent composition,
but different crystal packing), which are mainly governed by
non-covalent interactions. Knowing the thermodynamically
most stable form is quintessential in, e.g., pharmacy or organic
electronics, as a given drug or functional organic material
might loose its solubility or functionality upon phase transition
to a thermodynamically more stable form as regretfully dis-
covered in the case of the HIV protease inhibitor Ritonavir.336

As such, predicting the correct energetic order in vdW-bound
systems is an important capability. One well-studied example is
oxalic acid, for which a majority of vdW-inclusive methods does
not predict the correct relative stabilities of the two polymorphs.
The vdW-DF2 approach and accounting for exact exchange and
explicit or implicit many-body effects in PBE0+MBD or PBE0+D3,
respectively, finally yields the correct energetic order. Thereby,
only PBE+MBD agrees well with experimental findings both in a
qualitative and quantitative sense.3 A similar example is the
Coumarin crystal, where inclusion of many-body dispersion
effects significantly improves the prediction of the most stable
polymorphs and their energetic order compared to the pairwise
vdW(TS) method.56

In the case of supramolecular complexes, Hermann et al.

investigated the relative interaction energies of the C70-fullerene
with [N]-cycloparaphenylene ([N]-CPP) as also contained in the
SMC13 set (vide supra). Accurate QMC reference calculations
show that the binding energies of C70 to [10]- and [11]-CPP are
degenerate (within QMC uncertainty).9 However, DFT calculations
in conjunction with pairwise or two- and three-body vdW models,
including PBE+vdW(TS), PW6B95+D3, PW6B95+D3-ATM, and
rVV10, show a clear preference for the 10-membered ring and
only explicit account for the many-body character of vdW inter-
actions correctly predicts an energetic degeneracy.9,333

General trends in (binding) energetics. Overall, the diver-
gence between the different vdW models significantly increases
with increasing system size and complexity, when going from
small organic dimers to organic crystals and supramolecular
complexes. This trend is continued when going even beyond
this regime to layered materials, such as graphene and boro-
nitride (BN).337 The adsorption energy of water on a BN-flake
with increasing size nicely showcases the increasing spread
of the energetics predicted by the different models: for the
simple borazine (H6B3N3), all considered vdW-inclusive methods
provide good agreement with QMC and CCSD(T) reference data,
while the results start to strongly deviate for boronene (H12B12N12).
For hexagonal boronitride (h-BN) finally, RPA+SOSEX is the only
DFT-based method found, that yields accurate results. Noteworthy,
the strongly constrained and appropriately normalized (SCAN)
functional338 provides a fairly good agreement compared to the
remaining DFT-based methods. Even more importantly, when
comparing the adsorption of water on borazine, boronene, and
h-BN, the authors showed that the tested vdW-DFs (vdW-DF2 and
optB86b-vdW) predict an increase in the interaction energy with
increasing size, which is not obtained in QMC, RPA, PBE+MBD,
or PBE+D3. This has been assigned to the inherent isotropy in
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non-local vdW-DFs conflicting the strong anisotropy of h-BN.337

For layered materials, detailed tests showed that different flavors
of vdW-DFs show a wide spread in terms of the predicted
interlayer binding energy. The deviations can thereby reach up
to 80% with respect to RPA calculations and 100% among the
various vdW-DFs when considering different systems.339

Another clear difference between semi-local DFAs in combi-
nation with a vdW model and non-local vdW-DFs can be shown
for the adsorption on and inside carbon nanostructures.
While both approaches yield similar results for the extended
2D-analogue (graphene), vdW-DFs have been shown to signifi-
cantly overestimate the adsorption energy inside carbon
nanotubes.340 This can be traced down to electron correlation
at medium-ranges between the regimes of covalent bonds and
the asymptotic London-type limit, which turned out to be
strongly overestimated for nanostructures in the case of vdW-
DFs. It is the highly complex, non-linear scaling of vdW inter-
actions with increasing system size, which makes the accurate,
quantitative description across all length scales a very demanding
task. For a more qualitative description, one often relies on the
power law a given kind of interaction follows with increasing
separation. In the case of dispersion interactions, even this poses
an intricate issue: As shown by Ambrosetti et al., the power law
exponent for the interaction between carbyne-like atomic wires
varies strongly with the interwire separation before reaching its
(very) long-range value and a very similar behavior has been
observed for layered structures, nanotubes, and even nano-
structure–protein complexes. Moreover, the distinct many-body
character of vdW interactions gives rise to a strong dependence
of power law exponents on the geometrical and response
properties of the respective interaction partners.50

Asymptotic behavior. Despite the often complex variations
before reaching the long-range scaling law, the long-range
decay in itself represents a very strong qualitative benchmark
for intermolecular interactions. Especially in this regard, collective
electronic behavior and the quantum-mechanical many-body
character of long-range correlation forces have been shown to
have a pivotal influence. The summation of R�6-terms does yield
the correct power laws for the decay of the interaction of atoms,
small molecular systems, insulating 2D-materials, and thickmetal
slabs. The results for more complex systems such as thin (semi-)-
metallic layers, on the other side, can be qualitatively wrong.23

For instance, the interaction of two two-dimensional metallic
systems (in parallel alignment) decays in the long range as D�5/2

with distance D and the interaction between undoped graphene
layers as D�3 according to RPA calculations (an even more
complex scaling laws once considering many-body effects
beyond the RPA).23,341,342 Simple pairwise-additive vdW models,
on the other side, predict a D�4-dependence in all cases of
parallel sheets.

Reaction barriers, rates, and mechanisms. An accurate
description of vdW interactions in non-equilibrium structures
is, of course, also essential for determining and evaluating
reactive pathways. For a wide variety of configurational changes
of small organic compounds, Steinmann and Corminboeuf
showed that most vdW-inclusive methods including non-local

vdW-DFs and pairwise dispersion models provide accurate
relative energies for the respective equilibrium geometries,
while they found mixed performances for reaction barriers.44

For more complex reactions and transitions, this aspect is in
general hardly explored. Nevertheless, the accuracy of vdW
models out of equilibrium (in a structural sense) can be pivotal,
especially for systems that form a vdW-bound precursor as it
is often the case in bimolecular reactions343,344 or (catalytic)
surface reactions,345 for example. Also, the role of vdW inter-
actions for the reaction path (ensemble) and the sensitivity of
reaction mechanisms with respect to the accuracy of the vdW
model remain open questions.

6.2.3 Beyond (electronic) interaction energies. Above we
outlined some important deviations between and short-comings
of the various vdW models in terms of interaction energies for
specific systems. In actual studies, however, we are often not only
interested in interaction energies, but also several connected or
derived properties, which can also be significantly affected by
long-range correlation forces.

Effect on free energy contributions. For proper comparison
to experiment and realistic modeling, for instance, one usually
needs to account for thermal effects and obtain free energies.
An interesting example of vdW interactions modifying such a
derived quantity is the polymorphism of aspirin. While most
electronic structure methods (both with and without vdW
model) predict two polymorphs to be energetically degenerate,
only one of them (‘‘form I’’) prevails in nature. By explicitly
accounting for many-body dispersion effects, it has been shown
in ref. 346 that an intricate interplay of phonons and long-range
electronic fluctuations can explain the abundance of form I via
entropic stabilization (emergence of low-frequency phonon
modes).

Equilibrium geometries. One of the central steps in almost
all studies in molecular and materials modeling is an (initial)
geometry optimization. Hence, one of the most important tasks of
an electronic structure method is to provide accurate structures.
Nevertheless, the performance of vdW models is only rarely
assessed based on geometrical features. In an extensive study,
Witte et al. covered a wide range of popular (vdW-inclusive)
methods in terms of their ability to reproduce accurate geometries
for molecular reference systems. Non-local vdW-DFs, in particular
oB97X-V and (LC-)VV10, turned out to provide excellent agree-
ment with accurate reference geometries over a wide range of
system sizes.347 The good performance of vdW-DFs in terms
of geometries was also found for layered materials.339 For the
adsorption of water on two-dimensional structures, on the other
side, it has been shown that with the exception of RPA many
vdW-inclusive DFT approaches underestimate the equilibrium
adsorption height by about 0.2 Å, which is in line with their
overestimation of the adsorption energy (see above).337 Compar-
ing pairwise-additive vdW models and the MBD formalism,
Blood-Forsythe et al. showed that the pairwise vdW(TS) and D3
approach yield considerably larger deviations from benchmark
geometries of different benzene configurations, small peptides,
and supramolecular complexes.262 This is especially pronounced
for p–p-stacked systems and can thus mainly be attributed to an
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insufficient account of anisotropy in the systems.27,262 In many
cases, however, pairwise approaches such as vdW(TS) or D3 are
known to give good geometries, despite the sometimes poor
performance for the corresponding energies.

Molecular dynamics and dynamic properties. Connected to
finding the (meta-)stable configurations of a given system, is
the exploration of extended regions of the potential energy
surface in (ab initio) molecular dynamics simulations. For many
structural changes that do not involve breaking covalent bonds,
vdW dispersion interactions represent the main source of
interatomic forces and thus govern the dynamics of the system.
A well-known example is the folding process of peptides and
proteins in the gas phase. In the absence of solvent effects, non-
covalent interactions between the residues are responsible
for the adaption of a secondary structure. Hence, (accurate)
inclusion of vdW interactions is pivotal as even small errors
might be propagated to qualitatively wrong results during the
dynamics. As such, inclusion of long-range correlation forces in
form of a vdW model substantially improves the formation of
helical entities in polypeptides.348–352 Another example is liquid
water, where vdW forces have been shown to considerably
affect the obtained equilibrium radial distribution and diffu-
sion coefficients.353–357 The overall effect, however, strongly
depends on the choice of the xc-functional and the vdW model
and no final conclusion about an physically correct combi-
nation has been agreed upon. An accurate (first principles-
based) treatment of dispersion interactions is also important
for the dynamics of liquid water on 2D-materials, where minimal
changes in microscopic geometrical features give rise to signifi-
cant differences in macroscopic properties.358

Polarizabilities and effective interaction coefficients. Atomic
and molecular (dipole) polarizabilities are one of the funda-
mental properties in the context of vdW interactions, which
nevertheless are equally relevant in many more fields like spectro-
scopy and solvation. It has been shown that both explicit account
for electrodynamic screening49 as well as an appropriate determi-
nation of the initial, unscreened atomic polarizabilities can
significantly improve the description of the (dipole) polariz-
abilities of molecules and (ionic) materials.49,267 In this regard,
it has been shown that the MBD framework does provide
accurate polarizabilities for close to neutral molecular systems,
its predictve power for ionic systems, however, is strongly
limited by the employed Hirshfeld scheme to obtain the initial
unscreened polarizabilities. This can be overcome by employing
an iterative partitioning scheme, which has been shown to
substantially improve the description of polarizabilities in ionic
systems.267 Also in the case of two-dimensional systems it was
found that accounting for anisotropy has an important effect on
the polarizability and correspondingly on the derived (anisotropic)
C6-interaction coefficients.337 Similar collective effects can
be found for effective C6-coefficients. Inclusion of the self-
consistent electrodynamic screening polarizabilities, i.e.,
account for type-B non-additivity, reveals a highly non-trivial
scaling of atom-atom interaction coefficients with respect to
system size; a behavior that is not observed for coefficients
based on a more local description as in vdW(TS) or D3.2

Effects on electronic properties. As pointed out earlier, the
correlation energy is part of the electronic Hamiltonian and as
such they, in principle, affect the self-consistent electronic
charge density. However, as the correlation energy is typically
around five orders of magnitude smaller than the total energy,
its effect on the electron density is negligible in most cases and
the vdW energy can be evaluated as an a posteriori correction.
Mostly, inclusion of a vdW model in the KS self-consistency
procedure only leads to a small polarization of the electron
density towards intermolecular regions.27 Yet, in-depth testing
of the self-consistent vdW(TS) scheme revealed a striking
exception: It has been shown that for several metal surfaces,
long-range electron correlation can indeed affect the electronic
structure and introduce a highly system-specific change in the
work function due to charge polarization effects.19 Small effects
of self-consistent inclusion of long-range correlation have also
been found for the radial distribution in liquid water.357

7 Conclusion

Above we gave a general introduction to a wide variety of
current approaches to model vdW dispersion interactions in
electronic structure calculations and presented a general over-
view of the performance on select showcase examples. We will
now draw some general conclusions, provide what we think are
some best-practice tips, and give a short outlook on some major
open problems in the field.

7.1 The Status quo of van der Waals modeling

As can be seen from Section 6.1, most modern models provide
an apparently reliable description of vdW interactions in select
test systems. Thereby, the main focus in almost all benchmark-
ing studies is on intermolecular interaction energies. For the
assessment of the performance of a given methodology, how-
ever, we highly suggest to consider, first, systems beyond the
typical benchmark sets (as these are often considered in the
parametrization of vdW models) and, second, quantities
beyond plain (intermolecular) interaction energies. Fig. 5 and
Section 6.2 highlight the non-trivial scaling with size and
complexity of the system and the implications of modeling
vdW interactions for derived properties. As a result of this,
careful choice and analysis of the applicability and suitability of
a given approach for the system and property of interest is
recommended.

Our current understanding of vdW interactions is mainly
motivated by an atom-pairwise picture, which is in clear con-
trast to the fundamental physics behind dispersion interac-
tions (see Section 2.1) and a growing number of experimental
and theoretical studies show a failure of the pairwise-additive
approximation. Unfortunately, our conceptual understanding
beyond this simple approximation is still in its infancy and only
a few studies (mostly employing the RPA approach or the MBD
formalism) shed some light on the quantum nature of dispersion
interactions and collective electronic behavior in systems of
practical interest.3,9,23,50,342,359 Due to this limited understanding
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there are no general guidelines for the validity of a given approxi-
mation and the applicability of the corresponding model, when
going beyond typical benchmark systems. Hence, we suggest
to always test different approaches on representative reference
systems. Comparison amongst approaches, which rely on funda-
mentally different approximations, helps to assess the validity of
calculations. Comparing models, which are based on the same
fundamental approximations, allows conclusions about the result
within a given framework and limits the danger of fortuitous error
cancellation in a select flavor of the model.

The Status quo can be summarized as follows: Current vdW
methods significantly improve upon dispersion-less (semi-
local) DFAs and are imperative to model realistic systems due
to the ubiquitous nature of long-range correlation forces. The
results from different models, however, can be wide spread and
there is no universal method applicable to practically relevant
systems. On the upside, the current situation is like ‘‘different
horses for different courses’’ – mostly one of the many devised
models is applicable to the system of interest and after careful
testing reliable results can be obtained for a broader class of
systems. Nevertheless, a few important points in terms of
accuracy and physical completeness remain to be addressed,
some of which we will outline below.

7.2 Open problems and outlook

While vdW-inclusive modeling has become routine in
electronic-structure calculations by now, a variety of experi-
mental observations can still not be fully explained within
current vdW models.61–65,67–69 Thus a lot of methodological
research is still put into the improvement of current models
and the development of new models. In the following we will
outline some of the currently open problems, categorized as
aspects of practical application or concerning the fundamental
physics, which are neglected or only approximately present in
current interatomic vdW models.

	 Aspects connected to practical application
Combining a vdW model with DFT. A certain degree of

empiricism is (maybe inevitably) introduced by coupling a
(semi-)local DFA with a given vdW model. Introducing a
range-separation of the coupling tensor as shown in Section 2.1
provides a solid and, in principle, exact framework for
the typically ad hoc employed damping function in vdW
approaches. For practical applications then, we assume that
short-range correlation forces are captured by the underlying
DFA and hence limit the dispersion model to the long-range
regime. So, in order to obtain a seamless description of the
total system, the range-separating function would need to
describe the range of correlation that is captured in the DFA
and correspondingly switch on the vdW method beyond that.
This range captured by the DFA is in general not known and
thus one relies on empirical switching functions of fixed form
with some parametrical dependence on the system. This com-
plicates the range-separated combination of (semi-)local DFT
with a (long-range) vdWmodel and impedes a clear-cut analysis of
the vdW model For instance, using CCSD(T) and SAPT, Shahbaz
and Szalewicz have recently shown, that most (semi-)local DFAs

lack several, considerable contributions to the interaction energy
of molecular dimers at distances less than the vdW equili-
brium,360,361 where the DFA is assumed to capture all terms.
By fitting the combined DFT + vdW method to total inter-
action energies, the range-separation function is pushed to
(unphysically) also correct for several non-vdW effects including
contributions from electrostatics, exchange, induction, and
different higher-order correlation terms. An important point,
when treating metallic systems with a vdW model in conjunc-
tion with DFT, is that most DFAs are designed to be exact for
the homogeneous electron gas. As such, the DFA already
captures a large extend of long-range correlation in metallic
systems (especially alkali-metals). This contribution to electron
correlation and the polarizability further complicates the devel-
opment of a seamless and clear-cut combination of vdW
models with a given DFA and, to the best of our knowledge,
no accurate solution with universal applicability has been put
forward to date. An intriguing early work in the context of
damping pairwise interatomic and intermolecular potentials
are the so-called universal damping functions by Tang and
Toennies.304 For practical application in the context of DFT,
this approach, unfortunately, still lacks some universality due
to the limited sensitivity to capture the shortcomings of a given
DFA in describing intermediate- and short-range correlation.

In contrast to a clear-cut separation of the DFT- and vdW-
description, non-local vdW-DFs represent a very promising
approach by simply avoiding such a separation altogether and
explicitly incorporating long-range correlation into the DFT-
description. As can be seen from Section 6, however, the vdW-DF
approach is still in the earlier stages of development and, in our
opinion, needs further methodological refinement, especially in
order to account for many-body effects and for the description of
the intermediate range between the asymptotic limits.

Determination of an atomic density response from KS-DFT.

In the context of combining a given dispersion model with DFT,
all vdW models rely on some representation of the (effective)
density–density response or correspondingly the polarizability
of the KS reference system. While the Adler–Wiser formula (18)
provides a seamless and accurate description, it is not very
useful in practical applications as it requires explicit evaluation
of all KS states. In addition, most of the efficient techniques are
formulated in an atomistic framework. This requires additional
mapping to effective atoms-in-molecules response properties
and such partitioning is never unambiguous. Despite several
successful schemes have been proposed, none can be universally
applied in an efficient manner to neutral and ionic molecular,
solid, and metallic systems. First works in this direction combine
ideas from non-local density functionals and electronic structure-
based interatomic frameworks.

Account for geometrical characteristics. Typically, bench-
marking and parametrization of a vdW model focuses on the
reproduction of interaction energies for a given geometry.
However, the starting point of almost all modeling studies is
an initial optimization/relaxation of the systems structure. Any
subsequent calculations therefore rely on this very first step to
give an accurate configuration. Yet, very little attention is given
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to this pivotal capability when parameterizing or testing a vdW-
inclusive total energy method. Despite some models by now
account for the reproduction of intermolecular equilibrium
distances to some extent, this is still far from testing if a given
approach provides accurate geometries in a practical work flow.

Benchmark references for (more) complex systems. As men-
tioned above, our understanding of vdW interactions is currently
still mainly based on a pairwise-additive framework. As showcased
in Sections 2.3, 3.2, and 6, however, strong many-body effects and
other complex phenomena arise with increasing system size
and complexity. What is known for small organic dimers, might
therefore not apply to practically relevant systems. Conceptual
understanding usually roots from a profound basis of accurate
observations or reference data. Our hope is, that with the growing
computational capacities and ongoing methodological improve-
ments, further accurate benchmark calculations will guide our
conceptual understanding and shed some light on the non-
additivity of long-range correlation forces and its implications
for derived properties.

vdW interactions in comprehensive modeling techniques.

For many of the tasks in molecular and materials modeling,
specialized methods have been developed for an accurate and
efficient simulation, e.g., continuum solvation models, subsystem
DFT, methods to account for nuclear quantum effects, and others.
Only few examples among those techniques accurately account
for dispersion interactions, however. Incorporation of vdW
models might help to elucidate some of the more comprehensive
ramifications of long-range correlation. On the same note, the
cross-over and borderland between vdW interactions (microscopic)
and Casimir forces (meso- to macroscopic) remains to be fully
explored.

	 Physics incorporated in interatomic vdW models
Beyond atomic dipoles in interatomic frameworks. As shown

in Section 2.1, an dipole formulation of vdW interaction can, in
principle, be exact. This, however, would require a continuous
description in the form of infinite, infinitesimal polarizability
centers. For the formulation of an exact interatomic framework,
a given set of infinitesimal dipoles would need to be combined
into an, in principle infinite, set of atomic multipoles, in order
to represent the exact, continuous description within the dipole
formulation. It is evident from the asymptotic behavior, that
the neglect of higher-order atomic multipoles can in particular
affect the description at intermediate separations. Nevertheless,
the importance of explicitly including such higher-order atomic
multipoles in the description of long-range vdW interactions and
how much the effect of higher-order contributions can be
mimicked by an appropriate form of the damping/range-
separation function is still often under debate. On the other side,
the contribution of higher-order multipoles to the short-range part
of the coupling tensor, which is relevant for electrodynamical
screening, is indisputable in our view. Instead of following up
on any of the discussions, we here would like to give our general
perspective on a framework to include vdW dispersion interactions
between higher-order multipoles: all contributions should root
from the same (range-separated) coupling tensor, such that the
multipolar expansion is asymptotically exact, and all coupling

parameters should be derived on the same footing. Otherwise,
one could arbitrarily define effective damping functions and
coupling parameters, which in the end boils down to providing
a larger functional space with different ranges to be fit to inter-
action profiles much like in a molecular mechanics approach.
Any improvement in such a formalism would not necessarily stem
from improved physics, but simply from an increased parameter
space for fitting and the physical meaning of individual terms
would be highly limited.

As a complimentary approach, inclusion of higher-order
multipoles can also be achieved by means of perturbation
theory based on the quantum Drude oscillator model248 or
directly on the corresponding dipole-coupled state as presented
in ref. 362, for instance. Such contributions beyond dipolar
coupling and/or second-order perturbation theory can intro-
duce qualitatively new features in confined structures362 or
electric fields (also due to the presence of ionic species)363

and the implications for realistic and practically relevant systems
remain to be fully explored.

Polarizability anisotropy on atomic level. Polarizability ani-
sotropy on a molecular level has been shown to be of high
importance for the description of vdW interactions especially
with increasing system size and complexity. This can be further
strengthened by anisotropies on an atomic level. While this is
naturally accounted for in non-local functionals, all interatomic
vdW models outlined above rely on isotropic atomic polariz-
abilities and therefore neglect the intrinsically different in-
plane and out-of-plane polarizabilities of a carbon atom in
graphene, for instance. Including atomically anisotropic polari-
zabilities is not fundamentally excluded in most vdW models,
evaluation of the resulting anisotropic dipole coupling tensor,
however, represents a prohibitive computational bottleneck.

Interatomic approaches and type C non-additivity. Furthermore,
all of the above interatomic models are formulated in terms of
dipole fluctuations on atomic sites. As a result, none of those is able
to capture charge displacements that exceed atom-atom distances,
i.e., intrinsic electron hopping within electronic fluctuations. Such
a phenomenon would cause very large multipolar terms and can
give rise to very long-ranged correlation forces.48 This effect was
labeled type C non-additivity by Dobson and is so far only well-
studied within the RPA formulation.

	 Understanding van der Waals interactions from experiment
All in all, understanding the nature and complex scaling

of vdW interactions requires pushing both theoretical and
experimental boundaries in order to merge the conclusions
from both sides into one consistent picture. A very promising
approach in that regard are the recent advances in the field of
(2D-)THz spectroscopy, which allows to study more collective
vibrations and dynamics. In contrast to most previous measure-
ments, it also enables a direct investigation of the underlying
(non-local) dielectric/polarization response of the system,
see e.g., ref. 364 and 365. Finally, further exploration of the
frequency spectrum in (multi-dimensional) electronic spectro-
scopy can open up a new route towards exploring the nature of
vdW interactions. Such an approach could directly probe the
underlying collective electronic fluctuations (with wave lengths
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expected in the vacuum ultra-violet region around 50–150 nm)
and their potential connection to the Rydberg states (or Rydberg
series) of condensed matter. This, of course, requires careful
and accurate disentanglement from other (photo-)ionization and
excitation processes.
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8 A. Ambrosetti, D. Alfè, R. A. DiStasio and A. Tkatchenko,

J. Phys. Chem. Lett., 2014, 5, 849–855.
9 J. Hermann, D. Alfè and A. Tkatchenko, Nat. Commun.,

2017, 8, 14052.
10 D. A. Egger and L. Kronik, J. Phys. Chem. Lett., 2014, 5,

2728–2733.
11 A. Tkatchenko, Adv. Funct. Mater., 2015, 25, 2054–2061.
12 Y. V. Shtogun and L. M. Woods, J. Phys. Chem. Lett., 2010,

1, 1356–1362.
13 W. Gao and A. Tkatchenko, Phys. Rev. Lett., 2015, 114,

096101.

14 R. J. Maurer, W. Liu, I. Poltavsky, T. Stecher, H. Oberhofer,
K. Reuter and A. Tkatchenko, Phys. Rev. Lett., 2016, 116,
146101.

15 W. Gao and A. Tkatchenko, Phys. Rev. Lett., 2013, 111,
045501.

16 D. A. Egger, L. Kronik and A. M. Rappe, Angew. Chem., Int.

Ed., 2015, 54, 12437–12441.
17 A. Fabrizio and C. Corminboeuf, J. Phys. Chem. Lett., 2018,

464–470.
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M. Rohlfing, A. Tkatchenko, R. Temirov and F. S. Tautz,
Nat. Commun., 2014, 5, 5568.

62 C. Wagner, D. Kasemann, C. Golnik, R. Forker,
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Chem. Phys., 2006, 8, 1985–1993.
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336 D.-K. Bučar, R. W. Lancaster and J. Bernstein, Angew.

Chem., Int. Ed., 2015, 54, 6972–6993.
337 Y. S. Al-Hamdani, M. Rossi, D. Alfè, T. Tsatsoulis,
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