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The accurate description of long-range electron correlation, most prominently including van der Waals
(vdW) dispersion interactions, represents a particularly challenging task in the modeling of molecules and
materials. vdW forces arise from the interaction of quantum-mechanical fluctuations in the electronic
charge density. Within (semi-)local density functional approximations or Hartree—Fock theory such inter-
actions are neglected altogether. Non-covalent vdW interactions, however, are ubiquitous in nature and
play a key role for the understanding and accurate description of the stability, dynamics, structure, and
response properties in a plethora of systems. During the last decade, many promising methods have been
developed for modeling vdW interactions in electronic-structure calculations. These methods include vdW-
inclusive Density Functional Theory and correlated post-Hartree—Fock approaches. Here, we focus on the
methods within the framework of Density Functional Theory, including non-local van der Waals density
functionals, interatomic dispersion models within many-body and pairwise formulation, and random phase
approximation-based approaches. This review aims to guide the reader through the theoretical foundations of
these methods in a tutorial-style manner and, in particular, highlight practical aspects such as the applicability
and the advantages and shortcomings of current vdW-inclusive approaches. In addition, we give an overview
of complementary experimental approaches, and discuss tools for the qualitative understanding of non-
covalent interactions as well as energy decomposition techniques. Besides representing a reference for
the current state-of-the-art, this work is thus also designed as a concise and detailed introduction to
vdW-inclusive electronic structure calculations for a general and broad audience.

1 Introduction

The basic challenge when modeling molecules or materials from first
principles of quantum mechanics is that it is impossible to exactly
solve the many-body problem for a system with many electrons.
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The vast majority of practical methods in electronic structure theory
approaches this problem by reformulating the N-electron problem
to N effective independent-particle problems. Examples of this are
the Hartree-Fock (HF) equations in wavefunction-based methods or
the Kohn-Sham (KS) reference system in density functional theory
(DFT). This seminal reformulation paves the way to first-principles
modeling of molecules and materials and already captures, depend-
ing on the system, 99 per cent or more of the total electronic energy.t
Unfortunately, the remaining fraction of the total electronic energy
can be crucial for various observables and properties of interest,
such as relative energies," binding properties,” and structural
features®>*'*'" as well as the mechanical,"”>" thermodynamic,***
kinetic,"> " and electronic'®" signatures of a given system. In the
simple case of an Argon dimer for instance, KS-DFT calculation
with the hybrid PBEO functional captures about 99.95% of the total
energy, but it gives no more than roughly 15% of the interaction
energy. HF does not even bind an Argon dimer. The major part of
the missing electronic energy is due to the correlated motion of
electrons, or correlated quantum-mechanical fluctuations of the
average electron distribution in the DFT picture. It is thus referred
to as (long-range) electron correlation energy.} In particular, the

+ Even though the KS equations in DFT are, in principle, exact, the universal
exchange-correlation functional is yet unknown and the (semi-)local approxima-
tions to it based on the uniform electron gas give rise to similar shortcomings.

i+ For completeness: electron correlation is often divided into dynamic and static (or

20,21

non-dynamic) correlation. The dynamic correlation energy, to which vdW inter-

actions can be assigned, represents the energy difference due to approximating the
instantaneous interaction of electrons by the interaction of each electron with the
average field due to all other electrons (mean field formalism).>® The energy
difference arising when a system cannot be described by a single, pure electronic
state e.g., due to (near-)degeneracies of electronic states, is referred to as static (non-
dynamic) correlation energy. Proper description of this effect requires so-called
multi-reference methods and is beyond the scope of this work, see ref. 22, for
instance. In this work, correlation energy shall refer to dynamic correlation only.
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long-range correlation energy represents a challenging task in
electronic structure calculations due to its highly non-local
character. The main component of this long-range contribution
iswhat is known as the van der Waals (vdW) dispersion interaction.
As such, vdW interactions are inherently quantum-mechanical
and many-body (“collective”) in nature and, moreover, they are
ubiquitous in molecular systems and materials. The strongly non-
linear scaling with size in polarizable systems™>>* presents further
challenges for modeling such long-range correlation forces.

Describing (long-range) electron correlation has been a
central topic in the quantum chemistry community, which
since the early days mainly focused on wavefunction-based
methods typically starting from the HF mean-field picture.
Thanks to extensive methodological developments a number
of asymptotically correct and to some extent practical methods
have been devised. Among those the coupled cluster technique
has established itself as one of the most prevalent post-HF
methods in quantum chemistry. Coupled cluster theory starts
from a Slater determinant based on the mean-field HF orbitals
and includes excitations by the use of the exponential cluster
operator. Such intrinsic electronic excitations represent the
analogue of electron density fluctuations in a perturbation
picture. Accounting for up to double excitations together with
a perturbative treatment of triple excitations, labeled as
CCSD(T), is usually referred to as the gold standard and often
relied upon as a reference method for more approximate
models. However, CCSD(T) and comparably accurate methods
are still limited to small- and medium-sized systems (typically
less than ~200 atoms) due to the immense computational
costs characterized by a scaling of the computation time with
the number of electrons to the power of 7. A quite different, yet
similarly accurate, approach is Quantum Monte-Carlo (QMC).
Here, one solves the many-body Schrodinger equation in a
stochastic manner. The most relevant flavors of QMC in the
context of modeling molecules and materials are: Variational
Monte-Carlo, Green’s Function Monte-Carlo and Diffusion
Monte-Carlo, which exploits the similarity between Schrodinger’s
equation and a diffusion equation in imaginary time. Thanks to
its stochastic character one can even estimate the expected
deviation from the exact solution. Parallelization of this
approach is straightforward and tractable system sizes have
reached a few hundreds of atoms,** which has boosted its use
as a benchmark method in recent years. In the end, both
CCSD(T) and QMC are typically only used to benchmark
(interaction) energies based on a given structure, as force
evaluation can become extremely intricate as a result of their
perturbative or stochastic character.

In contrast to accurate quantum-chemical methods, density
functional approximations (DFAs) require less computational
workload and offer access to atomic forces. Since the first
successful applications of DFT, however, the lack of explicit
electron correlation has proven itself an important issue when
modeling molecular systems and gave rise to numerous devel-
opments. As of today, a vast number of possible remedies
has been proposed. Thereby, an a posteriori inclusion of long-
range correlation forces is the most widely used approach.

Chem. Soc. Rev,, 2019, 48, 4118-4154 | 4119



Chem Soc Rev

Nevertheless, it is worthwhile to point out that long-range
correlation is, in principle, part of the electronic Hamiltonian
and can thus also affect the solution of the self-consistent field
procedure.'®®

In this work, we review the origin of vdW forces and
particularly focus on practical approaches how to qualitatively
understand and quantitatively model dispersion interactions in
electronic structure calculations. We start out by giving an exact
formulation based on the non-local electron correlation energy
and the approximate reduction to additive two-body interaction
potentials and its fundamental limitations in Section 2. Section 3
gives a brief overview of relevant experimental techniques and
observations. We then present analysis tools for understanding
vdW interactions in Section 4 before describing quantitative
and practical approaches for calculating dispersion forces in
Section 5. In Section 6, we showcase the performance and some
of the strengths and weaknesses of the most widely-used models
and Section 7 gives a summary and conclusion of current
methods and a short outlook on open problems and future
developments. Throughout this work we will focus on approaches
within the scope of DFT, being the main workhorse in first-
principles modeling of molecules and materials, but we draw
connections to wavefunction-based techniques where applicable.

2 van der Waals interactions:
formulation from non-local electron
correlation

The electron correlation energy, E.or, is typically defined as the
difference between the exact (non-relativistic) solution of the
Schrodinger equation and the effective mean-field description
such as the HF or KS reference system. Hence, it depends on
the definition of the mean-field description and can be rigorously
formulated in multiple ways.>’ In this work, we rely on the
so-called adiabatic-connection fluctuation-dissipation (ACFD)
theorem, as it provides a common basis for the majority of
methods presented in this article. The ACFD theorem provides
an exact formulation of the non-relativistic (non-retarded)
exchange and correlation energy of a system in terms of the
Coulomb-coupled density response on top of an independent-
particle framework such as the HF or KS reference system.
Relativistic effects such as retardation and scattering as well as
thermal field fluctuations can play an important role for extended,
mesoscopic systems (cf: Casimir forces), but will not be covered in
this work. For reviews on this topic, see ref. 25 or 26, for instance.

2.1 Exact formulation from the adiabatic-connection
fluctuation—dissipation theorem

The ACFD formula originates from linear response theory§ and
relies on the non-local, time-dependent density-density

§ We point out, that while the response of a material can be highly non-linear, the
electron correlation energy can be fully recovered solely based on linear response
functions, which allows linear response theory and the ACFD theorem to be
exact.”’
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response function, y(r,r’,t,t'), which describes the response of
an electron density at point r and time ¢ to a perturbation at
position r’ at time ¢. Under the assumption of time invariance,
which holds for stationary states in quantum mechanics, the
time-dependent density response can be Fourier-transformed
to the frequency domain yielding the non-local, frequency-
dependent, and complex-valued density response, y(r,r’,o).
Thereby, the imaginary part describes the contribution due to
dissipation.”® Hence, integrating over the Coulomb-coupled
imaginary part of y(r,t’,w) gives the energy due to dissipation
of a (scalar) perturbation.

In quantum mechanics, any charge density is subject to
instantaneous fluctuations, which gives rise to intrinsic fluc-
tuations of the electric field within the system (or vice versa).
The electron correlation energy is the dissipation energy of this
fluctuating electric field. The ACFD theorem states that the
energy due to dissipation of such internal perturbations is the
same as for external perturbations and can thus be calculated
via the imaginary part of (r,t’,w). Evaluation of the correlation
energy on top of an independent-particle formalism is then
carried out by means of the adiabatic theorem,***® meaning via
coupling parameter integration from the non-correlated system
to the fully correlated density response (atomic units used
throughout this work):

00 N .
Ecorr = - LJ de dﬂ.J:[dl‘dl‘/ [X/l (l‘7 l‘/7 iw)
2n 0 0

(1)

— Xi=0 (r7 l‘,, iw)}"//Coul(l'y l',)

with 4 as the coupling constant, where 4 = 1 corresponds to the
real, fully correlated system and A = 0 to the non-correlated
system of independent electrons, e.g., the KS (or HF) reference
system. ¥ oy = 1/|x — r'|| is the Coulomb potential, with |[r — r'|
being the (Euclidean) distance between the points r and r’. For the
integration of the imaginary part of y(r,r',») we have used:*®

[ Imy(r,r, w)dw :J 7(r, v iw)dw. (2)
Jo 0

To further simplify the derivation and explanation of the practical
approaches outlined below, we may also reformulate the ACFD
formula (1) in terms of the non-local, frequency-dependent
polarizability tensor «(r,r,iw), which is connected to the density
response via y(rr,iw) = V,Vya(r,r'iw). Introducing the dipole
coupling tensor T(t,t') = =V, ® V¥ coulL,r'), one can rewrite
eqn (1) as,

00 1
Eon = LJ d(uJ d/lJJdrdr’Tr{[<:c/1(r7 Y, im)
2n 0 0

®3)
—a;—o(r, v, iow)|T(r,x')},

where Tr{} denotes the trace operator over Cartesian com-
ponents.”” The non-local polarizability within the independent-
particle framework (a;-,) can be directly calculated based on the
single-particle states via the Adler-Wiser formula®**> and the
polarizability tensor of the correlated system can be defined via

This journal is © The Royal Society of Chemistry 2019
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the self-consistent Dyson equation,

o, (r, ¥ iw) = a;—o(r, v i) — JJWZO(I" v iw)

X Ao (2 " i)y, (¢ ¥ iw)dr” dr”

= oy — <)~a0TXC,/la/1>l.H‘r///

[

= <“0 (_ATXC,/‘.aO)n>r//JH/7
=0

n

where we have introduced the shorthand (-), » for the integra-
tion over spatial coordinates, r’ and r”’, and skipped the
explicit notion of the variables of a and Ty, for clarity. The
coupling tensor Ty ; is defined for each coupling constant
). as,*”

1
Txc,l(r”v l_///7 CO) = T(rllv l"”) - jvr” & vr”’.ﬁ(c,l(r”v rw7 CO) (5)

In practice, the exact exchange-correlation kernel, fi;, in
eqn (5) is not known. Thus, direct evaluation of the ACFD
formula, both in terms of y and a«, is not possible. Practical
approaches that directly involve the ACFD formulation there-
fore involve the neglect of the explicit dependence on A and
additional approximations for the exchange-correlation kernel.
The most prominent method among those relies on the ran-
dom phase approximation and is covered in further detail in
Section 5.1.

For the purpose of discussing vdW interactions, i.e., long-
range correlation forces, and especially for comparing the
various approaches to describe vdW interactions, it is worth-
while to further separate the above exact formulation of the
electron correlation energy into short- and long-range con-
tributions as detailed in ref. 27 and 33. For this, we split the
coupling tensors in eqn (3) and (4) by means of a range-
separating function g¢(||r — r’||), which satisfies g,5(0) = 0 and
gis(lr — t'| > o) = 1. This separates the total electron
correlation energy into a short- and a long-range contribution,
where the latter can be seen as an analogue to the original
definition of vdW dispersion interactions based on a perturba-
tive picture of intermolecular interactions.”” In the Dyson
eqn (4), we may range-separate the full coupling tensor, T,
into a short- and a long-range screening tensor (Tgirl and TQ;}Z,
respectively) according to

Txcj. [1 - grs(”r - r/”)}Txc,/l +grs(Hr - r/H)Tch.

(6)
+ T(lr )

Xc,A?

which in turn account for short- and long-range screening of
the non-local polarizability, respectively. Inserting this into
eqn (4) and subsequently contracting all short-range screening
components lets us define an effective, non-local polarizability,
«, which already includes short-range screening. By the use
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of this definition, eqn (4) becomes

00
S s (2 "
%= Z <a(br) <_/LT?(§C?IY“(SI‘)> >r”,r’”. (7)

n=0

Finally, combining eqn (7) and the long-range part of the ACFD
formula (3) gives the long-range electron correlation energy,

=) 00 1
EI — ’Z%J de dz

n=1 0 0

([ (), e}

where Ty, is the long-range part of the bare dipole coupling tensor
and the n =0 term cancels out. Note that we have not introduced any
approximations up to this point and the sum of eqn (8) and its short-
range analogue still equals the exact total correlation energy as
defined by eqn (3). In this work, we use the above definition of the
long-range correlation energy (8) as the vdW energy for all non-
perturbative approaches to dispersion interactions and as we shall
see, many widely-used vdW models can be traced down to this form
of the ACFD formula, where each flavor involves a given approxi-
mation for the effective polarizability after short-range screening,
a9 and the exchange—correlation kernel in TQ& or combinations
thereof.

2.2 Approximate reduction to interaction coefficients

As can be seen from the definitions in Section 2.1, the polariz-
ability and the electron correlation energy have a highly complex,
non-local character. As of today, numerous experimental and
theoretical works have clearly shown the many-body nature of
dispersion forces. Nonetheless, one of the most common appro-
aches to model vdW interactions is by the use of pairwise-additive
potentials. In this section, we sketch the approximations and basic
steps leading to the fundamental form of pairwise potentials for
long-range correlation forces based on the long-range ACFD for-
mula (8). At this point, we would like to note that the functional
form derived below can be, and was obtained, in multiple ways
including (many-body) perturbation theory and other approxima-
tions to the ACFD formula.

One of the most successful and common approximations is
the so-called random phase approximation (RPA), which corre-
sponds to the neglect of the unknown exchange-correlation
kernel ( fi,, = 0). Within the range-separated ACFD formula, we
may apply that approximation only in the long-range part,
where f,. , indeed barely contributes, such that Tglg};, in eqn (8)
no longer explicitly depends on A and reduces to Ty,. This allows
us to analytically carry out the integration over the coupling
constant, which leads to the series

e S R

‘5 n 2m),

SR UCROR

where the index 7 is shifted by +1 due to integration over 4.

ry
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Next, we approximate the non-local polarizability by a sum
of point-like, local polarizabilities situated at the N atomic
positions, {R,}, by the use of the three-dimensional Dirac
delta-function, &3(r):

N N

a2 3 (i0)8 (1 - RS —1) =Y al

A=1 A=1

(10)

Inserting this into the long-range RPA correlation energy gives,

FOrRPA) i(*l) 1 rcdw

corr N
—~ n 2mj,

N n
X<Tr<< ﬁwm>> >_
A=1 v ,

r,r

It can be seen that we get STy, for 11 = 2, oSS0 S0T,
for n = 3, and so on. Thus, the expansion series (11) is a series
of all the n'™-order correlation terms. As such, the order  does
not represent a pure n-body (in this work, body refers to atom)
vdW interaction term, as for instance defined in the perturba-
tional approach. For example, n = 3 contains non-vanishing
terms with C = A, which correspond to screened two-body
interactions.

n = 2, on the other side, only involves non-vanishing terms
with two different polarizability centers A and B and is therefore
a pure (yet incomplete) two-body vdW interaction. If we limit
ourselves to this second-order term, Eﬁf,)m we can carry out the
integration over spatial coordinates to arrive at,

11 (™ 1 |
E? ———J dwTr{ afr)T;;;ugr>T(lfrA? },
22n o

corr

(12)

where T{Y

Ti.(R4,Rp). As a final approximation, we assume
the point polarizabilities to be isotropic, i.e., af®? = 4§71, with 1
being (3 x 3) unity. As a result, the polarizabilities and dipole
tensors commute and

1 3% (o) (s 1
B = 53| s} )
A.B

The integral in the above equation is known as the Casimir-
Polder integral®® and corresponds to the so-called Cs-
interaction coefficient (Hamaker constant for macroscopic
spherical bodies®®). Noting that T{() = g.(|Rs — Rg|)Tus,
Tas = 0, and Tr{T,zTss} = 6/|R4 — R °® leads to

I3[ g5 (R4 — Ra])’
o — _1 7[ 550,50 g, 8rs R4 — Rag)”
corr 2/4#3“ o A B ”RA _ RBH()
(14)
_ 1 cen  Jaamp(Rap)
25 oA Rag
where we have used R,z = ||R4 — Rp|| and introduced the

damping function fyamp(Ras) = grs(Ras)’. This is the well-known
formula for the vdW dispersion interaction between two micro-
scopic bodies within the dipole approximation as first derived
by London.*® As of today, a manifold of pairwise-additive vdW
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models has been devised and widely used.*’””*> The general
difference between those models lies in the damping function,
Jdamp, and how effective, short-range screened interaction coeffi-
cients are obtained. It is worthwhile to point out that the same
functional form can be derived based on a full-range RPA of
eqn (3), by invoking the so-called full potential approximation,
ie, a; = a;,"° from a model system of Quantum Drude
Oscillators*” or in various ways from (second-order) perturba-
tion theory invoking a multipole expansion and subsequent
dipole approximation for the interaction potential.*”

2.3 Non-additive aspects of van der Waals interactions

The above derivations show the theoretical foundation of vdW
dispersion interactions and with eqn (14) we have derived an
approximated expression. However, no seamless way of obtaining
the damping function, the short-range screened polarizabilities,
or the resulting Ce-interaction coefficients has been put forward
as of the time of this article. In addition, the expansion (or
corresponding perturbation) series is truncated at second order
and one has to invoke an additional approximation for the - at
least long-range part of the - coupling potential, Ty ;, to arrive at
the pairwise formula (14). As classified by Dobson, effects beyond
this pairwise-additive expression for vdW interactions can, in
general, be understood in terms of three types of non-additivity,"®

e Type A: the effect of the local chemical environment on
the polarizability apart from short-range screening. One often
relies on partitioning the system into its constituent atoms for
the construction of the polarizability of the (sub)system. Type A
non-additivity can be understood by the fact that the polariz-
ability in the KS reference system does not correspond to a
superposition of «, of isolated atoms. This type of non-
additivity is accounted for in almost all modern vdW models.

e Type B: electron correlation and screening are defined by
multi-center integrals. This enters the ACFD formalism both in
form of the electrodynamic screening in the Dyson-like eqn (4)
as well as in the expansion series of the (long-range) correlation
energy to finite orders of n in eqn (8), i.e., many-body inter-
actions and higher-order correlation terms. The difference of
coupled N-center interactions and a sum of pairwise terms is
illustrated in Fig. 1: in the pairwise formula, the energy arises
as the sum of the interaction of pairs of instantaneous dipoles,
which fluctuate in ideal alignment. However, all fluctuations
are coupled simultaneously (multi-center interaction), which
does not necessarily correspond to a sum of ideally correlated
dipoles as shown by select collective density fluctuation patterns
for the simple example of an Argon trimer in Fig. 1 (right). This
type of non-additivity manifests itself particularly in (sub)systems
with strong anisotropy, complex geometrical arrangements, or
reduced symmetry (1D, 2D materials) and can substantially alter
the scaling laws for vdW interactions,>?*27:4875°

e Type C: assigned to systems with extremely large deloca-
lization lengths, basically corresponding to intrinsic electron
hopping between atomic centers. Such phenomena cannot fully
be described within an atom-centered framework of polariz-
ability and electronic fluctuations. Understandably, type C
non-additivity almost exclusively appears in systems with a

This journal is © The Royal Society of Chemistry 2019
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many-atom

pairwise /£~

Fig. 1 Illustrative comparison of the (assumed) physics behind pairwise-
additive (left) and many-atom (right) van der Waals interactions in an
interatomic picture for an Argon (cyan) trimer. The arrows of a given color
each depict an "eigenmode” of simultaneous electron density fluctuations.
In the dipole-limit, these represent the alignment of fluctuating, instanta-
neous dipoles. See text for further discussion.

(near-)zero band (or HOMO-LUMO) gap, which allow for
quantum-mechanical fluctuations to cause instantaneous
electron hopping.*®

3 van der Waals forces in experiment
3.1 Experimental assessment

As a result of the non-additive and non-pairwise effects outlined
above, the simplified additive description in eqn (14) has been
found to be insufficient for a variety of systems and an increasing
number of experiments showcase the non-local and non-additive
character of vdW dispersion interactions. In this regard, it has to
be mentioned that direct experimental assessment of vdW inter-
actions is intrinsically difficult as they are typically intertwined
with several other (non-covalent) interactions and appear on all
scales including intra- as well as intermolecular forces. This,
obviously, complicates a clear-cut direct analysis from experi-
mental observables. A very successful approach to disentangle
non-covalent interactions is via competition methods (see e.g.,
ref. 51 and 52), where one relies on a comparison of the binding
energies among well-controlled complementary systems or
interaction mechanisms. Such complementary systems include
structural mutations, varying binding partners, or different
solvents. This, however, has the disadvantage that the molecule
or material must not exhibit significant structural distortions
or different interaction mechanisms among the modifications,
which is mostly not given for complex systems like biopolymers,
for example. In addition, measurements require highly accurate
force measurements under well-defined experimental conditions
on a microscopic level,*® which ideally involves accurate control
over position and balancing potentials on the level of individual
atoms or molecules. For instance, Chemical Force Microscopy
(CFM),>® which relies on chemical functionalization of Atomic
Force Microscopy (AFM) probes, represents a very promising tech-
nique to directly measure non-covalent interactions, but requires
special position control of one of the binding partners.>

The common experimental techniques to study vdW inter-
actions can be categorized into measurements of binding

This journal is © The Royal Society of Chemistry 2019
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affinities and kinetics of vdW-bound systems and spectroscopy.
Among others, the former group includes AFM/CFM, Surface
Plasmon Resonance experiments, as well as (spectroscopic)
titration techniques and sublimation experiments like (micro-)-
calorimetry. On the one side, these methods by now undoubt-
edly provide highly accurate results and vital insights into the
properties and behavior of the system under consideration.
On the other side, the computational costs of most electronic
structure methods prohibit a sufficiently complete description
of the thermodynamics to be directly compared to these
experiments. Comparisons to this kind of experiment therefore
usually rely on “experimentally derived” interaction energies,
where approximate models are used to estimate the effect of
experimental conditions such as finite temperature and solvent
(see e.g., the S12L and X23 benchmark set introduced in Section
6.1). Of course, this can introduce considerable uncertainties in
the experimental reference.®>’

Spectroscopic techniques like Nuclear Magnetic Response
measurements, Terahertz (THz) experiments, or X-ray spectro-
scopy, for example, mostly provide information on the system’s
structure and (roto-)vibrational response. THz spectroscopy
thereby represents a versatile and particularly promising
approach in our view as it probes more collective vibrations,
for which long-range interactions naturally play a pivotal role.
Non-linear, i.e., multi-dimensional, THz spectroscopy then
even allows to investigate long-range dynamics and non-local
response properties as shown in ref. 56, for instance. In
general, multi-dimensional approaches, also including 2D elec-
tronic spectroscopy, can provide insights into long-range and
long-timescale (relaxation) dynamics, where we expect an
important role of non-local interactions for the dynamics and
dissipation channels of a system. Disentangling the spectro-
scopic features for complex systems beyond a few atoms usually
poses a very challenging task, however. The increased popula-
tion of rotationally and vibrationally excited states due to
temperature further complicates this problem. To limit this
aspect, spectroscopic measurements are typically combined
with jet-cooling techniques.”” In addition, the analysis of
experimental spectra is usually performed in conjunction with
computationally demanding simulations and thus limited to
small- or medium-sized systems.’ This, of course, limits the
exploration of the highly non-trivial behavior of electron corre-
lation at increased system size and complexity.

Despite or maybe even due to the challenges and limitations,
the experimental assessment of vdW forces represents a rapidly
progressing field, in which probably three classes of systems have
emerged as main work horses: hybrid inorganic-organic systems
(non-covalent surface bonding), supramolecular complexes, and
layered materials (multiple two-dimensional systems bound by
vdW forces - often even referred to as vdW materials). Obviously,
the main characteristic is that within these classes one can realize
systems that are predominantly or almost exclusively vdW-bound.
In addition, hybrid inorganic-organic systems are naturally pre-
destined for AFM/CFM measurements and therefore allow
for accurate and direct probing of non-covalent interactions.
(Synthetic) supramolecular complexes are most often stable
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over a wide range of conditions including varying temperature
and solvents and can easily be mutated, which enables reliable
competition methods.>* Layered materials offer a wide range of
hetero- and homo-structures, which can be realized on various
length scales. This allows to observe interlayer (vdW) inter-
actions for a variety of mono-layer properties and different
contact areas through mechanical or chemical exfoliation, for
instance. This feature, which is also true for hybrid inorganic-
organic systems, enables studies on the scaling behavior of
vdW forces with increasing ““interaction area”. Additionally, the
interlayer interaction is almost exclusively due to dispersion
forces, which reduces the otherwise complicated disentangle-
ment from other non-covalent contributions.

Ultimately, vdW forces play a significant role for the stability,
dynamics, and response of a molecular system or material. Thus,
they can be readily observed indirectly from a variety of experi-
mental measurements in combination with complimentary
vdW-inclusive modeling. Deviations from an experimental
reference in terms of such (indirect) manifestations of vdw
interactions, however, represent a conglomeration of potential
errors and a seamless conclusion about dispersion forces is
often very limited. For further details on the experimental
assessment of vdW interactions and non-covalent forces in
general, we refer the interested reader to the rich set of reviews
on this topic.>*37:8

3.2 Non-additivity in experiment

Following up on the discussion of effects beyond pairwise
additivity in Section 2.3, we will conclude this section by high-
lighting some of the experimental observations of the non-
additive nature of dispersion forces. One of the most well-known
deviations from pairwise additivity thereby appears when a single
atom or molecule is interacting with a metallic surface. Since the
early theoretical works by Lifshitz*® and Zaremba and Kohn® it is
known that, at larger separations, the interaction energy follows a
D power law, where D is the distance of the atom or molecule to
the surface. AFM measurements by Wagner et al.®* confirmed this
scaling law and quantified the non-additivity. Also between
adsorbed molecules, several experiments observed strongly non-
additive long-range interactions.®***

In a study on the adsorption of gold nanoparticles on multi-
walled carbon nanotubes, Rance et al. showed that the adsorp-
tion affinity scales quadratically with the accessible surface area
of the nanotubes and is highly non-linear for more complex
nanostructures.®® In constrast, pairwise-additive vdW models,
neglecting molecular anisotropy and collective behavior, predict
a simple linear dependence in those cases. Batista et al. empha-
size that the non-additivity of interactions, including dispersion
forces, arise particularly at the nanoscale®® due to complex
geometrical arrangements and the resulting polarizability aniso-
tropy. Such behavior beyond pairwise additivity, however, also
extends from the nano-scale to the meso- and macro-scale as
shown by the interaction range of proteins, bacteria, and gecko
feet with bulk silicon. By separating the respective adhesive
partner and the silicon substrate with an increasing layer of
silicon dioxide, Loskill et al. showed that the interaction extends
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up to a separation of 10-20 nm,*”*® while a pairwise formalism
predicts only 1 nm. On the other side, covering dielectric
bulk materials with strongly anisotropic monolayers can also
screen the vdW interaction between the surface and an
adsorbed molecule. Using AFM, it has been shown that the
D *-dependence predicted by Lifshitz-Zaremba-Kohn theory
holds for the interaction of the metallic AFM tip with pristine
silicon dioxide. When the surface is covered by a 2D-material,
such as graphene or molybdenum disulfide, the tip seems to
only interact with the adsorbed 2D-material.®® This unexpected
behavior could be explained by in-plane electronic fluctuations
within the 2D-material being decoupled from the fluctuations
at the surface and within the bulk and with that screening
electronic fluctuations perpendicular to it, i.e., those responsible
for the interaction of the AFM tip with the surface through the
adsorbed monolayer.

As most of our experience and understanding of vdW inter-
actions is based on rather small systems, where a pairwise
approximation tends to be qualitatively sufficient, many of the
phenomena arising at larger length-scales are still not entirely
understood. This and the growing interest in nano-structured
and low-dimensional materials motivate on-going studies
including a quantum-mechanical many-body treatment of vdwW
interactions. The ability to reliably model and understand the
interactions in such systems is of utmost importance for the
design of composite nanostructures®® and future (nano)techno-
logical developments.

4 Qualitative description and analysis
of non-covalent interactions

In the field of covalent and electrostatic interactions, concep-
tual understanding of molecules and materials has largely
benefited by the aid of qualitative models, ranging from the
basic concept of chemical bonding dating back to Frankland,
Kekulé, Erlenmeyer, and Lewis structures’® to more advanced,
electronic structure-based descriptions like the quantum theory
of atoms in molecules (QTAIM),”" the electron localization
function,”®”* the orbital-free single exponential decay detector
(SEDD),”*”* or electrostatic potential maps.”® As of today, also a
few insightful models for the description and analysis of non-
covalent interactions have been devised to aid our understand-
ing. These models can, in general, be separated into two main
categories: electron density-based approaches and energy
decomposition methods. Below we will shortly outline the most
prominent examples from both categories and showcase how
they can help to analyze, illustrate, and understand non-
covalent interactions.

4.1 Density descriptors

According to the seminal work by Hohenberg and Kohn,”” the
electronic charge density, p(r), provides all chemical informa-
tion of a system. It, thus, represents the starting point for DFT
and numerous qualitative and quantitative a posteriori analysis
models. For non-covalent interactions, the (reduced) density
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gradient, as also utilized in advanced density functionals
and some QTAIM approaches, is particularly useful. Electron
density-based approaches are usually employed to obtain a
spatial illustration of the relevant interactions, which can be
vital to understand supra- or macro-molecular systems and to
design novel compounds. However, these models typically do not
discriminate between vdW interactions and other (intermolecular)
forces.

The first approach filling the gap of the abovementioned
models to characterize physical interactions, was put forward
by Johnson et al. and termed non-covalent interaction index
(NCI).”®7° In their study, the authors realized that the predo-
minant region of non-covalent interaction is characterized by a
peak in the regime of low electron densities and a low reduced
density gradient, which is a unit-less measure for the deviation
from an homogeneous electron gas’’ given by

-T2l _[ptl a5
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where || is the (L2-)norm and kg is the Fermi wave vector in

the homogeneous electron gas. This can be explained by the
fact that density tails are mainly responsible for intermolecular
interactions and the reduced gradient approaches zero upon
formation of a bond. This feature is also used to identify atomic
fragments in the QTAIM approach by Bader.”*

To further characterize the type of interaction occurring in
such low-density, low-reduced gradient regions, Johnson et al.
found an intriguing connection between the sign of the second-
largest eigenvalue of the Hessian of the electron density and
bonding/non-bonding interactions. This connection initially
seems ad hoc, but can be rationalized by concepts from the
analysis of chemical bonds.”® Combining their approach to
locate non-covalent interactions together with the discrimina-
tor for attractive and repulsive interaction with the absolute
value of the electron density as a measure of the strength of the
interaction, ultimately yields an insightful tool to analyze
intermolecular interactions. Curiously, both a self-consistently
obtained electron density from DFT and a crude promolecular
density (superposition of atomic densities) lead to qualitatively
the same results in most cases. Hence, the NCI approach often
does not necessarily require a full DFT calculation”® and has
been successfully applied also to large-scale systems including
porous crystalline materials, metal and guest-host complexes,
OH-n interactions, and proteins.”*®® Especially regarding
repulsive interactions, we would like to point out that care
must be taken when using a non-self-consistent density. In a
promolecular density there is no Pauli-repulsion between the
atomic densities to cause charge depletion. As a result, the NCI
approach does not capture the repulsive character in those
cases and in contrast to the authors original conclusion’®
relying on a self-consistent density can in fact be essential
(see the simple case of a water dimer in Fig. 2). The necessary
level of theory in obtaining the self-consistent density and the
resulting limitations for the applicability of the NCI method to
large-scale systems remains to be investigated.
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The connection between the geometric signatures of the electron
density and the energetic features of the corresponding system
is also exploited in the SEDD approach and its adaption to
reliably illustrate also non-covalent interactions called Density
Overlap Regions Indicator (DORI).®* Being a modification of
the SEDD, the DORI model by construction provides a descrip-
tion of both covalent and non-covalent interactions within the
same framework and thanks to renormalization within the
same scalar range. The basic idea behind DORI and SEDD is
to identify areas, where the electron density shows a (nearly)
singly exponential decay, which is characteristic of electrons
close to nuclei and in the long-range limit.*>*® Based on this
idea, de Silva et al. proposed the unitless descriptor

0(r) LI
[

and k = Ven(r)

DORI(r) = T o0

. (16)
which can be interpreted in terms of the local wave vector, k.
In fact, DORI(r) approaches 1 in bonding regions, where the
reduced density gradient (15) goes to 0, i.e., at the zero curl of
(overlapping) densities. Close to nuclei and far from any atom
in the molecule, on the other side, the electron density shows
(nearly) singly-exponential decay and DORI(r) approaches 0.
Combining this approach with the sign of the second-largest
eigenvalue of the Hessian of the electron density to distinguish
attractive and repulsive interactions and the absolute magni-
tude of the electron density as a measure for the strength of the
interaction as done for the NCI (vide supra), allows for a
comprehensive description of both covalent and non-covalent
interactions within the same framework and on the same scale.
It has been shown to provide conceptual insight into the
relevant interactions in molecular dimers, complex organic
molecules, supramolecular complexes,®*”"%° and an adaptive
QM/MM approach making use of both SEDD and DORI to
tessellate the system into QM and MM regions.”®

The NCI as well as the DORI rely on identifying bonding
regions based on the (reduced) gradient of the electronic charge
density. As a result, they do not capture electrostatic interactions
of non-overlapping fragments nor secondary effects like accumu-
lation and especially depletion of electron density or its intrinsic
quantum-mechanical fluctuations. For this matter it is some-
times useful to combine these qualitative techniques with
electrostatic potential maps (for electrostatic interactions) or
differences in the electron density between the full system and
its fragments (charge accumulation/depletion, ie., charge
transfer and induction/polarisation). For the visualization of
both NCI and DORI the MULTIWFN package®' can be used. For
the NCI approach there also exists a separate program
NCIPLOT,”®°* which has been used here together with VMD??
to create Fig. 2.

4.2 Energy decomposition analysis

The second category, in its idea, is rooted in the description of
intermolecular interactions in terms of the various energy
contributions as formulated in perturbation theory. The aim
is to decompose the total interaction energy into contributions from
electrostatic interactions, induction (also referred to as polarisation),

Chem. Soc. Rev., 2019, 48, 4118-4154 | 4125



Chem Soc Rev

Fig. 2

Review Article

promolecular self-consistent

o

<

repulsive

attractive

4
L.

Intermolecular interactions within the non-covalent interaction index (NCI) approach. Left: Visualizing the hydrogen bond between hydrogen

(white) and fluorine (ocher) and weak van der Waals interactions between functionalized benzene molecules. Right: Correctly describing the repulsive
character of intermolecular interactions illustrates a so far unnoticed importance of using self-consistent densities.

exchange-repulsion, dispersion interactions, and higher-order
terms. So, in contrast to the models outlined in Section 4.1,
these methods do not provide a spatial representation of the
relevant interactions, but rather give a measure of how much
a given type of interaction contributes. This can also provide
essential insights for the development of force field appro-
aches.”»® It has to be mentioned that there is no unique way
of decomposing interaction energies and albeit qualitative
agreement different models yield different numerical results.
In general, energy decomposition techniques can be classified
according to two fundamental approaches: variational or
perturbational. In principle, energy decomposition methods
provide a quantitative analysis of intermolecular interactions.
Variational approaches, however, represent a decomposition
of energies calculated within a given framework, contrary to
explicit modeling of vdW interactions. The majority of 