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Biomolecular condensates constitute a newly recognized form of spatial organization in living
cells. Although many condensates are believed to form as a result of phase separation, the physic-
ochemical properties that determine the phase behavior of heterogeneous biomolecular mixtures
are only beginning to be explored. Theory and simulation provide invaluable tools for probing the
relationship between molecular determinants, such as protein and RNA sequences, and the emer-
gence of phase-separated condensates in such complex environments. This review covers recent
advances in the prediction and computational design of biomolecular mixtures that phase-separate
into many coexisting phases. First, we review efforts to understand the phase behavior of mixtures
with hundreds or thousands of species using theoretical models and statistical approaches. We then
describe progress in developing analytical theories and coarse-grained simulation models to predict
multiphase condensates with the molecular detail required to make contact with biophysical exper-
iments. We conclude by summarizing the challenges ahead for modeling the inhomogeneous spatial
organization of biomolecular mixtures in living cells.

I. INTRODUCTION

The discovery that intracellular “organelles” can ex-
ist without membranes has revolutionized molecular and
cellular biology [1, 2]. Many such intracellular struc-
tures, now collectively referred to as “biomolecular con-
densates,” have been proposed to form via phase separa-
tion [2–5]. Physically, this means that a surface tension
holds the phase-separated condensate together, while in-
dividual biomolecules—including proteins, RNAs, and
other small molecules—exchange between the conden-
sate and the surrounding fluid in dynamic equilib-
rium. Phase-separated condensates represent a unique
form of biological organization compared to traditional
membrane-bound organelles, since the absence of a mem-
brane allows for rapid assembly and disassembly in re-
sponse to stimuli [3].

Over the past 15 years, an increasingly large num-
ber of biomolecular condensates have been identified [6].
Because of the wide range of biological phenomena in
which condensates play a role, including both fundamen-
tal biological processes [7–14] and a variety of patho-
logical conditions [15, 16], it is important to under-
stand the biophysical mechanisms that control which
biomolecules partition into specific condensates. Theo-
retical advances are needed to guide experiments prob-
ing the relationship between the properties of individ-
ual biomolecules and emergent condensate structures in
complex environments. In particular, the physicochem-
ical determinants of condensate composition and stabil-
ity in heterogeneous intracellular environments—where
thousands of biomolecular species are present—are only
beginning to be explored. This review summarizes theo-
retical and simulation efforts in this direction using ap-
proaches based on equilibrium thermodynamics.

∗ wjacobs@princeton.edu

A. Linking physicochemical properties and
condensate thermodynamics

How do biomolecular determinants such as amino-
acid or nucleotide primary sequence, secondary/tertiary
structure, and chemical modifications control the compo-
sitions and spatial organization of phase-separated intra-
cellular condensates (Fig. 1)? This question has been ad-
dressed primarily within the context of equilibrium ther-
modynamics, in which the phase behavior of a macro-
molecular mixture is governed by free energies at ther-
mal equilibrium. Within this framework, the partitioning
of biomolecules into phase-separated condensates is de-
termined by equilibrium chemical potentials, while con-
densate (dis)assembly dynamics are governed by free-
energy gradients close to equilibrium and/or transitions
between metastable states. Predictions based on this
near-equilibrium assumption generally hold up well when
tested against in vitro experiments [3, 4, 17]. Thus, while
living systems may be more accurately characterized as
nonequilibrium steady states under some conditions [18],
we will restrict our attention to near-equilibrium ap-
proaches for predicting biomolecular phase separation in
this review. We will also use the common terminology
liquid–liquid phase separation (LLPS) [2, 19–22] to de-
scribe reversible thermodynamic phase transitions be-
tween (potentially complex) fluid phases with different
macromolecular concentrations, as our discussion will fo-
cus on static properties such as condensate composition
and spatial organization. Nonetheless, we note that con-
densed phases in biology often exhibit viscoelastic dy-
namical properties and may irreversibly age into solid
phases due to the complexity of the interactions among
biological macromolecules [6, 22–27].

Concepts from polymer physics have helped shape
the prevailing view that transient associations among
biomolecules give rise to the overall net attractive in-
teractions required to bring about LLPS [28]. These
interactions are commonly referred to as “multivalent,”
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FIG. 1. Multivalent interactions among a wide variety of bio-
logical macromolecules, including intrinsically disordered pro-
teins (with amino acids represented by colored circles), mul-
tidomain proteins, and nucleic acids, contribute to the ther-
modynamic driving forces responsible for liquid–liquid phase
separation. Phase-separated condensates, including higher-
order structures composed of multiple immiscible phases, re-
semble “membraneless organelles” whose interfaces are stabi-
lized by surface tensions. The molecular compositions within
each phase (α–ε) are distinct as a result of specific interactions
among the constituent biomolecules.

since biomolecules can associate through multiple inter-
action sites via a variety of forms of noncovalent bonding.
Particular attention has been given to conformationally
heterogeneous proteins, including intrinsically disordered
proteins (IDPs) and multidomain proteins containing in-
trinsically disordered regions (IDRs) [28]. In the con-
text of IDPs, multivalency refers to the ability of an un-
folded protein to engage in many residue–residue contacts
with nearby proteins in a condensed phase. Folded do-
mains within multidomain proteins can also contribute to
the multivalency required to drive LLPS, either through
protein–protein interactions (PPIs) [29] or, in the case
of RNA binding domains (RBDs), through interactions
with RNA [30]. Finally, nucleic acid mixtures can phase
separate under certain conditions due to intermolecular
base-pairing [31–33] and nonspecific association [34]. Im-
portantly, the strengths of the net interactions among
biopolymers in liquid-like condensates are typically com-
parable to the thermal energy, since the protein and nu-
cleic acid constituents of biomolecular condensates can
often remain fluid on biologically relevant timescales.

B. Emergence of multiphase coexistence in
complex biomolecular mixtures

Biological LLPS results in an enormous diversity of
condensates in living cells. Each of these condensates is

associated with a specific chemical composition [35] and
may be enriched in many distinct biomolecules relative
to the surrounding intracellular fluid [36]. The biological
functions of condensates derive directly from this compo-
sitional specificity, since the biochemical reactions that
take place within the spatial confines of a condensate
are dependent on the molecular concentrations that de-
fine the local environment. Theoretical descriptions of
in vivo condensate assembly must therefore account for
complex intracellular mixtures comprising thousands of
protein and RNA species, which can all potentially inter-
act with one another.

At the simplest level, it is important to distinguish
between homotypic and heterotypic interactions between
species of the same or different types, respectively. In
multicomponent mixtures with strong heterotypic inter-
actions, the tendency of any particular species to par-
tition into a condensate depends on the concentrations
of all its potential interaction partners [37]. A conse-
quence is that the equilibrium compositions of coexisting
phases may depend on the concentrations of all the com-
ponents in the mixture, even when there are only two
phases in coexistence. This feature can be used to detect
the influence of multiple components on phase separation
and to infer the relative strengths of homotypic and het-
erotypic interactions by measuring the volume fractions
of coexisting phases at different overall mixture concen-
trations [33, 38].

Multiple immiscible condensates are commonly found
to coexist within a single intracellular compartment [6].
Moreover, depending on the properties of the interfaces
between pairs of condensates and between condensates
and the surrounding fluid, immiscible condensates can
self-organize into spatially organized structures [39]. Well
characterized examples include the nucleolus [11, 40] and
stress-granule/P-body condensates [29, 41, 42]. It has
also become clear that subtle changes in protein and RNA
concentrations can perturb the interfacial properties and
thus dramatically alter the architecture of multiphasic
condensates [29, 43]. Nonetheless, predicting multiphase
coexistence in the context of heterogeneous intracellular
fluids remains a formidable challenge.

C. Aims and scope of this review

Developing theoretical and computational models of
multiphasic, multicomponent biomolecular mixtures is
essential for understanding the relationship between
molecular determinants and biological self-organization
via LLPS. The purpose of this article is to highlight
a number of advances in this direction. Many recent
reviews focusing on theory and simulation, including
Refs. [4], [44], and [45], have described coarse-grained
modeling approaches for IDPs, multidomain proteins,
and nucleic acids. These approaches have primarily been
applied to study the properties of single molecules and
to mimic in vitro experiments on condensate formation.
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FIG. 2. Computational and theoretical complexity increases
with both the level of molecular detail and the number of
distinct components in a mixture. Simulation approaches
to biomolecular LLPS range from pairwise-interaction mean-
field models to sequence-specific coarse-grained (CG) models.
However, mixtures with more than three non-solvent compo-
nents have so far been studied almost exclusively using pair-
wise mean-field models.

By contrast, we focus here on theoretical challenges that
arise when considering multiphase coexistence, especially
in mixtures with thousands of components. Studies along
these lines have provided complementary insights that
are needed to understand biomolecular condensates in
an intracellular context (Fig. 2). For broader context,
we encourage the reader to consult other recent works,
including reviews that emphasize the biological function-
ality and regulation of condensates [15, 46], the inter-
play between physical gelation and phase separation of
multivalent macromolecules [47], and the conformational
dynamics of macromolecules within condensates [48].

In this review, we begin in Sec. II by covering the ther-
modynamic principles of phase separation in multicom-
ponent fluids. We highlight recently devised numerical
methods for calculating multiphase coexistence in both
mean-field and classical molecular simulation models. We
then discuss theoretical results obtained from mean-field
multicomponent mixture models in Sec. III. These stud-
ies have provided important insights into phase-behavior
scaling relations, although they lack molecular detail
and, as such, require assumptions on the statistical prop-
erties of intermolecular interactions in complex fluids.
In Sec. IV, we examine efforts to describe multicompo-
nent condensates with both analytical and computational
models that capture the molecular sequence dependence
or the structure of a PPI network. The implications of
these studies for the mean-field multicomponent mixture
models introduced in Sec. III, and potential extensions

thereof, are discussed. Finally, in Sec. V, we identify key
challenges that must be overcome in order to describe
inhomogeneous spatial organization in living cells with
molecular realism.

II. THERMODYNAMIC PRINCIPLES OF
MULTICOMPONENT LLPS

Phase coexistence describes an equilibrium state in
which a material or fluid exists in multiple phases with
distinct physicochemical properties, such as oil droplets
suspended in aqueous solution. Thermodynamic equi-
librium between coexisting phases is established when
the temperature, (osmotic) pressure, and chemical po-
tentials of all molecular species are constant throughout
the system. Considering a biomolecular solution at con-
stant volume and temperature, the thermodynamic state
of the system can be described by the Helmholtz free-
energy density, f . This free energy is a function of the
concentrations, {ρi}, of all the molecular components in
the mixture. (Latin indices will be used throughout to
indicate molecular components, while Greek indices will
be used to indicate phases. Analogous arguments ap-
ply to the Gibbs free-energy density in the case of fluids
at constant pressure.) Phase separation can occur when
the free-energy density is a nonconvex function of the
molecular concentrations (Fig. 3). In such a case, the
free energy can be minimized by forming two or more
distinct phases—for example, a condensed droplet and
the surrounding cytoplasm—each with different concen-
trations. A mixture phase separates when the overall
concentrations of the solution lie within the coexistence
region, which is bounded by the concentrations of the
coexisting phases. Droplets that emerge as a result of
this spontaneous process are stabilized by positive sur-
face tensions at the interfaces that form between the co-
existing phases. Whenever f is nonconvex, there is also a
spinodal region within which the free-energy surface has
negative curvature.

In a heterogeneous system comprising many different
types of biomolecules, the free-energy surface is a high-
dimensional object. Nonetheless, coexistence and spin-
odal regions can still be determined by examining the
convexity and local curvature of the free-energy surface.
More precisely, the Hessian matrix ∂2f/∂ρi∂ρj is not
positive definite within the spinodal region, implying that
a homogeneous mixture within this region is unstable
with respect to concentration fluctuations in one or more
directions of concentration space. These directions are
described by the eigenvectors that correspond to the neg-
ative eigenvalues of ∂2f/∂ρi∂ρj . The region of a high-
dimensional concentration space in which concentration
fluctuations are locally unstable is bounded by a spinodal
locus, where the determinant |∂2f/∂ρi∂ρj | = 0.

The molecular concentrations of coexisting bulk phases
can be determined by considering the equal pressure and
chemical potential conditions. In multicomponent flu-
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FIG. 3. Left: Nonconvex free-energy surfaces lead to phase
separation at thermodynamic equilibrium. The inflection
points and global minima of the grand potential density,
Ω ≡ f −

∑N
i=1 ρiµi, determine the spinodal points and coex-

istence points, respectively. Right: Approximate phase dia-
grams can be obtained by computing the convex hull (solid
line) of a discretized free-energy surface; points on the hull
(filled circles) are in one-phase regions, while points not on
the hull (empty and red-filled circles) are within a coexistence
region. The approximate spinodal region can be determined
by identifying points where the Hessian is not positive definite
(red-filled circles). Approximate coexistence points can then
be refined via nonlinear minimization (see text). This scheme
generalizes to higher-dimensional concentration spaces.

ids, these conditions can be satisfied by performing a
“common tangent plane construction,” in which a hy-
perplane is tangent to the free-energy surface at each
point in concentration space that corresponds to a co-
existing stable phase. A homogeneous mixture with an
overall, or “parent”, concentration vector inside the con-
vex hull of the coexisting-phase concentrations can lower
its Helmholtz free energy by phase-separating. This con-
vex hull therefore defines the coexistence region, which
necessarily encompasses the spinodal region, in a multi-
component fluid. Because the tangent at any point on the
free-energy surface is equal to the chemical potential vec-
tor, {µi} = ∂f/∂ρi, the common tangent plane construc-
tion ensures equal chemical potentials for each species
across all phases that are in coexistence. Furthermore,
the common tangent plane construction implies that the
coexisting phases are all global minima of the grand po-
tential density, Ω({ρi}; {µi}) ≡ f({ρi}) −

∑
i ρiµi. This

fact ensures equal pressures among all bulk phases.
In general, the coexistence concentrations in a multi-

component fluid are not specified uniquely without also
prescribing the parent concentrations, {ρi}(parent). The
connection between the parent and coexisting-phase con-
centrations is provided by the conservation law

ρ
(parent)
i =

K∑
α=0

x(α)ρ
(α)
i ({µj}) ∀i, (1)

where α indexes the phases in a phase-separated state

with K + 1 phases, the concentrations {ρ(α)
i } indicate

coexisting phases with coexistence chemical potentials
{µj}, the volume fractions of the bulk phases are given by

{x(α)}, and
∑K
α=0 x

(α) = 1. (This indexing convention is

chosen for later convenience, since we are often interested
in phase equilibria involving a solvent-majority phase,
α = 0.) Eq. (1) simplifies to the well-known lever rule
for binary mixtures (e.g., fluids comprising one macro-
molecular component plus a solvent).

The spinodal locus coincides with the boundary of the
coexistence region at a critical point, where the concen-
trations of two coexisting phases merge into a single sta-
ble phase. Unlike binary mixtures, there is typically no
unique critical point in a multicomponent fluid. Instead,
multicomponent critical points lie on a temperature-and-
concentration-dependent manifold with dimension one
less than the number of non-solvent components. Higher-
order critical points, where more than two phases simul-
taneously merge into a single stable phase, are also pos-
sible in multicomponent fluids [49].

Multicomponent phase equilibria can equivalently be
determined from the excess chemical potential, µex,i, of
each molecular species i. This quantity represents the
contribution to the chemical potential that captures all
interactions—both enthalpic and entropic—among the
molecules, and is thus a function of all the component
concentrations [50]. The excess chemical potential is di-
rectly related to the partition coefficient, PC, defined as
the ratio of a molecule’s concentration inside (in) and
outside (out) of a phase-separated droplet:

PCi ≡
ρ

(in)
i

ρ
(out)
i

= exp
(
βµ

(out)
ex,i − βµ

(in)
ex,i

)
, (2)

where β ≡ 1/kBT , kB is the Boltzmann constant, and
T is the absolute temperature. Partition coefficients
are experimentally accessible and biologically relevant
quantities, since they quantify the tendency of spe-
cific biomolecules to partition spontaneously into phase-
separated condensates.

A. Mean-field models with pairwise interactions

The simplest theoretical descriptions of LLPS are
based on mean-field models, which introduce effective
parameters to describe how molecules interact with one
another. A mean-field model prescribes an approximate
free-energy surface in terms of the effective interaction
parameters and the component concentrations. The most
widely used mean-field models, both in the condensate
literature and more generally in biophysics and materi-
als science, make the assumption that the excess chemical
potential of species i can be written in the form

µex,i({ρj}) = µv({ρj}) + β−1
N∑
j=1

Bijρj , (3)

where µv is a monotonically increasing function that de-
pends only on the concentrations and the excluded vol-
ume associated with each molecular species. The second
term embodies the assumption of “pairwise interactions”
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among the N non-solvent components, where {Bij} is
an N × N symmetric matrix of interaction parameters.
This assumption underlies the regular solution model of
phase-separating mixtures [51], the Flory–Huggins model
of homopolymer phase separation [19], and the van der
Waals model of non-ideal fluids [52].

The Flory–Huggins model [19] is commonly used to fit
experimental data on biomolecular LLPS [53]. Assuming
an incompressible fluid with N non-solvent species, the
Flory–Huggins free-energy density is

βfv0 =

N∑
i=1

φi
Li

log φi +φ0 log φ0 +
1

2

N∑
i=1

N∑
j=1

εijφiφj , (4)

where the volume fraction occupied by species i is
φi = Liv0ρi, the degree of polymerization of species i
is Li, the size of a monomer is represented by v0, and
the solvent-occupied volume fraction, φ0, is determined

by the incompressibility constraint,
∑N
i=0 φi = 1. We

note that, within the context of this model, the “solvent”
may itself represent a mixture including non-interacting
macromolecules. The interaction parameters {εij} are di-
mensionless. Negative interaction parameters imply that
molecules attract one another, while positive interaction
parameters imply repulsion. Homotypic and heterotypic
interactions are encoded in the on- and off-diagonal el-
ements of {εij}, respectively. Eq. (4) is consistent with
Eq. (3), since the interaction parameters only enter the
free-energy density in a quadratic form. The contribu-
tion to the free-energy density from the pairwise interac-
tions can also be written in terms of Flory χ parameters,
χij = εij − (εii + εjj)/2, by extending the sums in the
final term of Eq. (4) to include the solvent (component 0)
and replacing εij with χij . This change of variables intro-
duces terms that are linear in {φi} into the free-energy
density, which have no effect on the phase behavior. With
this alternate notation, the on-diagonal elements {χii}
are zero by definition, and the homotypic interactions
are encoded by the interactions with the solvent, {χi0}.

Two non-solvent components are sufficient to reveal
generic effects of homotypic versus heterotypic interac-
tions. In such a mixture, two distinct types of phase tran-
sitions can occur: A “condensation” transition can occur
if attractive heterotypic interactions are comparable to
or stronger than any attractive homotypic interactions,
while a “demixing” transition can occur if the heterotypic
interactions are significantly less attractive than one or
both of the homotypic interactions [54]. Both behaviors
have been observed in numerical investigations of two-
component-plus-solvent mean-field (e.g., [55]) and molec-
ular simulation models (e.g., [56]). Condensation transi-
tions are analogous to LLPS in simple one-component-
plus-solvent fluids, implying that the phase diagram can
be fully described by projecting the concentrations onto
the parent composition vector [54]. By contrast, mixtures
with dissimilar homotypic and heterotypic interaction
strengths have more complex phase diagrams. For exam-
ple, the implications of this complexity for concentration

buffering have recently been explored in Ref. [57] using a
two-component-plus-solvent Flory–Huggins model. Con-
centration buffering was shown to be effective when the
tie lines connecting the coexisting condensed and dilute
phases are parallel to the concentration “noise distribu-
tion.” This observation follows from the generalized lever
rule, Eq. (1), with K = 1, which implies that fluctuations
of the parent concentrations in the direction ~ρ(1) − ~ρ(0)

only modify the volume fraction of the condensed phase,
x(1), leaving the “buffered” concentrations of both non-
solvent species in the dilute phase unchanged.

B. Constructing phase diagrams of
multicomponent mean-field models

Moving beyond two-solute scenarios, the construction
of high-dimensional phase diagrams becomes consider-
ably more challenging (Fig. 3). An elegant approach
for solving this problem in mixtures with up to ap-
proximately five non-solvent components was provided
in Ref. [58]. This method exploits the fact that the
common tangent plane construction is equivalent to con-
vexification of a non-convex free-energy surface. In this
method, the free energy of a mean-field model is first
evaluated at every point of an N -dimensional grid over

the physical domain φi ≥ 0∀i and
∑N
i=1 φi ≤ 1. The vol-

ume fractions at each grid point and the correspond-
ing free-energy value constitute a single point within an
(N + 1)-dimensional space. The convex hull of all the
points within this (N + 1)-dimensional space can then
be determined using standard algorithms [59]. Impor-
tantly, grid points that lie within coexistence regions are
not part of the convex hull. Furthermore, the facets of
the convex hull can be analyzed to determine the number
of coexisting phases in a coexistence region. This algo-
rithm can be used as “black-box” method for identifying
coexistence regions, up to the resolution specified by the
concentration-space grid, for any mean-field model.

In order to perform coexistence calculations to greater
precision, it is necessary to identify the coexistence chem-
ical potential vector that results in a grand potential with
multiple global minima. An efficient approach described
in Refs. [29] and [60] involves an iterative two-step algo-
rithm. First, assuming a fixed chemical potential vector,
the local minima of the grand potential are identified us-
ing initial guesses of each of the coexisting-phase concen-
trations. Then, the chemical potential vector is adjusted
to bring the variance among the values of the grand po-
tential at these local minima to zero. This second step
establishes the coexisting phases as global minima of the
grand potential. It is advantageous to use estimates of
the coexisting-phase concentrations obtained from the
convex-hull method as initial guesses when performing
these nonlinear minimizations. A similar approach, in
which the initial guesses for the coexisting-phase concen-
trations are obtained from a grid-based search for the
spinodal region, was proposed in Ref. [61].
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An alternative strategy for calculating phase coexis-
tence has been provided in Ref. [62]. This method uses
a nonphysical dynamical scheme, inspired by swapping
molecules between metastable phases, in order to elimi-
nate differences between the chemical potentials and the
pressures of the phases. Starting from an initial guess
of the component volume fractions in each of the K + 1
coexisting phases, the dynamical scheme evolves the vol-
ume fractions in each phase α according to

∂φ
(α)
i

∂t
= φ

(α)
i β

K∑
γ=0

[
φ

(γ)
i

(
µ

(γ)
i − µ

(α)
i

)
+
(
P (γ) − P (α)

)]
,

(5)

where {µ(α)
i } and P (α) are the component chemical po-

tentials and the pressure, respectively, evaluated in the
α phase with the instantaneous volume fractions {φi}(α),
and t is the fictitious time associated with these dynam-

ics. At steady state, when ∂φ
(α)
i /∂t = 0, Eq. (5) ensures

that the phases meet the thermodynamic criteria for co-
existence. Crucially, the results of this numerical ap-
proach, like the nonlinear minimization scheme described
above, depend sensitively on the initial guesses for the
coexisting-phase concentrations. In particular, if a can-
didate phase is not represented in the K + 1 initial con-
centration vectors, then it is unlikely to be captured in
the final set of coexisting phases.

C. Multicomponent phase coexistence in molecular
simulation models via free-energy calculations

Efficient approaches for calculating coexistence among
an arbitrary number of fluid phases have also been de-
vised for molecular simulation models. Such models spec-
ify a potential energy function that depends on the co-
ordinates of all particles in the simulation volume. As
such, Monte Carlo or molecular dynamics (MD) simula-
tion methods are required to sample the configurational
phase space. A wide variety of methods are available
for computing coexistence between pairs of phases [63].
Within the condensate literature, direct coexistence sim-
ulations utilizing a “slab geometry” [44] have become
popular due to the ease with which this approach can
be implemented. However, in order to compute phase
coexistence among a larger number of phases, it is advan-
tageous to work in the grand-canonical ensemble. Grand-
canonical phase-coexistence calculations are also ideal for
minimizing finite size effects [64].

A robust approach for carrying out multiphase coexis-
tence calculations utilizes a generalization of the multi-
canonical sampling method [65]. Influenced by earlier
simulations of polydisperse fluids [66], Ref. [67] intro-
duced a method to sample an isolated pair of phases in
a grand-canonical simulation with multiple free-energy
basins (Fig. 4). First, an order parameter ∆ραβ ≡
(~ρ − ~ρ(α)) · ν̂αβ , where ν̂αβ ≡ (~ρ(β) − ~ρ(α))/|~ρ(β) − ~ρ(α)|,
is defined to measure the distance along a linear path

metastable
basin

grand-potential
landscape

FIG. 4. Multiphase coexistence points can be determined
from molecular simulations by sampling the grand-potential
landscape. In order to sample two specific phases α and β,
biasing potentials parallel, U‖, and perpendicular, U⊥, to ν̂αβ
are introduced. Reweighting techniques can then be used to
tune the component chemical potentials in order to establish
equal grand potentials among all coexisting phases (see text).

between the α and β phases, with concentration vectors
~ρ(α) and ~ρ(β), respectively. A biasing potential is then
added to constrain fluctuations in orthogonal directions
of concentration space,

U⊥(~ρ) ≡ k⊥
∣∣(~ρ− ~ρ(α))− [(~ρ− ~ρ(α)) · ν̂αβ ]ν̂αβ

∣∣p⊥ , (6)

where k⊥ > 0 and p⊥ > 0 are user-defined constants.
An additional biasing potential in the direction of con-
centration space parallel to ν̂αβ , U‖(∆ραβ), can then be
calculated using grand-canonical Wang–Landau simula-
tions [68],

βU‖(∆ρ
′) = log

∫
dx1∆ραβ [~ρ(x)],∆ρ′e

−βH(x)−βU⊥[~ρ(x)],

(7)
where x represents a particle configuration, H is the
Hamiltonian of the unbiased model, and 1 is the indi-
cator function. The biasing potential U‖ is optimal for
“flattening” the free-energy barrier between the α and β-
phase regions of phase space [68]. Finally, performing a
multicanonical simulation under the combined potential
H + U⊥ + U‖ allows the simulation to transit reversibly
between the α and β phases.

Refs. [69] and [60] have demonstrated how this method
can be applied to calculate multiphase coexistence points
for multicomponent lattice models. Samples obtained
from multicanonical simulations between different pairs
of phases can be combined via reweighting methods such
as MBAR [70] as long as one of the phases is sampled in
every simulation. Grand potential differences between all
pairs of phases can then be determined, and the chem-
ical potentials can be adjusted in order to find the co-
existence point at which all phases have identical pres-
sures at equilibrium. This approach has been successfully
applied to compute coexistence points involving more
than five phases. Nonetheless, this method also requires
prior knowledge of the approximate concentrations of all
phases in order to construct the required biasing poten-
tials and sample all the coexisting phases.
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III. PREDICTING AND DESIGNING PHASE
BEHAVIOR IN MULTICOMPONENT FLUIDS

We now turn to theoretical studies of mixtures gov-
erned by pairwise interactions. We first discuss efforts
to predict phase behavior in mixtures with hundreds or
thousands of components based on the statistical prop-
erties of the pairwise interactions. We then describe re-
cently devised methods to design or “evolve” pairwise
interactions in order to stabilize a target phase diagram.

A. Multicomponent mixtures with random
pairwise interactions

Pairwise interaction models, due to their simplicity, are
a natural place to begin exploring how the presence of
many distinct molecular components influence the phase
behavior of a mixture. However, theoretical progress can-
not be made without specifying the form of the inter-
action matrix, and limited systematic experimental data
exist for parameterizing heterotypic interactions. To deal
with this lack of information, Ref. [71] proposed that the
pairwise interactions can be modeled using a random ma-
trix. Specifically, Ref. [71] considered symmetric random
matrices in which the elements are chosen independently
from a Gaussian distribution with a prescribed mean and
standard deviation. An ensemble of “random mixtures”
is thus associated with a particular Gaussian distribution
and the number of distinct components N , such that each
mixture in the ensemble is defined by a particular real-
ization of the N ×N interaction matrix.

Ref. [71] assumed for simplicity that the mixture free-
energy density can be described by Eq. (3) with µv = 0.
The resulting free-energy density, f , is applicable to so-
lutions in which all components are present at low con-
centrations, and the {Bij} elements in Eq. (3) are re-
ferred to as second-virial coefficients [52]. By restrict-
ing the study to mixtures with equimolar parent con-

centrations, ρ
(parent)
i = ρ̄(parent) ∀i, it was shown that

the spinodal locus can be predicted directly from the
second-virial matrix. The central idea is that unstable
concentration fluctuations can be determined from a lin-
ear stability analysis of the mean-field free-energy land-
scape (Fig. 5). With the equimolar parent-concentration
assumption, the eigenvalue spectrum of the Hessian ma-
trix, ∂2f/∂ρi∂ρj , is equal to the spectrum of {Bij}
plus a constant 1/ρ̄(parent). Instabilities therefore oc-
cur when the minimum eigenvalue of {Bij} is less than

−1/ρ̄(parent). Applying results from random matrix the-
ory, it was shown that the existence and nature of the
dominant instability, which coincides with the minimum
eigenvalue of the Hessian matrix, can be determined from
the mean, b, and standard deviation, σ, of the Gaussian
distribution of matrix elements in the limit of large N .
Two distinct cases were observed. If the standard de-
viation among the matrix elements is sufficiently small,
such that N1/2b/σ . −1, then the dominant instabil-

finite-    Hessian matrix

unstable
modes

eigenvalue
0

unstable
modes

eigenvalue
0

spectral
density

FIG. 5. The spinodal locus, where the mixture becomes un-
stable with respect to concentration fluctuations, can be pre-
dicted using a linear stability analysis. Left: Computing the
eigenspectrum of the Hessian matrix, ∂2f/∂ρi∂ρj , at the par-
ent concentrations reveals the number of unstable modes, each
of which is associated with an orthogonal direction in concen-
tration space. Right: Analytical predictions in the large-N
limit provide insight into the relationship between the struc-
ture and statistical properties of an interaction matrix and
the phase behavior of the associated biomolecular mixture.

ity involves concentration fluctuations that are parallel
to the equimolar parent concentration vector. This type
of instability is consistent with a condensation transi-
tion driven by similar homotypic and heterotypic inter-
action strengths. By contrast, if the standard deviation
among the matrix elements is sufficiently large, such that
N1/2b/σ & −1, then the dominant instability is orthog-
onal to the parent concentration vector, and individual
components demix into phases with differing composi-
tions. Importantly, these behaviors are self-averaging,
meaning that the tendency of any particular random-
mixture realization to undergo a condensation or demix-
ing transition converges in probability as N →∞.

Ref. [72] extended these results to mixtures with
non-equimolar parent compositions. This work con-
sidered a regular-solution free-energy density, in which
µv = − log ρ0 in Eq. (3). This additional contribution to
the free energy accounts for the entropy of the solvent,
providing a better physical model of solutions at non-
dilute concentrations. Modifying the free-energy density
in this way does not qualitatively alter the conclusions of
Ref. [71] regarding condensation and demixing in equimo-
lar mixtures. However, consideration of non-equimolar
parent compositions reveals a third type of spinodal in-
stability: Demixing transitions can now be classified as
either “random,” in which all the components of the
eigenvector associated with the instability are of similar
order, or “localized,” in which the demixing transition
is dominated by only a few species. Random mixtures
with a large interaction-parameter variance and equimo-
lar parent compositions tend to undergo random demix-
ing. By contrast, mixtures in which one component has a
much higher parent concentration than all the others can
undergo a composition-driven transition, in which demix-
ing is localized to the dominant species. The authors em-
phasized that the direction of composition-driven insta-
bilities cannot be predicted simply by considering the rel-
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ative parent concentrations of the components; instead,
the interplay between entropic effects and random pair-
wise interactions tends to amplify the contribution of the
dominant component to the unstable concentration fluc-
tuations. In other words, the nature of the instabilities at
the spinodal locus of a random mixture depends on both
the interaction matrix and the parent concentrations.

Simulation support for the qualitative predictions of
Ref. [71] was provided in Refs. [67] and [54]. In these
studies, the free-energy calculation strategy described in
Sec. II C was applied to compute coexistence between an
equimolar dilute phase and a condensed phase in random
mixtures with up to 64 non-solvent components. Simu-
lations were conducted using a multicomponent lattice
model, with the nearest-neighbor interactions between
particles on the lattice specified by a random interac-
tion matrix generated according to the Gaussian pre-
scription of Ref. [71]. Coexistence calculations were then
performed to investigate the nature of the phase tran-
sition that occurs at the lowest total parent concentra-
tion, meaning that the simulated coexistence point repre-
sents the lowest-concentration intersection of the equimo-
lar parent concentration vector with any coexistence re-
gion. The average phase behavior of the random-mixture
ensemble was analyzed by repeating these calculations for
many independent realizations of random mixtures with
the same interaction mean and variance.

Although the lattice-based coexistence calculations of
Refs. [67] and [54] are not directly comparable to theo-
retical predictions regarding instabilities at the spinodal
locus, analogous condensation and demixing transitions
were observed in this molecular simulation model. First,
the phase behavior at each simulated coexistence point
was classified as condensation or demixing according to
the angle, θ, between the equimolar parent concentra-
tion vector and the unit vector connecting the coexisting
phases, ν̂αβ . This angle was found to be self-averaging
with respect to the number of components, N , as sug-
gested by random matrix theory [67]. Second, Ref. [54]
observed that the distribution of θ is bimodal, signifying
a sharp transition between these two qualitatively dis-
tinct types of phase transitions as the mean and/or vari-
ance of the random-interaction distribution was changed.
Third, increasing the number of components was found
to shift the phase behavior at the simulated coexistence
points towards condensation transitions, in line with the
predictions of Ref. [71]. This finding implies that the
mixing entropy of multicomponent fluids acts to sup-
press demixing instabilities. However, by contrast with
Ref. [71], simulation results indicated that the extreme
values of the interaction matrix are more predictive of
the simulated coexistence concentrations than the eigen-
spectrum of the mean-field Hessian matrix. This obser-
vation was exploited to propose a scaling relation for the
transition between condensation and demixing behaviors
at the phase boundary, (logN)1/2 ∼ σ, that differs from
the random-matrix-theory prediction for the condensate–
demixing crossover at the spinodal locus, N1/2 ∼ σ/b.

This idea has since been followed up in Ref. [73], which
suggested that the coexistence points can be strongly in-
fluenced by the tails of the distribution from which the
elements of the random interaction matrix are chosen.

Phase separation in mean-field models of mixtures with
many components has also been analyzed using phase-
field simulations [74]. Deterministic phase-field simu-
lations evolve the spatially varying component volume
fractions, {φi(~r)}, on a three-dimensional grid in accor-
dance with linear irreversible thermodynamics [75]. As
such, phase-field simulations reach a steady state when
the free energy of the simulated volume reaches a lo-
cal minimum; this steady state may be spatially inho-
mogeneous if phase separation occurs. Ref. [74] con-
sidered a regular-solution free-energy density consistent
with Eq. (3), with µv = − log φ0(~r)− κ∇2φi(~r). The sec-
ond term in µv, which penalizes the formation of inter-
faces between phases in a component-independent man-
ner, arises from square-gradient contributions to a Cahn–
Hilliard free-energy functional with κ > 0 [76]. Simula-
tions then implemented “Model B dynamics” [77], where
∂φi/∂t = ∇ · (Mφi∇µi), with a component-independent
mobility coefficient M > 0. Upon reaching steady state,
compositionally distinct phases were identified by per-
forming a principal component analysis of the spatially
varying component concentrations.

Since phase separation in a deterministic phase-field
model proceeds via spinodal decomposition, Ref. [74] was
able to provide a direct test of the analytical predictions
of Ref. [71]. Both condensation and demixing were ob-
served in simulations initialized with equimolar parent
concentrations. Consistent with a linear stability analy-
sis at these initial conditions (Fig. 5), Ref. [74] found that
the number of phases identified at steady state correlates
with the number of negative eigenvalues of the Hessian
matrix. Furthermore, the number of steady-state phases
could be estimated from the limiting (N → ∞) spectral
density predicted by random matrix theory. This trend
was shown to hold for a variety of random-mixture en-
sembles in which the standard deviation of the indepen-
dently sampled interaction-matrix elements was either
held constant or scaled proportionally to N1/2. Nonethe-
less, some caution is warranted in interpreting these re-
sults, since the steady-state found via spinodal decom-
position may reflect a metastable configuration that does
not represent all the equilibrium phases. We shall return
to this important consideration below in Sec. III C.

B. Multicomponent mixtures with structured
pairwise interactions

Although random-mixture models are useful for in-
vestigating generic features of high-dimensional phase
diagrams, they may not reflect the structure of pair-
wise interactions among real biomolecules. In particu-
lar, the assumption that the elements of a {Bij} ma-
trix are independently and identically distributed im-
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plies that O(N2) pairwise coefficients characterize the
mixture, even though there are only N chemically dis-
tinct biomolecules. Physical interactions arising from the
physicochemical features of the biomolecules are instead
likely to introduce correlations into the {Bij} matrix.

To address this critical issue, “structured” pairwise in-
teraction models have been introduced and studied using
linear stability analysis. Ref. [78] took the approach of
grouping components into distinct families, whereby all
members within a particular family have similar physico-
chemical properties. The authors proposed that this rela-
tionship could be described via by an interaction matrix
of the form B = D + C ∗ Z, where ∗ indicates element-
wise multiplication. D and C are block matrices spec-
ifying the mean and standard deviation of the interac-
tions between families, respectively, while Z is a Gaussian
random matrix with zero mean and unit variance. This
model reduces to the random-mixture model of Ref. [71]
when there is only one family, in which case all interac-
tions have the same mean and variance. Intuitively, a sin-
gle family of components can demix from a mixture with
equimolar parent concentrations if the intra-family inter-
actions are sufficiently more attractive than inter-family
interactions. Such “family demixing” tends to dominate
over random demixing when the noise amplitude, gov-
erned by C, is small.

Ref. [79] explored an alternative approach in which
structured interaction matrices are assumed to have
a low matrix rank. This assumption implies that
the interaction matrix can be written in the form
Bij =

∑r
l=1 c

(l)s
(l)
i s

(l)
j , where the index l is bounded by

the matrix rank, r. This low-rank decomposition was in-
spired by a toy model in which each molecular species
can be described by r “molecular features,” which inter-
act according to diagonalized coupling coefficients {c(l)}.
The matrix {s(l)

i } specifies the value of each molecular
feature for each component i. In fact, any N × N in-
teraction matrix can be written in this form via eigen-
decomposition, assuming that N − r of its eigenvalues
are negligible. If all the nonzero eigenvalues of {Bij} are
negative, representing net attractive interactions among
the molecular features, then the linear-stability condi-
tion for the spinodal locus can be recast in terms of a
feature covariance matrix. Specifically, this rank-r ma-
trix measures the covariance among the values of the
molecular features, weighted by the concentrations of
the components expressing these features, in a homo-
geneous mixture with fixed parent concentrations. The
directions of the unstable concentration fluctuations can
then be determined from the first principal component
of the concentration-weighted molecular-feature distri-
bution. This result bears resemblance to related stud-
ies of polydisperse fluids, in which phase transitions
have been predicted using so-called “moment free ener-
gies” [80, 81]. When {Bij} has both positive and negative
eigenvalues, covariance matrices for the net-attractive
and net-repulsive molecular features must be considered
separately. The extent to which the net-repulsive fea-

tures modify the phase behavior depends on whether
their concentration-weighted distribution correlates with
that of the net-attractive feature distribution. The au-
thors also showed that this analysis can be extended to
predict ordinary and higher-order critical points, whose
occurrence depends on higher-order cumulants of the
concentration-weighted feature distribution.

An important insight gained from this theory [79] is
that the phase behavior of a mixture can be predicted by
analyzing properties of the r-dimensional feature space,
which may be much simpler than the N -dimensional con-
centration space if r � N . Since intermolecular inter-
actions among conformationally disordered biomolecules
are widely believed to arise from a limited number of
chemical interactions, such as electrostatic interactions
among charged amino acids and hydrophobic forces in-
volving amino acids with aromatic side chains, it is plau-
sible that this is indeed the case. The relationship be-
tween this ansatz and findings from sequence-dependent
theories will be discussed in Sec. IV. The work of Ref. [79]
has also suggested a useful method for coarse-graining a
multicomponent fluid into an equivalent binary mixture
with the same spinodal and critical points by preserving
the second and third cumulants along the first principal
component of the concentration-weighted feature distri-
bution. However, it is unclear whether the coexistence
manifolds of multicomponent mixtures with low-rank in-
teraction matrices can be simplified in the same way.

C. Iterative design of multicomponent phase
behavior

Taking the next step towards biologically realistic mix-
tures requires consideration of specific interactions that
have emerged due to evolutionary processes. Recent ef-
forts [60, 62, 69] to explore the thermodynamic conse-
quences of evolved interaction specificity have shown that
multicomponent mixtures can be designed with the goal
of stabilizing a prescribed number of condensed phases.
The logic behind this approach is that immense size of
the space of possible biomolecular interactions limits the
probability that a random-mixture model will produce a
phase diagram comparable to the observed complexity of
intracellular phase-separated condensates. Indeed, even
in the simplest pairwise-interaction models, the “design
space” has a dimension of N(N + 1)/2 when all interac-
tions are independently controllable. By contrast, treat-
ing multicomponent LLPS as an optimization problem in
which the interactions can be systematically tuned has
the potential to discover regions of this design space that
are relevant to multiphasic condensates.

Ref. [62] demonstrated that the number of coexisting
phases in a mean-field pairwise-interaction model can
be designed by iterative application of a genetic algo-
rithm. This design process necessitates finding all co-
existing phases given a candidate interaction matrix at
each iteration. The genetic algorithm is then applied to
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evolve a population of interaction matrices in order to
identify matrices that result in a target “phase count” of
condensed phases. It turns out that this goal is surpris-
ingly easy to achieve owing to the size of the design space
when all pairwise interactions are independently tunable.
An intuitive strategy of designing block-diagonal matri-
ces, along the lines of Ref. [78], reliably results in phase
counts equal to the number of blocks of strongly attrac-
tive interactions. However, the genetic algorithm finds
solutions to this design problem that are less obviously
structured. The authors further showed that designed
mixtures with low phase counts tend to be stable with
respect to small random perturbations in the interaction
energies and that the genetic algorithm can rapidly al-
ter the phase count of a designed mixture, finding new
solutions within a few tens or hundreds of iterations.

This iterative design approach comes with a number
of caveats, however. First, optimizing for a target phase
count does not guarantee that different solutions identi-
fied by the genetic algorithm correspond to condensates
with similar molecular compositions. Second, although
the phase count of a candidate interaction matrix should
depend on the parent concentrations according to Eq. (1),
Ref. [62] employed a strategy of sampling coexistence
points at random parent concentrations. This approach
suggests an implicit design goal of maximizing the vol-
ume of the (K + 1)-phase coexistence region within the
N -dimensional concentration space. Third, the reliabil-
ity and performance of the iterative design algorithm are
sensitive to the computational cost and accuracy, respec-
tively, of the intermediate phase-coexistence calculations,
which must be repeated for each candidate interaction
matrix. This is in fact a very general problem: Regard-
less of the mixture model, phase-coexistence calculations
first require a search for candidate phases, whether by
exhaustive grid-based sampling (e.g., [58]; see Sec. II B),
randomized initial conditions (e.g., [62]; see Sec. II B),
Monte Carlo sampling (e.g., [54]; see Sec. II C), or phys-
ical dynamics (e.g., [74]; see Sec. III A). The computa-
tional cost of this search problem scales exponentially
with the dimension of the concentration space.

D. Inverse design of multicomponent phase
behavior

Many of the drawbacks of iterative design approaches
can be overcome by directly solving the inverse prob-
lem—designing interactions to yield target phase behav-
ior. Inverse design entails working out constraints on
the solution space of biomolecular interactions that corre-
spond to desired collective properties, such as the compo-
sitions of condensed phases (Fig. 6). Suitable interactions
can be identified in this way without explicitly perform-
ing phase-coexistence calculations. As a result, the com-
putational requirements may scale more favorably with
the number of components, in particular because the ini-
tial search for candidate phases can be avoided.

concentration space interaction-matrix space

solution
space

coex.
region

FIG. 6. In the inverse design approach, restrictions on the so-
lution space of pairwise interaction matrices are determined
directly from the concentrations of the target phases and the
thermodynamic criteria for phase coexistence. Left: The tar-

get phase diagram consisting of condensed phases {~φ(α)}. Any
mixture with parent concentrations inside the convex hull of
the target phases will phase-separate at equilibrium to es-
tablish coexisting phases with the prescribed concentrations.
Right: Convex programming can be applied to compute the
subspace containing interaction matrices that are consistent
with the target phase behavior. The convex volume (red
dashed line) bounded by the convex-optimization constraints
(black lines) closely approximates the solution space to the
inverse problem (red solid line). Because many interaction
matrices may yield the same phase behavior, regularization is
needed to select a particular matrix from the solution space.

An inverse design strategy for mixtures with pairwise
interactions was first introduced in Ref. [69]. Because
Eq. (3) is linear with respect to {Bij}, the inverse prob-
lem can be solved approximately using a convex relax-
ation. It is therefore possible to prove, within the convex
relaxation, whether a pairwise interaction matrix exists
for a prescribed set of immiscible phases, and if so, to cal-
culate a suitable interaction matrix with efficient convex
programming algorithms [82]. Ref. [69] showed that the
thermodynamic requirements for establishing metastable
phases with prescribed compositions yield a convex relax-
ation known as a semidefinite program (SDP). The SDP
constraints comprise both affine and eigenvalue inequal-
ities, since the Hessian matrix must be positive definite
in each target phase. Solutions to this SDP were shown
to result in metastable phases with the desired compo-
sitions in mixtures with up to 200 distinct components,
both in the context of a Flory–Huggins mean-field model
and in Monte Carlo simulations of an associated multi-
component lattice model.

Exploiting the ability to prove feasibility of the SDP,
Ref. [69] then studied the probability of finding a fea-
sible solution for an inverse problem with randomly as-
signed target-phase compositions. This probability was
found to drop sharply beyond a certain number of target
phases, revealing a thresholding transition reminiscent of
the storage capacity in the Hopfield model of neural net-
works [83] and “multifarious” self-assembly of finite-sized
structures [84]. The critical number of condensed phases
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associated with this thresholding transition could be pre-
dicted using graph-theoretic arguments and depends on
both the number of components in the mixture and the
fraction of components whose concentrations are enriched
in each target phase relative to the surrounding fluid.

A similar convex optimization approach was then ap-
plied to design mixtures with prescribed equilibrium
phases [60]. A two-step procedure for designing pairwise
interaction matrices was proposed. First, a convex relax-
ation was used to specify an SDP for both the interaction
matrix and the approximate coexistence chemical poten-
tial vector. Then, the chemical potentials were adjusted
to ensure coexistence among the target phases using the
nonlinear algorithm described in Sec. II B. A regulariza-
tion heuristic was also introduced to pick out a unique
interaction matrix from within the solution space, elimi-
nating competing condensed phases that were not speci-
fied in the phase-diagram design problem. Applying this
approach to the Flory–Huggins model, Eq. (4), Ref. [60]
provided numerical evidence that while the feasibility of
the SDP is independent of the degree of polymerization,
the convex relaxation becomes a better approximation of
the phase-diagram design problem as the degree of poly-
merization increases (Fig. 6). Interestingly, coexistence
regions with more condensed phases than distinct mix-
ture components can be designed in this way. Further-
more, this inverse design approach is easily extended to
include additional optimization goals or constraints on
the interactions; for example, it is possible to compute
the minimum number of matrix-elements that must be
changed in order to switch from one phase diagram to
another using this method. Ref. [60] also demonstrated
that by mapping interaction matrices to molecular pair
potentials, interactions designed using mean-field models
can be used to establish coexistence among phases with
prescribed compositions in molecular simulation models.

In another application of inverse design, Ref. [85] de-
vised an algorithm to engineer pairwise interactions that
produce phase-separated condensates with target mor-
phologies, such as those observed in the nucleolus [40].
At equilibrium, surface tensions control the tendency
of macroscopic droplets to exist in nonwetting, partial
wetting, or complete wetting configurations (separated,
fused, and enveloped droplets, respectively, in Fig. 1).
Furthermore, within the Cahn–Hilliard framework [76],
the surface tensions between phases of mutually immis-
cible components are directly related to the pairwise in-
teractions. Ref. [85] showed that predicting multiphase
morphologies in multicomponent fluids corresponds to
a graph decomposition problem, in which vertices indi-
cate phases and edges indicate shared interfaces between
phases. Designing interaction matrices for multicompo-
nent mixtures that phase separate into droplets with
prescribed (non)wetting architectures can therefore be
achieved by encoding the desired morphology in a graph,
enumerating affine inequality constraints on the interac-
tions via graph decomposition, and solving the resulting
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FIG. 7. Left: Sequence-dependent CG models represent IDPs
as chains of simplified amino acids. Typically, the nonbonded
interactions between amino acids of types A and B are mod-
eled using a pair potential, uAB(r). Analytical theories of
sequence-dependent heteropolymer interactions also require
a model of the spatial correlations between monomers that
are spaced a distance |a − b| apart in the primary sequence.
Right: Patchy-particle models of multidomain proteins imple-
ment a higher level of coarse-graining by treating the PPI or
RNA-binding interfaces on folded domains as specific bind-
ing sites on simplified particles; binding sites engage in at
most one interaction at a time. Analytical theories associate
an interaction volume with each pair of distinct binding-site
types.

linear program. Phase-field simulations were then used
to demonstrate the efficacy of this design algorithm.

IV. SEQUENCE-DEPENDENT THEORIES AND
COARSE-GRAINED MOLECULAR MODELS

In parallel with efforts to understand the phase behav-
ior of simplified mixtures with many components, the-
oretical models have been developed to describe LLPS
at a greater level of chemical detail in solutions with a
small number of distinct biomolecular species (Fig. 2).
In the condensate literature, such models can be broadly
classified as sequence-specific coarse-grained (CG) IDP
models, which represent nonbonded interactions between
amino acids [86–91] or chemical functional groups [92]
using pair potentials, and “patchy-particle” [93–95] or
“patchy-polymer” [96, 97] CG models, which encode spe-
cific interactions between discrete binding sites on each
molecule (Fig. 7). We first describe key insights into mul-
ticomponent phase behavior from theoretical analyses of
these types of models before reviewing recent multicom-
ponent molecular simulation studies.

A. Multicomponent field-theoretic approaches

Field-theoretic approaches have been used to predict
the sequence-dependent phase diagrams of heteropoly-
mers, with a particular emphasis on polyampholytes. By
accounting for chain connectivity, and thus the primary
sequence of the heteropolymer, these approaches improve
upon mean-field treatments that consider all monomer–
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monomer interactions in a polymer solution indepen-
dently [45]. Field-theoretic approaches incorporate se-
quence information by modeling the correlations between
monomers within a single chain, which decay with in-
creasing separation between monomers along the primary
sequence (Fig. 7).

Refs. [98] treated the spatial correlations between
monomers with the random-phase approximation (RPA)
by assuming that the polymer configurations obey the
Gaussian statistics of ideal chains. This assumption
means that monomers on different chains are not spa-
tially correlated and that the heteropolymer sequences
affect the potential energy, but not the polymer confor-
mations, of a mixture at finite concentration. Despite
this simplification, RPA predictions correlate well with
experimental measurements of the phase behavior [98]
and single-chain properties [99] of charge-neutral polyam-
pholytes. Of particular importance, the RPA theory ra-
tionalizes the observed increase in LLPS propensity of
charge-neutral sequences with “blocky” as opposed to ho-
mogeneous charge patterns [100]. Blocky charge patterns
also correlate with smaller radii of gyration of chains in
the dilute phase, in line with prior studies using the “se-
quence charge decoration” order parameter [101, 102] and
related blockiness metrics [103, 104]. The RPA theory
was extended to charged polyelectrolytes in Ref. [105].

Of relevance to multicomponent mixtures, Ref. [106]
applied RPA to mixtures of two distinct charge-neutral
polyampholytes. Because RPA ignores spatial correla-
tions between monomers on different chains, the electro-
static contribution to the RPA free energy can be fac-
tored into terms arising from each chain individually.
The RPA free energy can therefore be mapped at low
concentrations to a pairwise-interaction model in which
the effective heterotypic interaction, B12, is the geomet-
ric mean of the two homotypic interactions, B11 and B22.
The homotypic interaction coefficients can be calculated
by applying RPA to each heteropolymer sequence indi-
vidually. In light of the discussion in Sec. III B, these
results indicate that RPA predicts a rank-1 pairwise in-
teraction matrix for charge-neutral polyampholyte mix-

tures, since Bij = B
1/2
ii B

1/2
jj ∀i, j. This observation fur-

ther suggests that spatial correlations between different
chains are needed to predict higher-rank interaction ma-
trices for charge-neutral polyampholytes.

RPA has also been applied to mixtures of polyelec-
trolyte mixtures. In solutions with two positively charged
and one negatively charged polymer, Ref. [107] predicted
that multiphase coacervates can form due to the repulsive
heterotypic interactions between two positively charged
sequences with differing linear charge densities. Ref. [108]
then predicted that differences in the charge patterning
between two positively charged sequences with identical
linear charge densities is sufficient to drive the formation
of two immiscible condensed phases.

An analogous field-theoretic treatment of heteropoly-
mers interacting via short-ranged hydrophobic forces re-
vealed that the leading order contribution to the interac-

tion free energy is given by the sum of the interactions
between all pairs of monomers in the mixture [109]. Al-
though this model was not explicitly applied to multi-
component solutions, it suggests that, to leading order,
the pairwise interaction matrix for heteropolymers in-
teracting via short-ranged interactions is independent of
their primary sequences. In other words, only the fre-
quency of each monomer type in a heteropolymer se-
quence is relevant at this level of theory [110], and the
rank of the interaction matrix cannot exceed the rank of
the monomer–monomer interaction matrix, which may
itself be rank-deficient [109, 111].

B. Multicomponent associating fluid models

Concepts from associating fluid theory [112, 113] have
been adopted to describe the interactions between bind-
ing sites on biomolecules that can only engage in one
physical bond at a time. While the methods of Refs. [112]
and [113] were originally developed to describe site-
specific associative interactions between small molecules,
this physical picture extends naturally to multidomain
proteins or protein complexes whose constituent domains
contain interfaces that interact specifically with other
proteins or RNA sequences [93, 114]. The number of such
binding sites therefore establishes the coarse-grained “va-
lence” of the multidomain protein or complex (Fig. 7).

Associating fluid theory treats the attractive interac-
tions between pairs of binding sites as perturbations to
the free energy of a reference model, which represents
the molecular mixture in the absence of binding sites.
For example, the Flory–Huggins homopolymer model
can serve as a reference model for a mixture of mul-
tidomain proteins, with the degree of polymerization Li
taken to be equal to the number of domains in each pro-
tein species i [93]. The concentration-dependent site–site
binding probabilities are then determined from the chem-
ical equilibrium equations

XiA +XiA

N∑
j=1

ρj

mj∑
B=1

XjB∆iA,jB = 1 ∀i, A, (8)

where XiA represents the probability that the binding
site of type A on a molecule of type i is not engaged
in any associative interaction, and mi is the valence of
molecule type i. The matrix {∆iA,jB} represents the
interaction volumes (i.e., the reciprocals of the dissocia-
tion constants) for the associative interactions between
binding sites A and B, which can in principle depend on
spatial correlations in the reference model. Finally, the
contribution to the free-energy density due to associative
interactions is [113]

βfassoc =

N∑
i=1

[
ρi

mi∑
A=1

(
logXiA −

XiA

2

)
+
mi

2

]
. (9)

Ref. [115] showed that Eq. (8) has a unique solu-
tion and that Eq. (9) leads to a particularly simple
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expression for the associative contribution to the ex-
cess chemical potential when ∆iA,jB is concentration-
independent, βµassoc,i =

∑mi
A=1 logXiA. Furthermore,

in the limit of weak associative interactions, Eq. (9)
reduces to a simple pairwise form, such that

βµassoc,i ' −
∑N
j=1 ρj

∑mi
A=1

∑mj
B=1 ∆iA,jB . With regard

to the discussion in Sec. III B, the maximum rank of the
pairwise interaction matrix is therefore given by the rank
of {∆iA,jB} in this limit.

The associating fluid framework has been widely ap-
plied to model biomolecular LLPS involving folded do-
mains that interact via specific binding sites. A notable
application of the associating fluid framework to multi-
phase condensates was provided in Ref. [29], which used
a simplified representation of an experimentally deter-
mined PPI network to predict the compositions and mor-
phologies of coexisting stress granule and P-body conden-
sates. Agreement between theory and experiment regard-
ing the effects of concentration changes and binding-site
modifications provided strong evidence that the phase
behavior of these condensates is indeed governed by spe-
cific PPIs and interactions between RBDs and mRNA.

When the binding sites are assumed to represent in-
dividual amino acids of IDPs or short sequence motifs
of IDPs and/or RNAs, associating fluid theory is com-
monly referred to as the “stickers-and-spacers” model
of heteropolymer association [4, 116–118]. In this case,
a Flory–Huggins homopolymer model with a degree of
polymerization much greater than the binding-site va-
lence (i.e., the number of “stickers”) is typically taken as
the reference model. Stickers-and-spacers applications
of associating fluid theory have been successfully used
to rationalize experimental observations of IDP-driven
phase separation, including both thermodynamic and dy-
namical properties, in many contexts [4, 119, 120]. The
assignment of the “stickers” to specific amino acids or
short sequence motifs has varied depending on context
across different studies, however, suggesting that addi-
tional contextual information may be required to predict
the phase behavior of multicomponent IDP and RNA
mixtures from their sequences. For further discussion of
applications of associating fluid theory to biopolymers,
we direct the reader to recent reviews on this subject,
including Refs. [4] and [47].

C. Insights from coarse-grained molecular
simulations of multiphase condensates

1. Polymer simulations with pair potentials

Molecular simulations have provided insights into the
accuracy of analytical theories for describing sequence-
dependent multicomponent phase behavior. In order to
test the RPA predictions of Ref. [106] (see Sec. IV A),
Ref. [121] used a combination of field-theoretic and CG
MD simulations to study the phase behavior of polyam-
pholyte mixtures. These simulations demonstrated that

pairs of charge-neutral sequences only exhibit demixing
when the chains have sufficiently different (i.e., blocky
versus uniform) charge distributions. These results are in
line with the predictions of the RPA theory. Nonetheless,
the authors found that excluded volume interactions—
which are present in the MD simulations but are not
included in the RPA calculations—are essential for ob-
serving demixing in MD simulations. The qualitative
agreement with the theoretical predictions was therefore
ascribed to the assumption of incompressibility in the
RPA calculations. Nonetheless, this observation points
to the need for more accurate theoretical treatments that
account for excluded volume and interchain correlations.

Moving to systems with a third non-solvent com-
ponent, Ref. [43] performed simulations of a three-
component system comprising a prion-like polypeptide
(PLP), an arginine-rich polypeptide (RRP), and RNA.
In this system, competition between PLP and RNA for
binding to RRP results in the demixing of PLP+RRP
condensates into immiscible PLP and RNA+RRP phases
when RNA is added. This experimental observation,
which bears qualitative resemblance to the competing
heterotypic model of Ref. [107] (see Sec. IV A), was repro-
duced using MD simulations of a CG IDP/RNA model.
These simulations also rationalized the experimental ob-
servation that the RNA parent concentration controls the
morphology of the coexisting condensates.

In an attempt to uncover general sequence determi-
nants of multiphase mixtures, Ref. [122] proposed a com-
putational approach to design IDP sequences that result
in multilayered condensates. To this end, the authors
used a genetic algorithm to optimize pairs of sequences
that form immiscible phases and a stable shared inter-
face, starting from naturally occurring IDP sequences.
The authors found that the net homotypic and het-
erotypic interactions must differ between the optimized
IDPs, as expected. In many cases, these net interactions
were found to depend primarily on the monomer frequen-
cies, such that the immiscibility of the two phases was not
affected by randomizing the sequences of the designed
IDPs. However, when the genetic algorithm was initial-
ized using a particular naturally occurring IDP sequence
in one of the coexisting phases, the patterning of the
amino-acid residues in the optimized partner sequence
was found to be crucial for achieving immiscibility. The
reasons for this dependence on sequence patterning in
some, but not all, optimization scenarios are poorly un-
derstood. Nonetheless, sequences generated via this ap-
proach could provide challenging test cases for the further
development of analytical sequence-dependent theories.

2. Patchy-polymer simulations

“Patchy-polymer” models, which encode one-to-one in-
teractions between binding sites on specific monomers,
are appropriate CG models for testing the predictions
of associating fluid theory. To explore the design rules
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underlying multiphasic systems with this class of mod-
els, Ref. [123] introduced a lattice-based CG model of
poly-PRM and poly-SH3 multidomain proteins. Proline-
rich modules (PRMs) are short IDR sequence motifs
that engage in specific interactions with folded SH3 do-
mains [124], and as such form one-to-one binding inter-
actions. Meanwhile, the linkers between motifs in the
poly-PRM molecules and between the folded domains in
the poly-SH3 molecules, respectively, were modeled ei-
ther implicitly, representing ideal chains with Gaussian
conformational statistics, or explicitly, using a variable
number of lattice-site-occupying monomers. Simulations
were conducted using two types of poly-SH3 molecules,
which competed for binding to the PRMs. The authors
found that differences in the linker properties, which tune
the effective pairwise interactions between the molecules
in the absence of the associative PRM/SH3 interactions,
strongly affect the ability of the mixture to form immisci-
ble condensed phases. This observation is consistent with
the finding of Ref. [121] that excluded volume interac-
tions are necessary for demixing. By contrast, the inter-
action volume associated with the attractive PRM/SH3
interactions was found to play a less important role in de-
termining the degree of immiscibility, in line with the pre-
dictions of associating fluid theory in the strong-binding
limit (ρ∆ � 1) of Eq. (8). Ref. [123] also showed that
the interfaces of immiscible condensates are similarly af-
fected by the linker properties, since molecules containing
linkers with greater excluded volumes are preferentially
driven towards interfaces with the dilute phase.

3. Patchy-particle models

“Patchy-particle” models allow for simulations with a
larger number of distinct molecular species, along with a
greater diversity of associative interactions, due to their
simplicity. In complex mixtures with a variety of differ-
ent associative interactions, it is useful to describe the
collection of all possible one-to-one binding interactions
by introducing an “interaction network” [29]. Ref. [125]
explored this network concept using MD simulations of
a 6-component mixture comprising 2, 3, and 4-valent
patchy particles. The authors considered a nearly fully
connected network with almost all equivalent interaction
strengths, leading to the formation of a single condensed
phase in mixtures with equimolar parent concentrations.
Unsurprisingly, the density of associative bonding inter-
actions in the condensed phase was found to correlate
with the condensate stability, as measured by the criti-
cal temperature. Simulations further revealed that high-
valence molecules, which phase separate with high criti-
cal temperatures in single-component solutions, tend to
increase the critical temperature of multicomponent con-
densates when added to mixtures of components with
lower average valence. Of direct experimental relevance,
positive correlations were observed between the critical
point of a molecular species in a single-component solu-

tion, its binding-site valence, and its partition coefficient
with respect to a multicomponent condensate in a mix-
ture with equimolar parent concentrations.

These observations can be understood qualitatively
within the framework of associating fluid theory. Mak-
ing the simplification that all binding sites interact with
one another via the same interaction volume, such that
∆iA,jB = ∆̄∀i, A, j, B, the solution to Eq. (8) simpli-
fies to XiA = X̄ ∀i, A. The associative contribution
to the excess chemical potential (see Sec. IV B) is thus
βµassoc,i ≈ mi log X̄ in the condensed phase and negligi-
ble in the dilute phase, implying that the partition coef-
ficient, Eq. (2), is related to the binding-site valence by
PCi ∝ exp(mi). An approximate relationship between
the stability of the condensed phase and the average va-
lence of the mixture follows by a similar argument. The
relatively small variations in interaction strengths in the
simulated interaction network [125] can be considered as
perturbations on these predictions. However, variations
in the geometric arrangements of the binding sites, and
their relatively minor effects on the partition coefficients,
are not captured at this level of theory.

The patchy-particle model of Ref. [125] was then ex-
tended to examine multiphase mixtures in Ref. [126].
The authors modified the interaction network by elim-
inating heterotypic associative interactions between se-
lect molecular species in order to construct immiscible
condensates and multilayered structures. Analogously
to the results of Ref. [123], simulations demonstrated
that strong homotypic associative interactions lead to
the formation of multiple immiscible condensates, while
the introduction of strong heterotypic associative interac-
tions tends to stabilize a single condensed phase. How-
ever, mixtures with competing heterotypic interactions
between weakly and strongly associating species showed
evidence of multiphase condensate formation.

V. OUTLOOK AND CHALLENGES

We have reviewed recent progress in the development
of statistical and sequence-specific theories of multicom-
ponent fluids and multiphase condensate formation. Fur-
ther advances in this area have the potential to reveal
quantitative relationships between the molecular deter-
minants of biomolecules, whether naturally occurring or
engineered, and phase-separated self-organization in het-
erogeneous mixtures. In particular, inverse-design strate-
gies offer a promising approach for rationally and sys-
tematically identifying the physicochemical properties
of biomolecular mixtures responsible for the assembly
of complex—and biologically functional—condensates.
These theoretical and computational efforts will help to
provide a roadmap for future experiments on heteroge-
neous biomolecular mixtures.

Nonetheless, many significant theoretical challenges re-
main to be explored, particularly with regard to the as-
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sumption of thermal equilibrium. Future directions for
theoretical and simulation advances in this field include:

1. Structuring and parameterizing multicomponent
mixture models. Further development of statisti-
cal mixture models (see Sec. III) will require in-
corporating information from sequence-dependent
theories and simulations. In this way, it will be
possible to investigate the thermodynamic conse-
quences of physically motivated and biomolecularly
relevant correlations among interaction parameters
in multicomponent fluids, as well as to move be-
yond pairwise mixture models. Physicochemically
motivated constraints should also be incorporated
into inverse design approaches.

2. Extending sequence-dependent coarse-grained sim-
ulations and theories to multicomponent mixtures.
Complementary insights can be gained by increas-
ing the number of components in biomolecular
mixtures treated using analytical theories or stud-
ied via coarse-grained molecular simulation (see
Sec. IV). Simulations of recently developed CG
IDP models [86–92] have demonstrated impres-
sive agreement with experiments on both single-
chain and individual condensed-phase properties,
suggesting that multicomponent simulations using
these models may also be capable of predicting
multiphase coexistence [122] with similar accuracy.
Further improvement in the chemical accuracy of
multicomponent simulations is likely to be achieved
through multiscale approaches that incorporate all-
atom simulations of ribonucleic condensates [127–
129]. In future simulation studies, it will also be
important to consider the role of competition be-
tween sequence-dependent clustering, aggregation,
and LLPS behaviors, as observed in simple models
of single-component heteropolymer solutions [130–
132], in multicomponent mixtures.

3. Accounting for nonequilibrium effects due to kinetic
barriers. Within the near-equilibrium framework,
kinetic effects can lead to differences between the
phase behavior that is observed in simulations and
experiments and what is predicted at global ther-
modynamic equilibrium. For example, nucleation
pathways [133] and slow rates of transitions be-

tween metastable states [134–136] can affect the
molecular compositions and multiphasic organiza-
tion of phase-separated condensates on biologically
relevant timescales. The consequences of these
nonequilibrium effects in systems with many com-
ponents require further exploration.

4. Exploring differences in phase behavior at nonequi-
librium steady states. Phase separation can also
occur in fluids at nonequilibrium steady states
(NESSs), which can arise due to chemostatted
chemical reactions [18]. Differences between ther-
mal equilibrium and a NESS can manifest, for ex-
ample, in the nucleation behavior [137, 138] as
well as the growth and coarsening dynamics [139–
143] of phase-separated droplets. The implications
of chemically driven NESSs for multiphase self-
organization are largely unexplored.

5. Developing theoretical tools for emerging exper-
imental applications. A variety of experimen-
tal platforms for manipulating biomolecular LLPS
have recently been developed using “designer” pep-
tides [144–147], nucleic acids [32, 33, 148], and non-
biological polymers [149]. Chemically specific com-
putational tools are needed to guide the rational de-
sign of multicomponent, multiphasic mixtures us-
ing these experimental platforms. With a better
understanding of condensate compositional control
in heterogeneous environments, combined theoret-
ical and experimental engineering approaches have
the potential to bring about practical techniques
for manipulating complex biological processes in
vivo [150].

In summary, LLPS can give rise to highly nontrivial
spatial organization in multicomponent biomolecular flu-
ids. Nevertheless, considerable gaps persist in our un-
derstanding of the relationship between molecular-level
properties and emergent phase behavior in heterogeneous
mixtures. Addressing this multifaceted question there-
fore represents an important way in which chemical the-
ory and simulation can contribute to research at the fore-
front of molecular and cell biology, while helping to elu-
cidate the origins of self-organization in living systems.
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