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Abstract

This introduction to the expectation–maximization (EM) algorithm

provides an intuitive and mathematically rigorous understanding of

EM. Two of the most popular applications of EM are described in

detail: estimating Gaussian mixture models (GMMs), and estimat-

ing hidden Markov models (HMMs). EM solutions are also derived

for learning an optimal mixture of fixed models, for estimating the

parameters of a compound Dirichlet distribution, and for dis-entangling

superimposed signals. Practical issues that arise in the use of EM are

discussed, as well as variants of the algorithm that help deal with these

challenges.
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The Expectation-Maximization Method

Expectation–maximization (EM) is an iterative method that attempts

to find the maximum likelihood estimator of a parameter θ of a para-

metric probability distribution. Let us begin with an example. Consider

the temperature outside your window for each of the 24 hours of a

day, represented by x ∈ R
24, and say that this temperature depends on

the season θ ∈ {summer, fall, winter, spring}, and that you know the

seasonal temperature distribution p(x |θ). But what if you could only

measure the average temperature y = x̄ for some day, and you would

like to estimate what season θ it is (for example, is spring here yet?). In

particular, you might seek the maximum likelihood estimate of θ, that

is, the value θ̂ that maximizes p(y |θ). If this is not a trivial maximum

likelihood problem, you might call upon EM. EM iteratively alternates

between making guesses about the complete data x, and finding the θ

that maximizes p(x |θ) over θ. In this way, EM tries to find the maxi-

mum likelihood estimate of θ given y. We will see in later sections that

EM does not actually promise to find the θ that maximizes p(y |θ),
but there are some theoretical guarantees, and it often does a good job

in practice, though it may need a little help in the form of multiple

random starts.
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This exposition is designed to be useful to both the EM novice and

the experienced EM user looking to better understand the method and

its use. To this end, we err on the side of providing too many explicit

details rather than too few.

First, we go over the steps of EM, breaking down the usual two-step

description into a five-step description. Table 1.1 summarizes the key

notation. We recommend reading this document linearly up through

Section 1.4, after which sections can generally be read out-of-order.

Section 1 ends with a detailed version of a historical toy example for

EM. In Section 2 we show that EM never gets worse as it iterates in

terms of the likelihood of the estimate it produces, and we explain the

maximization–maximization interpretation of EM. We also explain the

general advantages and disadvantages of EM compared to other options

for maximizing the likelihood, like the Newton–Raphson method. The

Table 1.1. Notation summary.

R Set of real numbers
R+ Set of positive real numbers
N Set of natural numbers

y ∈ R
d Given measurement or observation

Y ∈ R
d Random measurement; y is a realization of Y

x ∈ R
d1 Complete data you wish you had

X ∈ R
d1 Random complete data; x is a realization of X

z ∈ R
d2 Missing data; in some problems x = (y,z)

Z ∈ R
d2 Random missing data; z is a realization of Z

θ ∈ Ω Parameter(s) to estimate, Ω is the parameter space

θ(m) ∈ Ω mth estimate of θ
p(y |θ) Density of y given θ; also written as p(Y = y |θ)
X Support of X (closure of the set of x where

p(x |θ) > 0)
X (y) Support of X conditioned on y (closure of the

set of x where p(x |y,θ) > 0)

� “Is defined to be”
L(θ) Likelihood of θ given y, that is, p(y |θ)
ℓ(θ) Log-likelihood of θ given y, that is, logp(y |θ)
EX|y,θ[X] Expectation of X conditioned on y and θ, that is,

∫

X (y) xp(x |y,θ)dx

1{·} Indicator function: equals 1 if the expression {·} is

true, and 0 otherwise
1 Vector of ones
DKL(P ‖Q) Kullback–Leibler divergence (a.k.a. relative entropy)

between distributions P and Q
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advantages of EM are made clearer in Sections 3 and 4, in which we

derive a number of popular applications of EM and use these applica-

tions to illustrate practical issues that can arise with EM. Section 3

covers learning the optimal combination of fixed models to explain the

observed data, and fitting a Gaussian mixture model (GMM) to the

data. Section 4 covers learning hidden Markov models (HMMs), sep-

arating superimposed signals, and estimating the parameter for the

compound Dirichlet distribution. In Section 5, we categorize and dis-

cuss some of the variants of EM and related methods, and we conclude

this manuscript in Section 6 with some historical notes.

1.1 The EM Algorithm

To use EM, you must be given some observed data y, a parametric

density p(y |θ), a description of some complete data x that you wish

you had, and the parametric density p(x |θ).1 In Sections 3 and 4 we

will explain how to define the complete data x for some standard EM

applications.

We assume that the complete data can be modeled as a continuous2

random vector X with density p(x |θ),3 where θ ∈ Ω for some set Ω. You

do not observe X directly; instead, you observe a realization y of the

random vector Y that depends4 on X. For example, X might be a

random vector and Y the mean of its components, or if X is a complex

number then Y might be only its magnitude, or Y might be the first

component of the vector X.

1 A different standard choice of notation for a parametric density would be p(y;θ), but
we prefer p(y |θ) because this notation is clearer when one wants to find the maximum
a posteriori estimate rather than the maximum likelihood estimate—we will talk more
about the maximum a posteriori estimate of θ in Section 1.3.

2 The treatment of discrete random vectors is a straightforward special case of the continuous
treatment: one only needs to replace the probability density function with probability mass
function and integral with summation.

3 We assume that the support of X, denoted by X , which is the closure of the set
{x

∣

∣ p(x |θ) > 0}, does not depend on θ. An example where the support does depend on
θ is if X is uniformly distributed on the interval [0,θ]. If the support does depend on θ,
then the monotonicity of the EM algorithm might not hold. See Section 2.1 for details.

4 A rigorous description of this dependency is deferred to Section 1.4.
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Given that you only have y, the goal here is to find the maximum

likelihood estimate (MLE) of θ:

θ̂MLE = arg max
θ∈Ω

p(y |θ). (1.1)

It is often easier to calculate the θ that maximizes the log-likelihood

of y:

θ̂MLE = argmax
θ∈Ω

logp(y |θ). (1.2)

Because log is a monotonically increasing function, the solution to (1.1)

will be the same as the solution to (1.2). However, for some problems it

is difficult to solve either (1.1) or (1.2). Then we can try EM: we make

a guess about the complete data X and solve for the θ that maximizes

the (expected) log-likelihood of X. And once we have an estimate for

θ, we can make a better guess about the complete data X, and iterate.

EM is usually described as two steps (the E-step and the M-step),

but let us first break it down into five steps:

Step 1: Let m = 0 and make an initial estimate θ(m) for θ.

Step 2: Given the observed data y and pretending for the moment

that your current guess θ(m) is correct, formulate the condi-

tional probability distribution p(x |y,θ(m)) for the complete

data x.

Step 3: Using the conditional probability distribution p(x |y,θ(m)) cal-

culated in Step 2, form the conditional expected log-likelihood,

which is called the Q-function5:

Q(θ |θ(m)) =

∫

X (y)
logp(x |θ)p(x |y,θ(m))dx

= EX|y,θ(m) [logp(X |θ)], (1.3)

5 Note this Q-function has nothing to do with the sum of the tail of a Gaussian, which is
also called the Q-function. People call (1.3) the Q-function because the original paper [11]
used a Q to notate it. We like to say that the Q stands for quixotic because it is a bit
crazy and hopeful and beautiful to think you can find the maximum likelihood estimate
of θ in this way that iterates round-and-round like a windmill, and if Don Quixote had
been a statistician, it is just the sort of thing he might have done.
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where the integral is over the set X (y), which is the closure

of the set {x
∣

∣ p(x |y,θ) > 0}, and we assume that X (y) does

not depend on θ.

Note that θ is a free variable in (1.3), so the Q-function is

a function of θ, but also depends on your current guess θ(m)

implicitly through the p(x |y,θ(m)) calculated in Step 2.

Step 4: Find the θ that maximizes the Q-function (1.3); the result is

your new estimate θ(m+1).

Step 5: Let m := m + 1 and go back to Step 2. (The EM algorithm

does not specify a stopping criterion; standard criteria are to

iterate until the estimate stops changing: ‖θ(m+1) − θ(m)‖ < ǫ

for some ǫ > 0, or to iterate until the log-likelihood ℓ(θ) =

logp(y |θ) stops changing: |ℓ(θ(m+1)) − ℓ(θ(m))| < ǫ for some

ǫ > 0.)

The EM estimate is only guaranteed to never get worse (see Section 2.1

for details). Usually, it will find a peak in the likelihood p(y |θ), but

if the likelihood function p(y |θ) has multiple peaks, EM will not nec-

essarily find the global maximum of the likelihood. In practice, it is

common to start EM from multiple random initial guesses, and choose

the one with the largest likelihood as the final guess for θ.

The traditional description of the EM algorithm consists of only

two steps. The above Steps 2 and 3 combined are called the E-step for

expectation, and Step 4 is called the M-step for maximization:

E-step: Given the estimate from the previous iteration θ(m), compute

the conditional expectation Q(θ |θ(m)) given in (1.3).

M-step: The (m + 1)th guess of θ is:

θ(m+1) = argmax
θ∈Ω

Q(θ |θ(m)). (1.4)

Since the E-step is just to compute the Q-function which is used

in the M-step, EM can be summarized as just iteratively solving the

M-step given by (1.4). When applying EM to a particular problem, this

is usually the best way to think about EM because then one does not

waste time computing parts of the Q-function that do not depend on θ.
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1.2 Contrasting EM with a Simple Variant

As a comparison that may help illuminate EM, we next consider a

simple variant of EM. In Step 2 above, one computes the conditional

distribution p(x |y,θ(m)) over all possible values of x, and this entire

conditional distribution is taken into account in the M-step. A simple

variant is to instead use only the mth maximum likelihood estimate

x(m) of the complete data x:

E-like-step: x(m) = arg max
x∈X (y)

p(x |y,θ(m)),

M-like-step: θ(m+1) = argmax
θ∈Ω

p(x(m) |θ).

We call this variant the point-estimate variant of EM ; it has also been

called classification EM. More on this variant can be found in [7, 9].

Perhaps the most famous example of this variant is k-means clus-

tering6 [21, 35]. In k-means clustering, we have n observed data points

y =
[

y1 y2 . . . yn

]T
, where each yi ∈ R

d, and it is believed that the

data points belong to k clusters. Let the complete data be the observed

data points and the missing information that specifies which of the k

clusters each observed data point belongs to. The goal is to estimate

the k cluster centers θ. First, one makes an initial guess θ̂0 of the k clus-

ter centers. Then in the E-like step, one assigns each of the n points

to the closest cluster based on the estimated cluster centers θ(m). Then

in the M-like step, one takes all the points assigned to each cluster,

and computes the mean of those points to form a new estimate of the

cluster’s centroid. Underlying k-means is a model that the clusters are

defined by Gaussian distributions with unknown means (the θ to be

estimated) and identity covariance matrices.

EM clustering differs from k-means clustering in that at each iter-

ation you do not choose a single x(m), that is, one does not force each

observed point yi to belong to only one cluster. Instead, each observed

point yi is probabilistically assigned to the k clusters by estimating

p(x |y,θ(m)). We treat EM clustering in more depth in Section 3.2.

6 The k-means clustering algorithm dates to 1967 [35] and is a special case of vector

quantization, which was first proposed as Lloyd’s algorithm in 1957 [32]. See [17] for
details.
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1.3 Using a Prior with EM (MAP EM)

The EM algorithm can fail due to singularities of the log-likelihood

function — for example, for learning a GMM with 10 components, it

may decide that the most likely solution is for one of the Gaussians to

only have one data point assigned to it, with the bad result that the

Gaussian is estimated as having zero covariance (see Section 3.2.5 for

details).

A straightforward solution to such degeneracies is to take into

account or impose some prior information on the solution for θ. One

approach would be to restrict the set of possible θ. Such a restriction

is equivalent to putting a uniform prior probability over the restricted

set. More generally, one can impose any prior p(θ), and then modify

EM to maximize the posterior rather than the likelihood:

θ̂MAP = argmax
θ∈Ω

logp(θ |y) = argmax
θ∈Ω

(logp(y |θ) + logp(θ)).

The EM algorithm is easily extended to maximum a posteriori (MAP)

estimation by modifying the M-step:

E-step: Given the estimate from the previous iteration θ(m), compute

as a function of θ ∈ Ω the conditional expectation

Q(θ |θ(m)) = EX|y,θ(m) [logp(X |θ)].

M-step: Maximize Q(θ |θ(m)) + logp(θ) over θ ∈ Ω to find

θ(m+1) = argmax
θ∈Ω

(Q(θ |θ(m)) + logp(θ)).

An example of MAP EM is given in Section 3.3.

1.4 Specifying the Complete Data

Practically, the complete data should be defined so that given x it is

relatively easy to maximize p(x |θ) with respect to θ. Theoretically,

the complete data X must satisfy the Markov relationship θ → X → Y

with respect to the parameter θ and the observed data Y , that is, it

must be that

p(y |x,θ) = p(y |x).
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A special case is when Y is a function of X, that is, Y = T (X); in

this case, X → Y is a deterministic function, and thus the Markov

relationship always holds.

1.4.1 EM for Missing Data Problems

For many applications of EM, including GMM and HMM, the com-

plete data X is the observed data Y plus some missing (sometimes

called latent or hidden) data Z, such that X = (Y,Z). This is a spe-

cial case of Y = T (X), where the function T simply removes Z from

X to produce Y . In general when using EM with missing data, one

can write the Q-function as an integral over the domain of Z, denoted

by Z, rather than over the domain of X, because the only random part

of the complete data X is the missing data Z. Then, for missing data

problems where x = (y,z),

Q(θ |θ(m)) =

∫

X
logp(x |θ)p(x |y,θ(m))dx

=

∫

X
logp(y,z |θ)p(y,z |y,θ(m))dx

=

∫

Z
logp(y,z |θ)p(z |y,θ(m))dz

= EZ|y,θ(m) [logp(y,Z |θ)]. (1.5)

1.4.2 EM for Independently, Identically
Distributed Samples

For many common applications such as learning a GMM or HMM, the

complete data X is a set of n independent and identically distributed

(i.i.d.) random vectors, X =
[

X1 X2 . . . Xn

]T
and the ith observed

sample yi is only a function of xi. Then the following proposition is

useful for decomposing the Q-function into a sum:

Proposition 1.1. Suppose p(x |θ) =
∏n

i=1 p(xi |θ) for all x ∈ X n and

all θ ∈ Ω, and the Markov relationship θ → Xi → Yi holds for all i =

1, . . . ,n, that is,

p(yi |x,y1, . . . ,yi−1,yi+1, . . . ,yn,θ) = p(yi |xi), (1.6)
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then

Q(θ |θ(m)) =

n
∑

i=1

Qi(θ |θ(m)),

where

Qi(θ |θ(m)) = EXi|yi,θ(m) [logp(Xi |θ)], i = 1, . . . ,n.

Proof. First, we show that given θ, the elements of the set {(Xi,Yi)},

i = 1, . . . ,n, are mutually independent, that is,

p(x,y |θ) =

n
∏

i=1

p(xi,yi |θ). (1.7)

This mutual independence holds because

p(x,y |θ) = p(y1 |y2, . . . ,yn,x,θ) · · ·p(yn |x,θ)p(x |θ)
(by the chain rule)

= p(y1 |x1,θ) · · ·p(yn |xn,θ)p(x |θ)
(by (1.6), but keep θ in the condition)

= p(y1 |x1,θ) · · ·p(yn |xn,θ)

n
∏

i=1

p(xi |θ)

(by the independence assumption on X)

=

n
∏

i=1

p(yi |xi,θ)p(xi |θ)

=
n
∏

i=1

p(xi,yi |θ).

Then we show that for all i = 1, . . . ,n, we have

p(xi |y,θ) = p(xi |yi,θ). (1.8)

This is because

p(xi |y,θ) =
p(xi,y |θ)
p(y |θ)

(by Bayes’ rule)

=

∫

X n−1 p(x,y |θ)dx1 . . .dxi−1dxi+1 . . .dxn
∫

X n p(x,y |θ)dx
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=

∫

X n−1

∏n
j=1 p(xj ,yj |θ)dx1 . . .dxi−1dxi+1 . . .dxn
∫

X n

∏n
j=1 p(xj ,yj |θ)dx1 . . .dxn

(by (1.7))

=
p(xi,yi |θ)

∏n
j=1, j �=i

∫

X p(xj ,yj |θ)dxj
∏n

j=1

∫

X p(xj ,yj |θ)dxj

=
p(xi,yi |θ)

∏n
j=1, j �=i p(yj |θ)

∏n
j=1 p(yj |θ)

=
p(xi,yi |θ)
p(yi |θ)

= p(xi |yi,θ).

Then,

Q(θ |θ(m)) = EX|y,θ(m) [logp(X |θ)]

= EX|y,θ(m)

[

log

n
∏

i=1

p(Xi |θ)
]

(by the independence assumption on X)

= EX|y,θ(m)

[

n
∑

i=1

logp(Xi |θ)
]

=

n
∑

i=1

EXi|y,θ(m) [logp(Xi |θ)]

=

n
∑

i=1

EXi|yi,θ(m) [logp(Xi |θ)],

where the last line holds because of (1.8).

1.5 A Toy Example

We next present a fully worked-out version of a “toy example” of EM

that was used in the seminal EM paper [11]. Here, we give more details,

and we have changed it to literally be a toy example.

Imagine you ask n kids to choose a toy out of four choices. Let Y =
[

Y1 . . . Y4

]T
denote the histogram of their n choices, where Yi is the

number of the kids that chose toy i, for i = 1, . . . ,4. We can model this
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random histogram Y as being distributed according to a multinomial

distribution. The multinomial has two parameters: the number of kids

asked, denoted by n ∈ N, and the probability that a kid will choose each

of the four toys, denoted by p ∈ [0,1]4, where p1 + p2 + p3 + p4 = 1.

Then the probability of seeing some particular histogram y is:

P (y |p) =
n!

y1!y2!y3!y4!
py1
1 py2

2 py3
3 py4

4 . (1.9)

Next, say that we have reason to believe that the unknown proba-

bility p of choosing each of the toys is parameterized by some hidden

value θ ∈ (0,1) such that

pθ =

[

1

2
+

1

4
θ

1

4
(1 − θ)

1

4
(1 − θ)

1

4
θ

]T

, θ ∈ (0,1). (1.10)

The estimation problem is to guess the θ that maximizes the probability

of the observed histogram y of toy choices.

Combining (1.9) and (1.10), we can write the probability of seeing

the histogram y =
[

y1 y2 y3 y4

]T
as

P (y |θ) =
n!

y1!y2!y3!y4!

(

1

2
+

θ

4

)y1
(

1 − θ

4

)y2
(

1 − θ

4

)y3
(

θ

4

)y4

.

For this simple example, one could directly maximize the log-likelihood

logP (y |θ), but here we will instead illustrate how to use the EM algo-

rithm to find the maximum likelihood estimate of θ.

To use EM, we need to specify what the complete data X is. We

will choose the complete data to enable us to specify the probability

mass function (pmf) in terms of only θ and 1 − θ. To that end, we

define the complete data to be X =
[

X1 . . . X5

]T
, where X has a

multinomial distribution with number of trials n and the probability

of each event is:

qθ =

[

1

2

1

4
θ

1

4
(1 − θ)

1

4
(1 − θ)

1

4
θ

]T

, θ ∈ (0,1).

By defining X this way, we can then write the observed data Y as:

Y = T (X) =
[

X1 + X2 X3 X4 X5

]T
.
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The likelihood of a realization x of the complete data is

P (x |θ) =
n!

∏5
i=1 xi!

(

1

2

)x1
(

θ

4

)x2+x5
(

1 − θ

4

)x3+x4

. (1.11)

For EM, we need to maximize the Q-function:

θ(m+1) = arg max
θ∈(0,1)

Q(θ |θ(m)) = arg max
θ∈(0,1)

EX|y,θ(m) [logp(X |θ)].

To solve the above equation, we actually only need the terms of

logp(x |θ) that depend on θ, because the other terms are irrelevant

as far as maximizing over θ is concerned. Take the log of (1.11) and

ignore those terms that do not depend on θ, then

θ(m+1) = arg max
θ∈(0,1)

EX|y,θ(m) [(X2 + X5) logθ + (X3 + X4) log(1 − θ)]

= arg max
θ∈(0,1)

(EX|y,θ(m) [X2] + EX|y,θ(m) [X5]) logθ

+ (EX|y,θ(m) [X3] + EX|y,θ(m) [X4]) log(1 − θ).

To solve the above maximization problem, we need the expectation

of the complete data X conditioned on the already known incomplete

data y, which only leaves the uncertainty about X1 and X2. Since we

know that X1 + X2 = y1, we can use the indicator function 1{·} to

write that given y1, the pair (X1,X2) is binomially distributed with X1

“successes” in y1 events:

P (x |y,θ(m))

=
y1!

x1!x2!

(

1
2

1
2 + θ(m)

4

)x1
(

θ(m)

4
1
2 + θ(m)

4

)x2

1{x1+x2=y1}

5
∏

i=3

1{xi=yi−1}

=
y1!

x1!x2!

(

2

2 + θ(m)

)x1
(

θ(m)

2 + θ(m)

)x2

1{x1+x2=y1}

5
∏

i=3

1{xi=yi−1}.

Then the conditional expectation of X given y and θ(m) is

EX|y,θ(m) [X] =
[

2
2+θ(m) y1

θ(m)

2+θ(m) y1 y2 y3 y4

]T
,
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and the M-step becomes

θ(m+1) = arg max
θ∈(0,1)

((

θ(m)

2 + θ(m)
y1 + y4

)

logθ + (y2 + y3) log(1 − θ)

)

=

θ(m)

2+θ(m) y1 + y4

θ(m)

2+θ(m) y1 + y2 + y3 + y4

.

Given an initial estimate θ(0) = 0.5, the above algorithm reaches θ̂MLE

to MATLAB’s numerical precision on the 18th iteration.
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Analysis of EM

How good are the estimates produced by EM? How exactly is the

Q-function related to the true log-likelihood? In this section we discuss

EM convergence, show that the Q-function provides a lower bound to

the true log-likelihood, and describe the maximization–maximization

interpretation of EM.

2.1 Convergence

Here is what can be proved without extra conditions: as the EM algo-

rithm iterates, the (m + 1)th guess θ(m+1) will never be less likely than

the mth guess θ(m). This property is called the monotonicity of the EM

algorithm, and results from the following theorem, which states that

improving the Q-function will at least not make the log-likelihood ℓ(θ)

worse:

Theorem 2.1. Let random variables X and Y have parametric den-

sities with parameter θ ∈ Ω. Suppose the support of X does not depend

on θ, and the Markov relationship θ → X → Y , that is,

p(y |x,θ) = p(y |x) (2.1)

237
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holds for all θ ∈ Ω, x ∈ X and y ∈ Y. Then for θ ∈ Ω and any y ∈ Y
with X (y) �= ∅, ℓ(θ) ≥ ℓ(θ(m)) if Q(θ |θ(m)) ≥ Q(θ(m) |θ(m)).

We first discuss the theorem, then prove it later in Section 2.1.1.

For the EM algorithm, the M-step ensures that

θ(m+1) = argmax
θ∈Ω

Q(θ |θ(m)),

and hence it must be that Q(θ(m+1) |θ(m)) ≥ Q(θ(m) |θ(m)). Therefore

we can apply Theorem 2.1 and conclude that ℓ(θ(m+1)) ≥ ℓ(θ(m)).

The monotonicity of the EM algorithm guarantees that as EM iter-

ates, its guesses won’t get worse in terms of their likelihood, but the

monotonicity alone cannot guarantee the convergence of the sequence

{θ(m)}.1 Indeed, there is no general convergence theorem for the EM

algorithm2: the convergence of the sequence {θ(m)} depends on the

characteristics of ℓ(θ) and Q(θ |θ′), and also the starting point θ(0).

Under certain regularity conditions, one can prove that {θ(m)} con-

verges to a stationary point (for example, a local maximum or saddle

point) of ℓ(θ). However, this convergence is only linear.3 Instead of

using the EM algorithm one could (locally) maximize the likelihood

using Newton–Raphson updates, which requires calculating the inverse

of the Hessian matrix, but has quadratic convergence.4 Superlinear

convergence5 could instead be achieved using conjugate gradient meth-

ods or quasi-Newton updates such as the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) update, which only require computing the gradient

of the log-likelihood [27, 45]. The Newton–Raphson method can be

expected to hone in on θ⋆ fast once θ(m) is close, but EM may be

more effective given a poor initial guess, in part because the Hessian

matrix for the Newton–Raphson method may not be positive definite

and hence makes the inversion unstable.

1 If ℓ(θ) is bounded above on Ω, then the monotonicity implies the convergence of the
sequence {ℓ(θ(m))}, but not of the sequence {θ(m)}.

2 Theorem 2 in [11] appears to be a general convergence theorem for EM; however, its proof
is flawed as pointed out in [6, 62].

3 Linear convergence means that there exist M > 0 and 0 < C < 1 such that ‖θ(m+1) −
θ⋆‖ ≤ C‖θ(m) − θ⋆‖ for all m ≥ M , where θ⋆ is the optimal value of θ.

4 Quadratic convergence means that there exist M > 0 and 0 < C < 1 such that ‖θ(m+1) −
θ⋆‖ ≤ C‖θ(m) − θ⋆‖2 for all m ≥ M .

5 Superlinear convergence means ‖θ(m+1) − θ⋆‖/‖θ(m) − θ⋆‖ → 0 as m → ∞.
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See [62] for a detailed discussion on EM convergence; other discus-

sions on EM convergence can be found in [6, 11, 50], and [39] specifically

addresses the rate of convergence of the EM algorithm. For an analysis

of the convergence of the EM algorithm for fitting GMMs, see [63].

Note that some authors (such as [50]) use the term global convergence

to refer to convergence to a local maximum from almost any starting

point, and not to imply that one will actually converge to the global

maximum.

2.1.1 Proof of the Monotonicity Theorem

Next, we prove Theorem 2.1.

Proof. We first derive a lower bound on the log-likelihood function ℓ(θ):

ℓ(θ) = logp(y |θ)
(by definition)

= log

∫

X (y)
p(x,y |θ)dx

(by the law of total probability)

= log

∫

X (y)

p(x,y |θ)
p(x |y,θ(m))

p(x |y,θ(m))dx (2.2)

(multiply the top and bottom by the same factor)

= logEX|y,θ(m)

[

p(X,y |θ)
p(X |y,θ(m))

]

(rewrite the integral as an expectation)

≥ EX|y,θ(m)

[

log
p(X,y |θ)

p(X |y,θ(m))

]

(by Jensen’s inequality)

= EX|y,θ(m)

[

log
p(X |θ)p(y |X)

p(X |θ(m))p(y |X)/p(y |θ(m))

]

(by Bayes’ rule and the assumed Markov relationship)

= EX|y,θ(m)

[

log
p(X |θ)p(y |θ(m))

p(X |θ(m))

]
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= EX|y,θ(m) [logp(X |θ)] − EX|y,θ(m) [logp(X |θ(m))]

+ logp(y |θ(m))

= Q(θ |θ(m)) − Q(θ(m) |θ(m)) + ℓ(θ(m)), (2.3)

where the Q-function in the last line is defined in (1.3). Note that

because of the assumption that the support of X does not depend

on θ, combined with the assumed Markov relationship, we can easily

conclude that X (y) does not depend on θ, either, and thus perform the

trick in (2.2); otherwise, if X (y) does depend on θ, (2.2) can lead to 0
0

and the rest of the proof won’t follow.

We can conclude the first part of the proof by restating (2.3) as a

lower bound on the log-likelihood function:

ℓ(θ) ≥ ℓ(θ(m)) + Q(θ |θ(m)) − Q(θ(m) |θ(m)). (2.4)

Notice that in the above lower bound, Q(θ |θ(m)) is the only term that

depends on θ.

Next, since we assume that Q(θ |θ(m)) ≥ Q(θ(m) |θ(m)), we can sim-

ply conclude that:

ℓ(θ) ≥ ℓ(θ(m)) + (Q(θ |θ(m)) − Q(θ(m) |θ(m))) ≥ ℓ(θ(m)),

which completes the proof.

2.1.2 Monotonicity of MAP EM

The EM algorithm for the MAP estimation given in Section 1.3 also

has the monotonicity property:

Theorem 2.2. Let random variables X and Y have parametric den-

sities with parameter θ ∈ Ω, where θ is distributed according to the

density p(θ) on Ω. Suppose the support of X does not depend on θ,

and the Markov relationship θ → X → Y , that is,

p(y |x,θ) = p(y |x)

holds for all θ ∈ Ω, x ∈ X and y ∈ Y. Then for θ ∈ Ω and any y ∈ Y
with X (y) �= ∅,

ℓ(θ) + logp(θ) ≥ ℓ(θ(m)) + logp(θ(m)),
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if

Q(θ |θ(m)) + logp(θ) ≥ Q(θ(m) |θ(m)) + logp(θ(m)). (2.5)

Proof. Add logp(θ) to both sides of (2.4), and we have

ℓ(θ) + logp(θ) ≥ ℓ(θ(m)) + Q(θ |θ(m)) − Q(θ(m) |θ(m)) + logp(θ)

= ℓ(θ(m)) + logp(θ(m)) + Q(θ |θ(m)) + logp(θ)

− Q(θ(m) |θ(m)) − logp(θ(m))

≥ ℓ(θ(m)) + logp(θ(m)),

where the last line follows from (2.5).

2.2 Maximization–Maximization

Another way to view the EM algorithm is as a joint maximization

procedure that iteratively maximizes a better and better lower bound

F to the log-likelihood function ℓ(θ) [41]. Specifically, we will guess

that X has distribution P̃ with support X (y) and density p̃(x). Let

Pθ denote the conditional distribution with density p(x |y,θ). Then

consider maximizing the following objective function alternately with

respect to P̃ and θ:

F (P̃ ,θ) = ℓ(θ) − DKL(P̃ ‖Pθ),

where DKL(P̃ ‖Pθ) is the Kullback–Leibler divergence (a.k.a. relative

entropy) between the current guess P̃ of the distribution over the com-

plete data, and the likelihood Pθ of the complete data given the param-

eter θ. Maximizing F (P̃ ,θ) with respect to θ maximizes a lower bound

on the log-likelihood function ℓ(θ) since the KL divergence is always

nonnegative. Then maximizing F (P̃ ,θ) with respect to P̃ attempts to

tighten the lower bound for your current estimate of θ. Since both

steps perform maximization, this view of the EM algorithm is called

maximization–maximization. This joint maximization view of EM is

useful as it has led to variants of the EM algorithm that use alterna-

tive strategies to maximize F (P̃ ,θ), for example by performing par-

tial maximization in the first maximization step (see [41] for details).
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Further, this interpretation establishes EM as belonging to the class

of methods called alternating optimization or alternating minimization

methods. This class of methods also includes projection onto convex

sets (POCS) and the Blahut–Arimoto algorithms; for more details on

this class of algorithms, we recommend Stark and Yang’s book [55] and

Yeung’s book [64].

Next we show that this maximization–maximization view truly is

the same as the EM algorithm. Formally, the alternating maximization

steps are:

Max Step 1: Given the estimate from the previous iteration θ(m−1),

maximize F (P̃ ,θ(m−1)) over P̃ to find

P̃ (m) = argmax
P̃

F (P̃ ,θ(m−1)). (2.6)

Max Step 2: Maximize F (P̃ (m),θ) over θ to find

θ(m) = argmax
θ∈Ω

F (P̃ (m),θ). (2.7)

First, note that (2.6) can be simplified:

P̃ (m) = argmax
P̃

(ℓ(θ(m−1)) − DKL(P̃ ‖Pθ(m−1)))

= argmin
P̃

DKL(P̃ ‖Pθ(m−1))

= Pθ(m−1) ,

that is, P̃ (m) has density p(x |y,θ(m−1)). Second, (2.7) can be rewritten

using the Q-function:

θ(m) = argmax
θ∈Ω

ℓ(θ) − DKL(P̃ (m) ‖Pθ)

= argmax
θ∈Ω

logp(y |θ) − DKL(P̃ (m) ‖Pθ)

= argmax
θ∈Ω

logp(y |θ)
∫

X (y)
p(x |y,θ(m−1))dx − DKL(P̃ (m) ‖Pθ)

= argmax
θ∈Ω

∫

X (y)
p(x |y,θ(m−1)) logp(y |θ)dx − DKL(P̃ (m) ‖Pθ)

= argmax
θ∈Ω

∫

X (y)
p(x |y,θ(m−1)) log

p(y |x)p(x |θ)
p(x |y,θ)

dx

− DKL(P̃ (m) ‖Pθ)
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(by Bayes’ rule and the assumed Markov relationship)

= argmax
θ∈Ω

∫

X (y)
p(x |y,θ(m−1)) log

p(x |θ)
p(x |y,θ)

dx − DKL(P̃ (m) ‖Pθ)

(by removing the term that does not depend on θ)

= argmax
θ∈Ω

∫

X (y)
p(x |y,θ(m−1)) log

p(x |θ)
p(x |y,θ)

dx

−
∫

X (y)
p(x |y,θ(m−1)) log

p(x |y,θ(m−1))

p(x |y,θ)
dx

= argmax
θ∈Ω

∫

X (y)
p(x |y,θ(m−1)) logp(x |θ)dx

−
∫

X (y)
p(x |y,θ(m−1)) logp(x |y,θ(m−1))dx

= argmax
θ∈Ω

∫

X (y)
p(x |y,θ(m−1)) logp(x |θ)dx

(by removing the term that does not depend on θ)

= argmax
θ∈Ω

EX|y,θ(m−1) [logp(X |θ)]

= argmax
θ∈Ω

Q(θ |θ(m−1)),

which is just the standard M-step given in (1.4).
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Learning Mixtures

This section details the use of EM for two popular problems of learn-

ing a mixture. First, we consider one of the simplest and nicest EM

applications: learning the maximum likelihood mixture of a finite set

of fixed models to explain some observed data y. Then in Section 3.2 we

consider the harder problem of learning a GMM (also called EM cluster-

ing), where both the mixture weights of the Gaussians and the param-

eters for each component Gaussian must be learned. In Section 3.3 we

illustrate using EM to learn a GMM when there are additional con-

straints on the GMM parameters. More examples of EM for mixture

models can be found in McLachlan and Peel’s book [37].

3.1 Learning an Optimal Mixture of Fixed Models

Consider the problem of learning an optimal convex combination of

arbitrary models. Suppose you have n observations y1,y2, . . . ,yn and

k Models that could have generated these observations p1,p2, . . . ,pk.

For example, p1 could be a Gaussian with some fixed parameters µ = 3,

σ2 = 1, and p2 could be a Laplacian distribution with fixed parameter

λ = 1/5, etc. This setup would apply to learning a GMM (treated later

244
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in Section 3.2) if one fixed the component Gaussian models a priori

such that you only needed to learn the relative weights.

Suppose further that you model the observed n samples as being

drawn i.i.d. from a convex combination of the k models such that

p(Yi = yi) =

k
∑

j=1

θjpj(yi),

where
∑

j θj = 1 and θj ∈ [0,1] for all j. Your goal is to learn the most

likely combination θ of models to explain the observed data.

To use EM, let the hidden data z =
[

z1 z2 . . . zn

]T
denote which

of the k models generated each corresponding observation, that is zi ∈
{1,2, . . . ,k}, i = 1, . . . ,n. Then for any θ,

p(Yi = yi,Zi = j |θ) = θjpj(yi), (3.1)

and given an estimate θ(m), it follows from (3.1) and Bayes’ rule that

P (Zi = j |Yi = yi,θ
(m)) =

p(Yi = yi,Zi = j |θ(m))

p(Yi = yi |θ(m))
=

θ
(m)
j pj(yi)

∑k
l=1 θ

(m)
l pl(yi)

.

That is, if we know that the relative frequencies of the k models are

θ(m), then the probability that the ith observed sample yi was generated

by the jth model is proportional to both the probability θ
(m)
j of that

model a priori and the likelihood pj(yi) of the jth model producing

the observed yi.

Let Ω be the set of θ such that
∑

j θj = 1 and θj ∈ [0,1], j = 1, . . . ,k.

Then the M-step is:

θ(m+1) = argmax
θ∈Ω

EZ|y,θ(m) [logp(y,Z |θ)]
(by (1.5))

= argmax
θ∈Ω

n
∑

i=1

EZi|yi,θ(m) [logp(yi,Zi |θ)]

(by Proposition 1.1)

= argmax
θ∈Ω

n
∑

i=1

EZi|yi,θ(m) [logθZi
+ logpZi

(yi)]
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= argmax
θ∈Ω

n
∑

i=1

EZi|yi,θ(m) [logθZi
]

(by removing the terms that do not depend on θ)

= argmax
θ∈Ω

n
∑

i=1

k
∑

j=1

p(Zi = j |yi,θ
(m)) logθj

= argmax
θ∈Ω

k
∑

j=1

α
(m)
j logθj , (3.2)

where in (3.2), we let

α
(m)
j =

n
∑

i=1

p(Zi = j |yi,θ
(m)) =

n
∑

i=1

θ
(m)
j pj(yi)

∑k
l=1 θ

(m)
l pl(yi)

. (3.3)

The constrained optimization in (3.2) can be solved in a straight-

forward manner with the method of Lagrange multipliers,1 but a more

elegant solution uses Gibbs’ inequality,2 which states that:

Gibbs’ Inequality: Given two probability mass functions p and q for

the same k events,

k
∑

j=1

pj logqj ≤
k
∑

j=1

pj logpj , (3.4)

with equality if and only if pj = qj for all j.

1 Here is the solution to (3.2) using the method of Lagrange multipliers. Ignoring for the
moment the constraint that θj ∈ [0,1], we use the method of Lagrange multipliers to
enforce the constraint that

∑

j θj = 1, and solve (3.2) analytically:

0 =
∂

∂θj

(

k
∑

l=1

α
(m)
l

logθl − λ

(

k
∑

l=1

θl − 1

))

=
α

(m)
j

θj

− λ,

which leads to θ⋆
j = α

(m)
j /λ. By choosing the λ that satisfies the sum-to-one constraint, we

have θ⋆
j = α

(m)
j /

∑k
l=1 α

(m)
l

. In this particular case, our gamble of ignoring the constraint
θj ∈ [0,1] was okay since the solution happens to satisfy the constraint. Note that the
problem in (3.2) is actually a convex optimization problem [5], and here we skip the
details of verifying the optimality of the solution.

2 Gibbs’ inequality is also known as the log-sum divergence inequality, or by its equivalent
result that relative entropy is always nonnegative.
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To solve (3.2), let pj = α
(m)
j /

∑k
l=1 α

(m)
l and qj = θj . Then from

Gibbs’ inequality, the maximum of
∑

j α
(m)
j logθj occurs when qj = pj ,

that is, θ⋆
j = α

(m)
j /

∑k
l=1 α

(m)
l .

To summarize, EM for learning an optimal mixture of fixed models

reduces to iteratively solving for the k estimated weights:

θ
(m+1)
j =

α
(m)
j

∑k
l=1 α

(m)
l

, j = 1, . . . ,k, (3.5)

where α
(m)
j is given in (3.3). Here α

(m)
j is your best estimate at the mth

iteration of the total relative probability of the jth model given your n

observations. Then the updated estimate given in (3.5) normalizes the

relative probability α
(m)
j to make it the absolute probability of the jth

model.

This is EM at its best: it provides a simple closed-form solution at

each iteration. One is not always so lucky! But even in this case, one is

not really so lucky: depending on your choice of fixed models {pj}k
j=1

and your random draw of data y, the likelihood surface may have mul-

tiple maxima, and EM may not converge to the global maximum.

3.2 Learning a GMM

In this section, we explain how to fit a GMM using EM. This is also

called EM clustering. Figure 3.1 shows the probability density function

of a one-dimensional GMM with three components. Fitting a GMM is a

special case of the general problem of estimating a mixture of densities

(for more on the general case, see [50]).

3.2.1 GMM Setup and Short Story

Suppose you are given n vectors y1, . . . ,yn that you believe were gener-

ated i.i.d. by a mixture of k Gaussians,3 and you want to find the means

3 How did you know that your points came from a mixture of exactly k Gaussians? Some-
times one knows from side information. But if not, choosing the number of clusters k to
assume is a difficult problem; see [56] for further discussion.
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Fig. 3.1 Probability density of a one-dimensional GMM with three Gaussian components
with means µ1 = −2, µ2 = 1, µ3 = 3, variances σ2

1 = 0.8, σ2
2 = 0.1, σ2

3 = 0.4, and relative
weights w1 = w2 = w3 = 1/3.

and covariances of the k Gaussians, but you do not know which of the

observed points came from which Gaussian. Your goal is to estimate

the k means and k covariance matrices, and k weights that specify how

likely each Gaussian is to be chosen; this entire set of parameters is θ.

To find the maximum likelihood estimate of θ using EM, you define as

the missing information z which of the k Gaussians each of the samples

came from.

Spoiler alert! Before deriving the E-step and M-step, we summarize

the outcome. The mth iteration of the E-step produces a guess of the

n × k membership-weights {γ
(m)
ij }, where γ

(m)
ij is the current guess of

the probability that sample yi came from the jth Gaussian, that is,

γ
(m)
ij = P (Zi = j |yi,θ

(m)). The M-step gives a closed-form solution for

the new estimates of the mean and covariance for each Gaussian, and

you complete your estimate of θ by setting the weight for the jth Gaus-

sian to be proportional to the corresponding total membership-weight

of the samples: wj ∝ ∑n
i=1 γij .
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3.2.2 Derivation of EM for the GMM

Given n i.i.d. samples y1,y2, . . . ,yn ∈ R
d drawn from a GMM with k

components, the goal is to estimate the parameter set θ = {(wj ,µj ,

Σj)}k
j=1. For any yi and any µj , Σj , denote the Gaussian

φ(yi |µj ,Σj) �
1

(2π)d/2|Σj |1/2
exp

(

−1

2
(y − µj)

T Σ−1
j (y − µj)

)

.

The GMM has density

p(Yi = yi |θ) =

k
∑

j=1

wjφ(yi |µj ,Σj),

where wj > 0,
∑k

j=1 wj = 1, and θ = {(wj ,µj ,Σj)}k
j=1.

Let γ
(m)
ij be the estimate at the mth iteration of the probability that

the ith sample was generated by the jth Gaussian component, that is,

γ
(m)
ij � P (Zi = j |yi,θ

(m)) =
w

(m)
j φ(yi |µ(m)

j ,Σ
(m)
j )

∑k
l=1 w

(m)
l φ(yi |µ(m)

l ,Σ
(m)
l )

,

which satisfies
∑k

j=1 γ
(m)
ij = 1.

Because the samples are i.i.d., we can apply Proposition 1.1,

Qi(θ |θ(m))

= EZi|yi,θ(m) [logp(yi,Zi |θ)]

=
k
∑

j=1

P (Zi |yi,θ
(m)) logp(yi,Zi |θ)

=

k
∑

j=1

γ
(m)
ij log(wjφ(yi |µj ,Σj))

=

k
∑

j=1

γ
(m)
ij

(

logwj − 1

2
log|Σj | − 1

2
(yi − µj)

T Σ−1
j (yi − µj)

)

+ C,
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where C is a constant that does not depend on θ and can thus be

dropped without affecting the M-step. Then from Proposition 1.1,

Q(θ |θ(m))

=

n
∑

i=1

k
∑

j=1

γ
(m)
ij

(

logwj − 1

2
log|Σj | − 1

2
(yi − µj)

T Σ−1
j (yi − µj)

)

,

which completes the E-step. For notational simplicity, denote the total

membership weight of the jth Gaussian as

n
(m)
j �

n
∑

i=1

γ
(m)
ij .

Then we can rewrite Q(θ |θ(m)) as

Q(θ |θ(m)) =

k
∑

j=1

n
(m)
j

(

logwj − 1

2
log|Σj |

)

− 1

2

n
∑

i=1

k
∑

j=1

γ
(m)
ij (yi − µj)

T Σ−1
j (yi − µj).

(3.6)

The M-step is to solve

maximize
θ

Q(θ |θ(m))

subject to

k
∑

j=1

wj = 1, wj > 0, j = 1, . . . ,k,

Σj ≻ 0, j = 1, . . . ,k,

(3.7)

where Σj ≻ 0 means that Σj is positive definite.

From (3.6), one sees that we can independently maximize the

Q-function with respect to the weights, and this requires maximizing

the term
∑

j n
(m)
j logwj . This is the same problem we faced in Sec-

tion 3.1, given in (3.2), and the solution is the same:

w
(m+1)
j =

n
(m)
j

∑k
l=1 n

(m)
l

=
n

(m)
j

n
, j = 1, . . . ,k.
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The optimal µj and Σj can be found by setting the corresponding

derivatives to zero.4 To solve for the means, we let

0 =
∂Q(θ |θ(m))

∂µj
= Σ−1

j

(

n
∑

i=1

γ
(m)
ij yi − n

(m)
j µj

)

,

which yields

µ
(m+1)
j =

1

n
(m)
j

n
∑

i=1

γ
(m)
ij yi, j = 1, . . . ,k.

To solve for covariance matrices, we let5

0 =
∂Q(θ |θ(m))

∂Σj

= −1

2
n

(m)
j

∂ log|Σj |
∂Σj

− 1

2

n
∑

i=1

γ
(m)
ij

∂((yi − µj)
T Σ−1

j (yi − µj))

∂Σj

= −1

2
n

(m)
j Σ−1

j +
1

2

n
∑

i=1

γ
(m)
ij Σ−1

j (yi − µj)(yi − µj)
T Σ−1

j ,

and thus

Σ
(m+1)
j =

1

n
(m)
j

n
∑

i=1

γ
(m)
ij (yi − µ

(m+1)
j )(yi − µ

(m+1)
j )T ,

for j = 1, . . . ,k.

We summarize the whole procedure in Table 3.1.

3.2.3 Initialization

It is not uncommon to initialize EM clustering by randomly choosing

k of the n samples and making these the first estimates of the clus-

ter means, setting the first estimate of the covariances to be identity

matrices, and the first guess at the weights w1 = · · · = wk = 1/k.

4 Note that the problem in (3.7) is a convex optimization problem, so setting the derivatives
to zero corresponds to the optimal means and covariances. For details on how to analyze
convexity and optimality conditions, see for example [5].

5 See [47] for matrix derivatives.
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Table 3.1. EM algorithm for estimating GMM parameters.

1. Initialization: Choose initial estimates w
(0)
j , µ

(0)
j , Σ

(0)
j , j = 1, . . . ,k, and com-

pute the initial log-likelihood

ℓ(0) = 1
n

∑n
i=1 log

(

∑k
j=1 w

(0)
j φ(yi |µ

(0)
j ,Σ

(0)
j )

)

.

2. E-step: For j = 1, . . . ,k, compute

γ
(m)
ij =

w
(m)
j

φ(yi |µ
(m)
j

,Σ
(m)
j

)
∑

k
l=1

w
(m)
l

φ(yi |µ
(m)
l

,Σ
(m)
l

)
, i = 1, . . . ,n,

and

n
(m)
j =

∑n
i=1 γ

(m)
ij .

3. M-step: For j = 1, . . . ,k, compute the new estimates

w
(m+1)
j =

n
(m)
j

n
,

µ
(m+1)
j = 1

n
(m)
j

∑n
i=1 γ

(m)
ij yi,

Σ
(m+1)
j = 1

n
(m)
j

∑n
i=1 γ

(m)
ij (yi − µ

(m+1)
j )(yi − µ

(m+1)
j )T,

4. Convergence check: Compute the new log-likelihood

ℓ(m+1) = 1
n

∑n
i=1 log

(

∑k
j=1 w

(m+1)
j φ(yi |µ

(m+1)
j ,Σ

(m+1)
j )

)

.

Return to Step 2 if |ℓ(m+1) − ℓ(m)| > δ for a preset threshold δ; otherwise
end the algorithm.

Common wisdom is that initializing by first doing a cheaper

clustering will generally produce more desirable results. In particular,

the k-means algorithm (see Section 1.2) is often used to find a good

initialization for EM clustering. A common approach is to use the k-

means clustering to provide a first estimate of γ
(0)
ij = P̂ (Zi = j |Yi = yi),

where for the ith sample, γ
(0)
ij = 1 for only the one Gaussian that k-

means assigns sample yi to and γij = 0 for all the other components

for that yi; then start EM at the M-step based on this γ
(0)
ij . In the

example presented in Section 3.2.4, however, we simply initialize EM

by using the cluster means from k-means as the estimated EM means

and setting the covariance estimates to be identity matrices and the

weights w1 = · · · = wk = 1/k; then start EM at the E-step.

3.2.4 An Example of GMM Fitting

Consider a two-component GMM in R
2 with the following parameters

µ1 =

[

0

4

]

, µ2 =

[−2

0

]

, Σ1 =

[

3 0

0 1
2

]

, Σ2 =

[

1 0

0 2

]

,

and relative weights w1 = 0.6 and w2 = 0.4. Its density is shown in

Figure 3.2, which also shows 1000 samples randomly drawn from this
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Fig. 3.2 GMM fitting example.
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distribution; samples from the first and second components are marked

red and blue, respectively.

We ran the k-means algorithm on the 1000 samples and used the

centroids of the two k-means clusters as the initial estimates of the

means:

µ
(0)
1 =

[

0.0823

3.9189

]

, µ
(0)
2 =

[−2.0706

−0.2327

]

.

Also, we let w
(0)
1 = w

(0)
2 = 0.5 and Σ

(0)
1 = Σ

(0)
2 = I2, where I2 denotes

the 2 × 2 identity matrix. The density corresponding to these initial

estimates is shown in Figure 3.2. We set δ = 10−3, and in this example,

the EM algorithm only needs three iterations to converge. Figure 3.2

shows the estimated density at each iteration. The final estimates are

w
(3)
1 = 0.5966, µ

(3)
1 =

[

0.0806

3.9445

]

, Σ
(3)
1 =

[

2.7452 0.0568

0.0568 0.4821

]

,

w
(3)
2 = 0.4034, µ

(3)
2 =

[−2.0181

−0.1740

]

, Σ
(3)
2 =

[

0.8750 −0.0153

−0.0153 1.7935

]

.

3.2.5 Singularity Problem in Using EM for GMM Fitting

The EM algorithm does well in the previous example, but sometimes

it fails by approaching singularities of the log-likelihood function, espe-

cially when the number of observations n is not large relative to the

number of Gaussian components k. This is an inherent problem with

applying maximum likelihood estimation to GMMs due to the fact that

the log-likelihood function ℓ(θ) is not bounded above, as we illustrate

in the following example. First, let µ1 = y1, Σ1 = σ2
1Id and 0 < w1 < 1.

Then the log-likelihood is

ℓ(θ) =

n
∑

i=1

log





k
∑

j=1

wjφ(yi |µj ,Σj)





= log





k
∑

j=1

wjφ(y1 |µj ,Σj)



 +

n
∑

i=2

log





k
∑

j=1

wjφ(yi |µj ,Σj)
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≥ log(w1φ(y1 |µ1,Σ1)) +

n
∑

i=2

log





k
∑

j=2

wjφ(yi |µj ,Σj)





= log(w1φ(y1 |y1,σ
2
1Id)) +

n
∑

i=2

log





k
∑

j=2

wjφ(yi |µj ,Σj)





= logw1 − d

2
log(2π) − d

2
logσ2

1 +

n
∑

i=2

log





k
∑

j=2

wjφ(yi |µj ,Σj)



 .

So far, everything seems fine. But if we let σ2
1 → 0 and keep everything

else fixed, then the above lower bound of ℓ(θ) diverges to infinity, and

thus ℓ(θ) → ∞. So for a GMM, maximizing the likelihood is actually

an ill-posed problem.

This problem most often arises in practice with EM when the num-

ber of components k is too large compared to the number of obser-

vations n, but it can also occur if one sample is relatively far from

the bulk of the other samples. In both cases, a single Gaussian model

becomes predominantly associated with one observation, and as the

iterations progress, that Gaussian model shrinks its variance around

that one single observation. More generally, this problem can arise if

the samples predominantly assigned to a component Gaussian do not

span the space, so that the estimated covariance of that Gaussian is

not of full rank.

In order to avoid such singularities when applying the EM algo-

rithm, one can resort to ad hoc techniques such as re-initializing the

algorithm after detecting that one component is “collapsing” onto a

data sample; one can also adopt the Bayesian approach (discussed in

Section 1.3, and illustrated in the next subsection) as a more principled

way to deal with this problem.

3.3 Estimating a Constrained GMM

In practice, one may wish to constrain the parameters of the GMM,

either to incorporte prior information about what is being modeled, or

to regularize the GMM to avoid the degenerate solutions as discussed

in Section 3.2.5. In this subsection, we illustrate learning a restricted
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GMM with a recent example by Chen and Krumm [10], where the set

of restrictions was designed to model the GPS traces of cars driving

along city streets. In addition to hard constraints, this example also

uses the MAP variant of EM (see Section 1.3) to incorporate other

prior information about the parameters through a prior distribution,

and to ensure robust estimation.

The goal is to model the probability density of cars within the road

based on observed GPS signals recorded in the cars. Then the proba-

bility model can be used to analyze multi-lane structure, especially at

intersections, for automated mapping algorithms. For a given perpen-

dicular cross-section of the road, the observed GPS traces were modeled

as being generated i.i.d. from a one-dimensional GMM, where k, the

number of Gaussian components, corresponds to the number of lanes,

the weights w1, . . . ,wk correspond to the relative traffic volume in each

lane, and the Gaussian means µ1, . . . ,µk are used to model the center

of each lane.

Restrictions to the GMM were added based on prior knowledge of

roads. First, the widths of the lanes were expected to be approximately

the same. This observation can be translated into the constraint that

µj ’s are equally spaced, that is,

µj = µ + (j − 1)∆µ, j = 1, . . . ,k, (3.8)

where ∆µ is the change between two adjacent µj ’s, and µ is the mean

of either the leftmost or rightmost component along the sampling line,

depending on the sign of ∆µ. Second, assume that the causes of the

spread of the GPS traces are approximately the same for all the lanes,

such that all the Gaussian components are restricted to have the same

variance:

σ2
j = σ2, j = 1, . . . ,k. (3.9)

In fact, forcing all the variances to be the same is a common restriction

in learning a GMM even when there is no application-specific reason

to assume it is true, but if the dimensionality of the observed data yi

is high compared to the number of samples n, restricting the Gaus-

sian components to have the same covariance reduces the number of

free variables to estimate, and this can reduce training time and lower
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estimation error by reducing the estimation variance (see Chapter 2

of Hastie et al. [21] for a good discussion of estimation variance and

bias). Combining (3.8) and (3.9) produces the following density for this

one-dimensional restricted GMM:

p(yi) =

k
∑

j=1

wj
1√

2πσ2
exp

(

−(yi − µ − (j − 1)∆µ)2

2σ2

)

.

For robust estimation and to incorporate additional prior informa-

tion, we use the MAP variant of the EM algorithm (see Section 1.3).

For the shared variance σ2, we use an inverse gamma prior:

σ2 ∼ Inv-Gamma

(

ν

2
,
ς2

2

)

,

which is a mathematically convenient choice because it serves as a con-

jugate prior of the variance of a Gaussian distribution. For the weights

w1, . . . ,wk and for the parameter µ, we use uniform priors.6 However,

for ∆µ we use a normal prior conditioned on σ2:

∆µ |σ2 ∼ N
(

η,
σ2

κ

)

.

Then the prior distribution of the parameters has density:

p(θ) ∝
(

σ2
)− ν+3

2 exp

(

− ς2 + κ(∆µ − η)2

2σ2

)

. (3.10)

Now we show how to derive the MAP EM steps for learning the set

of parameters θ = (w1, . . . ,wk,µ,∆µ,σ2) for this restricted GMM. For

the E-step, let

γ
(m)
ij =

w
(m)
j φ(xi |µ(m)

j ,σ(m))
∑k

l=1 w
(m)
l φ(xi |µ(m)

l ,σ(m))
,

for i = 1, . . . ,n and j = 1, . . . ,k, where

µ
(m)
j = µ(m) + (j − 1)∆µ(m), j = 1, . . . ,k.

6 The uniform prior on µ is an improper prior since µ ∈ R.
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Let

n
(m)
j =

n
∑

i=1

γ
(m)
ij ,

for j = 1, . . . ,k. The Q-function is

Q(θ |θ(m)) =

n
∑

i=1

k
∑

j=1

γ
(m)
ij log(wjφ(xi |µ + (j − 1)∆µ,σ))

=

k
∑

j=1

n
(m)
j logwj − n

2
log2π − n

2
logσ2

− 1

2σ2

n
∑

i=1

k
∑

j=1

γ
(m)
ij (xi − µ − (j − 1)∆µ)2.

With (3.10) and the above Q-function, the MAP EM M-step is:

θ(m+1)

= argmax
θ

(Q(θ |θ(m)) + logp(θ)),

= argmax
θ

(

k
∑

j=1

n
(m)
j logwj − n + ν + 3

2
logσ2 − ς2 + κ(∆µ − η)2

2σ2

− 1

2σ2

n
∑

i=1

k
∑

j=1

γ
(m)
ij (xi − µ − (j − 1)∆µ)2 + C

)

,

where C is a constant that does not depend on θ. The weights that

solve the above M-step are the same as the standard GMM:

w
(m+1)
j =

n
(m)
j

n
, j = 1, . . . ,k.

To solve the M-step for µ and ∆µ, we let

∂

∂µ
(Q(θ |θ(m)) + logp(θ)) = 0, (3.11)

and

∂

∂∆µ
(Q(θ |θ(m)) + logp(θ)) = 0. (3.12)
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Combining (3.11) and (3.12) produces the linear system of equations

A

[

µ

∆µ

]

= b, (3.13)

for the matrix A =
[

aij

]

2×2
with

a11 = 1,

a12 = a21 =

k−1
∑

j=1

w
(m+1)
j+1 j,

a22 =

k−1
∑

j=1

w
(m+1)
j+1 j2 +

κ

n
,

and b =
[

b1 b2

]T
with

b1 =
1

n

n
∑

i=1

xi,

b2 =
κη

n
+

1

n

n
∑

i=1

k
∑

j=2

γ
(m)
ij (j − 1)xi.

To confirm that (3.13) has a unique solution, consider





k−1
∑

j=1

w
(m+1)
j+1 j





2

=





k−1
∑

j=1

√

w
(m+1)
j+1

√

w
(m+1)
j+1 j2





2

≤





k−1
∑

j=1

w
(m+1)
j+1









k−1
∑

j=1

w
(m+1)
j+1 j2





(follows from the Cauchy–Schwarz inequality)

≤
k−1
∑

j=1

w
(m+1)
j+1 j2

(follows from 0 ≤

k−1∑

j=1

w
(m+1)
j+1 ≤ 1)
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<

k−1
∑

j=1

w
(m+1)
j+1 j2 +

κ

n
,

(follows from κ > 0).

Hence

detA = a11a22 − a12a21 =

k−1
∑

j=1

w
(m+1)
j+1 j2 +

κ

n
−





k−1
∑

j=1

w
(m+1)
j+1 j





2

> 0,

which confirms that (3.13) has a unique solution. Thus the new esti-

mates are:

µ(m+1) =
a22b1 − a12b2

detA
,

and

∆µ(m+1) =
a11b2 − a21b1

detA
.

Lastly, to solve for σ2, we let

∂

∂σ2
(Q(θ |θ(m)) + logp(θ)) = 0,

which yields

σ(m+1) =

√

ς2 + κ(∆µ(m+1) − η)2 +
∑n

i=1

∑k
j=1 γ

(m)
ij (xi − µ

(m+1)
j )2

n + ν + 3
.

To illustrate the difference between the standard GMM and the

restricted GMM, consider the following example. A standard GMM

and the above restricted GMM were fit to 137 GPS traces with k = 2

Gaussian components. The standard GMM estimated relative weights

of ŵ1 = 0.7, ŵ2 = 0.3, traffic lanes centered at µ̂1 = 4.7 and µ̂2 = 8.2,

and variances within each lane of σ̂2
1 = 4.5, and σ̂2

2 = 0.6. The restricted

GMM estimated more balanced relative weights of ŵ1 = 0.4, ŵ2 = 0.6,

greater separation between the lane centers with µ̂1 = 3.5, µ̂2 = 7.5,

and (by constraint) the same in-lane variance σ̂2
1 = σ̂2

2 = 2.1. Because

of the restrictions it was faster to train the restricted GMM: its EM

algorithm converged after 17 iterations, while the EM algorithm for the

standard GMM parameter estimation required 136 iterations to reach

the same stopping condition.
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More EM Examples

We derive three more examples of EM. First, we learn a standard HMM.

Second, we consider an example problem from the general class of signal

superposition problems. Third, we show how to estimate the parameter

for a compound Dirichlet distribution.

4.1 Learning a Hidden Markov Model

An HMM is used to model random sequences. Baum et al. and Welch

derived the EM algorithm for this problem in the 1960s [4, 61] before

EM was formalized as a general technique by Dempster et al. [11], and

thus EM applied to learning an HMM is also called the Baum–Welch

algorithm.

4.1.1 HMM Setup

Suppose you observe one sequence y of length T that is a realization

of a random sequence Y such that

y =
[

y1 y2 . . . yt . . . yT

]

. (4.1)

261
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For example, yt might be the cell strength of your cell phone at the

beginning of the tth hour of the day, or yt might be the tth word in a

movie, or yt could be the tth base (A, T, G, C) in a DNA sequence.

Note we have been using i or j to index our samples in the other EM

examples, but in (4.1) we change the index to t to emphasize that in this

case the situation is a little different. We usually have n i.i.d. samples,

and for an HMM one could have n observed sequences that are inde-

pendent realizations of a random sequence. However, you only need one

observed sequence to learn an HMM (if you have multiple independent

sequences, use Proposition 1.1 to sum the Q-function derived below).

For simplicity, we assume only one observed sequence. We notate its

components with the index t as in (4.1).

The HMM assumes there exists some other corresponding hidden

sequence called the state sequence z:

z =
[

z1 z2 . . . zt . . . zT

]

,

and that given the sequence z, the elements of Y are conditionally inde-

pendent. For the cell phone strength example, the hidden state might

be the distance to the nearest cell tower. For the word example, the zt

might specify which actor in the movie spoke the utterance yt. For

phoneme recognition, which is usually the first step of speech recogni-

tion, it is common to process the original acoustic time signal into a

time-indexed sequence of MFCC (Mel-frequency cepstral coefficients)

feature vectors Yt ∈ R
d, and then model the sequence of MFCC feature

vectors for each phoneme as a realization of an HMM, where the hid-

den states are the more detailed sub-phone units. For simplicity of the

derivations, we restrict ourselves to the case where the hidden states

can take on one of G fixed values such that Zt ∈ {1,2, . . . ,G}, though

this is not a restriction of HMMs.

An HMM makes two assumptions. First, that the conditional prob-

ability distribution of each hidden state Zt given all its previous states

is equal to its conditional probability distribution given only its imme-

diately previous state zt−1 (the Markov property):

p(Zt = g |zt−1,zt−2, . . . ,z1) = p(Zt = g |zt−1). (4.2)
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Second, the observation Yt at time t does not depend on other obser-

vations nor other states given the hidden state zt at time t:

p(Yt = yt |z,y1,y2, . . . ,yt−1,yt+1, . . . ,yT ) = p(yt |zt). (4.3)

The HMM has the following parameters:

(1) An initial probability distribution over the G possible hidden

states1: π =
[

π1 . . . πG

]T
, where πg = p(Z1 = g).

(2) A hidden-state transition probability2 matrix P ∈ R
G×G that

specifies the probability of transitioning from state g to state

h: Pg,h = p(Zt = h |Zt−1 = g).

(3) The probability distribution of observations Y ∈ R
d given

hidden state g; we parameterize this with parameter set bg

such that p(Yt = y |Zt = g) = p(y |bg). For example, in mod-

eling a DNA sequence, the parameter bg is the pmf that

specifies the probabilities of A, T, G and C being observed

if the hidden state is Zt = g. In modeling speech sequences,

it is common to assume that given a particular hidden state,

an observed MFCC feature vector Yt ∈ R
d is drawn from a

GMM whose parameters depend on the hidden state. In this

case the parameter set bg for the gth hidden state includes

all the parameters for the corresponding GMM, so bg =

{(wgj ,µgj ,Σgj)}kg

j=1, where kg is the number of Gaussian com-

ponents in the GMM corresponding to the gth hidden state.

Thus for an HMM the complete set of parameters to estimate is θ =

{π,P, b}, where b = {bg}G
g=1. Next, we describe EM for the HMM; for

more introductory material about HMMs, see [49].

4.1.2 Estimating the Transition Probability Matrix P

The M-steps for π, P and b are each independent of the other

parameters to be estimated, though each M-step depends on the

1 HMMs with continuous state spaces analogously have a corresponding initial probability
density π.

2 We assume a time-homogenous HMM such that the transition probability matrix does not
depend on t. HMMs with continuous state spaces analogously have a conditional transition
density P.
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complete set of last-iteration parameter estimates θ(m). We will show

that the M-step for P has a closed-form solution, though it will take a

few steps:

P(m+1) = argmax
P

EZ|y,θ(m) [logp(y,Z |θ)]

= argmax
P

∑

z

p(z |y,θ(m)) logp(y,z |π,P, b)

= argmax
P

∑

z

p(z |y,θ(m)) log(p(y |z,b)p(z |π,P))

= argmax
P

∑

z

p(z |y,θ(m)) logp(z |π,P)

(drop p(y |z,b) since it does not depend on P)

= argmax
P

∑

z

p(z |y,θ(m)) log

((

T
∏

t=2

p(zt |zt−1,P)

)

p(z1 |π)

)

(apply the chain rule and the Markov property)

= argmax
P

∑

z

p(z |y,θ(m)) log

(

T
∏

t=2

p(zt |zt−1,P)

)

(drop p(z1 |π) since it does not depend on P)

= argmax
P

∑

z

p(z |y,θ(m)) log

(

T
∏

t=2

Pzt−1,zt

)

= argmax
P

∑

z

p(z |y,θ(m)) log





G
∏

g=1

G
∏

h=1

P
ζgh(z)
g,h



 ,

where ζgh(z) is the number of transitions from state g to state h in z.

With the notation ζgh(z), the above equation can be continued as

follows,

P(m+1) = argmax
P

∑

z



p(z |y,θ(m))

G
∑

g=1

G
∑

h=1

ζgh(z) logPg,h





= argmax
P

G
∑

g=1

G
∑

h=1

(

∑

z

p(z |y,θ(m))ζgh(z)

)

logPg,h .

Given that P must be a right stochastic matrix, that is, for g = 1, . . . ,G,
∑G

h=1Pg,h = 1 and Pg,h ≥ 0, h = 1, . . . ,G, we can solve the last line of
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the above equation for each row of P independently:

P
(m+1)
g,· = argmax

Pg,·

G
∑

h=1

(

∑

z

p(z |y,θ(m))ζgh(z)

)

logPg,h, (4.4)

where Pg,· denotes the gth row of P. To solve (4.4), apply Gibbs’

inequality as given in (3.4) with

qh = Pg,h,

ph =

∑

z p(z |y,θ(m))ζgh(z)
∑G

l=1

∑

z p(z |y,θ(m))ζgl(z)
,

and conclude that the maximum of (4.4) must occur when Gibbs’

inequality holds with equality, that is, when qh = ph for all h, and thus

P
(m+1)
g,h =

∑

z p(z |y,θ(m))ζgh(z)
∑G

l=1

∑

z p(z |y,θ(m))ζgl(z)
. (4.5)

At first glance, (4.5) looks like an awful state of affairs — it requires

iterating through all possible GT sequences of z! Luckily, there is

another way to compute (4.5). Let 1{A=a} be a random indicator that

is 1 if the random variable A = a and 0 otherwise; 1{A=a} is a Bernoulli

random variable, and thus its expectation is EA[1{A=a}] = p(A = a).

To simplify (4.5), rewrite its numerator as an expectation:
∑

z

p(z |y,θ(m))ζgh(z) = EZ|y,θ(m) [ζgh(Z)]

= EZ|y,θ(m)

[

T
∑

t=2

1{Zt−1=g,Zt=h}

]

=

T
∑

t=2

EZ|y,θ(m) [1{Zt−1=g,Zt=h}]

=
T
∑

t=2

p(Zt−1 = g,Zt = h |y,θ(m)). (4.6)

Voilà! We have converted the numerator of (4.5) into merely a sum

over the sequence! But alas, we still have to compute p(Zt−1 = g,Zt =

h |y,θ(m)). This will not hurt too much — just a little recursion. Using
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Bayes’ rule:

p(Zt−1 = g,Zt = h |y,θ(m))

=
p(Zt−1 = g,Zt = h,y |θ(m))

p(y |θ(m)

=
p(Zt−1 = g,Zt = h,y |θ(m))

∑G
i=1

∑G
j=1 p(Zt−1 = i,Zt = j,y |θ(m))

,

so really one only needs to be able to compute:

p(Zt−1 = g,Zt = h,Y =
[

y1 . . . yt−1 yt . . . yT

]

|θ(m)),

which, by the chain rule, can be expanded into the product of the

following four terms:

(1) p(Zt−1 = g,y1, . . . ,yt−1 |θ(m)),

(2) p(Zt = h |Zt−1 = g,y1, . . . ,yt−1,θ
(m)),

(3) p(yt+1, . . . ,yT |Zt = h,Zt−1 = g,y1, . . . ,yt−1,θ
(m)),

(4) p(yt |Zt = h,Zt−1 = g,y1, . . . ,yt−1,yt+1,yT ,θ(m)).

Using the Markov property and conditional independence property of

the HMM model, the above four terms can be simplified respectively

into the following terms:

(1) p(Zt−1 = g,y1, . . . ,yt−1 |θ(m)), called the forward probability

and denoted by α
(m)
t−1(g) — we will explain how to compute

it below;

(2) p(Zt = h |Zt−1 = g,θ(m)), which is P
(m)
g,h ;

(3) p(yt+1, . . . ,yT |Zt = h,θ(m)), called the backward probability

and denoted by β
(m)
t (h) — we will explain how to compute

it below;

(4) p(yt |Zt = h,θ(m)) = p(yt |b(m)
h ), which we assume is com-

putable.

The forward probability α
(m)
t−1(g) can be computed recursively:

α
(m)
t−1(g) = p(yt−1 |b(m)

g )

(

G
∑

l=1

α
(m)
t−2(l)P

(m)
l,g

)

, (4.7)
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where

α
(m)
1 (l) = π

(m)
l p(y1 |b(m)

l ), l = 1, . . . ,G.

The backward probability β
(m)
t (h) can also be computed recursively:

β
(m)
t (h) =

G
∑

l=1

β
(m)
t+1 (l)P

(m)
h,l p(yt+1 |b(m)

l ), (4.8)

where

β
(m)
T (l) = 1, l = 1, . . . ,G.

The recursive computation of the α and β terms is referred to as the

forward–backward algorithm.

To summarize this subsection: (i) we simplified the M-step for P

to get P
(m+1)
g,h as given by (4.5); (ii) we showed that each sum over z

in (4.5) could be expressed as a sum over t as given by (4.6); (iii) each

term in the sum of (4.6) can be expressed as the product of the four

terms listed above; (iv) two of those four terms are straightforward

to compute from θ(m), and the remaining two terms can be computed

recursively as given by (4.7) and (4.8).

4.1.3 Estimating the Initial Distribution π

The M-step for π is:

π(m+1) = argmax
π

EZ|y,θ(m) [logp(y,Z |θ)]

= argmax
π

∑

z

p(z |y,θ(m)) logp(y,z |π,P, b)

= argmax
π

∑

z

p(z |y,θ(m)) log(p(y |z,b)p(z |π,P))

= argmax
π

∑

z

p(z |y,θ(m)) logp(z |π,P)

(drop p(y |z,b) since it does not depend on π)

= argmax
π

∑

z

p(z |y,θ(m)) log

(

πz1

T
∏

t=2

Pt−1,t

)
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= argmax
π

∑

z

p(z |y,θ(m)) logπz1

= argmax
π

G
∑

g=1

p(Z1 = g |y,θ(m)) logπg. (4.9)

Recall that
∑G

g=1 πg = 1, so to solve (4.9), we can apply Gibbs’ inequal-

ity as given in (3.4) with

qg = πg,

pg = p(Z1 = g |y,θ(m)),

and conclude that the maximum of (4.9) must occur when Gibbs’

inequality holds with equality, that is, when qg = pg for all g, and thus

π(m+1)
g = p(Z1 = g |y,θ(m)) (4.10)

=

G
∑

h=1

p(Z1 = g,Z2 = h |y,θ(m)), (4.11)

where we expanded (4.10) into (4.11), because Section 4.1.2 has detailed

how to compute the term p(Z1 = g,Z2 = h |y,θ(m)).

4.1.4 Estimating the State-Conditional Parameters b

The HMM specifies a probability model for an observation given a par-

ticular hidden state: p(Yt = yt |zt), which we have assumed is param-

eterized by state-conditional parameters b. The model p(Yt = yt |zt)

could be anything: a Laplace distribution, a GMM, even another

HMM!3 Here we illustrate how to use EM to learn an HMM with the

common choice that yt takes on one of a finite set of V values, and

p(Yt = yt |zt) is simply a pmf over the V values such that the G × V

parameter set b has components:

bv,g = p(Yt = v |Zt = g), v = 1, . . . ,V, g = 1, . . . ,G.

3 In fact, given certain initial conditions for our universe, Jorge Luis Borges writes a short
story where everything is generated by an HMM whose state-conditional models are them-
selves each HMMs, whose state-conditional models are also HMMs, etc., up to the 11th
HMM which has, as one of its state-conditional models, the very first HMM.
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The M-step for b is:

b(m+1) = argmax
b

EZ|y,θ(m) [logp(y,Z |θ)]

= argmax
b

∑

z

p(z |y,θ(m)) logp(y,z |π,P, b)

= argmax
b

∑

z

p(z |y,θ(m)) log(p(y |z,b)p(z |π,P))

= argmax
b

∑

z

p(z |y,θ(m)) logp(y |z,b)

(drop p(z |π,P) since it does not depend on b)

= argmax
b

∑

z

p(z |y,θ(m)) log

T
∏

t=1

p(Yt = yt |Zt = zt, b)

= argmax
b

∑

z

p(z |y,θ(m)) log

V
∏

v=1

G
∏

g=1

b
ηvg(y,z)
v,g ,

where ηvg(y,z) is defined as

ηvg(y,z) �

T
∑

t=1

1{yt=v,zt=g}.

We continue the above equation and have

b(m+1) = argmax
b

∑

z

p(z |y,θ(m))

V
∑

v=1

G
∑

g=1

ηvg(y,z) logbv,g

= argmax
b

G
∑

g=1

(

V
∑

v=1

(

∑

z

p(z |y,θ(m))ηvg(y,z)

)

logbv,g

)

.

We can solve the last line of the above equation independently for the

pmf corresponding to the gth state-conditional model. Again, due to

the constraint
∑

v bv,g = 1, we can apply Gibbs’ inequality as given

in (3.4) with

qv = bv,g

pv =

∑

z p(z |y,θ(m))ηvg(y,z)
∑V

l=1

∑

z p(z |y,θ(m))ηlg(y,z)
,
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and conclude that the maximum must occur when Gibbs’ inequality

holds with equality, that is, when qv = pv for all v, and thus

b(m+1)
v,g =

∑

z p(z |y,θ(m))ηvg(y,z)
∑V

l=1

∑

z p(z |y,θ(m))ηlg(y,z)
. (4.12)

Next, we simplify the numerator of (4.12) (the terms in the denomina-

tor can be calculated similarly):
∑

z

p(z |y,θ(m))ηvg(y,z) = EZ|y,θ(m) [ηvg(y,Z)]

= EZ|y,θ(m)

[

T
∑

t=1

1{yt=v,Zt=g}

]

=

T
∑

t=1

EZ|y,θ(m) [1{yt=v,Zt=g}]

=
T
∑

t=1

EZt|y,θ(m) [1{yt=v,Zt=g}]

=
T
∑

t=1

p(Zt = g |y,θ(m))1{yt=v},

where the term p(Zt = g |y,θ(m)) can be expressed as either

p(Zt = g |y,θ(m)) =

G
∑

h=1

p(Zt−1 = h,Zt = g |y,θ(m)),

or

p(Zt = g |y,θ(m)) =

G
∑

h=1

p(Zt = g,Zt+1 = h |y,θ(m)),

and the computation of the term p(Zt = g,Zt+1 = h |y,θ(m)) is detailed

in Section 4.1.2.

4.1.5 More on HMM and EM

For further details on HMM, we recommend Rabiner’s tutorial [49] and

the review article by Gales and Young [16], which considers the practi-

cal application of HMMs in depth. The HMM described above has at
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Fig. 4.1 An example set-up with 4 transmitters, and 10 receivers. The problem set-up
assumes the locations of the 10 receivers are known, and that one is given a measurement
of the received power at each receiver, and the goal is to estimate the location of each of
the 4 transmitters.

its core a Markov chain. The two-dimensional (and higher-dimensional)

analog of a Markov chain is a Markov random field. Applying EM

to a hidden Markov random field model is significantly more trou-

blesome, but is common in image processing; see [48] for details. See

also: [19, 25, 26, 29, 31, 65].

4.2 Estimating Multiple Transmitter Locations

Consider the problem of estimating the most likely locations θ =
[

θ1 θ2 . . . θM

]

of M transmitters with θi ∈ R
2, where we assume

the transmitters are transmitting in the same band, and that we are

given noisy power measurements y =
[

y1 y2 . . . yN

]

for N receivers

located in the plane at known locations r =
[

r1 r2 . . . rN

]

. This

problem arises in cognitive radio [22], and is an illustrative example

of a general class of problems that can be solved by EM where the

goal is to estimate parameters given superimposed signals (see [12]).

This example has been studied by Nelson and Gupta [42]; we present

a simplified version.

The basic idea is that first we make a guess at where the transmitters

are located: θ(0). Then we use that guess and the measured total power y

at each receiver to compute our best guess of the complete data, which

is how much power each of the receivers picked up from each of the

transmitters. Given the complete data estimate of how much power
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each receiver got from each transmitter, we can independently estimate

where each transmitter is located. That gives us a new guess θ(m+1) of

where the transmitters are, and then one iterates.

For simplicity, we assume all transmitters are transmitting one unit

of power, and that the Gaussian measurement noise of the ith transmit-

ter at the jth receiver Wij is known to be zero-mean and have variance

σ2/M (a zero-mean Gaussian is not a good model for power noise;

an issue we will return to in Section 5.2.3). Let Xij denote the power

sent by the ith transmitter and received by the jth receiver; Xij is

inversely proportional to the squared distance between the transmitter

and receiver plus the Gaussian measurement noise:

Xij =
1

‖θi − rj‖2
2

+ Wij . (4.13)

The observed power yj at the jth receiver is the total power coming

from all the transmitters:

yj =

M
∑

i=1

xij .

Conditioned on the transmitter locations θ and given the receiver loca-

tions r, the likelihood of the observed measurements y depends only on

the Gaussian noise:

p(y |θ) =

N
∏

j=1

1√
2πσ2

exp



− 1

2σ2

(

yj −
M
∑

i=1

1

‖θi − rj‖2
2

)2


 .

Thus the log-likelihood (ignoring the terms that do not depend on θ) is

ℓ(θ) = −
N
∑

j=1

(

yj −
M
∑

i=1

1

‖θi − rj‖2
2

)2

.

Like many problems, this log-likelihood ℓ(θ) has multiple maxima, and

while we can apply EM, we should keep in mind that EM will only find

a local maximum.

To apply EM, we define the complete data to be the M × N powers

between the ith transmitter and jth receiver, which we formulate as

an MN × 1 vector X =
[

X11 X12 . . . XMN

]T
[42]. Next, consider
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logp(X = x |θ(m)). From (4.13), this probability is Gaussian because

all the randomness comes from the Gaussian noise, and ignoring scale

factors that will not change the M-step maximization over θ:

logp(X = x |θ) = −
M
∑

i=1

N
∑

j=1

(

xij − 1

‖θi − rj‖2
2

)2

. (4.14)

Let R(θ) be the MN × 1 vector with components 1
‖θi−rj‖2

2
ordered cor-

responding to the order in X. Then the log-likelihood in (4.14) can be

expressed as

logp(X = x |θ) = −‖x − R(θ)‖2
2.

Rather than computing the E-step separately, we directly consider the

M-step. We drop and add θ-independent terms to make things easier:

θ(m+1) = argmax
θ∈Ω

EX|y,θ(m) [logp(X |θ)]

= argmax
θ∈Ω

EX|y,θ(m) [−‖X − R(θ)‖2
2]

= argmin
θ∈Ω

EX|y,θ(m) [‖X − R(θ)‖2
2]

= argmin
θ∈Ω

EX|y,θ(m) [(X − R(θ))T (X − R(θ))]

= argmin
θ∈Ω

EX|y,θ(m) [XT X − 2R(θ)T X + R(θ)T R(θ)]

= argmin
θ∈Ω

−2R(θ)T EX|y,θ(m) [X] + R(θ)T R(θ)

= argmin
θ∈Ω

EX|y,θ(m) [X]T EX|y,θ(m) [X] − 2R(θ)T EX|y,θ(m) [X]

+ R(θ)T R(θ)

= argmin
θ∈Ω

‖EX|y,θ(m) [X] − R(θ)‖2
2. (4.15)

Note that above we have massaged the need to compute the

expected log-likelihood EX|y,θ(m) [logp(X |θ)] (that is, the E-step) to

simply computing our current best guess of X, that is, EX|y,θ(m) [X]. In

order to compute EX|y,θ(m) [X], recall that it is the expectation of the

MN received powers at each of the N receivers from each of the M

transmitters, conditioned on knowing the total power at each receiver y

and a guess of the transmitter locations θ(m). If we only conditioned on
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θ(m), then because the noise Wij on each component of the vector X is

independent and zero-mean, EX|θ(m) [X] would be R(θ(m)) from (4.13).

However, because of the additional conditioning on y, each component

must be adjusted equally (since Wij is additive and i.i.d.) so that the

sum of our new guesses for the M individual powers for the jth receiver

totals the observed power yj for the jth receiver:

EXij |y,θ(m) [Xij ] = Rij(θ
(m)) +

1

M

(

yj −
M
∑

i=1

Rij(θ
(m))

)

. (4.16)

After calculating EX|y,θ(m) [X] using (4.16), each iteration’s M-step

given by (4.15) can be decomposed into estimating the ith transmitter’s

location independently for i = 1, . . . ,M :

θ
(m+1)
i = arg min

θi∈R
2

N
∑

j=1

(EXij |y,θ(m) [Xij ] − Rij(θi))
2. (4.17)

Note that solving (4.17) is not trivial as the objective function is

not a convex function of θi. However, by using EM we have reduced

the original non-convex likelihood maximization over 2M variables θ

to iteratively solving M easier two-dimensional optimization problems

specified by (4.17).

4.3 Estimating a Compound Dirichlet Distribution

In this section, we detail another popular example of applying EM with

missing data: using EM to find the maximum likelihood estimate of the

parameter of a compound Dirichlet distribution, which is also referred

to as the Pólya distribution. First, we give a brief introduction to the

compound Dirichlet distribution; for a more comprehensive introduc-

tion to the Dirichlet distribution, see [14].

The Dirichlet distribution is commonly used to model random prob-

ability mass functions (pmfs). For example, if someone hands you a

coin, you would not know the coin’s bias, and you could consider it a

random coin, that is, one that has a random pmf over the sample space

of heads and tails. You might have some idea of how likely the coin is

to have different biases — for example, if you pick a 2010 penny off the
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ground you might be fairly certain the coin will be close to a fair coin,

with equal probability of being a little biased toward heads or tails

depending on its wear. This knowledge could be modeled with a beta

distribution, which specifies the distribution over possible biases of a

given coin. The beta distribution is a model for the distribution of a

random pmf if there are only two events, and the Dirichlet distribution

is a generalization for modeling the distribution of a random pmf over

any finite number of events.4 For example, a six-sided die that you pick

up at a casino can be modeled as a random pmf over six events using

the Dirichlet distribution.

The Dirichlet distribution has one vector parameter: α ∈ R
d
+. If all

the d components of α are greater than 1, the Dirichlet distribution

is unimodal over the probability simplex. If all the components of α

are less than 1, the Dirichlet distribution has peaks at the vertices of

the probability simplex. Given a random pmf V ∼ Dir(α), its expected

pmf E[V ] is the normalization of the parameter α, that is, the jth

component of the mean pmf is (E[V ])j = αj/α0 where α0 =
∑d

k=1 αk.

Given sample pmfs known to be drawn i.i.d. from a Dirichlet dis-

tribution, one could estimate α using maximum likelihood estimation

for the underlying Dirichlet. More often in practice, and an interesting

example of EM, is instead the case that the observed data are i.i.d. sam-

ples that have been drawn from pmfs that have been drawn i.i.d. from

a Dirichlet distribution:

Dir(α)
i.i.d.−−−→

pmf z1
i.i.d.−−−→ samples from z1

pmf z2
i.i.d.−−−→ samples from z2

...
...

pmf zn
i.i.d.−−−→ samples from zn

For example, we could model the weather each day in April in Paris

as an event from the sample space {rainy, cloudy, sunny}, and assume

that the daily weather is a realization of a daily weather pmf zi, and

4 Here we only deal with the Dirichlet distribution which assumes the number of events is
finite, but the Dirichlet distribution has a more general form called the Dirichlet process,
which is a measure over measures over infinite sample spaces.
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that each daily weather pmf zi is drawn i.i.d. from some Dirichlet distri-

bution Dir(α) over possible weather pmfs. Then at the end of April we

would have observed 30 samples of the weather, and we could attempt

to find the maximum likelihood estimate of the parameter α for the

Dirichlet that generated the weather pmfs that generated the 30 days

of observed weather. In this example, we only generated one sample

from each pmf, but in general we may have many samples known to be

drawn from the ith pmf, and then the corresponding observed data yi

is taken to be the empirical histogram over the sample space:

Dir(α)
i.i.d.−−−→

pmf z1
i.i.d.−−−→ samples from z1

count−−−→ histogram y1

pmf z2
i.i.d.−−−→ samples from z2

count−−−→ histogram y2
...

...
...

pmf zn
i.i.d.−−−→ samples from zn

count−−−→ histogram yn

The distribution of i.i.d. samples y drawn from pmfs drawn

i.i.d. from a Dirichlet distribution is the compound Dirichlet distri-

bution, also called the multivariate Pólya distribution. Let the given

data y be an n × d matrix of n sample histograms, each over d pos-

sible events, such that the ith row vector yi is the ith histogram for

i = 1, . . . ,n, and yij is the number of times we have observed the jth

event from samples drawn from the ith pmf zi, where zij denotes the

probability of observing the jth event given the ith pmf. Namely, yi

has a multinomial distribution with parameter zi such that

p(yi |zi) =

(

∑d
j=1 yij

)

!
∏d

j=1 yij !

d
∏

j=1

z
yij

ij .

Let zi be a realization of a random pmf Zi ∈ S, where S is the (d − 1)-

dimensional probability simplex such that
∑d

j=1 Zij = 1 and Zij > 0,

j = 1, . . . ,d. The random pmf Zi is assumed to have a Dirichlet distri-

bution with parameter α such that

p(Zi = zi |α) =
Γ
(

∑d
j=1 αj

)

∏d
j=1 Γ(αj)

d
∏

j=1

z
αj−1
ij . (4.18)

Then, if z1, . . . ,zn were drawn i.i.d. from a Dirichlet with parameter α,

the probability of seeing all the n corresponding histograms y1, . . . ,yn
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is the following compound Dirichlet distribution (also called the multi-

variate Pólya distribution):

p(y |α) =

n
∏

i=1

∫

S
p(yi |zi)p(zi |α)dzi

=

n
∏

i=1

(

∑d
j=1 yij

)

!Γ
(

∑d
j=1 αj

)

(

∏d
j=1 yij !

)(

∏d
j=1 Γ(αj)

)

∫

S

d
∏

j=1

z
yij+αj−1
ij dzi

=

n
∏

i=1

(

∑d
j=1 yij

)

!Γ
(

∑d
j=1 αj

)

∏d
j=1 Γ(αj + yij)

(

∏d
j=1 yij !

)(

∏d
j=1 Γ(αj)

)

Γ
(

∑d
j=1 (αj + yij)

) .

Given y, we describe how to use EM to find the maximum likelihood

of the parameter α. However, neither the likelihood p(y |α) nor its log-

likelihood is concave, and EM is not guaranteed to find the global

maximum likelihood solution.

To apply the EM method here, consider the missing data to be the

pmfs {zi}n
i=1 that generated the observed data y such that the complete

data is x = (y,z), z = {zi}n
i=1. We will search for the parameter α that

maximizes that the expected log-likelihood of x. This use of EM fits the

missing data paradigm described in Section 1.4.1, and we can use (1.5)

to express the Q-function. We also use the assumption that Zi are

independent. Then, the M-step is:

α(m+1) = arg max
α∈R

d
+

n
∑

i=1

EZi|yi,α(m) [logp(yi,Zi |α)]

= arg max
α∈R

d
+

n
∑

i=1

EZi|yi,α(m) [log(p(yi |Zi,α)p(Zi |α))]

= arg max
α∈R

d
+

n
∑

i=1

EZi|yi,α(m) [log(p(yi |Zi)p(Zi |α))]

= arg max
α∈R

d
+

n
∑

i=1

EZi|yi,α(m) [logp(Zi |α)]. (4.19)

Note that the Q-function given in (4.19) is concave because logp(zi |α)

is concave by a theorem of Ronning [54], and (4.19) is a finite integration

of such concave functions and hence also concave.
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Applying (4.18) to (4.19) and noting that the first two terms can

be pulled out of the expectation, the M-step becomes:

α(m+1) = arg max
α∈R

d
+

n log

(

Γ(α0)
∏d

j=1 Γ(αj)

)

+

n
∑

i=1

EZi|yi,α(m)





d
∑

j=1

(αj − 1) logZij



. (4.20)

Since expectation is linear, the second term on the right-hand side

of (4.20) can be written as

n
∑

i=1

d
∑

j=1

(αj − 1)

∫

S
log(zij)p(zi |yi,α

(m))dzi, (4.21)

where the probability p(zi |yi,α
(m)) is in fact itself a Dirichlet distri-

bution because the Dirichlet distribution is a conjugate prior for the

multinomial distribution. To be explicit,

p(zi |yi,α
(m)) =

p(yi,zi |α(m))

p(yi |α(m))

=
p(yi |zi)p(zi |α(m))

p(yi |α(m))

= γ(yi,α
(m))

d
∏

j=1

z
yij

ij

d
∏

j=1

z
α

(m)
j −1

ij

(where γ(yi,α
(m)) is a normalizer independent of zi)

= γ(yi,α
(m))

d
∏

j=1

z
yij+α

(m)
j −1

ij ,

which is a Dirichlet distribution with parameter yi + α(m). Thus, the

integral in (4.21) is the expected log of the jth component of a pmf

drawn from a Dirichlet with parameter yi + α(m).

To compute this expected log, we consider the general case where

V ∼ Dir(α), and derive E[logVj ], j = 1, . . . ,d. To that end, it is useful to

recall that the general form of a distribution in the exponential family
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with parameter α is

p(v |α) = h(v)exp(η(α) · T (v) − A(α)),

where · denotes the standard inner product, v ∈ R
r, α ∈ R

s, h: R
r →

R, η: R
s → R

k (called the natural parameter), T : R
r → R

k (called

the sufficient statistic of the distribution), A: R
s → R (called the

normalization factor), and r,s,k ∈ N. The Dirichlet distribution is

a member of the exponential family with r = s = k = d, h(v) ≡ 1,

η(α) = α − 1 (where 1 is a vector of ones), T (v) = logv, and A(α) =
∑d

j=1 logΓ(αj) − logΓ(α0), that is, the Dirichlet density can be written

as

p(v |α) =
Γ(α0)

∏d
j=1 Γ(αj)

d
∏

j=1

v
αj−1
j

= exp





d
∑

j=1

(αj − 1) logvj −





d
∑

j=1

logΓ(αj) − logΓ(α0)







.

We will need the following identity for the Dirichlet:

1 =

∫

S
p(v |α)dv =

∫

S
e(α−1)·logv−A(α)dv = e−A(α)

∫

S
e(α−1)·logvdv,

and therefore,

eA(α) =

∫

S
e(α−1)·logvdv. (4.22)

We can produce E[logVj ] by starting with the moment-generating

function M : R
d → R for the sufficient statistics T (v) = logv given α:

M(u) = EV [eu·T (V )]

=

∫

S
eu·T (v)p(v |α)dv

=

∫

S
eu·logve(α−1)·logv−A(α)dv

= e−A(α)

∫

S
e(u+α−1)·logvdv

= eA(u+α)−A(α),
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where the last line follows from (4.22). Then the partial derivative of

M(u) with regard to uj is

∂

∂uj
M(u) =

∂

∂uj
EV [eu·T (V )] (4.23)

=
∂

∂uj
eA(u+α)−A(α)

= (eA(u+α)−A(α))
∂A(u + α)

∂uj
. (4.24)

But we can interchange the expectation and the differentiation of (4.23)

(by Theorem 2.27 of [13]), so we also have

∂

∂uj
M(u) = EV

[

∂

∂uj
eu·T (V )

]

= EV [(logVj)e
u·logV ]. (4.25)

Setting u = 0 in the equivalent (4.25) and (4.24) produces the expected

log of Vj that we need:

EV [logVj ] =
∂A(u + α)

∂uj

∣

∣

∣

∣

∣

u=0

= ψ(αj) − ψ(α0),

where ψ is the digamma function:

ψ(x) �
d

dx
logΓ(x).

Finally, we see that the integral in (4.21), which is the expected log

of the jth component of a pmf drawn from a Dirichlet with parameter

yi + α(m), is

EZi|yi,α(m) [logZij ] = ψ(yij + α
(m)
j ) − ψ

(

d
∑

l=1

yil + α
(m)
0

)

.

In summary, EM repeatedly solves:

α(m+1) = arg max
α∈R

d
+

g(α), (4.26)
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where

g(α) = n logΓ(α0) − n
d
∑

j=1

logΓ(αj)

+

n
∑

i=1

d
∑

j=1

(αj − 1)

(

ψ(yij + α
(m)
j ) − ψ

(

d
∑

l=1

yil + α
(m)
0

))

.

In order to execute the M-step, one can solve (4.26) anyway one

likes, but a standard approach is to apply Newton’s method [5], for

which we need the gradient and Hessian matrix of g(α). By definition

of the digamma function ψ, the gradient of g(α) is

∇g(α) =
[

ρ1(α) . . . ρd(α)
]T

,

where for j = 1, . . . ,d,

ρj(α) = nψ(α0) − nψ(αj)

+

n
∑

i=1

(

ψ(yij + α
(m)
j ) − ψ

(

d
∑

l=1

yil + α
(m)
0

))

.

Then using the definition of the trigamma function,

ψ1(x) �
d

dx
ψ(x),

the Hessian matrix of g(α) is

H(α) = nψ1(α0)11T − ndiag(ψ1(α1), . . . ,ψ1(αd)),

where 1 is a vector of ones so that 11T is a d × d matrix of ones,

and diag(·) is a matrix with its argument on the diagonal and zeros

elsewhere.

Newton’s method is an iterative algorithm, and here for solv-

ing (4.26), each iteration takes the following update step:

α ← α − tH−1(α)∇g(α),

where t > 0 is the step size. The geometric interpretation of the above

update step can be found in [5]. Note that here inverting H(α) is not

as problematic as it might appear because this Hessian matrix has a



282 More EM Examples

very nice structure that simplifies the inversion using the Woodbury

identity [47]. Let ξ ∈ R
d have jth component:

ξj =
1

ψ1(αj)
,

for j = 1, . . . ,d, and let

ξ0 =
1

ψ1(α0)
,

then

H−1(α) = − 1

n
diag(ξ) − 1

n(ξ0 − 1T ξ)
ξξT.
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EM Variants

EM produces convenient solutions for many simple problems, but,

(1) EM only finds stationary points of the likelihood function;

(2) the computations required may not be computationally

tractable;

(3) the convergence may be too slow;

(4) the maximum likelihood estimate may not be the desired

output.

Many variants of EM exist to address subsets of these issues. We have

already touched on two variants of EM: MAP EM in Section 1.3, and

the point-estimate EM described in Section 1.2. In this section we

describe other variants that may be useful, categorized by which of

the four above problems the variant best addresses.

5.1 EM May Not Find the Global Optimum

EM is a handy tool, but if the log-likelihood is not concave, one run

of EM cannot be trusted to find the optimal solution. Non-concavity

is very common in practical problems; for example, the log-likelihoods

for the GMM and HMM are usually not concave.

283



284 EM Variants

The simplest approach to dealing with non-concavity is to run

EM with multiple initializations. For non-concave likelihood functions,

it might be helpful to use EM in conjunction with a global opti-

mizer designed to explore the space more efficiently: the global opti-

mizer provides the exploration strategy while EM does the actual local

searches. For more on state-of-the-art global optimization, see for exam-

ple [1, 23, 24, 28, 38, 46].

5.2 EM May Not Simplify the Computation

We have seen that instead of solving the potentially difficult problem

of directly maximizing ℓ(θ), the EM algorithm chooses to repeatedly

maximize Q(θ |θ(m)), but sometimes this maximization problem is still

difficult. When EM does not provide simple solutions, the variants in

this section may be useful.

5.2.1 Generalized EM (GEM)

GEM is a popular variant of EM in which the Q-function is only

improved at each iteration but not necessarily maximized [30]. That

is, at the (m + 1)th iteration, one finds a θ(m+1) ∈ Ω that satisfies

Q(θ(m+1) |θ(m)) > Q(θ(m) |θ(m)).

By Theorem 2.1, the GEM algorithm retains the monotonicity

property.

5.2.2 Monte Carlo Alternatives to EM

EM is best when the distributions are nice and give rise to a simple

form for the Q-function. However, when that is not the case, Monte

Carlo sampling methods may be needed to approximate the E-step, or

it might be better to toss aside the EM algorithm and use Monte Carlo

sampling to approximate the posterior mode (or posterior mean) of θ

directly. For further reading on Monte Carlo sampling and particularly

Markov Chain Monte Carlo (MCMC), we recommend the introductory

material in [34], which is available online, and the more comprehen-

sive book on MCMC (which specifically discusses EM) by Robert and

Casella [52].
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5.2.3 Quasi-EM

Quasi-EM is a variant of EM that simplifies the problem, finds the

EM solution for the simpler problem, and applies the same idea to

the original complicated problem [43]. For example, as derived in Sec-

tion 3, fitting a GMM alternates between two tasks: (i) estimating the

parameters of the component models, and (ii) estimating the relative

likelihood that each sample was generated by each model. If the com-

ponent models are not Gaussian, then alternating between these two

tasks may not actually be the EM solution, but may still be a practical

approach to finding a useful solution.

As a second example, consider the transmitter-localization example

given in Section 4.2, a more realistic noise model than the additive

white Gaussian noise model given in (4.13) is a lognormal shadowing

model [18], a simplified illustrative version of which is:

Zij =
1

‖θi − rj‖2
2

10Wij ,

where Wij ∼ N (0,σ2) models the random shadowing. Then the like-

lihood function of Z is a product of lognormal densities of the form

in (4.13), and the log-likelihood needed for EM is a sum of lognormal

densities. However, there is no analytic form for a sum of lognormal

densities. One could use a Monte Carlo approach to generate random

samples to compute an approximation of the log-likelihood, but gen-

erating random samples is computationally intensive (and removes the

guarantee that EM will converge).

However, consider the intuition behind the simpler Gaussian noise

model for the transmitter-localization problem as covered in Sec-

tion 4.2. The EM algorithm alternated between (i) estimating the

transmitter locations based on the current guess of how much of the

received power came from each transmitter, and (ii) using the current

estimate of the transmitter locations to guess how much of the received

power came from each transmitter. Nelson et al. [43] showed that using

the same alternation with the more complicated lognormal shadowing

model was 10 times more accurate at estimating the transmitter loca-

tions than making the same number of guesses with a state-of-the-art
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global optimizer (particle swarm optimization [38]), and 50 times more

accurate for the same number of guesses than random guessing.

5.3 Speed

As we touched on in Section 2.1, the EM algorithm has relatively

slow convergence compared to numerical optimization approaches

like Newton–Raphson updates. Many variants have been proposed to

attempt to speed up EM convergence, though these tend to lose the

simplicity of EM without achieving the theoretical convergence speed-

up of Newton–Raphson. Further, as noted in Section 2.1, it is often

difficult before you run an algorithm for a specific problem to know

whether the convergence speed-up gain iteration-by-iteration of a vari-

ant is worth the increased computation for each iteration.

Surveys of variants for speeding up convergence can be found in the

book by McLachlan and Krishnan [36] and in the tutorial by Roche [53].

5.4 When Maximizing the Likelihood Is Not the Goal

EM is designed to find an estimate of θ that maximizes the likelihood

p(y |θ). However, the maximum likelihood estimate may not be the best

estimate. For example, another popular estimate for θ is the posterior

mean EΘ|y[Θ]. The posterior mean is the best estimate in the sense

that it minimizes the expected posterior squared-error loss, and in fact

minimizes the expectation of any of the Bregman divergences [3, 15].

In this section, we describe some stochastic variants of EM, leading

up to the data augmentation method, which provides an estimate of

the full posterior distribution, which can be used to find the posterior

mean.

5.4.1 Randomizing the E-step

In Section 1.2, we discussed the point-estimate variant of EM where

in an E-like step the hidden data is estimated, for example taking the

maximum likelihood estimate of x. A stochastic variant [8] is that in

the E-like step a random sample x(m) is drawn from p(x |y,θ(m)), which
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is then used in the M-step:

Stochastic E-step: X(m) ∼ p(x |y,θ(m))

Deterministic M-step: θ(m+1) = argmax
θ

p(x(m) |θ).

The sequence of estimates {θ(m)} will generally not converge to

a specific value, but rather to a stationary pdf [8]. One can use this

method to generate candidate θ’s and choose the most likely.

5.4.2 Monte Carlo EM

In Monte Carlo EM [60], one maximizes in the M-step an estimated

Q-function Q̂, created with random draws:

Q̂(θ |θ(m)) =
1

J

J
∑

j=1

logp(x(m,j) |θ),

where x(m,j) is the jth random i.i.d. draw of X with distribution

p(x |y,θ(m)). For J = 1, this degenerates to the stochastic EM method

described in Section 5.4.1. As J → ∞, this converges almost surely to

the M-step of the standard EM. By increasing J as the iteration index

m increases, the greater randomness in the early iterations means that

this method does not necessarily lock into the initial guess’s local max-

ima, but as long as J → ∞, eventually local convergence will hold.

After reading the next subsection on data augmentation, the reader

may understand why the original Monte Carlo EM paper [60] was sub-

titled “poor man’s data augmentation.”

5.4.3 Data Augmentation

In the stochastic EM method described in Section 5.4.1 and the above

Monte Carlo EM, one only randomly draws the complete data x. What

happens if one also makes a random draw of θ in the M-step? That is,

one alternates between (i) drawing J i.i.d. random samples {x(m,j)}J
j=1
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of the complete data, and (ii) drawing one random sample of θ:

Stochastic Imputation step: X(m,j) ∼ p(x |y,θ(m)), j = 1, . . . ,J

Stochastic Posterior step: Θ(m+1) ∼ 1

J

J
∑

j=1

p(θ |x(m,j)).

The above was proposed as the data augmentation algorithm [57].1

Iterating the stochastic imputation and posterior steps does not

explicitly produce the maximum likelihood estimate of θ, but instead

produces an estimate of the entire distribution of θ given y:

p̂(m)(θ |y) =
1

J

J
∑

j=1

p(θ |x(m,j)).

As any Bayesian might tell you, it is much better to have a good guess

for the whole distribution than just a good guess at a local peak. In

particular, having a guess for the whole distribution makes it easy to

estimate the posterior mean.

Data augmentation is useful for problems where it is not easier to

work with p(θ |x) and p(x |θ,y) than p(θ |y). Data augmentation was

designed to be a random approximation to carrying out successive itera-

tions of a Markov chain that has the true p(θ |y) as its stationary distri-

bution [57] (this is rather beautifully explained by the originators [57],

and we recommend reading this source to enjoy the full details). This

clever design makes p̂(m)(θ |y) converge linearly under rather broad

conditions to the true p(θ |y) [57]. For more on data augmentation, see

also [58].

1 The term data augmentation is also used to mean any estimation method that specifies
augmented data x [58], including the EM algorithm.
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Conclusions and Some Historical Notes

We have focused this work on the aspects and applications of EM that

we think best illustrate its power, usefulness, and weaknesses. A treat-

ment this short is necessarily incomplete, but we hope this text gives

readers a solid foundation from which to further explore the theory,

applications, and practical implementation of EM.

EM was formalized as an approach to solving arbitrary maxi-

mum likelihood problems and named EM in a seminal 1977 paper

by Dempster et al. [11]. However, the history of EM is much messier

than this. Part of the confusion is that for various specific problems,

researchers independently arrived at the same solution that one obtains

using EM before 1977. For example, in 1958 Hartley presented the

main ideas of EM, rooted in the special case of count data [20]. Simi-

larly, Baum et al. and Welch developed an algorithm for fitting hid-

den Markov models (HMMs) that is often called the Baum–Welch

algorithm, which is equivalent to applying the EM algorithm, and in

this context the ideas of EM date back to the 1970 paper by Baum

et al. [4, 61]. Another notable instance of a special case of the EM

algorithm is the Richardson–Lucy image deconvolution of the early

1970s [51, 33]. Meng and Van Dyk [40] have traced back the ideas of

289
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EM to 1886 [44], and we refer the reader to their paper and MacLach-

lan’s book [36] for more complete historical discussions.

Today, EM and its variants are regularly used to solve a broad range

of today’s estimation problems, from the multiple EM for motif elicita-

tion (MEME) algorithm for motif-finding in DNA squences [2], to fit-

ting mixture models to disambiguate targets from clutter in radar [59].

We hope that you, too, will find EM useful.
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