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Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and

machine learning. It is also a central part of human learning, and a task that people perform remarkably

well given its notorious difficulties. People can learn causal structure in various settings, from diverse

forms of data: observations of the co-occurrence frequencies between causes and effects, interactions

between physical objects, or patterns of spatial or temporal coincidence. These different modes of

learning are typically thought of as distinct psychological processes and are rarely studied together, but

at heart they present the same inductive challenge—identifying the unobservable mechanisms that

generate observable relations between variables, objects, or events, given only sparse and limited data.

We present a computational-level analysis of this inductive problem and a framework for its solution,

which allows us to model all these forms of causal learning in a common language. In this framework,

causal induction is the product of domain-general statistical inference guided by domain-specific prior

knowledge, in the form of an abstract causal theory. We identify 3 key aspects of abstract prior

knowledge—the ontology of entities, properties, and relations that organizes a domain; the plausibility

of specific causal relationships; and the functional form of those relationships—and show how they

provide the constraints that people need to induce useful causal models from sparse data.
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In 1695, Sir Edmond Halley was computing the orbits of a set

of comets for inclusion in Newton’s Principia Mathematica when

he noticed a surprising regularity: The comets of 1531, 1607, and

1682 took remarkably similar paths across the sky, and visited the

Earth approximately 76 years apart. Newton had already shown

that comets should follow orbits corresponding to conic sections—

parabolas, hyperbolas, and ellipses—although no elliptical orbits

had yet been observed. Halley inferred that the sightings of these

comets were not three independent events, but three consequences

of a single common cause: a comet that had visited the Earth three

times, travelling in an elliptical orbit. He went on to predict that it

would return along the same orbit in 1758. The comet returned as

predicted, and has continued to visit the Earth approximately every

76 years since, providing a sensational confirmation of Newton’s

physics.

Halley’s discovery is an example of causal induction: inferring

causal structure from data. Explaining this discovery requires

appealing to two factors: abstract prior knowledge, in the form of

a causal theory, and statistical inference. The prior knowledge that

guided Halley was the mathematical theory of physics laid out by

Newton. This theory identified the entities and properties relevant

to understanding a physical system, formalizing notions such as

velocity and acceleration, and characterized the relations that can

hold among these entities. Using this theory, Halley could generate

a set of hypotheses about the causal structure responsible for his

astronomical observations: They could have been produced by

three different comets, each travelling in a parabolic orbit, or by

one comet, travelling in an elliptical orbit. Choosing between these

hypotheses required the use of statistical inference. While Halley

made no formal computations of the probabilities involved, the

similarity in the paths of the comets and the fixed interval between

observations convinced him that “it was highly probable, not to say

demonstrative, that these were but one and the same Comet” (from

the Journal Book of the Royal Society, July 1696, reproduced in

Hughes, 1990, p. 353).

Causal induction is not just a problem faced by scientists. The

capacity to reason about the causes of events is an essential part of

cognition from early in life, whether we are inferring the forces

involved in physical systems (e.g., Shultz, 1982b), the mental

states of others (e.g., Perner, 1991), or the essential properties of

natural kinds (e.g., S. A. Gelman & Wellman, 1991). Often, these

causal relationships need to be inferred from data. Explaining how

people make these inferences is not just a matter of explaining

how causation is identified from correlation, but of accounting for
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how complex causal structure is inferred in the absence of (statis-

tically significant) correlation. People can infer causal relation-

ships from samples too small for any statistical test to produce

significant results (e.g., Gopnik, Sobel, Schulz, & Glymour, 2001)

and solve problems like inferring hidden causal structure (e.g.,

Kushnir, Gopnik, Schulz, & Danks, 2003) that still pose a major

challenge for statisticians and computer scientists. Human causal

induction is not always on target: sometimes we miss causal

connections that would be most valuable to exploit, or see con-

nections that do not in fact exist. Yet the successes stand out. No

conventional statistical recipe or computer learning algorithm can

compete with a young child’s capacity to discover the causal

structure underlying everyday experience—or at least, to come

close enough to causal “ground truth” with knowledge that sup-

ports such flexible prediction, planning, and action in the world.

In this article, we present a formal framework for explaining

how human causal learning works across a wide range of contexts

and information sources. Our goal here is not a mechanistic ex-

planation in terms of psychological processing steps or neural

machinery. Rather we want to explain how human learners can

successfully infer such rich causal models of the world given that

the data they observe are so sparse and limited. Our explanations

of human causal induction take the form of computational theories,

in the sense introduced by Marr (1982) and pursued by Shepard

(1987) and Anderson (1990), among others (see Oaksford &

Chater, 1998): We identify the abstract computational problem

addressed by a cognitive capacity, derive an optimal solution to

that problem, and use that solution to explain human behavior.

In our analysis of the computational problem underlying every-

day causal induction, the two factors of prior knowledge and

statistical inference that we identified in Halley’s famous discov-

ery both play central roles. Prior knowledge, in the form of an

abstract theory, generates hypotheses about the candidate causal

models that can apply in a given situation. Principles of Bayesian

inference generate weights for these hypotheses in light of ob-

served data and thus predictions about which causal relations are

likely to hold, and which patterns of future events are likely to be

observed. To the extent that the prior knowledge is veridical—

when people’s abstract intuitive theories reflect the way causal

systems in their environment tend to work—our rational frame-

work explains how people’s inferences about the structure of

specific causal systems can be correct, even given very little data.

Yet our framework is not strictly normative: In cases where people

hold the wrong abstract theories, rational statistical inference may

lead them to incorrect beliefs about a novel system even given

extensive experience.

The idea that causal induction draws on prior knowledge is not

novel—it has been noted in many influential theories (e.g., Cheng,

1997; Lien & Cheng, 2000), discussed in the context of rational

statistical inference (Alloy & Tabachnik, 1984), and explored in

two separate research programs (Koslowski, 1996; Waldmann,

1996; Waldmann, Hagmayer, & Blaisdell, 2006). However, pre-

vious formal models have focused mostly on the effects of specific

forms of prior knowledge, such as the plausibility of a causal

relationship, painting a relatively simple picture of the role this

knowledge plays in learning. Our contribution is a formal frame-

work that provides a way to systematically identify the aspects of

prior knowledge that can influence causal induction, to describe

this knowledge precisely, and to explain how it is combined with

rational mechanisms of statistical inference. We call this frame-

work theory-based causal induction. We propose that three aspects

of prior knowledge are central in generating hypotheses for causal

induction—the ontology of entities, properties, and relations that

organizes a domain; the plausibility of specific causal relation-

ships; and the functional form of those relationships—and that

these three aspects are the key constituents of people’s intuitive

causal theories. Mathematical models of causal induction in spe-

cific settings can be derived by performing Bayesian inference

over the hypothesis spaces generated by appropriate theories of

this sort, and they illustrate how relatively complex interactions

between prior knowledge and data can emerge.

By viewing causal induction as the result of domain-general

statistical inference guided by domain-specific causal theories, our

framework provides a unified account of a set of phenomena that

have traditionally been viewed as distinct. Different aspects of

causal learning have tended to be explained in different ways.

Theories of causal learning from contingency data, in which peo-

ple are provided with information about the frequency with which

cause and effect co-occur and are asked to evaluate the underlying

relationship, emphasize statistical learning from covariation be-

tween cause and effect (e.g., Cheng, 1997; Jenkins & Ward, 1965;

Shanks, 1995b). In contrast, analyses of learning about the causal

relationships that govern physical systems, such as simple ma-

chines, tend to focus on the role of domain-specific knowledge

about the nature of possible causal mechanisms (e.g., Bullock,

Gelman, & Baillargeon, 1982; Shultz, 1982b). Finally, inferences

about causal relationships based on spatial and temporal dimen-

sions of dynamic events—most famously illustrated in Michotte’s

(1963) classic studies of perceived causality in collisions—are

often viewed as the product of a modular, automatic perceptual

mechanism, distinct from a general cognitive capacity for statisti-

cal inference thought to underlie causal learning from contingency

data (e.g., Leslie, 1986; Schlottmann & Shanks, 1992).

From the perspective of theory-based causal induction, these

apparently disparate phenomena are not discrete cases requiring

separate explanations but rather points on a continuum, where the

strength of the constraints provided by prior knowledge gradually

increases, and the amount of information required in order to make

a causal inference decreases accordingly. Standard experiments on

causal induction from covariational data tap into relatively weak

prior knowledge and hence require a relatively large number of

experienced events (typically, tens of data points) for learners to

reach confident causal conclusions. Causal learning in simple

physical systems draws on richer knowledge about causal mech-

anisms, allowing confident causal inferences from only a handful

of examples. When even richer (if implicit) knowledge about the

spatiotemporal dynamics of physical interactions is involved, as in

standard cases of perceptual causality, confident inferences can be

made from just a single observed event—a “suspicious coinci-

dence”—with the appropriate spatiotemporal structure.

The plan of the article is as follows. In the next section, we

summarize previous work illustrating how different aspects of

prior knowledge can influence causal learning. We then discuss the

goals of a computational-level analysis of causal induction, focus-

ing on a description of the central inductive problems to be solved

by the learner. This description introduces causal graphical mod-

els, a formalism for representing and reasoning about causal rela-

tionships which has been the basis for previous accounts of human
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causal induction, but which crucially does not have the ability to

express the forms of abstract prior knowledge that guide human

causal learning along such different trajectories in different do-

mains and contexts. We then introduce our framework of theory-

based causal induction, building on the foundation of causal graph-

ical models but making explicit the structure and function of the

learner’s prior knowledge. The bulk of the article consists of the

application of this framework to the settings mentioned above:

causal induction from contingency data, learning about the prop-

erties of physical systems, and inferring causal relationships from

coincidences in space and time. In considering these phenomena,

we focus on the importance of the two key components of our

approach—statistical inference and prior knowledge expressed in

the form of a causal theory—in explaining how people can learn

about causal relationships from limited data.

How Does Prior Knowledge Influence Causal Induction?

The study of causal induction has a long history, in both phi-

losophy (e.g., Hume, 1739/1978) and psychology (e.g., Inhelder &

Piaget, 1958). Detailed reviews of some of this history are pro-

vided by Shultz (1982b; Shultz & Kestenbaum, 1985) and White

(1990, 1995). This history is marked by a tension between statis-

tical learning and abstract prior knowledge about causality as

accounts of human causal induction. Psychological theories about

causal induction have tended to emphasize one of these two factors

over the other (Cheng, 1997; Newsome, 2003; Shultz, 1982b): In

the tradition of Hume (1739/1978), covariation-based approaches

characterize human causal induction as the consequence of a

domain-general statistical sensitivity to covariation between cause

and effect (e.g., Cheng & Novick, 1990, 1992; Shanks & Dickin-

son, 1987), whereas, in a tradition often traced to Kant (1781/1964;

see Shultz, 1982b, for an account of the connection), mechanism-

based approaches focus on the role of prior knowledge about the

mechanisms by which causal force can be transferred (e.g., Ahn &

Kalish, 2000; Shultz, 1982b; White, 1995).

Recently, explanations of human causal learning have begun to

explore a middle ground between these positions, looking at how

mechanism knowledge might influence learning from covariation

between cause and effect (e.g., Lagnado & Sloman, 2004;

Lagnado, Waldmann, Hagmayer, & Sloman, 2007; Waldmann,

1996; Waldmann et al., 2006). These accounts are based on a range

of results indicating the importance of both of these factors. The

analysis that we present in this article can be viewed in part as an

attempt to develop a formal framework that can capture the kind of

knowledge needed to explain these effects, providing the tools

required to define computational models of this “knowledge-

based” approach to causal induction (Waldmann, 1996). As a first

step toward developing such a framework, we need to identify

exactly what aspects of prior knowledge are relevant to causal

induction. In this section, we briefly review work that has explored

this question, using the example of Halley’s discovery for illus-

tration. Following this example, we divide the kind of prior knowl-

edge that is relevant to causal induction into three categories:

information about the types of entities, properties, and relations

that arise in a domain (the ontology); constraints on the plausible

relations among these entities; and constraints on the functional

form of such relations.1

Ontology

Newton’s theory of physics picked out the critical variables for

thinking about the motion of objects—their mass, velocity, and

acceleration. The question of how entities are differentiated on the

basis of their causal properties has been thoroughly explored in

developmental psychology, through consideration of the ontolog-

ical commitments reflected in the behavior of infants and young

children. Both infants and young children have strong expectations

about the behavior of physical objects, and these expectations are

quite different from those for intentional agents (Saxe, Tenen-

baum, & Carey, 2005; Shultz, 1982a; Spelke, Phillips, & Wood-

ward, 1995). Similarly, children have different expectations about

the properties of biological and nonbiological entities (e.g.,

Springer & Keil, 1991). Gopnik et al. (2001) have shown that

children use the causal properties of entities to determine whether

they belong to a novel type—objects that differed in appearance

but both activated a “detector” were more likely to both be con-

sidered “blickets” than objects with similar appearance that dif-

fered in their causal properties.

Research with adults has also explored how the types of entities

influence causal inferences. For example, Lien and Cheng (2000)

conducted several experiments examining the circumstances under

which causal properties are generalized across the members of a

category. In a typical experiment, people learned about the ten-

dency of 15 chemicals to produce blooming in a plant. The

chemicals could be divided into groups on the basis of their color

and shape. Lien and Cheng explored how people used information

about color and shape, which provided a basis for identifying

different types of chemicals in causal learning. Their conclusion

was that people used these types in learning causal relationships:

People formed the generalization that chemicals of the type that

maximized the strength of the resulting relationship were those

that caused the plant to bloom. In related work, Waldmann and

Hagmayer (2006) examined how intuitive theories influence

whether previously learned categories are transferred to novel

causal learning problems. Tenenbaum and Niyogi (2003) also

showed that people spontaneously organize objects into types on

the basis of their causal properties, forming abstract categories of

schematic blocks that cause one another to light up in a computer

simulation, and Kemp, Goodman, and Tenenbaum (2007) showed

that such categories could carry with them expectations about the

strength of causal relationships.

Plausible Relations

Knowledge of the types of entities in a domain can provide quite

specific information about the plausibility of causal relationships.

For example, Newton precisely laid out the kinds of forces by

which the properties of one object can influence those of another.

Explorations of how plausibility influences causal induction have

1 Although we refer to expectations about ontologies, plausible relations,

and functional form as prior knowledge, we mean this to be interpreted as

indicating that the knowledge is available prior to a specific instance of

causal induction. We are not claiming that this knowledge is innate, and

anticipate that in almost all cases it is acquired through experience with the

world and in particular through other instances of causal induction, a point

that we return to in our discussion of learning causal theories.
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examined mainly how children learn about the structure of phys-

ical systems (e.g., Shultz, 1982b), although even accounts of

causal induction from contingency data that emphasize the impor-

tance of covariation between cause and effect recognize a role for

top-down knowledge (e.g., Cheng, 1993, 1997). In one classic

study, Shultz (1982b) demonstrated that young children have

strong expectations about the plausibility of different kinds of

causal relationships, in part derived from their experience with the

properties of these objects in the course of the experiment. For

example, he found that children used the knowledge that a lamp is

more likely than a fan to produce a spot of light, that a fan is more

likely than a tuning fork to blow out a candle, and that a tuning

fork is more likely than a lamp to produce resonance in a box.

On the basis of examples like those provided by Shultz (1982b),

several authors have equated the plausibility of a causal relation-

ship with the existence of a potential mechanism by which the

cause could influence the effect (e.g., Ahn & Kalish, 2000;

Schlottmann, 1999). Koslowski and colleagues (Koslowski, 1996;

Koslowski & Okagaki, 1986; Koslowski, Okagaki, Lorenz, &

Umbach, 1989) have conducted a series of experiments investi-

gating this claim, finding that people consider causal relationships

more plausible when supplied with a potential mechanism and less

plausible when the most likely mechanisms are ruled out.

Recent work examining causal learning in adults has also noted

the importance of prior expectations about the direction of causal

relationships, particularly when people are simultaneously learning

about multiple relationships. Waldmann and colleagues (Wald-

mann, 1996, 2000; Waldmann & Holyoak, 1992; Waldmann,

Holyoak, & Fratianne, 1995) have conducted a number of studies

that suggest that people’s expectations about the causal structure

among a set of variables can determine how covariational evidence

affects their beliefs. For example, Waldman (2000) gave people

information that suggested that the relationship among a set of

variables was either a “common cause” relationship, with one

variable causing several others, or a “common effect” relationship,

with several variables all producing a single effect. People’s be-

liefs about the underlying causal structure influence their interpre-

tation of the pattern of covariation among the variables: Only those

who believed in the common effect structure took into account

competition between causes when evaluating their strength.

Functional Form

In physics, the functional form of causal relationships, such as

how the velocity of one object depends on its mass and the mass

and velocity of another object with which it collides, can be laid

out precisely. The knowledge that guides most causal inferences is

less precise, but even in the most basic cases of causal induction

we draw on expectations as to whether the effects of one variable

on another are positive or negative, whether multiple causes inter-

act or are independent, and what type of events (binary, continu-

ous, or rates) are relevant to evaluating causal relationships

(Cheng, 1997; Novick & Cheng, 2004).

One setting in which questions about functional form have

arisen explicitly is in examining how causes should be assumed to

combine. Many theories of animal learning assume that multiple

causes of a single effect combine additively, each making a con-

stant contribution to the effect (e.g., Rescorla & Wagner, 1972). A

number of researchers, including Shanks, Wasserman, and their

colleagues, have advocated these linear models as accounts of

human causal learning (e.g., López, Cobos, Caño, & Shanks, 1998;

Shanks, 1995a, 1995b; Shanks & Dickinson, 1987; Wasserman,

Elek, Chatlosh, & Baker, 1993). However, whether this assump-

tion is appropriate for modeling human judgments seems to be

affected by people’s beliefs about what aspect of the causes

produces the effect. Waldmann (2007) presented a study in which

participants were told about a hypothetical experiment that found

that drinking a yellow liquid increased the heart rate of animals by

3 points, while drinking a blue liquid increased the heart rate by 7

points. The participants were asked to predict the consequences of

drinking a mixture of the two liquids. The results depended upon

whether the participants were told that the effect of the drink was

a consequence of its taste, or of its strength. More people produced

predictions consistent with a weighted average of the effects if

they believed the effect was modulated by strength, for which a

linear functional form is more appropriate. Recent work has also

shown that the magnitude of some effects that assume additivity is

affected by the extent to which people believe causes combine

additively (Beckers, De Houwer, Pineno, & Miller, 2005; Lovi-

bond, Been, Mitchell, Bouton, & Frohart, 2003).

Perhaps the most comprehensive attempt to characterize the

possible ways in which causes could combine is that of Kelley

(1973), who suggested that causal induction from small numbers

of observations may be guided by causal schemas. Kelley distin-

guished between generative and preventive causes, and he identi-

fied three schemas describing the interaction between generative

causes: multiple sufficient causes, multiple necessary causes, and

compensatory causes. Under the multiple sufficient causes

schema, the effect occurs in the presence of any one of the causes

(the equivalent of a logical OR function). In the multiple necessary

causes schema, the effect occurs only if all of the causes are

present (the equivalent of a logical AND function). In the com-

pensatory causes schema, increasing the strength of each cause

increases the tendency for the effect to be expressed. All of these

schemas constitute different assertions about the functional form

of the relationship between cause and effect, and knowing which

of these schemas is relevant in a particular situation can facilitate

evaluating whether a particular causal relationship exists.

The functional form of causal relationships becomes most im-

portant when dealing with causal inferences in physical systems,

where the ways in which one object influences another can be

quite complex. Developmental psychologists have extensively in-

vestigated how well children understand the functional relation-

ships that hold in physical systems. Shultz and Kestenbaum (1985)

provided a review of some of this work. One interesting example

of this project is provided by Zelazo and Shultz (1989), who

investigated whether children understood the different functional

relationships between the potency of a cause and the resistance of

the effect in two systems: a balance beam, where one object was

weighed against another, and a ramp, where one object slid down

to displace another. For the balance beam, the magnitude of the

effect depends upon the difference in the masses of the two

objects, whereas for the ramp, it depends upon the ratio. Zelazo

and Shultz (1989) found that although adults were sensitive to this

difference, 5-year-olds tended to use a single functional form for

both systems.

The functional form of a causal relationship can also determine

the temporal coupling between cause and effect. The time between
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the occurrence of a potential cause and the occurrence of an effect

is a critical variable in many instances of causal induction. Several

studies have explored covariation and temporal proximity as cues

to causality in children, typically finding that the event that im-

mediately precedes an effect is most likely to be perceived as the

cause, even if there is covariational evidence to the contrary (e.g.,

Shultz, Fisher, Pratt, & Rulf, 1986). Hagmayer and Waldmann

(2002) presented an elegant series of studies that showed that

different assumptions about the delay between cause and effect

could lead to different interpretation of the same set of events,

determining which events were assumed to be related. Similar

phenomena have recently been investigated in detail by Lagnado

and Sloman (2006) and Buehner and colleagues (Buehner & May,

2002, 2003; Greville & Buehner, 2007). Finally, Anderson (1990)

provided a computational analysis of data involving the interaction

between spatial separation and temporal contiguity in causal in-

duction.

Summary

The three aspects of prior knowledge identified in this section

can support strong expectations about possible causal relation-

ships. Having an ontology, knowing the plausibility of relation-

ships among the entities identified within that ontology, and know-

ing the functional form of those relationships provides information

that makes it possible to generalize about the causal relationships

among completely new variables. The research we have summa-

rized in this section makes a compelling case for an influence of

prior knowledge on causal induction but raises the question of

exactly how this knowledge should be combined with the evidence

provided by the data observed by learners. Answering this question

is the project undertaken in the remainder of the article. Our next

step toward obtaining an answer is to understand the computa-

tional problem underlying causal induction, which is the focus of

the next section.

A Computational-Level Analysis of Causal Induction

The aim of this article is to provide a computational-level

analysis of causal induction, in the sense introduced by Marr

(1982). This section begins with a discussion of what such an

analysis means, clarifying our motivation and methodology. We

then turn to the question of how to formulate the computational

problem underlying causal induction. Our formulation of this

problem makes use of causal graphical models, a formalism for

representing, reasoning with, and learning about causal relation-

ships developed in computer science and statistics (Pearl, 2000;

Spirtes, Glymour, & Scheines, 1993). We introduce this formalism

and use it to clearly state the problem faced by causal learners. We

then consider existing rational solutions to this problem, arguing

that while they feature one of the two factors that are necessary to

explain human causal induction—statistical inference—they do

not incorporate the kind of prior knowledge described in the

previous section. Reflecting upon the nature of this knowledge

leads us to argue that a level of representation that goes beyond

causal graphical models will be required.

Analyzing Causal Induction at the Computational Level

Marr (1982) distinguished between three levels at which an

information processing system can be analyzed: the levels of

computational theory, representation and algorithm, and hardware

implementation. Analyses at the first of these levels answer the

question “What is the goal of the computation, why is it appro-

priate, and what is the logic of the strategy by which it can be

carried out?” (Marr, 1982, p. 25). This is a question about the

abstract problem that the information processing system is trying

to solve and what solutions to that problem might look like. One

part of a computational-level analysis is thus considering the form

of rational solutions to a problem faced by the learner, a strategy

that is also reflected in Shepard’s (1987) search for universals laws

of cognition—laws that must hold true for any information-

processing system due to the structure of the problem being

solved—and Anderson’s (1990) formulation of rational analysis.

In the context of causal induction, a computational-level anal-

ysis seeks to identify the abstract problem being solved when

people are learning about causal relationships and to understand

the logic that makes it possible to solve this problem. Since our

aim is to provide a unifying account of causal induction across a

range of settings, we want to define the underlying computational

problem in as broad a way as possible, highlighting the fact that a

single solution can be applied across these domains. A major

challenge of this approach is finding a formal framework that can

provide a solution to the underlying computational problem, com-

pounded by the fact that we want more than just any solution: We

want a solution that is optimal for the problem being posed.

Developing an account of causal induction that is an optimal

solution to the underlying computational problem is attractive not

just as a unifying account, but as a way of answering three kinds

of questions about human cognition. The first kind of question is

a “How possibly?” question: How could people possibly solve the

problem of inferring causal relationships from observational data?

Many aspects of human learning, including causal induction, seem

far better than that of any automated systems. To repeat an exam-

ple from the introduction, it is commonplace for people to draw

correct conclusions about causal relationships from far less data

than we might need to do a statistical test. Understanding how we

might explain such inferences in rational terms helps us understand

how it is that people are so good at them, and what factors—such

as domain knowledge—play a role in this success.

The second kind of question we can answer using this kind of

analysis is a “How should it be done?” question: Given the

computational problems that people face, what should they be

doing to solve those problems? Optimal solutions tell us something

about the properties that we might expect to see in the behavior of

intelligent organisms, and can thus tell us which aspects of that

behavior might be purely a consequence of the nature of the

problems being solved. This kind of strategy is common in vision

science, where “ideal observer” models have helped reveal how

much of human perception might be explained as an optimal

response to the structure of the environment (Yuille & Kersten,

2006). In the case of causal induction, a critical issue is combining

statistical evidence with prior knowledge, and a rational account

can indicate how this should be done, and what the consequences

should be for the inferences that people make. Although research

in judgment and decision-making has illustrated that people often

deviate from the predictions of rational models (e.g., Tversky &

Kahneman, 1974), the revelations that this work has made about

the psychological mechanisms involved were partially made pos-

sible by the existence of a well-developed account of how a

665THEORY-BASED CAUSAL INDUCTION



rational agent should make decisions. For other complex problems

such as causal induction, we are only just beginning to develop

these rational accounts, and understanding what people should do

when making causal inferences will be a valuable tool in deter-

mining how people actually solve this problem.

Finally, a third, related, question we can answer is a “What is

necessary?” question: What knowledge or other constraints on

hypotheses would an ideal learner need in order to reach the same

conclusions as people? Since an ideal learner makes the best use of

the available data, the answer to this question places a lower bound

on the kind of constraints that human learners might use. Under-

standing the impact of different kinds of prior knowledge on causal

induction by analyzing their effects on an ideal learner gives us a

way to predict the role that these kinds of knowledge might play in

human causal induction.

Answering these three questions requires not just defining a

problem and deriving a solution, but arguing that this problem and

solution connect to human causal learning. This connection can be

established only by comparing the predictions of models devel-

oped within our formal framework to the results of experiments

with human participants. The empirical results that will be relevant

to this argument are those that are framed at the same level of

abstraction as our analysis: results that indicate what conclusions

people reach given particular data. As a consequence, we focus

mainly on static measurements of beliefs about causal relation-

ships, rather than capturing the dynamics of human learning,

although we have explored this topic in the past (Danks, Griffiths,

& Tenenbaum, 2003) and view it as an important direction for

future research. The goal of our models is to produce the same

conclusions from the same data, and our framework will be suc-

cessful if it allows us to define models that incorporate the kinds

of knowledge that make this possible.

In pursuing a computational-level analysis, we are not trying to

make claims about the other levels at which causal induction might

be analyzed. In particular, we are not asserting that particular

representations or algorithms are necessary, or making other com-

mitments as to the mechanisms or the psychological processes

involved. Marr (1982) argued that different levels of analysis will

provide constraints on one another, with the computational level

indicating what kinds of representations and algorithms will be

appropriate for solving a problem. In the context of causal induc-

tion, we anticipate that many different psychological mechanisms

could result in behavior similar to the predictions made by specific

models we consider, with associative learning, heuristics, or ex-

plicit hypothesis testing being good strategies for individual tasks,

and we briefly outline some possible psychological mechanisms in

the Discussion. Our general aim, however, is to provide a unifying

account at the more abstract level of the underlying problem and

its solution, ultimately helping to explain why particular represen-

tations and algorithms might be appropriate in a particular task.

Finally, our aim of providing a computational-level account of

causal induction also influences the kinds of models that we use

for comparison. In this article, our emphasis is on comparison of

the predictions of our account to those of other rational models.

These models all use the same formal ideas and operate at the same

level of analysis, but they differ in their assumptions about the

knowledge that informs causal induction or the nature of statistical

learning. Comparison with these other rational models thus helps

to highlight which components of our framework are relevant to

explaining behavior on a given task. We do not doubt that it is

possible to define better models of specific tasks, since presumably

an accurate model of the actual mechanisms people use to solve

these problems will make better predictions than the abstract kind

of analyses obtained from our framework. Ultimately, we see the

key criterion for the success of our approach to be its usefulness in

capturing the effects of prior knowledge on causal induction across

a wide range of settings, and it is this criterion that we have in

mind when we evaluate the performance of individual models. In

this way, we expect that our framework will be evaluated in the

same fashion as other general approaches that can be used to

define a variety of computational models, such as parallel distrib-

uted processing (e.g., McClelland & Rumelhart, 1986) or produc-

tion systems (e.g., Anderson, 1993).

Causal Graphical Models

Having introduced our motivation and methodology, we now

turn to the question of how to formulate the computational prob-

lem posed by causal induction. We will do this using causal

graphical models, also known as Bayesian networks or Bayes nets.

Causal graphical models have recently begun to be used in psy-

chological accounts of causality (e.g., Danks & McKenzie, 2009;

Glymour, 1998, 2001; Gopnik et al., 2004; Griffiths & Tenen-

baum, 2005; Lagnado & Sloman, 2002; Lu, Yuille, Liljeholm,

Cheng, & Holyoak, 2006, 2007, 2008; Rehder, 2003; Steyvers,

Tenenbaum, Wagenmakers, & Blum, 2003; Tenenbaum & Grif-

fiths, 2001, 2003; Waldmann & Martignon, 1998). In this article,

we highlight only the elements of causal graphical models that are

relevant to our account. More detailed introductions are provided

by Pearl (2000), Heckerman (1998), Glymour (2001), and Sloman

(2005).

A causal graphical model has three components: a set of vari-

ables, a causal structure defined upon those variables, and a set of

assumptions about the functional form of the relationships indi-

cated by this structure. The variables are represented by nodes in

a graph. These nodes are connected by arrows, indicating the

direction of causal dependencies among the variables. Assump-

tions about the functional form of causal relationships make it

possible to use this graphical structure to reason about the proba-

bilities of different kinds of events. The functional form defines a

probability distribution for each variable conditioned on its causes,

which is referred to as the parameterization of the nodes.

Causal graphical models can be used to compute the probability

of observing particular values for the variables and the conse-

quences of interventions. An intervention is an event in which a

variable is forced to hold a value, independent of any other

variables on which it might depend. Following Pearl (2000), we

denote intervention that sets a variable X to value x with do(x), and

in general use uppercase letters to indicate variables and lowercase

letters to indicate their values. Probabilistic inference on a modi-

fied graph, in which incoming edges to X are removed, can be used

to assess the consequences of intervening on X (Pearl, 2000;

Spirtes et al., 1993).

The Computational Problem and Existing Solutions

Causal graphical models provide us with the tools to give a

precise definition of the computational problem underlying causal
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induction. We take the problem of causal induction as that of

identifying the causal graphical model—including both structure

and parameters—responsible for generating the observed data D.

This problem has been extensively explored in the literature on

causal graphical models in computer science and statistics, and it

is typically divided into two parts (e.g., Griffiths & Tenenbaum,

2005; Heckerman, 1998): structure learning and parameter estima-

tion. We discuss these parts in turn, highlighting connections to

existing proposals about human causal induction.

Structure learning. Learning the causal structure that relates a

large number of variables is a difficult computational problem, as

the number of possible structures increases exponentially with the

number of variables. Research in computer science and statistics

has focused on two strategies for solving this problem. Constraint-

based algorithms attempt to identify causal structure on the basis

of the patterns of dependency exhibited by a set of variables,

whereas Bayesian methods evaluate the probability that a partic-

ular structure generated the observed data.

Constraint-based algorithms for structure learning (e.g., Pearl,

2000; Spirtes et al., 1993) proceed in two steps. First, standard

statistical tests such as Pearson’s �2 test are used to identify which

variables are dependent and independent. Since different causal

structures should result in different patterns of dependency among

variables, the observed dependencies provide constraints on the set

of possible causal structures. The second step of the algorithms

identifies this set, reasoning deductively from the pattern of de-

pendencies. The result is one or more causal structures that are

consistent with the dependencies exhibited by the data. By not

making any commitments about the consequences of causal rela-

tionships other than statistical dependency, constraint-based algo-

rithms provide a general-purpose tool for causal induction that can

be applied easily across many domains. This generality is part of

the appeal of these algorithms as psychological theories, as they

provide a way to explain the acquisition of causal knowledge

without recourse to domain-specific mechanisms (e.g., Gopnik &

Glymour, 2002; Gopnik et al., 2004).

The Bayesian approach to structure learning (Cooper & Hers-

kovits, 1992; see Heckerman, 1998) treats causal induction as a

special case of the more general statistical problem of identifying

the statistical model most likely to have generated observed data.

Bayesian inference provides a solution to this problem. The heart

of this solution is Bayes’ rule, which can be used to evaluate the

probability that a hypothetical model h was responsible for gen-

erating data D. The posterior distribution, P(h�D), is evaluated by

combining prior beliefs about the probability that h might generate

any data, encoded in the distribution P(h), with the probability of

D under the model h, P(D�h), typically referred to as the likelihood.

Bayes’ rule stipulates how these probabilities should be combined,

giving

P�h�D� �

P�D�h�P�h�

�h��HP�D�h��P�h��
, (1)

where H is the hypothesis space, the set of all models that could

possibly have produced D.

As with any Bayesian inference, this approach requires speci-

fying a prior probability and a likelihood for every hypothesis

within a hypothesis space, H. In typical applications of this

method, H consists of all directed graphs defined over the available

variables. The data D consist of the values that those variables

assume as the result of observation and intervention. Standard

Bayesian structure-learning algorithms define P(D�h) in a way that

makes very weak assumptions about the functional form of the

relationship between causes and effects. A separate parameter is

used to express the probability of the effect for each configuration

of its causes, meaning that the causes can have essentially any kind

of influence on the effect—generative or preventive, large or

small—and can combine in any imaginable way. P(D�h) is evalu-

ated by defining a distribution over these parameters, and then

integrating over the specific values the parameters take on (e.g.,

Cooper & Herskovits, 1992). This makes it possible to compute

the probability of the data given a particular graphical structure

without committing to a particular choice of parameter values. The

prior over graph structures, P(h), is typically either uniform (giv-

ing equal probability to all graphs), or gives lower probability to

more complex structures. Algorithms that use these principles

differ in whether they then proceed by searching the space of

structures to find that with the highest posterior probability (Fried-

man, 1997), or evaluate particular causal relationships by integrat-

ing over the posterior distribution over graphs (Friedman & Koller,

2000). Tenenbaum and Griffiths (2001; Griffiths & Tenenbaum,

2005) developed a model of human causal induction based on the

principles of Bayesian structure learning, which we discuss in

more detail later in the article.

Parameter estimation. Parameter estimation assumes a fixed

causal structure and aims to identify the parameters that specify the

probability of a variable given the values of the variables that

influence it. The simplest way to parameterize a causal graphical

model is to use a separate parameter for the probability of each

value of a variable given the values of its causes—something that

we refer to as the generic parameterization. This generic parame-

terization is the one typically used in Bayesian structure learning in

computer science, as discussed above. An alternative is to make a

stronger set of assumptions about the way in which causes com-

bine to produce their effects. One such set of assumptions yields

the noisy-OR function, which is widely used in computer science

and statistics (Pearl, 1988) and is a key part of a prominent model

of human causal induction (Cheng, 1997).

The noisy-OR function results from a natural set of assumptions

about the relationship between cause and effect: that causes are

generative, increasing the probability of the effect, that the effect

occurs in the absence of any causes with a constant probability w0,

that each cause produces the effect with a constant probability wi,

and that the opportunities for the causes to produce the effect are

independent (Cheng, 1997). For example, if we had an effect

variable E and a cause variable C, then the conditional probability

of E given C would be

P�e��c; w0, w1� � 1 � �1 � w0��1 � w1�
c, (2)

where w1 is a parameter associated with the strength of C and c

takes on values c� � 1 in the presence of the cause or c� � 0 in

its absence. This expression gives w0 for the probability of E in the

absence of C, and w0 � w1 – w0w1 for the probability of E in the

presence of C. This parameterization is called a noisy-OR because

if w0 and w1 are both 1, Equation 2 reduces to the logical OR

function: The effect occurs if and only if either some background

factor or C is present. With w0 and w1 in the range [0, 1] it

generalizes this function to allow probabilistic causal relationships.
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If E had multiple parents X1, . . . , Xn, we could associate a separate

strength wi with each parent, and the noisy-OR parameterization

would give

P�e��x1, . . . , xn; w0, w1, . . . , wn� � 1 � �1 � w0��
i

�1 � wi�
xi,

(3)

where again xi � 1 if Xi is present, and 0 if Xi is absent.

A simple solution to the problem of estimating the parameters of

a causal graphical model is to use maximum-likelihood estimation,

choosing the values of the parameters that maximize the probabil-

ity of the observed data. For the case of the noisy-OR function with

a single cause, the maximum-likelihood estimate of w1 is

power �

P�e��c�� � P�e��c��

1 � P�e��c��
, (4)

where P(e��c�) is the empirical conditional probability of the

effect given the presence of the cause. We have labeled this

quantity power as it corresponds to Cheng’s (1997) definition of

causal power, proposed as a rational model of human causal

induction. Glymour (1998) pointed out that the assumptions Cheng

(1997) used in deriving this model are equivalent to those under-

lying the noisy-OR parameterization, and Tenenbaum and Grif-

fiths (2001; Griffiths & Tenenbaum, 2005) showed that causal

power is a maximum-likelihood estimator of w1.

The numerator of Equation 4 has also been proposed in its own

right as a model of human causal induction, being known as �P.

This quantity,

�P � P�e��c�� � P�e��c��,

reflects the change in the probability of the effect occurring as a

consequence of the occurrence of the cause. This measure was first

suggested by Jenkins and Ward (1965), was subsequently explored

by Allan (1980, 1993; Allan & Jenkins, 1983), and has appeared in

various forms in both psychology and philosophy (Cheng &

Holyoak, 1995; Cheng & Novick, 1990, 1992; Melz, Cheng,

Holyoak, & Waldmann, 1993; Salmon, 1980). �P can also be

shown to be a rational solution to the problem of estimating the

strength of a causal relationship, assuming that causes combine

linearly (Griffiths & Tenenbaum, 2005; Tenenbaum & Griffiths,

2001).

Two Challenges for a Formal Framework

This brief survey of existing methods for solving the problem of

identifying the causal graphical model that generated observed

data—and corresponding rational models of human causal induc-

tion—highlights two challenges for the kind of formal framework

we aim to develop. First, this framework should naturally capture

the effects of knowledge on causal induction. Existing approaches

make either weak or generic assumptions about the nature of the

knowledge that people use in evaluating causal relationships and

are consequently limited in their ability to account for the effects

of ontology, plausibility, and functional form outlined in the pre-

vious section. Second, the framework should be broad enough to

encompass learning of both causal structure and the parameters

that describe a given causal relationship. We now discuss these

issues in turn, arguing that both can be addressed by adopting a

more general Bayesian framework.

Capturing the effects of prior knowledge. The approaches to

structure learning and parameter estimation outlined above all

make either weak (in the case of structure learning) or general-

purpose (in the case of parameter estimation) assumptions about

the nature of causal relationships. These assumptions are incom-

patible with the richness of human knowledge about causal rela-

tionships and the corresponding flexibility of human causal induc-

tion exhibited in the examples discussed in the previous section. In

part, this is a consequence of the context in which these approaches

were developed. In statistics and computer science, developing

algorithms that make minimal assumptions about the nature of

causal relationships maximizes the number of settings in which

those algorithms can be used. Psychological models of causal

induction have justified making general-purpose assumptions

about the nature of causal relationships through the expectation

that it will be relatively straightforward to integrate the effects of

prior knowledge into the resulting models. For example, Cheng

(1997, p. 370) stated:

The assumption that causal induction and the influence of domain-

specific prior causal knowledge are separable processes is justified by

numerous experiments in which the influence of such knowledge can

be largely ignored . . . . The results of these experiments demonstrate

that the induction component can indeed operate independently of

prior causal knowledge.

In the few cases where formal accounts of the integration of prior

knowledge and data have been explored (e.g., Alloy & Tabachnik,

1984; Lien & Cheng, 2000), these accounts have focused on just

one aspect of prior knowledge, such as the plausibility of causal

relationships or the level of the ontology at which those relation-

ships should be represented.

Constraint-based structure-learning algorithms are particularly

limited in their use of prior knowledge.2 Again, this is partly by

design, being a result of the data-driven, bottom-up approach to

causal induction that these algorithms instantiate in a particularly

clear way. As these algorithms are defined, they use only a weak

form of prior knowledge—the knowledge that particular causal

relationships do or do not exist (e.g., Spirtes et al., 1993). They do

not use prior knowledge concerning the underlying ontology, the

plausibility of relationships, or their functional form. This insen-

sitivity to prior knowledge has previously been pointed out by

some critics of constraint-based algorithms in computer science

and statistics (Humphreys & Freedman, 1996; Korb & Wallace,

1997). Prior knowledge provides essential guidance to human

inferences, making it possible to infer causal relationships from

very small samples. Without it, constraint-based algorithms re-

quire relatively large amounts of data in order to detect a causal

relationship— enough to obtain statistically significant results

from a statistical significance test.

2 It might not be impossible to develop a more global constraint-based

framework for causal induction, defined over richer representations of prior

knowledge and integrating both bottom-up and top-down information in a

more holistic style of inference. However, this would be a major departure

from how constraint-based approaches have traditionally been developed

(Spirtes et al., 1993; Glymour, 2001).
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The need for relatively large amounts of data is compounded by

the fact that constraint-based algorithms cannot combine weak

sources of evidence or maintain graded degrees of belief. This is a

direct consequence of the policy of first conducting statistical tests,

then reasoning deductively from the results. Statistical tests impose

an arbitrary threshold on the evidence that data provide for a causal

relationship. Using such a threshold is a violation of what Marr

(1982) termed the principle of least commitment, making it hard to

combine multiple weak sources of evidence. The binarization of

evidence is carried forward by deductively reasoning from the

observed patterns of dependency. Such a process means that a

particular causal structure can be identified only as consistent or

inconsistent with the data, admitting no graded degrees of belief

that might be updated through the acquisition of further evidence.

Although Bayesian structure learning can deal with weak evi-

dence and graded degrees of belief, the standard assumptions about

priors, likelihoods, and hypothesis spaces mean that this approach

is just as limited in its treatment of prior knowledge as constraint-

based algorithms. However, it is relatively straightforward to mod-

ify this approach to incorporate the effects of prior knowledge.

Different assumptions about the functional form of causal relation-

ships can be captured by including models with different param-

eterizations in the hypothesis space, and the plausibility of causal

relationships can be used in defining the prior probability of

different graph structures. Recent work in computer science has

begun to explore methods that use more complex ontologies, with

each type of entity being characterized by a particular pattern of

causal relationships with a particular functional form (e.g., Segal,

Pe’er, Regev, Koller, & Friedman, 2003). This work is motivated

by problems in bioinformatics that, as in many of the settings for

human causal induction, require learning complex structures from

limited data (e.g., Segal, Shapira, et al., 2003).

A similar strategy can be used to incorporate the effects of prior

knowledge in parameter estimation, allowing the expectations of

learners to influence their inferences about the strength of causal

relationships. Maximum-likelihood estimation finds values for pa-

rameters based purely on the information contained in the data.

This makes it hard for these models to incorporate the knowledge

of learners into the resulting estimates. Bayesian estimation tech-

niques provide a way to combine existing knowledge with data,

through a prior distribution on the parameters. For example, when

estimating the strength of a cause using the noisy-OR function, we

might have a prior expectation that causal relationships will tend to

be strong if they exist at all, corresponding to a prior distribution

favoring large values of w1. Lu et al. (2007, 2008) have developed

a model of human causal learning based on Bayesian parameter

estimation, using a general-purpose prior distribution favoring

strong causal relationships.

Learning both causal structures and parameter values. The

distinction between structure learning and parameter estimation is

valuable when examining the assumptions behind different models

of causal induction, but it is clear that both processes are key

components of human learning. In previous work (Griffiths &

Tenenbaum, 2005) we emphasized the importance of structure

learning, in part because it was a component of causal induction

that was not reflected in existing models, but we do not deny that

people are capable of learning causal strength and that certain tasks

are more likely to tap this ability than others. We provide a more

detailed discussion of this point when we consider causal induction

from contingency data, where the relevant phenomena are perhaps

clearest. However, the framework that we develop needs to be

sufficiently general that it can capture both of these aspects of

human causal induction.

The work of Lu et al. (2007, 2008) illustrates how a Bayesian

approach can be applied to the problem of estimating the strength

of a causal relationship. This analysis casts the problem in a shared

formal language with that of Bayesian structure learning, provid-

ing a simple way to develop a unifying framework. In Bayesian

parameter estimation, the hypothesis space is the set of values for

the parameters of a fixed causal structure. In Bayesian structure

learning, the hypothesis space is the set of possible causal struc-

tures, evaluated by summing over the parameters. We can define a

single framework in which both kinds of inferences can be made

by defining our hypothesis space to consist of fully specified

causal graphical models, each with both a structure and a full set

of parameters. Using this hypothesis space, we can estimate the

strength of a relationship by conditioning on a given structure and

using the posterior distribution on the strength parameter, as is

done by Lu et al. (2007, 2008). We can also answer a question

about whether a particular causal relationship exists by summing

over all hypotheses—including structure and parameters—and

evaluating the probability of those hypotheses consistent with the

existence of the relationship, similar to the approach taken by

Griffiths and Tenenbaum (2005).

Summary. We have identified two challenges for a

computational-level account of causal induction: incorporating

prior knowledge and allowing both structure learning and param-

eter estimation. Both of these challenges seem to be something that

can be addressed by adopting a more general Bayesian framework.

Within this framework, the hypothesis space consists of a set of

fully specified graphical models, each with a structure and a full

set of parameters, and the knowledge of the learner is reflected in

substantive assumptions about the prior probability of hypotheses,

the predictions that hypotheses make about data that are instanti-

ated in the likelihoods, and the selection of the hypotheses that

compose the hypothesis space. This leaves us with a new problem:

Where do the priors, likelihoods, and hypotheses that are used in

making a particular inference come from? Or, more precisely:

How can we formalize the knowledge about ontologies, plausible

relations, and functional form that allows hypothesis spaces to be

constructed? This is the question that we attempt to answer in the

remainder of the article. First, however, we argue that this knowl-

edge is something that cannot itself be captured in a causal graph-

ical model.

Beyond Causal Graphical Models

Formulating the problem of causal induction as a Bayesian

decision as to which causal graphical model generated observed

data provides a precise specification of how prior knowledge could

guide this inference. Knowledge about the ontology, plausibility,

and functional form of causal relationships should influence the

prior, likelihood, and hypothesis space for Bayesian inference.

However, expressing this knowledge requires going beyond the

representational capacities of causal graphical models. Although

this knowledge can be instantiated in a causal graphical model, it

generalizes over a set of such models, and thus cannot be ex-

pressed in any one model.
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Our inability to express prior knowledge relevant to causal

learning in the form of a causal graphical model is partly because

of an inherent limitation in the expressive capacity of graphical

models. Causal graphical models are formally equivalent to a

probabilistic form of propositional logic (e.g., Russell & Norvig,

2002). A causal graphical model can be used to encode any

probabilistic logical rule that refers to the properties of specific

entities in the domain. However, causal graphical models cannot

capture the fact that there are different types of entities, or the way

that the types of entities involved in a potential relationship influ-

ence our expectations about the plausibility and functional form of

that relationship. Such notions require going beyond causal graph-

ical models and considering richer probabilistic logics.

The knowledge that constrains causal learning is at a higher

level of abstraction than specific causal structures, just as the

principles that form the grammar for a language are at a higher

level of abstraction than specific sentences (Tenenbaum, Griffiths,

& Niyogi, 2007). The syntactic structure of a single sentence

cannot express the grammar of a language, which makes state-

ments about the syntactic structures of the set of sentences that

compose that language. More generally, making statements about

sets requires defining abstract variables that can be instantiated in

a given member of the set and quantifying over the values of those

variables. These higher level abstractions and generalizations re-

quire adopting a representation that goes beyond that used by any

member of the set itself.

The development of probabilistic predicate logic remains an

open problem in artificial intelligence research (Friedman, Getoor,

Koller, & Pfeffer, 1999; Kersting & De Raedt, 2000; Koller &

Pfeffer, 1997; Milch, Marthi, & Russell, 2004; Muggleton, 1997).

In the next section, we outline how some of the ideas behind this

research can be used to develop a different level of representation

for causal knowledge: a set of principles that can be used to guide

inferences about the causal structure that was most likely to have

generated observed data.

Theory-Based Causal Induction

So far, we have argued that human causal induction is affected

by prior knowledge in the form of ontological assumptions, beliefs

about the plausibility of causal relationships, and assertions about

the functional form of those relationships. Causal graphical models

provide us with a language in which we can express the compu-

tational problem underlying causal induction and embody a set of

domain-general assumptions about the nature of causality (includ-

ing, for example, the effects of intervening on a variable). How-

ever, causal graphical models are not sufficient to represent the

domain-specific knowledge that guides human inferences. In this

section, we develop a formal framework for analyzing how prior

knowledge affects causal induction. First, we argue that the kind of

knowledge that influences human causal induction fits the descrip-

tion of an intuitive theory, suggesting that the appropriate level of

representation for capturing this knowledge is that of a causal

theory. We then consider the function and content of such theories,

arguing that theories can play the role of hypothesis space gener-

ators, and presenting a simple schema for causal theories that

makes it easy to specify the information that is needed to generate

a hypothesis space of causal graphical models.

Prior Knowledge and Causal Theories

Many cognitive scientists have suggested that human cognition

and cognitive development can be understood by viewing knowl-

edge as organized into intuitive theories, with a structure analo-

gous to scientific theories (Carey, 1985a; Gopnik & Meltzoff,

1997; Karmiloff-Smith, 1988; Keil, 1989; Murphy & Medin,

1985). This approach has been used to explain people’s intuitions

in the biological (Atran, 1995; Inagaki & Hatano, 2002; Medin &

Atran, 1999), physical (McCloskey, 1983), and social (Nichols &

Stich, 2003; Wellman, 1990) domains and suggests some deep and

interesting connections between issues in cognitive development

and the philosophy of science (Carey, 1985a; Gopnik, 1996).

Although there are no formal accounts of intuitive theories,

there is consensus on what kind of knowledge they incorporate: an

ontology, indicating the types of entities that can be encountered in

a given domain, and a set of causal laws expressing the relations

that hold among these entities. For example, Carey (1985b) stated

that:

A theory consists of three interrelated components: a set of phenom-

ena that are in its domain, the causal laws and other explanatory

mechanisms in terms of which the phenomena are accounted for, and

the concepts in terms of which the phenomena and explanatory

apparatus are expressed. (p. 394)

When discussing causal theories, it is often productive to distin-

guish among different levels at which a theory might operate. In a

philosophical work that has inspired much of the treatment of

theories in cognitive development, Laudan (1977) made such a

distinction, separating everyday scientific theory from higher level

“research traditions.” He characterizes a research tradition as con-

sisting of

an ontology which specifies, in a general way, the types of funda-

mental entities which exist in the domain or domains within which the

research tradition is embedded . . . . Moreover, the research tradition

outlines the different modes by which these entities can interact.

(p. 79)

This distinction between these different levels of theory has been

carried over into research on cognitive development, where Well-

man (1990) and Wellman and Gelman (1992) distinguished be-

tween “specific” and “framework” theories:

Specific theories are detailed scientific formulations about a delimited

set of phenomena . . . framework theories outline the ontology and the

basic causal devices for their specific theories, thereby defining a

coherent form of reasoning about a particular set of phenomena.

(p. 341)

All of these definitions draw upon the same elements—ontologies

and causal laws.

The three aspects of prior knowledge that we have identified as

playing a role in causal induction map loosely onto the content of

intuitive theories identified in these definitions. The division of the

entities in a domain into a set of different types is the role of an

ontology, and causal laws identify which relationships are plausi-

ble and what form they take. This suggests that we might think of

the knowledge that guides causal induction as being expressed in

a causal theory. In particular, it is a theory that plays the role of a

framework theory, providing a set of constraints that are used in
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discovering the causal graphical model that describes a system, the

analogue of a specific theory. Causal theories thus constitute a

level of representation above that of causal graphical models,

answering our question of how knowledge that is instantiated in a

set of causal graphical models might be expressed. However,

making this connection does not solve all of our problems: In order

to have a complete formal framework for modeling human causal

induction, we need to give an account of the function and content

of these causal theories.

Theories as Hypothesis Space Generators

The Bayesian framework sketched in the previous section leaves

us with the problem of specifying a hypothesis space, a prior on

that space, and a likelihood for each hypothesis in that space. This

problem can be solved by defining a probabilistic procedure for

generating causal graphical models. Such a procedure needs to

specify probability distributions from which the variables, struc-

ture, and parameterization of causal graphical models are drawn.

The hypothesis space is the set of causal graphical models that can

be generated by sampling from these distributions, the prior is the

probability with which a given model is generated by this process,

and the likelihood is determined by the parameterization of that

model. By limiting which causal structures and parameterizations

can be generated, it is possible to impose strong constraints on the

hypotheses considered when reasoning about a causal system. We

view this as the function of causal theories: They specify a recipe

that can be used to generate hypothesis spaces for causal induction.

The commitments and consequences of this claim can be un-

derstood by extending the analogy between language comprehen-

sion and causal induction introduced in the previous section. Under

this analogy, a theory plays the same role in solving the problem

of causal induction that a grammar plays in language comprehen-

sion: Like a grammar, a theory generates the hypotheses used in

induction. A schematic illustration of the correspondence between

these two problems is shown in Figure 1. Under this view, the

solution to the inductive problem of causal learning has the same

character as identifying the syntactic structure of sentences: just as

grammars generate a space of possible phrase structures, theories

generate a space of possible causal graphical models. Causal

learning is thus a problem of “parsing” the states of the variables

in a system with respect to a causal theory. If the theory provides

strong enough constraints, such parsing can be done swiftly and

easily, picking out the causal structure that is most likely to have

generated the data. Just as recent work in computational linguistics

has emphasized the value of probabilistic approaches in solving

such parsing problems (e.g., Chater & Manning, 2006; Manning &

Schütze, 1999), the assumption that theories generate hypotheses

and hypotheses generate data means that we can view each of these

levels of representation as specifying a probability distribution

over the level below. The result is a hierarchical Bayesian model

(Tenenbaum, Griffiths, & Kemp, 2006), supporting probabilistic

inference at all of these levels.

Formalizing the Content of Causal Theories

To specify the content of causal theories, we need to identify

their basic constituents and explain how these are used to generate

causal graphical models. When cognitive scientists appeal to an

intuitive theory to explain the inferences that people make in a

given domain, they typically mean a structured representation with

causal content, similar in spirit to a scientific theory (e.g., Carey,

1985a). As discussed above, accounts in philosophy of science and

cognitive development are more precise about the structure and

content of such theories, seeing them as constructed from an

ontology and causal laws (Carey, 1985b; Gopnik & Meltzoff,

1997; Wellman, 1990; Wellman & Gelman, 1992). Providing a

formal treatment of causal theories that captures their richness and

complexity, as well as the breadth of inferences that they are

supposed to support, is a task that goes beyond the scope of this

article. We formalize just the aspects of causal theories relevant to

generating hypothesis spaces for causal induction. As a result, the

theories we discuss are far less abstract that what is typically

described in discussions of framework theories, being just one

level above the observable variables. We consider the possibility

of more abstract causal theories elsewhere (Tenenbaum et al.,

2007).

The causal theories that we present in this article will have

three components, corresponding to the three aspects of prior

knowledge that influence causal induction identified above, and

the three elements of the definition of a causal graphical model.

These three components are an ontology, a set of principles that

identify plausible relations, and a statement of the functional form

of those relations. These three components of a theory each gen-

erate one part of a causal graphical model, being the variables, the

causal structure, and the parameterization, respectively. We de-

scribe these components using a combination of probability state-

ments and first-order logic. Since our aim is to produce a

computational-level account of human causal induction, the spe-

cific choices we have made in using this formalism are not in-

tended to be interpreted as assertions about the nature of the

representations that people actually use when solving these prob-

lems, nor are the specific theories we present supposed to capture

the full complexity of the information that people have available

about these systems. However, we are committed to the level of

representation (i.e., using a language that is richer than that of

causal graphical models) and the constraints that are embodied in

the theories, which are ultimately expressed as distributions over

causal graphical models. In this spirit, we have used a variety of

different formalisms for causal theories in other presentations of

these ideas (Griffiths, Baraff, & Tenenbaum, 2004; Griffiths &

(a) Grammar

Syntactic structure

(parse tree)

Sentence

Causal theory

Data

Causal structure

(graphical model)

(b)

Figure 1. Three levels of representation in (a) language comprehension

and (b) causal induction. Each level generates the level below, and lan-

guage comprehension and causal induction both involve inferring the

middle level based upon data below and constraints from above.
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Tenenbaum, 2007b; Tenenbaum & Griffiths, 2003; Tenenbaum &

Niyogi, 2003).

To provide some concreteness to our formalism for expressing

causal theories, we consider a specific example throughout. Many

empirical studies of causal induction (e.g., Buehner & Cheng,

1997; Buehner, Cheng, & Clifford, 2003; Lober & Shanks, 2000)

use medical scenarios, such as evaluating the influence of chem-

icals on gene expression. These studies typically examine learning

about a single causal relationship, such as whether injecting a

particular chemical into mice causes them to express a particular

gene. While simple, even these settings have enough structure that

we can identify a nontrivial theory expressing prior knowledge that

influences causal learning in this domain. We introduce our gen-

eral framework in this simplest setting and then move to more

complex settings, where richer prior knowledge allows learning

from sparser data.

The first component of a theory, the ontology, identifies the

types of entities that exist in a domain,3 the number of entities of

each type (or a distribution over this number), and the predicates

that can be used to describe these entities. Such an ontology is far

more limited than the kinds of ontologies considered in philosophy

or computer science but is sufficient to express constraints on

causal induction. In our example, where participants discover

whether chemicals cause genes to be expressed in mice, there are

three types of entities: Chemical, Gene, and Mouse. Any entity in

the domain must belong to one of these three types. The number of

entities of each type can either be stipulated or treated as a random

variable drawn from a specific distribution. For example, we might

state that the number of chemicals (NC), the number of genes (NG),

and the number of mice (NM) are drawn independently from

distributions PC, PG, and PM, respectively, but leave these distri-

butions undefined—in many cases, NC, NG, and NM will be ap-

parent, and we need not be concerned about generating them. The

predicates defined on these types state which properties and relations

can take arguments of particular types, and what values those predi-

cates can take on. In the example, these would include

Injected(Chemical, Mouse), indicating that a particular chemical

was injected into a particular mouse, and Expressed(Gene, Mouse),

indicating that a particular gene was expressed in a particular mouse.

Both of these predicates are Boolean, being either true or false. This

ontology is summarized in Figure 2. The ontology required for this

example is relatively simple, but the kind of knowledge that people

have in other situations may be much more complex. For example,

an ontology could be hierarchical, with objects belonging to types

at multiple levels and predicates applying based upon the type at

each of those levels (Griffiths & Tenenbaum, 2007b).

The second component of an intuitive theory is a set of rules that

determine which causal relationships are plausible. These rules can

be based upon the types of the entities involved or the predicates

that apply to them. In the cases we consider, the rules will be based

purely on types.4 In our example, the structure of the problem is

such that injecting chemicals does not cause injections of other

chemicals, and neither does gene expression. The only relation-

ships with which we concern ourselves are those between chem-

icals and genes. Figure 2 states a rule by which the plausibility of

such relationships might be expressed, assigning a probability p to

the existence of a causal relationship between a particular chemical

and a particular gene, regardless of the mouse involved. All other

causal relationships have probability 0.

The final component of an intuitive theory is a statement of the

functional form that causal relationships are expected to possess.

This requires specifying a parameterization (or distribution over

parameterizations) for each predicate identified in the ontology.

For the example, we need to define the probability that a particular

mouse receives an injection of a particular chemical. This proba-

bility will not influence any of our subsequent analyses and thus is

not specified: The theory indicates that this is a Bernoulli event,

being true with some probability, but does not give the probability.

In contrast, Expressed(G,M) is identified as a Bernoulli event

with parameter 	, where 	 is computed using a noisy-OR function,

allowing each cause—in this case Injected(C,M) for some C—to

have an independent opportunity to influence the effect with

probability wi. The parameters wi are all assumed to be drawn from

a uniform distribution, reflecting a lack of expectations about the

strengths of the causes, and making our hypothesis space contain

a continuum of causal graphical models in which the strength of

the causal relationships varies between 0 and 1.

Generating a Hypothesis Space

The process by which a causal graphical model is generated

from a theory is as follows:

1. Generate variables. Sample the number of entities of

each type from the distribution specified in the Ontology.

3 The term type is used here in the technical sense associated with a

typed or many-sorted logic (e.g., Enderton, 1972). Types restrict quantifi-

ers and the application of predicates, with each predicate being applicable

only to entities of particular types.
4 Defining the rules based purely on type results in simpler theories.

More generally, we could allow predicates to play a role in determining

whether causal relationships are plausible. In fact, this is done implicitly

even when only type is used, since a typed logic can be reduced to standard

propositional logic by introducing predicates that indicate type (e.g.,

Enderton, 1972). Pursuing this strategy requires distinguishing between

predicates that participate in causal relationships and predicates that are

used just to determine the plausibility of those relationships. The former are

used to generate the variables of the causal graphical models, whereas the

latter define the prior probability of each model (see Griffiths & Tenen-

baum, 2007b, for an example of this).

Figure 2. Theory for causal induction from contingency data in a medical

setting.
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Generate the complete set of grounded predicates for

these entities. This is the set of variables that form the

nodes of the graph.

2. Generate structure. Sample links between nodes using

the probabilistic procedure stated in the Plausible rela-

tions component of the theory.

3. Generate parameterization. For each node, sample a

parameterization as specified in the Functional form

component of the theory, including the values of the

relevant parameters.

This generative process defines a hypothesis space of fully specified

causal graphical models, together with a prior probability and, via the

parameterization, a likelihood for each model in that space.

We illustrate how this generative process works by using the

theory given in Figure 2. We assume that the number of chemicals,

genes, and mice involved in a particular experiment is known, and

implicitly condition on this information. For example, we might

have a single chemical c, a single gene g, and NM mice

m1, . . . , mNM
. The set of grounded predicates is constructed by

substituting all possible entities for the arguments of each predi-

cate in the ontology. In our case, this set consists of NM statements

indicating whether Injected(c,mi) holds of mouse mi, and NM

statements indicating whether Expressed(g,mi) holds of mouse

mi. We then have to consider possible causal structures on these

2NM variables. Since the constraints on plausible relations are such

that if Injected(c,mi) causes Expressed(g,mi) for some mouse mi,

then it does so for all mice, we will simply draw an arrow between

two variables C and E to indicate that the relationship between

Injected(c,M) and Expressed(g,M) holds for all mice M. The con-

straints on plausible relations imply that the only possible causal

relationship in this graphical model is that from Injected(c,mi) to

Expressed(g,mi), and that this relationship holds with probability

p. The hypothesis space H thus consists of two causal structures:

one in which Injected(c,M) causes Expressed(g,M), which has

prior probability p, and one in which Injected(c,M) does not cause

Expressed(g,M), which has prior probability 1 – p. These are

Graph 1 and Graph 0, respectively, shown at the top of Figure 3.

We obtain our full hypothesis space of causal graphical models by

augmenting these structures with parameters w0 and w1 drawn

from the appropriate prior distribution.

The same procedure can be used to generate a hypothesis space

of causal graphical models for any number of entities, as illustrated

in Figure 3. For example, with two chemicals and two genes, the

hypothesis space contains 16 causal graphical models, with the

prior probabilities determined by the number of causal relation-

ships expressed in the graph. The same causal theory can be used

to define a hypothesis space for five chemicals and 10 genes, or 50

chemicals and a thousand genes, simply by applying the same

abstract principles.

Summary

In this section we have outlined some of the key components of

causal theories and explained how they can be used to generate

hypothesis spaces of causal graphical models. In the following

sections, we present a series of case studies illustrating how these

components vary in different settings and how the constraints that

they provide are essential to understanding how people learn about

causal relationships. These case studies help to illustrate how our

theory-based approach can provide a unifying account of a broad

range of phenomena related to causal induction: The basic frame-

work of statistical inference informed by causal theories remains

constant, being a domain-general strategy, but the knowledge

contained within the theories varies, allowing us to explain

domain-specific inferences. The influence of the relevant prior

knowledge increases as we go through the examples, starting with

causal induction from contingency data where constraints from

prior knowledge are typically weak, but can nonetheless have

interesting consequences.

Causal Induction From Contingency Data

The aspect of human causal induction that has been studied most

extensively by psychologists is that of inferring a single causal rela-

tionship from contingency data. Given information about the fre-

quencies with which C and E co-occur, as summarized in Table 1,

people are asked to assess the extent to which C causes E. A

number of mathematical models have been proposed to explain

how people use contingency data to evaluate causal relationships

(e.g., Allan, 1980; Anderson, 1990; Anderson & Sheu, 1995;

Cheng, 1997; Cheng & Novick, 1990, 1992; Jenkins & Ward,

1965; López et al., 1998; Shanks, 1995b). These models tend to

downplay the role of prior knowledge, assuming that such knowl-

edge serves to provide a set of candidate causes, but contingency

data are used to evaluate those causes.

We provide an account of human causal induction from contin-

gency data within our theory-based framework. Most experiments

using contingency data select candidate causes and effects for

which causal relationships are plausible. This uniformity of plau-

sibility underlies claims about the separability of causal induction

and prior knowledge and means that the aspect of causal theories

that determines the plausibility of relationships will not be as

relevant here as in other settings discussed later in the article.

However, as our framework emphasizes, prior knowledge is not

restricted to plausibility: It also determines assumptions about

functional form. Our framework thus makes two claims about

causal learning from contingency data: that variation in the as-

sumed functional form should produce variation in human judg-

ments and that causal inferences can be understood as Bayesian

inferences about the causal models most likely to have generated

the observed data.

The plan of this section is as follows. First, we analyze the

problem of causal induction from contingency data using our

theory-based framework. We then compare the results of this

analysis with four rational models of human judgments, using this

comparison to highlight the assumptions behind our analysis that

are critical for predicting human judgments. We go on to test a

prediction produced by this analysis, examining whether different

tasks result in different treatment of the statistical problem under-

lying causal induction. Finally, we discuss how approaches for-

mulating the problem of causal induction in terms of structure

learning and parameter estimation can both be captured within our
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framework, consider different strategies that may manifest in the

data, and compare our model to a simple heuristic account.

Theory-Based Causal Induction

Buehner and Cheng (1997; see also Buehner, Cheng, & Clifford,

2003) conducted an experiment in causal induction from contin-

gency data using a medical scenario similar to that outlined in the

previous section: People were asked to rate how strongly they

thought the particular rays cause mutation on a scale from 0 (the

ray does not cause mutation at all) to 100 (the rays cause mutation

every time). Rays and viruses play roles that are directly analogous

to chemicals and genes in our example, and expectations about

their causal interactions can be captured using the same causal

theory. The experiment used a design in which 15 sets of contin-

gencies expressed all possible combinations of P(e��c�) and �P in

increments of .25. Experiments were conducted with both gener-

ative causes, for which C potentially increases the frequency of E,

and preventive causes, for which C potentially decreases the fre-

quency of E. The results of Buehner and Cheng (1997, Experiment

1B), which used generative causes, are shown in Figure 4.

The theory given in Figure 2 can be used to generate a hypoth-

esis space of causal models expressing the different kinds of
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Figure 3. Hypothesis spaces generated by the theory shown in Figure 2. The top of the figure shows the

hypothesis space for one chemical and one gene, which includes only two causal structures. With two chemicals

and two genes, the hypothesis space includes 16 causal structures, as shown in the lower portion of the figure.

In the graphs, C corresponds to Injected(C,M) for Chemical C and E corresponds to Expressed(G,M) for Gene

G, both for some mouse M. C1, C2, E1, and E2 should be interpreted similarly. p indicates the probability of a

causal relationship existing between a given chemical and gene, as outlined in the theory shown in Figure 2.
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structure that might explain the observed data, substituting rays

and viruses for chemicals and genes appropriately. For each set of

contingencies we have a single ray and a single virus, so the

hypothesis space H contains the two models Graph 0 and Graph 1

shown at the top of Figure 3. The first contribution that the theory

makes to this inference is thus to narrow down the hypothesis

space of possible causal structures to just two, ruling out other

structures in which viruses cause the application of rays or hidden

common causes exist. According to the theory, these two models

should use the noisy-OR parameterization, with each cause inde-

pendently having the chance to influence the effect. In fact, each of

these graphical structures corresponds to a continuum of causal

models, each with different values of w0 and w1, with the prior

being uniform over these values.

We can explore a variety of ways of answering the question that

participants were asked in this experiment. While the question is

nominally about the strength of the causal relationship, it is rela-

tively ambiguous and previous work has suggested that people can

still produce responses consistent with making an inference about

causal structure when faced with such a question (Griffiths &

Tenenbaum, 2005). For consistency with the other models we

consider in this article, we focus for now on modeling these results

as the consequence of a structural inference, although we return to

the issue of the roles of structure and strength in causal induction

later in the section.

Under this hypothesis space, the probability that a causal rela-

tionship exists is the probability that Graph 1 was responsible for

generating the data, D, being the frequencies with which cause and

effect co-occurred. We thus want to compute

P�Graph 1�D�

�

P�D�Graph 1�P�Graph 1�

P�D�Graph 1�P�Graph 1� � P�D�Graph 0�P�Graph 0�
,

(5)

which is simply Bayes’ rule, applied to the two hypotheses Graph

0 and Graph 1. The theory defines P(Graph 1) and P(Graph 0) via

the parameter p, which we set to .5. Computing P(D�Graph 1) and

P(D�Graph 0) requires integrating over the values of the parame-

ters of these models. The details of computing such integrals are

discussed in Griffiths and Tenenbaum (2005), where essentially

the same model is used to account for a range of phenomena in

causal induction from contingency data.5

Figure 4 displays P(Graph 1�D) for different sets of contingen-

cies D, under this noisy-OR model. There is a remarkably close

correspondence between the predictions of the model and people’s

judgments. The rank-order correlation between the probabilities

and human responses is 
 � .971. The model also seems to capture

all of the important trends in the data, including the curious trend

shown by the leftmost five stimuli in the figure: People’s judg-

ments increase as P(e��c�) increases, despite the fact that there is

no difference in the probability of the effect in the presence and

absence of the cause. This phenomenon is known as the frequency

illusion or the outcome density effect (Allan & Jenkins, 1983;

Shanks, López, Darby, & Dickinson, 1996), and, as we shall see

shortly, presents a challenge for other models of causal induction.

Alternative Accounts

We can gain insight into the critical features of this account of

causal induction from contingency data by comparing its predic-

tions to those of other models. Our theory-based account assumes

that people approach causal induction as a decision between dif-

ferent causal structures and that their intuitive theory involves a

functional form equivalent to the noisy-OR. We consider two

classes of models that can be used to evaluate these assumptions.

One class treats causal induction as a problem of estimating the

strength of a causal relationship, rather than inferring the under-

lying causal structure. The two models in this class are the rational

models of causal induction from contingency data introduced

above, causal power (Cheng, 1997), and �P (Jenkins & Ward,

1965). The other class of models focuses on learning causal

structure but does not make strong assumptions about the func-

tional form of the underlying causal relationship. The two models

in this class correspond to the two approaches to structure learning

that have been pursued by computer scientists and statisticians: �2,

the frequentist test of statistical dependence used in constraint-

based algorithms, and Bayesian inference comparing causal mod-

els with a generic parameterization. Since these models have not

been fully introduced, the next two paragraphs provide the relevant

mathematical details.

The first step of constraint-based algorithms for learning causal

structure is to evaluate the dependencies among a set of variables.

This is typically done using the standard frequentist analysis of

contingency tables, Pearson’s (1904/1948) �2 test for indepen-

dence. The use of the �2 test as a model of human causal judgment

was suggested in the psychological literature (e.g., Allan, 1980)

but was rejected on the grounds that it neglects the kind of

asymmetry that is inherent in causal relationships, providing in-

formation solely about the existence of statistical dependency

between the two variables (Allan, 1980; López et al., 1998;

Shanks, 1995b). �2 also makes no commitment about the func-

tional form of the relationship between cause and effect: It simply

detects any kind of statistical dependency between C and E.

5 The basic model we explore in this section expresses the assump-

tions behind the causal support model introduced by Griffiths and

Tenenbaum (2005) in our formal framework. Causal support was com-

pared to human ratings using a power function of the log-likelihood ratio,

log
P�D�Graph 1�

P�D�Graph 0�
, rather than the posterior probability P(Graph 1�D). We

choose to use the posterior probability here for simplicity, and for consis-

tency with the other examples discussed in the article. The posterior

probability can also be obtained via a logistic transformation of the log-

likelihood ratio, so the two models are related by a monotonic transfor-

mation.

Table 1

Contingency Table Representation Used in Causal Induction

Cause

Effect

Present (e�) Absent (e�)

Present (c�) N(e�c�) N(e�c�)
Absent (c�) N(e�c�) N(e�c�)

Note. N(�) denotes the frequency of a particular event.
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Our theory-based account assumes that the relationship between

C and E uses the noisy-OR parameterization. This assumption can

be relaxed by using the “generic” parameterization introduced

above, simply defining the probability of the effect in the presence

and absence of the cause by separate parameters, with P(e��c�) �
w0 and P(e��c�) � w1. This parameterization makes no assump-

tions about the nature of the causal relationship between C and E,

postulating simply that the two variables are dependent. By defin-

ing priors on these parameters, which we assume are uniform, and

then integrating out the parameters, it is possible to compute

P(Graph 1�D) as in Equation 5. As in our theory-based account, we

assume that P(Graph 1) � .5. This generic parameterization of a

set of causal graphical models is widely used in Bayesian methods

for learning causal structure (see Cooper & Herskovits, 1992;

Heckerman, 1998) and is closely related to the rational model of

causal induction described by Anderson (1990).

The importance of the assumptions of our theory-based account

can be revealed by comparing its performance to that of these
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Figure 4. The top graph shows the results of Buehner and Cheng (1997, Experiment 1B). The other graphs

show predictions for these contingencies for different models—�P, causal power (Cheng, 1997), and the �2 test

for independence—together with our Bayesian model under three choices of parameterization (noisy-OR,

generic, and noisy-AND-NOT). P(e��c�) and P(e��c�) indicate the probability of the effect in the presence and

absence of the cause, respectively.
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different models. Causal power uses the functional form identified

in Figure 2, but it models judgments as strength estimation. Com-

paring our model with causal power thus reveals the role of

characterizing human inferences as an inference about causal

structure rather than an inference about causal strength. �2 and the

generic Bayesian approach are both concerned with causal struc-

ture but make weak assumptions about functional form. Compar-

ison with these models reveals the importance of the assumptions

about functional form embodied in the causal theory that underlies

our model.

The predictions of all of these models are shown in Figure 4, and

the rank-order correlations between models and human judgments

are summarized in Table 2. None of the models had any free

parameters, and the predictions were not transformed to fit the data

because the rank-order correlation is unaffected by monotonic

transformations. Our theory-based model matched or exceeded the

performance of the other models. Both �P and causal power

accounted for some of the trends in the data—for example, �P

captures the increase in judgments as P(e��c�) – P(e��c�) in-

creases, and causal power generally captures the increase in judg-

ments as P(e��c�) increases—but these trends are essentially

orthogonal, and consequently neither model provides a complete

account of the data. The theory-based noisy-OR model predicts

both of these trends and is the only model that accurately predicts

human judgments for the five stimuli on the left of the figure—

those for which �P � 0. People’s assessment of the extent to

which it seems that C causes E decreases as P(e��c�) decreases.

The fact that none of the other models predicts these judgments

reveals that these predictions are the direct consequence of com-

bining a particular functional form (the noisy-OR) with Bayesian

structure learning. We now examine why the theory-based model

makes this prediction.

The Importance of Functional Form

The fact that human judgments decrease as P(e��c�) decreases

when �P � 0 seems counterintuitive: There is no difference in the

probability of the effect in the presence or absence of the cause for

any of these stimuli, so why should people change their belief that

a causal relationship exists? In our theory-based account, the

explanation for these predictions is not that there is decreasing

evidence for a causal relationship as P(e��c�) decreases, but rather

that there is no evidence for or against a causal relationship when

P(e��c�) � 1, and increasing evidence against a causal relation-

ship as P(e��c�) decreases. This account depends on the assumption

that the causal relationship—if it exists—is generative (increasing the

probability of the effect, rather than preventing it). This assumption is

a key part of the theory shown in Figure 2 and manifests in the use of

the noisy-OR parameterization. At one extreme, when {P(e��c�),

P(e��c�)} � {8/8, 8/8}, all viruses mutated irrespective of ray expo-

sure, and it is clear that there is no evidence for a causal relationship.

But there can also be no evidence against a (generative) causal

relationship, because of a complete “ceiling” effect: It is impossible

for the cause to increase the probability of E occurring above its

baseline value when P(e��c�) � 1. This uncertainty in causal

judgment when P(e��c�) � 1 and �P � 0 is predicted by both our

model, in which P(Graph 1�D) is close to .5, and also (as Cheng,

1997, pointed out) by causal power, which is undefined for these

contingencies.

Only the noisy-OR model, however, predicts the gradient of

judgments as P(e��c�) decreases. P(Graph 1�D) decreases as the

ceiling effect weakens and the observation that �P � 0 provides

increasing evidence against a generative causal relationship. At the

other extreme, when P(e��c�) � 0/8, no unexposed viruses mu-

tated, and there are eight opportunities for a causal relationship to

manifest itself in the exposed viruses if such a relationship in fact

exists. The fact that the effect does not appear in any exposed

viruses, P(e��c�) � 0/8, suggests that the ray does not cause virus

mutation. The intermediate cases provide intermediate evidence

against a causal relationship. The contingencies {2/8, 2/8} offer six

chances for the cause to have an effect, and the fact that it never

does so is slightly weaker evidence against a relationship than in

the {0/8, 0/8} case, but more compelling than for {6/8, 6/8}, where

Table 2

Rank-Order Correlations for Different Models of Causal Induction

Model

Buehner and Cheng (1997) Functional form experiment

Generative Preventive Generative Difference Preventive

Bayesian models
Noisy-OR .961 �.814 .971 .850 �.721
Generic .876 .760 .957 .975 .930
Noisy-AND-NOT �.868 .893 �.732 �.336 .971

�P

Positive .883 �.769 .968 �.946
Absolute value .883 .769 .968 .968 .946
Negative �.883 .769 �.968 .946

Power
Generative .942 �.531 .949 �.800
Preventive �.698 .884 �.858 .971

�2 .880 .761 .966 .958 .940

Note. Boldface indicates the highest correlation in each column. Many of the correlations listed in the table represent combinations of models and tasks
that have not been advocated in the literature, such as using the preventive version of causal power to model inferences about generative causes. We include
these correlations for completeness, and because they provide a clear verification of the need for models assuming different functional forms for different
tasks.
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the cause has only two chances to manifest itself and the obser-

vation that �P � 0 could easily be a coincidence. This gradient of

uncertainty shapes the Bayesian structural inference that underlies

our model, but it does not affect the maximum-likelihood param-

eter estimates underlying causal power or �P.

This explanation depends upon two aspects of our theory-based

account: the general assumption that causal induction is a statisti-

cal inference comparing causal structures and the specific assump-

tion that the appropriate functional form is the noisy-OR. The

importance of these assumptions is supported by the failure of

causal power, an estimate of the strength of a causal relationship

under the noisy-OR, and the generic Bayesian structure-learning

model. One prediction of this account is that people should alter

their judgments in circumstances where a different functional form

is appropriate. An opportunity to test this prediction comes from

preventive causes. Since the noisy-OR only allows causes to

increase the probability of their effects, a different parameteriza-

tion is required to capture the properties of causes that decrease the

probability of their effects. Buehner and Cheng (1997, Experiment

1A) used a design similar to that already described for generative

causes to assess people’s judgments about preventive causes. The

results of this experiment are shown in Figure 5. From the figure,

it can be seen that the trend at �P � 0 is reversed for preventive

causes: A decrease in P(e��c�) results in an increase in people’s

judgments.

Modeling these data requires making an assumption about the

functional form of preventive causes. A simple theory of this kind

would have the same content as the theory for generative causes

shown in Figure 2, except for the assumptions about functional

form, replacing the noisy-OR with the noisy-AND-NOT parame-

terization (Cheng, 1997; Novick & Cheng, 2004; Pearl, 1988).

This parameterization follows from a set of assumptions similar

to those made in the noisy-OR. In the case of Graph 1, these

assumptions are that E occurs in the absence of C with probability

w0, and C independently prevents E from occurring with proba-

bility w1. The resulting parameterization generalizes the logical

statement that E will occur if the background factors are present

and not C, allowing the influence of these factors to be probabi-

listic. The conditional probability can be written as

P�e��c; w0, w1� � w0�1 � w1�
c, (6)

which gives w0 for the probability of E in the absence of C and

w0(1 – w1) when C is present. As with the noisy-OR, both w0 and

w1 are constrained to lie in the range [0, 1], and the function can

be generalized to accommodate the influence of multiple parents.

Under a theory using the noisy-AND-NOT, the posterior prob-

abilities of different causal structures can still be evaluated via

Equation 5, but the different parameterization results in different

probabilities for P(D�Graph 1) and P(D�Graph 0). First, we note

that comparing structures with the noisy-AND-NOT parameteriza-

tion provides a poor account of human judgments for generative

causes, as shown in Figure 4 and Table 2. This model is actually

strongly anticorrelated with human judgments for generative

causes. However, the noisy-AND-NOT model gives a good ac-

count of human judgments for preventive causes, with 
 � .893.

The predictions of this model are shown in Figure 5.

The alternative models discussed above can also be applied to

this preventive setting. Rather than using �P to predict judgments

about preventive causes, we use –�P. Cheng (1997) defined causal

power for preventive causes, following from a set of assumptions

similar to those made for generative causes. The causal power for

a preventive cause is

power �

��P

P�e��c��
. (7)

The effect of P(e��c�) on causal power is the reverse of that for

generative causes, with �P having a greater influence when

P(e��c�) is small. Tenenbaum and Griffiths (2001; Griffiths &

Tenenbaum, 2005) showed that this form of causal power is a

maximum-likelihood estimate of the w1 parameter for the noisy-

AND-NOT. �2 and Bayesian structure learning with the generic

parameterization are unaffected by the valence of a causal rela-

tionship and can be applied just as in the generative case.

The predictions of these models are shown in Figure 5, and their

correlations with human judgments are given in Table 2. Bayesian

structure learning with the noisy-AND-NOT outperformed all

other models and gave a better account of human judgments than

Bayesian structure learning with either the noisy-OR or the generic

parameterization. This included accurately predicting the trend

shown by the stimuli for which �P � 0, which goes in the opposite

direction from that for generative causes, but has the same statis-

tical explanation—since causes decrease the probability of effects

in the preventive setting, {8/8, 8/8} gives the most opportunities to

discover that the cause does not influence the effect.

Inferences about generative causes are best captured using a

noisy-OR parameterization, and inferences about preventive

causes are best captured by the noisy-AND-NOT. This suggests

that people make different assumptions about the functional form

of generative and preventive causes and is consistent with the

analysis of generative and preventive causal relationships given by

Cheng (1997) and Novick and Cheng (2004). A further question

raised by these results is whether there are any circumstances

under which people’s judgments will be best captured by the

generic parameterization. The generic parameterization makes no

assumptions about the nature of the relationship between cause and

effect. Bayesian structure learning with this parameterization

amounts to assessing whether there is any difference in the prob-

ability with which the effect occurs in the presence and absence of

the cause. Consequently, we would expect that explicitly asking

people to assess whether there is a difference in the probability

with which the effect occurs under two different conditions will

produce responses consistent with the generic parameterization.

To test this hypothesis, we ran an experiment in which people

were asked to evaluate a set of contingencies as either evidence for

a generative causal relationship between injecting a chemical into

a mouse and a gene being expressed, evidence for a preventive

causal relationship between injecting a chemical and a mouse

catching a virus, or evidence for a difference in the probability of

gene expression between two species of mice. The generative

condition used the contingencies from Buehner and Cheng (1997,

Experiment 1B), as given in Figure 4; the preventive condition

used the contingencies from Buehner and Cheng (1997, Experi-

ment 1A). These contingencies differ only in whether P(e��c�) is

greater than P(e��c�) or vice versa. The difference condition used

the same contingencies, randomizing whether the probability of

the effect was higher for the first species or the second. In each

case, these stimuli were presented on a one-page survey, which
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outlined the medical cover story and then asked people to evaluate

the evidence provided by the contingencies, stating that each set of

contingencies indicated the results of a laboratory study (the full

scenarios appear in Appendix A). In the generative condition,

participants were given the following instructions:

For each study, write down a number between 0 and 100 representing

the degree to which the chemical causes the gene to be expressed. A

rating of 0 indicates that the chemical DOES NOT CAUSE the gene

to be expressed at all, and a rating of 100 indicates that the chemical

DOES CAUSE the gene to be expressed every time. Use intermediate

ratings to indicate degrees of causation between these extremes.

In the preventive condition, the instructions read as follows:

For each study, write down a number between 0 and 100 representing

the degree to which the chemical prevents a virus being caught. A

rating of 0 indicates that the chemical DOES NOT PREVENT the

virus at all, and a rating of 100 indicates that the chemical DOES

PREVENT the virus every time. Use intermediate ratings to indicate

degrees of prevention between these extremes.
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Figure 5. The top graph shows the results of Buehner and Cheng (1997, Experiment 1A). The other graphs

show predictions for these contingencies for different models—�P, causal power (Cheng, 1997), and the �2 test

for independence—together with our Bayesian model under three choices of parameterization (noisy-OR,

generic, and noisy-AND-NOT). P(e��c�) and P(e��c�) indicate the probability of the effect in the presence and

absence of the cause, respectively.
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Finally, the difference condition gave these instructions:

For each study, write down a number between 0 and 100 representing

how likely you think it is that the two species differ in their probability

of expressing that gene. A rating of 0 indicates that the two species

DEFINITELY have THE SAME probability of expressing the gene,

while a rating of 100 indicates that the two species DEFINITELY

have DIFFERENT probabilities of expressing the gene. Use interme-

diate ratings to indicate degrees of likelihood between these extremes.

Participants completed the survey as part of a booklet of unrelated

surveys. There were 73 participants in the generative condition, 47

in the difference condition, and 67 in the preventive condition.

People’s judgments in the generative and preventive conditions

replicated the results of Buehner and Cheng (1997), having a linear

correlation of r � .993 and r � .989 with Experiments 1B and 1A,

respectively (we used linear rather than rank-order correlations

here since there was no need to take into account possible nonlin-

ear transformations). The correlations between Bayesian structure-

learning models and these judgments are shown in Table 2. Also

included in the table are the predictions of �P, causal power, and

�2 (the absolute value of �P was used for the difference condition,

but there was no appropriate analogue of causal power). As pre-

dicted, the noisy-OR model gave the best account of responses in

the generative condition, the generic model did best in the differ-

ence condition, and the noisy-AND-NOT did best in the preventive

condition. Human judgments for the five stimuli for which �P �
0 are shown in Figure 6. �P, causal power, and �2 all predict that

there should be no variation in responses across these stimuli.

Contrary to these predictions, the effect of P(e��c�) on judgments

was statistically significant in both the generative, F(4, 288) �
5.32, MSE � 216.92, p � .001, and preventive conditions, F(4,

264) � 2.63, MSE � 313.25, p � .05, and approached significance

in the difference condition, F(4, 184) � 2.40, MSE � 345.74, p �
.051. There was also a statistically significant interaction between

P(e��c�) and condition, F(8, 736) � 3.68, MSE � 283.68, p �
.001. As can be seen from the figure, this variation was exactly as

should be expected if people are performing Bayesian structure

learning with the appropriate parameterization.

Structure, Strength, and Strategies

The models we have presented in this section are based on the

assumption that people are making a judgment about whether or

not a causal relationship exists, rather than estimating its strength.

As we noted when we first defined our framework, this is not a

necessary assumption: By taking our hypotheses to include both a

causal structure and the values of the appropriate parameters, it is

also possible to define models that correspond to Bayesian strength

estimation of the kind endorsed by Lu et al. (2007, 2008). Whether

structure or strength is relevant will be determined by the demands

of the task. For example, Buehner et al. (2003) have shown that

people tend to produce judgments that are more consistent with

causal power when they are asked a counterfactual question, such

as “What is the probability that a mouse not expressing the gene

before being injected will express it after being injected with the

chemical?” As pointed out by Griffiths and Tenenbaum (2005, pp.

374–375) this finding is consistent with the analysis we have

presented in this section, since the rational answer to this question

should be an estimate of w1. The Bayesian treatment of strength

estimation presented by Lu et al. (2007, 2008) provides a way to

incorporate the effects of prior knowledge into these strength

estimates.

Even in cases where people’s judgments seem to be better

characterized in terms of structure learning, there is room for

variation in the assumptions we make about the knowledge that

informs these judgments. The model we have presented in this

section makes the simplest possible assumption about the prior on

the strength parameters w0 and w1, considering each value of these

parameters to be equally likely. However, this assumption has an

effect on the model’s predictions both about the probability that a

causal relationship exists and about the strength of that relation-

ship. Lu et al. (2006, 2007, 2008) have shown that adopting a more
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Figure 6. Effect of assumptions about functional form on causal induction. The top row shows people’s

judgments for a set of stimuli for which �P � 0, under three different kinds of instructions, as described in the

text. The bottom row shows the predictions of our theory-based account under three different assumptions about

the functional form of a causal relationship. There appears to be a direct correspondence between task

instructions and assumed functional form. P(e��c�) and P(e��c�) indicate the probability of the effect in the

presence and absence of the cause, respectively.
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informative prior on w0 and w1, in which causes are assumed to be

strong when they exist and the values of w0 and w1 are inversely

correlated, can improve the performance of this model for both

structure learning and strength estimation. This modification can

be incorporated into our framework through a small change in the

part of the theory that specifies the functional form, replacing the

uniform prior with this more informative version.

Whether people approach a task as structure learning or strength

estimation will depend on their interpretation of the task and the

strategies that they adopt. More generally, the richer characteriza-

tion of the knowledge that people can bring to bear on a causal

induction task provided by our framework opens up some inter-

esting opportunities in understanding individual differences. For

example, Buehner et al. (2003) noted that there appeared to be

significant individual differences in the judgments that people

produced in the experiment that we used to introduce our model.

They performed a cluster analysis and found two clusters, one of

which correlated well with causal power (
 � .902) and the other

with �P (
 � .968). The mean ratings for the two clusters are

shown in Figure 7. On the basis of these findings, other researchers

have considered the possibility of modeling human judgments as a

linear combination of �P and causal power (Perales & Shanks,

2007). However, our framework suggests another possibility: that

these individual differences were not the consequence of different

strategies, but different assumptions about the nature of causal

relationships. Figure 7 shows that these two clusters of subjects

actually seem to correspond more closely with the predictions of

the Bayesian model using two different parameterizations: a

noisy-OR for the first cluster and a generic parameterization for

the second cluster. Rank-order correlation coefficients of 
 � .946

and 
 � .980, respectively, strongly support these accounts. It

appears that everyone in this experiment is judging the evidential

support for a causal relationship, but one group appears to be

thinking of that causal relationship in terms of a generative mech-

anism whereas the other makes a weaker assumption that the cause

is just a “difference maker” in the probability of the effect. Ex-

ploring the extent to which individual differences can be explained

as a consequence of variation in the construal of the assumptions

that people make about causal induction tasks is an interesting

direction for future work.

Comparing to Other Models

Causal induction from contingency data has been the target of

an unusually large number of computational models, and our

discussion so far has focused on a comparison with just four

models. These models were selected to highlight the contributions

of the key components of our framework as clearly and briefly as

possible, since the focus of this article is on capturing the effects

of prior knowledge rather than developing the best model of causal

induction from contingency data. However, two recent meta-

analyses that compared the predictions of several models to human

judgments across several experiments provide a way to get a sense

for how well the model we have used as the basis for our analysis

performs in comparison to other models of causal induction.

Hattori and Oaksford (2007) compared 41 models against hu-

man judgments from 143 sets of contingencies derived from five

sets of experiments including their own, including only sets of

contingencies consistent with generative causes. Models were as-

sessed by computing the linear correlation within each experiment

(or set of experiments in one case), and then aggregating these

correlations to compute an overall average. Our Bayesian approach

gave the fifth best performance of the 34 models without free

parameters, despite the use of an arbitrary monotonic transforma-

tion of the model predictions in order to compute the correlation.

Two of the models that gave higher correlations were heuristic

accounts based on combining the frequencies that appear in the

cells of the contingency table, using weights established through

previous experiments. The other two models were variations on the

scheme that Hattori and Oaksford (2007) were advocating in their

article. Consistent with the results presented in this section, our

Bayesian model performed better than both causal power and �P.

Perales and Shanks (2007) performed a similar meta-analysis,

including 114 sets of contingencies derived from eight sets of

experiments, with some overlap with those considered by Hattori

and Oaksford (2007). Unlike Hattori and Oaksford, the experi-

ments testing these sets of contingencies used instructions that

asked people to evaluate generative causes, preventive causes, or

left the valence of the cause unspecified. The models considered

included causal power, �P, a weighted mixture of causal power

and �P, our Bayesian account, a heuristic based on a weighted

combination of cell frequencies, and two associative learning

models. Models were assessed by computing a single linear cor-

relation with human judgments across the full set of contingencies.

In their analysis, our Bayesian approach gave the worst perfor-

mance of all models being considered, with an overall correlation

of r � .81, worse than �P (r � .89), causal power (r � .92), and

the heuristic model (r � .94).

The criteria by which Perales and Shanks (2007) chose datasets

for inclusion in their analysis were not particularly favorable to

rational models, since they emphasized online learning, mixed

preventive and generative causes, and allowed response scales

ranging from �100 (indicating a strong preventive relationship) to

100 (indicating a strong generative relationship). As they note in

their article, their application of our Bayesian model did not

resolve the problems created by mixing types of causes (which

result in different predictions from the model) or provide a well-

motivated solution to the problem of mapping to a scale from

�100 to 100. One way to solve both of these problems is to define

a hypothesis space that includes variation in functional form. For

example, with just one potential cause C and effect E we can

define a hypothesis space containing three structural hypotheses:

Graph 0, in which no causal relationship exists; Graph �, in which

a generative (noisy-OR) relationship exists; and Graph �, in which

a preventive (noisy-AND-NOT) relationship exists. All three

structural hypotheses are also associated with a continuum of

values for w0 and w1, defining a complete hypothesis space of fully

specified graphical models. We can then use Bayes’ rule to com-

pute the posterior distribution over these hypotheses and take the

predicted response to be �100P(Graph –�D) � 100P(Graph ��D),

where we obtain the probabilities for each graph by integrating

over the values of w0 and w1 as before. This response rule reduces

to the posterior probability that a causal relationship exists (ex-

pressed as a percentile) when the valence of the causal relationship

is known, and it is thus consistent with the other Bayesian

structure-learning models presented in this section.

We applied this revised model to the sets of contingencies

considered by Perales and Shanks (2007). When the valence of the
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cause was unambiguous, established through experimental instruc-

tions and the use of a rating scale that allowed only a single sign,

the Bayesian structure-learning model with the appropriate func-

tional form was used. When the valence was ambiguous, the model

allowing both functional forms was used. The prior was taken to be

uniform over all hypotheses in each case. Resolving the issues of

determining the appropriate functional form and response mapping

resulted in a large improvement in fit, with the model producing

r � .93. Thus, when the consequences of mixing generative and

preventive causes are taken into account, the model produces a

correlation that is higher than that of both causal power and �P,

and very close to that of the best-performing heuristic model. Lu

et al. (2008) have shown that a similarly high correlation can be

obtained by using a Bayesian strength estimation model using a
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Figure 7. Mean ratings for two clusters of participants in Buehner and Cheng (1997, Experiment 1B), based

on the analysis performed by Buehner et al. (2003). (a) The first cluster was interpreted as reflecting causal

power, but also seems consistent with Bayesian structure learning using a noisy-OR parameterization. (b) The

second cluster was interpreted as corresponding to �P, but also seems consistent with Bayesian structure
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uniform prior, and that an even higher correlation results from use

of an informative prior. Given that the fit of the heuristic model

also depends on setting several unmotivated free numerical param-

eters, we take these results on balance to favor our Bayesian

approach to causal learning, contrary to the conclusions of Perales

and Shanks.

Summary

Learning a single causal relationship from contingency data is

arguably the most basic form of causal learning and is certainly

that which has inspired the most psychological research. The

results discussed above suggest that causal theories play a subtle

but important role in guiding causal induction from contingency

data. Models developed using our theory-based approach outper-

form leading rational models—�P and causal power—as well as

models based upon standard algorithms for causal learning devel-

oped in computer science and statistics. The success of these

models can be traced to two factors: the use of a causal theory that

narrows down the hypothesis space and postulates the correct

functional form, and the formulation of causal induction as a

Bayesian inference about the causal model most likely to have

generated the observed data. Varying the context of causal learning

alters the functional form that people assume and the way that they

construe the statistical problem, resulting in variations in behavior

that can be explained within this framework.

Although we have focused on the effects of just three differ-

ent parameterizations in the context of learning about a single

causal relationship, the particular parameterization that learners

should use will depend on the context in which learning takes

place. Different settings will result in different expectations

about the nature of causal relationships. Consequently, there are

many directions in which this analysis could be extended. A

simple next step would be to explore the contexts in which

functional forms corresponding to the kinds of causal schemas

that Kelley (1973) identified are used, and how people might

learn that such schemas are appropriate. Understanding how to

generalize the approach we have taken here to predict other

behavioral data, such as acquisition curves (e.g., Shanks, 1987),

is also important, and will require working out how to translate

this kind of rational analysis into predictions about the process

of learning (see Danks et al., 2003, for some initial steps in this

direction). More ambitiously, it will be important to take this

approach beyond the case of a single causal relationship in

order to make predictions about causal induction in contexts

where causes interact (e.g., Dickinson, Shanks, & Evenden,

1984; Novick & Cheng, 2004; Price & Yates, 1993). Now we

turn to a different setting, in which more complex causal

structures are considered but theories provide even stronger

constraints on causal models, making it possible to infer causal

relationships from far fewer observations.

Inferences From Small Samples

Although causal learning from contingency data typically in-

volves presenting a large number of observations of cause and

effect, much of human causal learning proceeds on far smaller

samples. For example, flipping a switch once and observing a light

come on is normally sufficient to convince us of the existence of

a causal relationship. The human ability to infer causal relationships

from small samples is at odds with the idea that people infer causal

relationships purely from contingencies, and for standard algorithms

for causal learning. For Hume (1748/1977, p. 52), causal induction

required “many uniform instances.” Similarly, the statistical tests that

scientists use to evaluate causal claims, and which are at the heart of

many generic algorithms for learning causal graphical models (e.g.,

Pearl, 2000; Spirtes et al., 1993), require large samples to achieve

significance. One of the key challenges for a computational account of

human causal inferences is thus explaining how it is possible for

people to learn so much from so little.

Explaining rapid causal learning might not seem problematic for

advocates of the idea that human causal induction can be explained

in terms of associative learning (e.g., Shanks, 1995b). Models of

associative learning, such as the Rescorla-Wagner model (Rescorla

& Wagner, 1972), typically incorporate a parameter that plays the

role of a learning rate, determining how much people modify their

estimates of the strength of a causal relationship on the basis of

their experiences in a single trial of learning. A high learning rate

results in rapid learning, with only a few trials being sufficient to

produce a large change in the estimate of the strength of a causal

relationship. Human inferences from small samples might thus be

accounted for by saying that people have a high learning rate.

However, this kind of account seems unsatisfying. In explaining

how it is possible for people to learn so much from so little, we

would also hope to explain why this seems to take place in some

situations but not others. Flipping a switch once might seem to

provide definitive evidence about the existence of a causal rela-

tionship, but running an experiment in which a single participant

produces a single response that is consistent with our predictions is

unlikely to convince us that we have discovered a new causal

relationship. Saying that we have a high learning rate for light

switches and a low learning rate for psychology experiments

seems like a redescription of the data. A more satisfying explana-

tion would be a systematic account that predicts under what

circumstances we should expect causal induction to be rapid and

under what circumstances we might be willing to believe in a

causal relationship only after collecting many observations.

An intuitive answer to the question of how people learn so much

from so little is that their inferences are informed by prior knowl-

edge, and that this knowledge is itself acquired through experi-

ence. This is essentially the answer that we will provide, arguing

that causal induction from small samples can be explained as the

result of a combination of strong constraints from relatively so-

phisticated causal theories with statistical inference. The challenge

here is in showing that this prior knowledge interacts with the ob-

served data in a nontrivial way. We show that the kind of knowledge

that is relevant to producing correct causal inferences from small

samples goes beyond forming generalizations based on more abstract

categories of causes (Lien & Cheng, 2000) or the a priori plausibility

of causal relationships (Alloy & Tabachnik, 1984), although these are

obviously both important ways in which prior knowledge can affect

people’s inferences. In particular, we argue that assumptions about

functional form are one of the key factors in enabling causal induction

from small samples. Thus, we can draw strong conclusions from

flipping a switch but not from the response of a single experimental

participant because we expect the former causal relationship to be
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deterministic but the latter to be probabilistic.6 This argument boils

down to learners having expectations about the variability associ-

ated with causal relationships, which will influence the amount of

data that they need to see in a way that generalizes to other

inductive problems as well (for a similar argument, see Holland,

Holyoak, Nisbett, & Thagard, 1986).

We support our analysis by examining the inferences that chil-

dren and adults make in a context where they have strong prior

knowledge: reasoning about the behavior of a machine for detect-

ing the hidden properties of objects. Gopnik and Sobel (2000)

introduced a novel paradigm for investigating causal inference in

children, in which participants are shown a number of blocks,

along with a machine—the “blicket detector.” The blicket detector

“activates”—lights up and makes noise—whenever a “blicket” is

placed on it. Some of the blocks are blickets, others are not, but

their outward appearance is no guide. Participants observe a series

of trials, on each of which one or more blocks are placed on the

detector and the detector activates or not. They are then asked

which blocks have the power to activate the machine.

Gopnik and Sobel have demonstrated various conditions under

which children successfully infer the causal status of blocks from

just one or a few observations (Gopnik et al., 2001; Sobel et al.,

2004). Two experiments of this kind are summarized in Table 3. In

these experiments, children saw two blocks, a and b, placed on the

detector either together or separately across a series of trials. On

each trial the blicket detector either became active or remained

silent. We encode the placement of a and b on the detector with

variables A and B, respectively, and the response of the detector

with the variable E. After seeing a series of trials, children were

asked whether each object was a blicket. Table 3 gives the pro-

portion of 4-year-olds who identified a and b as blickets after

several different sequences of trials.

Theory-Based Causal Induction

The inferences that both adults and children draw about blickets

and blicket detectors will be explained with reference to a simple

causal theory. Such a theory should reflect people’s intuitive

expectations about how machines (and detectors) work and be

informed by the instructions provided in the experiment. In the

experiments we discuss (Gopnik et al., 2001, Experiment 1; Sobel

et al., 2004, Experiment 2), children were introduced to the blicket

detector by being told that it was a “blicket machine” and that

“blickets make the machine go,” and they saw blocks that activated

the machine being identified as blickets and blocks that did not

activate the machine being identified as nonblickets. A theory

expressing this information is sketched in Figure 8.

Following the schema introduced above, this theory has three parts:

an ontology, a set of plausible relations, and the functional form of

those relations. The ontology identifies the kinds of entities in our

domain, which are divided into two types: Block and Detector. The

number of entities of each type, NB and ND, are specified by distri-

butions PB and PD, respectively. This ontology is hierarchical, with

Block being divided into Blicket and NonBlicket. The probability

that a Block is a Blicket is set by a parameter p. The ontology also

identifies a set of predicates that apply to these entities: Contact-

(b,d,t) indicates that Block b is on Detector d in Trial t, and

Active(d,t) indicates that Detector d is active on Trial t.

The plausible relations state that only blickets can cause detectors

to activate, and every blicket can activate every detector. The func-

tional form gives the probabilities of different kinds of events, stating

how causal relationships influence these probabilities. The theory

indicates that contact between a block and a detector is a relatively

rare event. While the specific probabilities given here will not have

any impact on our analysis, they could be used to make predictions

about other kinds of experiments. The critical piece of information

supplied by the functional form concerns how activation of a detector

is affected by its causes. The theory indicates that the probability of

activation follows a noisy-OR distribution (Equation 2). wi is the

“causal power” of blicket i (cf. Cheng, 1997)—the probability that

blicket i will cause the detector to activate. w0 represents the proba-

bility that the detector will activate without any blickets being placed

upon it. The parameter ε indicates the reliability of the detector,

determining the probability that it makes an error. Taking ε � 0, we

can define a theory that expresses two important assumptions. First,

the detector cannot activate unless a blicket is in contact with it (wi �

0). Second, the probability with which a blicket will activate the

detector is wi � 1 – ε. If we take ε � 0, we obtain wi � 1. These two

assumptions make this the deterministic detector theory, embodying a

simple activation law (Sobel et al., 2004): Only blickets can activate

the blicket detector, and they always do so.7

6 Although we distinguish between “probabilistic” and “deterministic”

causal relationships in defining these theories, both are consistent with an

underlying causal determinism: The probabilistic component of all of our

theories can be interpreted as reflecting the influence of unknown factors,

rather than a metaphysical commitment to a stochastic universe.
7 The deterministic detector theory is an attractive simplification of the

more general causal theory, and one that recent results on beliefs about

causal determinism in children (Schulz & Sommerville, 2006) would seem

to support as a reasonable default assumption. The model of Lu et al.

(2006, 2007, 2008) makes similar claims about people’s expectations

concerning functional form in learning from contingency data, expressing

the idea that people expect causes to have a high probability of bringing out

their effects.

Table 3

Probability of Identifying Blocks as Blickets for 4-Year-Old

Children

Condition Stimuli a b

One cause e��a�b� .91 .16
e��a�b�

2e��a�b�

Two causes 3e��a�b� .97 .78
2e��a�b�

e��a�b�

Indirect screening-off 2e��a�b� .00 1.00
e��a�b�

Backwards blocking 2e��a�b� 1.00 .34
e��a�b�

Association e��a�b� .94 1.00
2e��a�b�

Note. The one cause and two causes conditions are from Gopnik et al.
(2001, Experiment 1); indirect screening-off, backwards blocking, and
association conditions are from Sobel et al. (2004, Experiment 2). In
describing the stimuli, e� and e� indicate the presence and absence of the
effect, respectively, with similar notation used to indicate the presence and
absence of the objects a and b on the detector.
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In tasks involving the blicket detector, participants usually know

the number of blocks (NB), the number of detectors (ND), and the

number of trials (NT). However, they usually do not know which

blocks are blickets. The question of whether a block is a blicket

comes down to whether that block causes the blicket detector to

activate, since only blickets can cause activation of the detector.

This question can be addressed via a Bayesian inference over

causal networks: The posterior probability that a block is a blicket

is simply the posterior probability that there is a causal relationship

between placing that block on a detector and the activation of the

detector.

The deterministic detector theory generates a hypothesis space

H of causal networks for any events involving blocks and detec-

tors. Assuming that we know that we have two blocks, a and b, and

a single detector, d, H would consist of four graph structures, as

shown in Figure 9. We use the variables A and B to indicate

Contact(a,d,T) and Contact(b,d,T), respectively, and E to indi-

cate Active(d,T), all for the same trial, indicated by the logical

variable T. The prior probabilities of these models, P(Graph i), are

set by the causal theory. The likelihood of a set of trials under these

models can be evaluated using the probabilities given by the

noisy-OR. The posterior probability distribution over this set of

causal models can be evaluated for each set of trials shown in

Table 3, denoting the set of trials D and applying Bayes’ rule. The

probability that a particular block is a blicket can be evaluated by

summing the posterior probability of the models in which such a

causal relationship exists. For example, to evaluate the probability

that A causes E, we would add P(Graph 2�D) and P(Graph 3�D).

The predictions of this account are given in Table 4. These

predictions provide a strong qualitative correspondence with the

judgments of the children in the experiments. The most interesting

case is that of backwards blocking, where the Bayesian model

predicts that the probability that a causal relationship exists be-

tween B and E after the series of trials is p, the prior probability

that such a relationship exists. The analysis of this experiment is as

follows. After the e��a�b� trials (which we denote D1), at least

one block must be a blicket: The consistent hypotheses are Graphs

1, 2, and 3. After the e��a�b� trial (with the accumulated data

being denoted D2), only Graphs 2 and 3 remain consistent. The

nonzero posterior probabilities are then given as follows (all others

are zero):

P�Graph 2�D1� � P�Graph 1�D1� �

p�1 � p�

p2
� 2p�1 � p�

,

P�Graph 3�D1� �

p2

p2
� 2p�1 � p�

,

P�Graph 2�D2� �

p�1 � p�

p2
� p�1 � p�

� 1 � p,

P�Graph 3�D2� �

p2

p2
� p�1 � p�

� p.

Consequently, the probability that A causes E is 1, and that B

causes E is p.

However, this deterministic detector theory cannot explain all of

the inferences that children make about blickets. In particular, it

cannot explain the two causes condition in Experiment 1 of

Gopnik et al. (2004). This condition was used as a control for the

one cause condition, demonstrating that children drew quite dif-

ferent inferences about the causal relationships among a set of

objects when the same associative relations (the frequency with

which cause and effect co-occurred) were maintained but the

structure of the trials manifesting those relations was modified.

This control experiment involved showing children a block (b)

which activated the detector on two out of three occasions. Such an

event cannot be explained by our deterministic theory, under

which a block either causes a detector to activate all the time or

never. A set of trials in which a block activates a detector on two

out of three occasions has zero probability under all causal models.

Figure 8. Theory for causal induction with blicket detectors. In the

deterministic detector theory, ε � 0. The probabilistic detector theory

allows nonzero values of ε.

A AB B

E E

A AB B

E E

P(Graph 0) = (1-p) P(Graph 1) = p(1-p) P(Graph 2) = p(1-p) P(Graph 3) = p
22

Figure 9. Causal structures generated by the theory for the blicket detector with two blocks, a and b, and one

detector, d. A and B indicate the truth value of Contact(a,d,T) and Contact(b,d,T) for Blocks a and b and Detector

d, while E indicates the truth value of Active(d,T). Causal relationships hold over all trials, T. p indicates the

probability of a given block being able to activate the detector, as outlined in the theory shown in Figure 8.
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Consequently, the posterior distribution is undefined for this case,

indicated by the question marks in Table 4.

The problem raised by the two causes condition can be ad-

dressed by relaxing one of the assumptions of the deterministic

detector theory. If we allow blickets to activate detectors only

some of the time, then inconsistent patterns of activation like that

exhibited by block b are possible. We can make this change by

allowing the parameter ε in the theory shown in Figure 8 to take

values other than 0, where ε determines the error rate of the

detector. This probabilistic detector theory gives the same predic-

tions as the deterministic detector theory in the limit as ε3 0 but

also predicts that both a and b are blickets with probability 1.00 in

the two causes condition. Different values of ε give different

predictions. The predictions of this theory with ε � .1 and p � 1/3

are shown in Table 4. This model captures some of the finer details

of children’s judgments that are not captured by the deterministic

detector, such as the fact that b is judged less likely to be a blicket

than a in the two causes condition.

Alternative Accounts

As before, considering alternative accounts of these data provides

insight into the assumptions that allow the theory-based approach to

succeed. We compare this account with three alternatives: constraint-

based algorithms, Bayesian structure learning with the generic param-

eterization, and a Bayesian model in which the noisy-OR parameters

w0 and w1 can take any value between 0 and 1, as was used in the

account of causal induction from contingency data presented above.

All of these alternatives approach human inferences as a decision

between causal structures but differ from the theory-based account in

their assumptions about the functional form of the relationship be-

tween cause and effect. Examining these alternative accounts reveals

that the strong expectations about functional form embodied in our

deterministic and probabilistic theories are necessary to explain how

children can infer causal relationships with high certainty from small

samples.

Constraint-based algorithms. Gopnik et al. (2004) argued that

children’s inferences about blicket detectors can be explained by

standard constraint-based algorithms for learning causal graphical

models. They point out that, given appropriate information about

the dependencies between the variables A, B, and E, these algo-

rithms will infer the appropriate causal structure—for example,

that a is a blicket in the one cause condition. However, there are

two significant problems with this account: inferring the depen-

dencies and using probabilistic prior knowledge.

The first step in applying a constraint-based algorithm is to identify

the statistical dependencies that hold among a set of variables. Typ-

ically, this is done using frequentist tests such as the �2 test for

independence. These tests impose no constraints on the functional

form of the relationships between variables, and deciding that two

variables are dependent requires imposing some criterion of statistical

significance on the results of the tests. This raises a problem: The

inferences that children make in these experiments are the result of

only a handful of observations—far fewer than would be required to

produce statistically significant results. Gopnik et al. (2004) addressed

this issue by suggesting that “the sample size is given a large fictitious

multiplier” (p. 21). As with explaining rapid inferences in terms of

high learning rates, the fundamental problem with appealing to ficti-

tious multipliers is that it is clear that such multipliers should not be

used indiscriminately. For example, applying a large fictitious multi-

plier to the stimuli seen in experiments on causal induction from

contingency data would result in a strong conviction that a relation-

ship exists for almost all stimuli, which is at odds with people’s

performance on the task.

Allowing the sample size to be multiplied by some fictitious

amount (or postulating a high learning rate for an associative model)

leaves us with the problem of why a multiplier is appropriate in some

contexts but not others. Under our account, the reason why small

samples are so compelling in the case of the blicket detector is that

children have strong expectations about the functional form of the

relationship between placing blickets on the detector and the detector

activating—namely that “blickets make the machine go,” and that the

machine does not go in the absence of blickets. The �2 test makes far

weaker assumptions about functional form, and thus requires more

information to identify a relationship. Fictitious multipliers thus act as

a proxy for the prior knowledge that children are exploiting when

making their inferences.

A second problem with explaining these results using

constraint-based algorithms is that these algorithms do not exploit

probabilistic prior knowledge. While particular structures can be

ruled out on the basis of prior knowledge, it is difficult to see how

the knowledge that the probability that a block is a blicket is p can

be used by these algorithms. In contrast, the theory-based account

predicts that such knowledge should be useful in the backwards

blocking condition, where the probability that b is a blicket (under

the deterministic theory) is p. Furthermore, by reasoning deduc-

tively from a pattern of dependencies, constraint-based algorithms

cannot maintain degrees of uncertainty: A causal structure is either

consistent or inconsistent with the data. Both the backwards block-

Table 4

Predictions of Probabilistic Theory and Alternative Models

Condition

Deterministic Probabilistic Generic Noisy-OR

a b a b a b a b

One cause 1.00 .00 .99 .07 .54 .27 .65 .25
Two causes ? ? 1.00 .81 .32 .32 .52 .28
Indirect screening-off .00 1.00 .13 .90 .33 .50 .29 .56
Backwards blocking 1.00 p .93 .41 .33 .25 .49 .40
Association 1.00 1.00 .82 .98 .27 .27 .38 .43

Note. The question marks indicate that the posterior distributions are undefined for these cases. p � probability that a causal relationship exists after the
series of trials.
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ing and the two causes conditions illustrate that people exhibit

graded degrees of belief in the existence of a causal relationship.8

Bayesian structure learning with the generic parameterization.

Standard Bayesian structure-learning algorithms assume that the

relationship between A, B, and E can be expressed using

the generic parameterization, using a separate parameter to define

the probability of E for each combination of values of A and B.

This approach faces one of the problems identified above for

constraint-based algorithms: It makes weak assumptions about

functional form and consequently requires large samples to iden-

tify the existence of a causal relationship. This is illustrated in

Table 4, which shows the predictions obtained by applying Bayes-

ian structure learning using the generic parameterization (with a

uniform distribution over parameters) to the stimuli given in Table

3. The assumptions used to generate the predictions are exactly

those of the theory in Figure 8 (with p � 1/3), except for the

functional form. The predictions often deviate from human judg-

ments—for example, in the two causes condition, a and b have a

probability of being blickets that is scarcely different from the

prior, because there is no strong evidence that contact between a

and b and the blicket detector affects the probability with which

the detector activates. In the cases where predictions move in the

same direction as children’s inferences, the probability that any

block will be identified as a blicket remains close to the prior

probability in all cases. Both of these issues are consequences of

using the generic parameterization: If identifying a causal relation-

ship requires determining that two variables are dependent, small

samples can produce only small changes in beliefs about causal

relationships.

Relaxing the noisy-OR parameters. As a final comparison, we

can try to explain these inferences by applying the theory devel-

oped for chemicals and genes in the previous section (see Figure 2)

to blicket detectors. This theory assumes that the functional form

is a noisy-OR but that the noisy-OR parameters (including the

baseline probability w0) are drawn from a uniform distribution on

[0, 1]. Thus, like the deterministic and probabilistic detector the-

ories outlined above, blickets can only increase the probability that

the detector activates, but unlike those theories, blickets can vary

dramatically in their strengths, and the detector can activate in the

absence of any blickets. The predictions under this noisy-OR

theory are shown in Table 4. The assumption of generativity is not

sufficient to explain children’s inferences: Just assuming a

noisy-OR does not place sufficiently strong constraints on the

functional form of the relationship between blickets and the acti-

vation of blicket detectors. The model gives predictions that are

slightly more consistent with human judgments than the generic

parameterization, but small samples still do not produce dramatic

changes in the extent to which a block is believed to be a blicket.

Priors and Ambiguous Evidence

The theory-based account explains how children can infer

causal relationships from small amounts of data, positing strong

constraints on the relationships considered plausible and the func-

tional form of those relationships. It also makes two further pre-

dictions about human performance on these tasks that discriminate

it from alternative accounts such as constraint-based algorithms.

The first prediction is that prior beliefs, in the form of expectations

about the probability that a block is a blicket (the parameter p in

the theory), should influence people’s judgments. Specifically, in

the backwards blocking condition, the posterior probability that b

is a blicket is just p. The second prediction is that people should be

able to maintain graded degrees of belief in the face of ambiguous

evidence. Again, the backwards blocking experiment provides one

example of this, but the theory-based account predicts that people

should be able to infer that a block is a blicket despite never

obtaining definitive evidence, such as seeing it light up the detector

all on its own. A series of studies have been conducted to test these

predictions with both adults and children (Griffiths, Sobel, Tenen-

baum, & Gopnik, 2009; Sobel et al., 2004). We summarize the

results of these experiments and show how they can be explained

by the theory-based account. We focus on the adult experiments,

which provide data about the beliefs of the participants after each

trial, but the same qualitative effects hold with 4-year-old children.

Griffiths et al. (2009, Experiment 1) explored the extent to

which people’s judgments were affected by prior probabilities by

conducting an analogue of the backwards blocking condition of

Sobel et al. (2004, Experiment 1) but varying the probability of a

causal relationship. The experiment was done with adults, using a

“super-pencil” detector which functioned exactly like a blicket

detector, but identified whether golf pencils contained a special

kind of lead. Participants were randomly assigned to five condi-

tions, which determined how they were introduced to the detector.

In all five conditions, participants saw 12 pencils placed on the

detector, one after the other. The conditions varied in how many of

those pencils activated the detector, with 2, 4, 6, 8, or 10 pencils

being identified as containing super-lead. This training phase was

intended to establish prior beliefs about p, the probability that a

pencil contains super-lead, with the different conditions corre-

sponding to p � 1/6, 1/3, 1/2, 2/3, and 5/6, respectively.

The test phase of the experiment had three stages. First, partic-

ipants were shown two new pencils, a and b, and were asked to

rate the probability that they were super-pencils. They then saw a

and b placed on the detector together, and the detector activating,

and were again asked to rate the probability that they were super-

pencils. Finally, justa was placed on the detector, and the detector

activated. Once again, participants rated the probability that a and

b were super-pencils. The mean ratings in the different conditions

are shown in Figure 10. Manipulating the frequency with which

pencils were identified as super-pencils had the expected effect on

people’s baseline judgments, indicating a difference in prior be-

liefs. It also affected the judgments that people made after each

trial. As shown in the figure, the pattern of judgments is perfectly

predicted by Bayesian inference guided by the deterministic de-

tector theory (or the probabilistic detector theory with � � 1 – ε
as ε 3 0): The probability of a and b being super-pencils should

increase after the first trial, and then the second trial should

provide unequivocal evidence that a is a super-pencil while the

probability that b is a super-pencil should return to the prior p. The

model predictions shown in the figure were obtained by setting p

to the baseline probability given by the participants and yield a

8 The probabilities shown in Table 3 were computed from responses that

children made on multiple trials, and in cases where these probabilities are in

the middle range children sometimes varied in their responses across trials.

This variation is consistent with uncertainty about the existence of a causal

relationship.
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correlation of r � .973 with the human data. Sobel et al. (2004,

Experiment 3) obtained similar results with 4-year-old children.

To demonstrate the importance of the assumptions made in the

blicket detector theory, and in particular the assumption of a

functional form consistent with a noisy-OR in which blickets are

very likely to activate the detector, we also evaluated the predic-

tions of the three Bayesian models making different assumptions

about functional form introduced above: a model consistent with

the probabilistic detector theory, taking ε � .1; a model assuming

a generic functional form, as described above; and a model using

a noisy-OR parameterization, with a uniform distribution over wi,

as used in our analysis of inferences from contingency data. The
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Figure 10. Adult judgments and model predictions for causal induction with “super-pencils,” an analogue of

the blicket detector task from Griffiths et al. (2009, Experiment 1). The model predictions show the conse-

quences of modifying assumptions about the functional form of the causal relationship, including a deterministic

OR, a probabilistic noisy-OR in which pencils have super-lead, a generic parameterization that makes no

assumption about the nature or direction of a causal relationship, and a noisy-OR with a uniform distribution over

the strength of the causal relationship. In this case, people gave initial ratings, saw a trial on which two pencils,

A and B, caused the detector to activate, and then saw a further trial on which A alone caused the detector to

activate. In the experiment and the data, the prior probability that a pencil would activate the detector, p, varied

from 1/6 to 5/6. Error bars represent 1 SE.
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predictions of these three models are also shown in Figure 10. The

three models gave correlations of r � .950, r � .570, and r � .648

with the human data, with the generic and noisy-OR models being

far less sensitive to the information provided by the observed data

than the human participants in the experiment. These results show

how the assumption of a near-deterministic causal relationship

increases the amount of information provided by a small number

of observations.

This experiment illustrates that people’s causal inferences are

affected by their prior beliefs in exactly the way the theory-based

account predicts. Griffiths et al. (2009, Experiment 2) also showed

that people could make inferences from ambiguous evidence in a

fashion consistent with theory-based Bayesian inference. This

experiment was also conducted with super-pencils, and people saw

the detector activated by two out of 12 pencils before beginning

the critical trials. They were shown three new pencils, a, b, and c,

and were asked to rate the probability that these pencils were

super-pencils. They then saw a and b placed on the detector

together, causing the detector to activate, and gave new ratings.

Finally, they saw a and c placed on the detector together, causing

the detector to activate, and were asked to rate the probability that

each of the pencils was a super-pencil. The mean ratings are shown

in Figure 11.

In this experiment, people received no unambiguous clues that

a particular pencil was a super-pencil: There were no trials on

which a single pencil caused the detector to activate. Nonetheless,

people were able to infer that a was quite likely to be a super-

pencil, whereas b and c were less likely to be super-pencils, but

more likely than they had been at the start of the experiment.

Similar results were obtained with 4-year-old children (Griffiths et

al., 2009, Experiment 3). The hypothesis space generated by the

deterministic detector theory with three blocks and one detector is

shown in Figure 12. The hypothesis space H generated by the

theory consists of eight causal graphical models, indicating all

possible sets of causal relationships between the three blocks and

the detector. The predictions produced by applying Bayesian in-

ference with this hypothesis space are shown in Figure 11, setting

p to the baseline probability given by the participants. The model

predicts four quantitatively different levels of belief for different

pencils at different points in the experiment: the baseline proba-

bility, the probability that a and b are super-pencils after the first

trial, the probability that a is a super-pencil after the second trial,

and the probability that b and c are super-pencils after the second

trial. People also show these four levels of graded belief in the

existence of a causal relationship, and there is a close correspon-

dence between model and data, with r � .979. The three alterna-

tive models discussed above—the probabilistic detector, the ge-

neric functional form, and the noisy-OR with a uniform prior on

strength—gave correlations of r � .886, r � .053, and r � .983.

The predictions of these models are also shown in Figure 11 and

reflect a similar trend to that seen in the previous experiment:

Small amounts of data have a weaker effect on the predictions of

the models that have fewer constraints on the functional form of

the relationship. Although the correlation between the noisy-OR

model and the human judgments was high, the absolute value of

the probabilities predicted by this model were very different from

those expressed in the human judgments.

Learning the Right Theory

We have outlined two different theories for the blicket detec-

tor—the deterministic detector theory and the probabilistic detec-

tor theory. In some cases, such as the one cause and two causes

conditions, it seems that the probabilistic detector theory provides

a better characterization of children’s inferences. However, the

instructions the children received suggested that the deterministic

theory might be more appropriate. This raises an important ques-

tion: How might a child learn the appropriate causal theory? This

question returns to one of the most interesting aspects of the tale of

Halley’s comet: that the return of the comet provided an indication

of the validity of Newton’s theory, the theory which had made it

possible for Halley to recognize the causal structure responsible

for his observations.

Learning causal theories can be modeled naturally within the

theory-based causal induction framework. Indeed, this is one of the

great strengths of the framework. In the case of the blicket detec-

tor, the problem is quite constrained, being a matter of choosing

between the deterministic and the probabilistic theory. This deci-

sion can be made by using Bayes’ rule, treating theories T as

hypotheses
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Figure 11. Adult judgments and model predictions for causal induction with “super-pencils,” an analogue of

the blicket detector task, from Griffiths et al. (2009, Experiment 2). The model predictions show the conse-

quences of modifying assumptions about the functional form of the causal relationship, including a deterministic

OR, a probabilistic noisy-OR in which pencils have super-lead, a generic parameterization that makes no

assumption about the nature or direction of a causal relationship, and a noisy-OR with a uniform distribution over

the strength of the causal relationship. In this experiment, people received purely ambiguous evidence about

causal relationships, seeing one trial on which two objects, A and B, activated the detector together, and then a

second trial on which A and a novel object C activated the detector together. Error bars represent 1 SE.
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P�T �D� �

P�D�T �P�T �

P�D�
, (8)

where P�D� � �T P�D�T �P�T �. The critical probabilities in this

expression are of the form P(D�T ), being the probability of the data

D under a theory T. These probabilities can be computed by

summing over all causal graphical models generated by T, being

the members of the hypothesis space HT. Thus we have

P�D�T � � �
i�1

�HT �

P�D�Graph i�P�Graph i�T �,

which can be computed using just probabilities defined above: the

probability of the data under a particular causal graphical model

and the prior probability of such a model under the theory. Other

probabilities, such as the probability of a particular causal struc-

ture, or that an object is a blicket, can be evaluated by summing

over theories T.

Figure 13 illustrates how this learning process can operate

concurrently with inferring the causal properties of the entities in

a domain. The figure shows the posterior distribution over the two

theories—deterministic and probabilistic—and the probability that

blocks a and b are blickets as data D accumulates. In this case, the

data are the trials used in the two causes condition. The prior gives

a probability of .99 to the deterministic theory and .01 to the

probabilistic theory, p is set to .3, and ε is set to .1. The first three

data points are all e��a�b�, being events in which a is placed on

the detector and the detector activates. This is sufficient to iden-
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Figure 12. Causal structures generated by the theory for the blicket detector with three blocks, a, b, and c, and one

detector, d. A, B, and C indicate whether contact between the appropriate block and the detector occurred on a

particular trial, while E indicates whether the detector activated. These causal relationships hold for all trials T.

p indicates the probability of a given block being able to activate the detector, as outlined in the theory shown

in Figure 8.
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tify a as a blicket under either theory, and weakly favors the

deterministic theory. The fourth data point is e��a�b�, with b

placed on the detector and the detector not activating. Under the

deterministic theory, b is definitely not a blicket. Under the

probabilistic theory, there remains a small chance that b is a

blicket, and since the probabilistic theory is still viable, the

probability that b is a blicket is nonzero. The fifth data point is

e��a�b�, the activation of the detector when b is placed upon

it. The fourth and fifth data points are mutually contradictory

under the deterministic theory and have a probability of zero.

This event can be explained only by the probabilistic theory, in

which b is definitely a blicket, and consequently the posterior

probability of the probabilistic theory and of b being a blicket

both become 1.00. By the end of the trials in the two causes

condition, one should be firmly convinced that blicket detectors

are probabilistic.

Learning a causal theory from evidence provides a possible

explanation for why children in the one cause and two causes

conditions produced responses consistent with the probabilistic

detector theory, whereas children in the other conditions acted in

a fashion more consistent with the deterministic detector theory.

Under the deterministic theory, children in the one cause condition

should never say that b is a blicket, but children did so on 16% of

trials. Because the one cause and two causes conditions were

presented within-subjects, one possibility is that some of the chil-

dren saw the two causes trials, inferred that the probabilistic

detector theory was appropriate, and then used this theory when

they subsequently experienced the one cause condition. Examina-

tion of the data of Gopnik et al. (2001) provides tentative support

for this conclusion: All of the children who identified b as a blicket

in the one cause condition had seen the two causes condition

beforehand.9

Griffiths et al. (2009, Experiment 4) followed up on this

observation with a further experiment, explicitly manipulating

the information provided to their participants about the nature

of the detector. In the probabilistic detector condition, partici-

pants saw a series of trials in which objects activated the

detector on only a subset of the trials where they were placed on

the detector. In the deterministic detector condition, objects

either always activated the detector or never activated the

detector. These trials provide enough information to identify

the appropriate causal theory, and participants in both condi-

tions then observed a series of trials matching the one cause

condition described above. The results are shown in Figure 14,

together with the predictions of the two-theory model described

above. As predicted by the model, participants who saw evi-

dence that the detector was probabilistic were still willing to

believe that b could cause the detector to activate, even after

seeing it fail to activate the detector once. The model also

predicted a small reduction in certainty that a was a blicket.

People also showed a trend in this direction, slightly larger than

predicted by the model. The correlation between the model

predictions and human judgments was r � .99 with p set to 5/6,

corresponding to the number of objects identified as blickets

during the familiarization trials, and ε set to .1.10 Griffiths et al.

(Experiment 5) also found similar results with 4-year-old chil-

dren.

Summary

When learning about the properties of simple physical systems,

both adults and children are able to infer a causal relationship from

only a few observations. Our theory-based approach explains this

as the result of powerful statistical inference guided by a causal

theory that provides strong constraints on the functional form of a

causal relationship. This principle accounts for how children can

identify blickets on the basis of just a few observations. Taken

together with our account of causal learning from contingency

data, this case study lays the groundwork that allows us to consider

more challenging problems of causal induction involving richer

causal structures, such as those with hidden causes, and more

complex theories, such as those characterizing dynamical physical

systems.

Observations, Interventions, and Hidden Causes

The formalism that underlies causal graphical models distin-

guishes between observations—events in which the values of a set

of variables are observed—and interventions—events in which

some of those variables are set to particular values as a result of

actions outside the system (Pearl, 2000). This distinction has

important consequences for how these different kinds of data

should influence causal induction. In particular, interventions can

be far more diagnostic of causal structure. This prediction has been

evaluated by several different researchers (e.g., Gopnik et al.,

2004; Hagmayer, Sloman, Lagnado, & Waldmann, 2007; Lagnado

& Sloman, 2004; Steyvers et al., 2003). Here, we focus on how

observations and interventions can be useful in revealing the

presence of hidden causes.

Everyday reasoning draws on notions that go far beyond the

observable world, just as modern science draws upon theoretical

constructs beyond the limits of measurement. The richness of our

intuitive theories is a direct result of our ability to identify hidden

causal structure. The central role of hidden causes in intuitive

theories makes the question of how people infer hidden causal

structure fundamental to understanding human reasoning. Psycho-

logical research has shown that people can take into account the

effects of hidden causes (Cheng, 1997), infer the existence of

hidden causes from otherwise unexplained events (Luhmann &

Ahn, 2003), learn about the strength of those causes (Luhmann &

Ahn, 2007), reason about the impact of hidden causes when

evaluating other causal relationships (Hagmayer & Waldmann,

2007), discover that functions are mediated by hidden variables

(Busemeyer, McDaniel, & Byun, 1997), and determine hidden

causal structure from very little data (Kushnir et al., 2003).

In this section, we provide a case study in the learning of hidden

causes, examining how people infer the causal structure that un-

derlies the behavior of a simple physical system—the stick-ball

9 We thank David Sobel for making these data available.
10 High correlations are produced for any reasonable (i.e., small) value

of ε. To demonstrate this, we sampled 10,000 values of ε uniformly at

random from 0 to .2 and computed the correlation for each. The mean

correlation was r � .980. While we report only four data points here, this

was just one condition of three in the original experiment, and the model

described in this section gave a high correlation with the results of all three

conditions.
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machine (Gopnik et al., 2004; Kushnir et al., 2003). First, we

introduce this apparatus and summarize the results of experiments

that used the stick-ball machine to investigate whether children

and adults could combine evidence from observations and inter-

ventions, and if they could infer hidden causes (Gopnik et al.,

2004; Kushnir et al., 2003). We then present a causal theory that

can be used to explain these inferences. As in the case of the

blicket detector, using this theory makes it possible to identify

causal structure from only a small amount of data (observations or

interventions). The theory extends our previous analyses by allow-

ing for the possibility of hidden causal structure.

The Stick-Ball Machine

The stick-ball machine, also known as the puppet machine, is a

physical system consisting of a number of colored balls mounted

on sticks which can move up and down on a box (see Figure 15a).

The mechanical apparatus moving the balls is concealed by the

box, keeping the actual causal relationship unknown. The balls can

either move on their own or be moved by the experimenter.

Different patterns of observations and interventions lead people to

believe in different underlying causal structures. Studying which

structures are inferred for different stimuli provides the opportu-

nity to understand how people make such inferences.

Gopnik et al. (2004) described a series of experiments using the

stick-ball machine to assess causal induction in children. Table 5

summarizes the results of these experiments. In all cases, children

were familiarized with the machine and told that “special” balls

caused other balls to move. We discuss conditions in which chil-

dren saw two balls, a and b, move in various patterns, using the

variables A and B to indicate the motion of a and b on a given trial.

In the common effects condition of Experiments 1–3, children saw

a and b move together several times, 5a�b�, then saw the exper-

imenter intervene to move b without a moving, a��do(b�). Most

children inferred that a was special and causing b to move. In the

association condition of Experiment 2, it was established that this

inference made use of the difference between observations and

interventions, with children seeing 5a��do(b�) followed by

a��do(b�). These stimuli differed from the common effects stimuli

only in the use of intervention on the a��do(b�) trials, but they

produced quite different responses, with the majority of children

favoring the hypothesis that b was special and causing a to move.

In the common cause condition of Experiment 3, children saw

5a�b�, followed by two interventions: a��do(b�) and b��do(a�).

They were asked why the balls were moving together, and the

majority of the children referred to an unobserved variable as the

cause of these events.11

The experiments reported by Gopnik et al. (2004) suggest that

children discriminate between observations and interventions

when assessing causal relationships and that they are capable of

recognizing the presence of hidden causes. Kushnir et al. (2003)

conducted two experiments that extend these results to adults. In

both experiments, participants were familiarized with the machine,

told that if one ball caused the other to move it did so “almost

always,” and saw the two balls move together four times. There

were three test conditions in Experiment 1, seen by all participants.

In the common unobserved cause condition, participants saw

4a�b�, then four trials in which the experimenter intervened, twice

moving a with no effect on b, 2b��do(a�), and twice moving b with

no effect on a, 2a��do(b�). In the independent unobserved cause

condition, participants saw 2a�b�, 2a�b�, a�b�, 2a��do(b�), and

2b��do(a�). In the one observed cause condition, participants saw

4b��do(a�) and 2b��do(a�). Experiment 2 replicated the common

unobserved cause condition and compared this with a pointing

control condition in which interventions were replaced with ob-

servations where the experimenter pointed at the moving ball

(4a�b�, 2a�b�, 2a�b�). On each trial, participants identified the

causal structure they thought responsible by indicating images

similar to those shown in Figure 15b. The results of both experi-

11 One condition (Experiment 1, common cause) is not included in the

table. This condition examined inferences involving a three-ball machine,

being a version of the common cause condition of Experiment 3 in which

the common cause was observable. For three balls a, b, and c, the stimuli

consisted of several a�b�c� trials, followed by b�c��do(a�) and

a�b��do(c�). Children inferred that the motion of both a and c was caused

by the motion of b. This inference can be explained by the theory-based

account, under the assumption that 
 � �, but we do not discuss it in detail

here.
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Figure 14. Results from Griffiths et al. (2009, Experiment 4). When adults are exposed to a series of trials in

which objects inconsistently activate the detector (the probabilistic condition) rather than always activating the

detector (the deterministic condition) they are still willing to consider the possibility that object b possesses

super-lead, even after it fails to activate the detector once.
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ments are shown in Table 6. In each condition, the majority of

people indicated a single structure—common cause in the com-

mon unobserved cause condition, separate causes in the indepen-

dent unobserved causes condition, a causes b in the one observed

cause condition, and separate causes in the pointing control con-

dition.

Theory-Based Causal Induction

Explaining the inferences of children and adults about the stick-

ball machine requires addressing three challenges: accounting for

the difference between observations and interventions, explaining

how it is possible to identify that hidden causes are at work, and

justifying the fact that so little data are required to identify rela-

tively complex causal structures. These three challenges can be

addressed by a theory-based account, using the causal theory

shown in Figure 16.

The theory shown in Figure 16 differs from the theories con-

sidered in previous sections in incorporating a type of entity that is

unobserved—the HiddenCause. The number of entities of this

type is unbounded, representing the fact that there could be arbi-

trarily many such hidden causes. This is possible because hidden

causes not connected to balls have no influence on the probability

with which events involving those balls occur. The way that

hidden causes are connected to balls, and to each other, is also

unaffected by the fact that the number of such causes is un-

bounded.

In the case of a physical system such as the stick-ball machine,

specifying the plausible relations among a set of variables involves

identifying the possible physical structures that could be respon-

sible for the motion of the elements of the system. The ontology

divides the components of these physical structures into two types:

components of the type HiddenCause are the prime movers in the

system, the source of the force that is ultimately responsible for

any observed motion, while components of the type Ball are

passive elements, which can transfer force but not generate it. A

graph structure defined on the predicates Moves and Active ap-

plied to these components indicates how force flows through the

system, with a HiddenCause becoming active causing a Ball to

Move, and the potential for a Ball to cause another Ball to Move.

The parameters p and q determine how likely it is that force is able

to flow from one ball to another, and from a hidden cause to a ball.

The process by which the hidden cause connected to a ball is

selected deserves some further explanation. If it is decided that a

ball is connected to a hidden cause, then the particular hidden

cause is selected by sampling from a distribution in which each

hidden cause h that is connected to at least one ball is chosen with

probability proportional to the number of other balls to which h is

connected, and a new hidden cause is chosen with probability

proportional to a constant s. This procedure allows balls to share

the same hidden causes, or to have independent hidden causes, and

does not impose an upper bound on the number of hidden causes

that appear in a physical system. The sampling scheme is that of

the Chinese restaurant process (Aldous, 1985; Pitman, 2002),

which is commonly used in nonparametric Bayesian models (e.g.,

Blei, Griffiths, Jordan, & Tenenbaum, 2004; Navarro, Griffiths,

Steyvers, & Lee, 2006) and is formally equivalent to the system

involving a coupling probability used in Anderson’s (1990) ratio-

nal model of categorization (Neal, 1998; Sanborn, Griffiths, &

Navarro, 2006). The distribution that results from this process is

exchangeable, meaning that the order in which the hidden causes

are chosen does not affect the probability of a particular configu-

ration of connections. When s is small, the scheme favors struc-

tures in which many balls have the same hidden cause. When s is

large, it is more likely that balls will have independent hidden

causes.12

The set of all structures defined on two balls that is generated by

the theory is shown in Figure 17. This set includes all simple

causal structures one might identify as possible descriptions of a

physical system like the stick-ball machine. Graph 0 is a system in

which balls are disconnected from hidden causes and from one

another, and thus will never move. Graph 1 is a system in which

moving a causes b to move, but neither a nor b will move on its

own. Graphs 3, 7, 11, 15, and 19 all indicate a bidirectional causal

relationship between A and B. Causal graphical models do not

usually allow such relationships, being restricted to acyclic di-

rected graphs. We describe how these relationships are dealt with

in Appendix B.

The functional form identified by the causal theory summarizes

a set of expectations about the interactions between physical

objects. It states that no object moves without a cause, and objects

are likely to move when caused to do so. Such a functional form

results in strong constraints upon the kind of data that one might

expect to see under different causal structures. For example, any

data in which either ball moves without being intervened upon

provides evidence against the causal structure shown in Graph 0.

The probabilities of all events involving two balls under all causal

12 The theory that we use here allows a maximum of one hidden cause

per ball. This simplifies the mathematical description of the theory, and

results in a smaller hypothesis space. Similar theories can be defined that

allow multiple causes per ball, using different nonparametric Bayesian

priors (e.g., Griffiths & Ghahramani, 2005).

BA
common cause separate causesB causes AA causes B

(b)(a)

Figure 15. The stick-ball machine (Kushnir et al., 2003). (a) A two-ball machine. (b) Schematic diagrams

indicating possible causal structures for the stick-ball machine (after Kushnir et al., 2003).
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structures for a two-ball machine are summarized in Griffiths

(2005).

Using this theory, we can compute a posterior distribution over

Graphs 0–19 for any data D. This posterior distribution can be

connected to the results discussed by Gopnik et al. (2004) and

Kushnir et al. (2003) by defining an appropriate mapping between

the causal structures generated by the theory and the responses

possible in the experiment. For the experiments described by

Gopnik et al. (2004), possible responses were that a was special, b

was special, and (in Experiment 3) that a hidden cause was

involved. We computed the probability that a was special by

summing over all graphs in which there is a link from A to B, did

likewise for b being special, and equated the probability of a

hidden common cause with the probability of Graph 12. For the

experiments described by Kushnir et al. (2003), there were four

responses, corresponding to the structures shown in Figure 15b.

The probability of “a causes b” was evaluated by summing over

Graphs 1, 5, 9, and 17, and likewise with the complementary

structures for “b causes a.” The common cause and separate causes

structures were equated with Graphs 12 and 16.

The theory shown in Figure 16 has five parameters: p, q, s, 
,

and �. � was set empirically, via a small experiment (Griffiths et

al., 2004). Ten participants were shown a computer simulation of

the stick-ball machine and reproduced the familiarization trials

used by Kushnir et al. (2003): Participants were told that when a

causes b to move, it makes it move “almost always,” and were shown

that a moved b on four of six trials. They were then asked how often

they expected a would move b. The mean and median response was

that a would move b on 75% of trials, so � � .75 was used. p was also

fixed at .01, since any small value should be sufficient, and the

remaining parameters were optimized to provide the best fit to the

results of Kushnir et al. Table 6 shows the predictions of the model

with q � .035, s � 4, and 
 � .36. The model captures the major

trends in the data, predicting the majority response in each condi-

tion, and gives a correlation of r � .96. The values of the param-

eters indicate that it is more likely that a ball will have the power

to move on its own than that it will be connected to another ball

(q � p), that balls are relatively unlikely to move (
 is low), and

that balls are quite likely to have independent causes (s � 1), and

the model produces a high correlation with the data for a range of

parameter values provided these qualitative constraints are satis-

fied.13 With these parameter settings, the model also predicted the

pattern of responses shown in Table 5 for the stimuli used by

Gopnik et al. (2004).

Alternative Accounts

Potential alternative accounts of how people learn hidden causal

structure can be found in the literature on causal induction in both

psychology and computer science. We review these different kinds

of alternative accounts in turn.

Hidden causes in psychological models. Most models of hu-

man causal induction (primarily those coming from a tradition of

associative learning) do not make a distinction between observa-

tions and interventions or consider learning about hidden causes.

However, two recent models do give an explicit treatment of

hidden causes and bear further discussion. First, in her develop-

ment of the idea of causal power, Cheng (1997) explicitly consid-

ered the role of hidden causes, in the guise of alternative factors

that could bring about the observed effect, and provided a treat-

ment of the difference between observations and interventions in

discussing experimental design. Second, Luhmann and Ahn (2007)

built on the assumptions behind causal power to develop a model

that explains how people might estimate the strength of hidden

causes. This model, called BUCKLE, consists of a learning algo-

rithm that computes the probability that a hidden cause is present

on a given trial and then updates the strength of the relationship

between that cause and the effect.

The models introduced by Cheng (1997) and Luhmann and Ahn

(2007) lay the groundwork for understanding how people infer

hidden causes, and the approach they take is entirely consistent

with the work we have presented in this section. However, the

account we present here goes significantly beyond this previous

work in making it clear how people might learn not just about a

single hidden cause but about the causal structure that relates

multiple hidden causes to observable variables. Causal power and

BUCKLE provide ways to estimate the strength of a single hidden

cause in the presence of a single observable effect and would thus

need to be generalized considerably to be able to capture the

phenomena we have considered in this section. Our treatment of

learning hidden causal structure can be viewed as one way these

models might be generalized to incorporate multiple hidden

causes. The advantage of framing this generalization within the

language of causal structure learning is that it can also be extended

to allow inferences about hidden causes to be made from coinci-

dences in space and time, as we discuss in the next section.

13 To illustrate this, we evaluated the performance of the model with

10,000 random values for p, q, s, and 
 generated according to the

following constraints: p varied uniformly from 0 to .1; q varied uniformly

from p to .1; s was taken to be 1/r where r was distributed uniformly from

0 to 1; and 
 varied uniformly from 0 to �, which was taken to be .75 based

on the experiment summarized in the text. Performance was evaluated by

calculating the correlation with the results of Kushnir et al. (2003). Despite

choosing the parameter values at random, the mean correlation was .80, no

parameter values produced a negative correlation, and 26.6% of the cor-

relations were greater than .90.

Table 5

Modal Inferences by Children and Bayes for Two-Ball Machines

Experiment Condition Stimuli Children Bayes

1, 2, 3 Common effects 5a�b�, a��do(b�) a is special a is special
2 Association a��do(b�), a��do(b�) b is special b is special
3 Common cause 5a�b�, a��do(b�), b��do(a�) Hidden cause Hidden cause

Note. Experiment numbers and conditions refer to Gopnik et al. (2004). In describing the stimuli, a� and a� indicate that ball a moves and does not move,
respectively. do(a�) indicates that an external intervention causes ball a to move.
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Approaches from computer science. Constraint-based algo-

rithms provide a natural alternative account of these results, par-

ticularly because Gopnik et al. (2004) and Kushnir et al. (2003)

suggested that their results can be explained by algorithms such as

that proposed by Spirtes et al. (1993). Constraint-based algorithms

are capable of using information derived from both observations

and interventions, as well as identifying hidden causes. However,

they cannot explain the data discussed in this section.

Explaining the inferences that people make about stick-balls in

terms of these algorithms faces the same objections as arose with

blicket detectors: small samples and graded degrees of belief. The

experiments described above illustrate that children and adults can

identify the causal structure that holds among a set of variables on

the basis of only a handful of observations, far fewer than might be

required to obtain statistically significant results from standard

statistical tests of dependency. The data that people use to make

causal inferences are not sufficient to infer that two variables are

dependent. A constraint-based algorithm can thus identify the

appropriate causal structure in the independent unobserved causes

condition, simply because there is not enough information to

conclude that a causal relationship exists. However, it will not

identify the relationships that do exist in the other conditions. For

example, in the association condition of Gopnik et al. (2004) and

the one observed cause condition of Kushnir et al. (2003), all of the

stimuli involve intervention on B and suggest that A will occur

with high probability under such circumstances. These data are

insufficient to justify the inference that A and B are dependent: It

might just be that A occurs with high probability in general. The

inference that B causes A requires an expectation that A is unlikely

to occur on its own, and that if B causes A, then A is likely to occur

when B does.

In the preceding analysis, we focused on the information that

participants received in the trials of the experiment, consistent with

the implicit information provided to participants that the only

opportunities for balls to move were during these trials. However,

one way to provide more data for statistical tests would be to

assume that people observe n additional trials on which neither A

nor B move, simply through observing that the balls are stationary

most of the time. A and B are still not statistically significantly

dependent in the independent unobserved causes condition pro-

vided n � 174, so the algorithm will still reach the correct

conclusion in that case.14 The small amounts of data available in

the other two conditions result in no unique solution. In the

common unobserved cause condition, a sufficiently large n makes

A and B significantly dependent (p �

4!n!

�n � 4�!
), but with only

four trials on which B was observed and two trials of intervention

on B, there is insufficient data to conclude P(A�B) � P(A�do(B)) or

P(B�A) � P(B�do(A)), p � .067. And, as noted above, in the one

observed cause condition, we have no observations of A, only

interventions, and thus cannot even conduct a significance test to

check P(B�A) against P(B�do(A)).

The data of Kushnir et al. (2003) also illustrate that people can

maintain graded degrees of belief about causal structures. For

example, the stimuli in the independent unobserved causes and

pointing control conditions both seem to suggest that separate

causes are responsible, but this impression is much stronger for the

former than the latter, something that is reflected in people’s

judgments. Because constraint-based algorithms simply identify

causal structures that are consistent with patterns of dependency,

they cannot capture the subtle variation in degrees of belief that are

exhibited by human subjects.

Summary

Experiments with the stick-ball machine reinforce the fact that

people can identify causal structure from small samples, and they

indicate that this ability extends to complex causal structures, such

as those involving hidden causes. Explaining the results of these

experiments requires appealing to a simple theory that expresses

some of the content of intuitive mechanics. Some of the key

assumptions in this theory concern the functional form of causal

relationships, placing constraints on the probability of events that

have a strong qualitative correspondence to Newton’s laws of

motion. By exploring causal inferences about other physical sys-

tems, we have the opportunity to gain a deeper understanding of

the intuitive principles of physics that guide causal induction.

Causal Induction From Patterns of Spatial and

Temporal Coincidence

We have presented analyses of how people infer causal struc-

tures of increasing complexity, from a single causal relationship to

hidden common causes. However, all of these analyses have been

based upon settings in which events can be described as discrete

trials on which cause and effect co-occur. There is another kind of

information that provides very strong evidence for hidden causal

structure: patterns of coincidence in data varying along continuous

dimensions, such as the time at which events occur or their

location in space. With just a few events coincidentally aligned in

space or time, and a theory about the factors that could give rise to

those patterns, we can induce hidden causal structure.

14 We use Fisher’s exact test to compute these numbers, since the small

cell entries lead Pearson’s �2 to deviate from the �2 distribution.

Table 6

Probability of Choosing Different Causal Structures in Kushnir et al. (2003)

Condition a causes b b causes a Common cause Separate causes

Common unobserved cause .00 (.12) .01 (.12) .65 (.71) .34 (.05)
Independent unobserved causes .00 (.00) .00 (.00) .04 (.01) .96 (.99)
One observed cause .65 (.67) .06 (.00) .08 (.00) .21 (.33)
Pointing control .00 (.04) .04 (.04) .17 (.16) .79 (.76)

Note. Numbers in parentheses are predictions of the Bayesian model. Boldface values indicate majority.
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The role of spatial and temporal contiguity as cues to causal

relationships has been of central interest since Hume (1739/1978)

drew attention to it. For example, when a stoplight changes color

at the exact moment we turn on the car radio, or the lights in a

room are extinguished at the exact moment we lean against the

wall, we experience a brief illusion of a causal relationship. The

strength of this illusion depends on contiguity in space and time: If

even a few seconds pass between one event and the other, or if the

stoplight that changes is a long way away, the illusion disappears.

Research in developmental psychology has explored the effects of

spatial and temporal contiguity on causal induction. Shultz (1982b;

Mendelson & Shultz, 1976) pitted spatial and temporal contiguity

against contingency information, constructing tasks in which chil-

dren learned about novel causal relationships from data that were

structured so that contiguity pointed toward one relationship and

contingency pointed to another. Children were strongly influenced

by contiguity, with contingency guiding inferences only when

contiguity was weak or controlled. Bullock et al. (1982) obtained

similar results with a different kind of causal system, finding that

contiguity could overwhelm contingency, particularly when vio-

lating spatial contiguity made a simple physical mechanism seem

implausible.

While the work discussed in the preceding paragraph shows that

there are many interesting dimensions to be explored in analyzing

causal induction from spatial and temporal information, in this

section we focus on the basic phenomenon of coincidences in

space and time leading to a sense of causation. Sensitivity to

spatial and temporal coincidences can be explained under a Bayes-

ian account of causal induction, since we would be unlikely to see

such coincidences if there were no underlying causal relationship.

In the remainder of this section, we discuss how inferences from

coincidences in space and time can be formalized within our

framework.

Coincidences in Space

Coincidences in space can provide good clues that an underlying

causal relationship exists. For example, it was the coincidence in

the locations of the orbits of the three comets that suggested to

Halley that they might be related. Another famous historical ex-

ample is the inference that the epidemiologist John Snow made

concerning the origins of an outbreak of cholera in the streets of

London, described in Snow (1855). By examining the spatial

distribution of a set of cases of cholera in Soho, it became clear

that they were clustered about a particular region in Broad Street,

and subsequent investigation revealed an infected pump at that

location. Here, a coincidence in spatial contiguity suggested an

underlying causal relationship. A similar sensitivity to spatial

coincidences has often led contemporary doctors and patients to

become suspicious that a hidden cause may be at work when

multiple cases of a rare disease occur in a small geographic area,

most famously in “cancer clusters” (Dawes & Hastie, 2001).

Reports of cancer clusters frequently turn out to be false alarms,

even when people feel very confident about the inferences they are

making. What is the basis for this confidence, and does it have

some grounding in a rational inductive inference?

Griffiths and Tenenbaum (2007a) examined people’s sensitivity

to coincidences in spatial data in a series of experiments exploring

how this sense of coincidence is related to Bayesian inference

about the presence of hidden causes. For example, in one study

(Experiment 4), participants were shown distributions of points

inside a rectangle and were told they were seeing data on the

locations of a set of lemur colonies, collected during a field trip to

Madagascar. They were asked to rate how likely they thought it

was (on a scale from 1 to 10) that an external factor was influ-

encing where the lemurs chose to live. The stimuli that participants

saw were generated by sampling from a mixture of a uniform and

a Gaussian distribution, varying the total number of points, the

ratio of points drawn from the Gaussian, the location of the

Figure 16. Theory for causal induction with the stick-ball machine.
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Gaussian, and its variance. The results are shown in Figure 18.

People’s judgments were strongly influenced by manipulations of

the number of colonies and the ratio that seemed to fall within a

cluster and showed a clear difference between cases where a

regularity existed and those in which the locations of colonies were

all drawn from a uniform distribution. Griffiths and Tenenbaum

(2007a) showed that these judgments were consistent with a

Bayesian analysis of the probability that a hidden Gaussian cause

is responsible for a subset of the observed data, as measured

against the null hypothesis alternative that all data were generated

by sampling uniformly at random over the whole observed area.

The experiment in Griffiths and Tenenbaum (2007b) presented

a scenario about which people had little prior knowledge (lemur

colonies) and stimuli with between 20 and 200 spatial events each.

The results show that people’s judgments about the existence of a

hidden common cause are in line with Bayesian inference, but they

do not test these judgments in the setting of greatest interest for

theory-based causal induction: when people see only a very small

number of events but can draw on their abstract knowledge about

how causes work to pick out even a slightly suspicious coincidence

as evidence for a hidden cause. To test judgments in this setting,

we ran a similar experiment explicitly based on the real-world

scenario of cancer clusters and with the goal of identifying hidden

causes responsible for some or all cases of a rare disease. Each

stimulus showed a much smaller number of spatial events, between

three and 12, with most stimuli showing either six or eight events.

Participants made judgments over the Internet using a web-based

form which asked them to judge the probability of an underlying

environmental cause given 12 different patterns of spatial events.

There were a total of 255 participants, divided roughly evenly into

three groups who saw slightly different versions of the stimuli. The

instructions presented to the participants and details of the stimuli

appear in Appendix C. As in Griffiths and Tenenbaum (2007a), we

manipulated the number of observations, the ratio of those that

appear in the cluster to those that do not, and the spread of the

cluster. We also showed several stimuli with fully random distri-

butions. The results appear in Figure 19, organized to reflect

several interesting comparisons. In particular, the last two lines of

plots in the figure show how people can pick up on clusters as

small as two observations in a set of three, or eight in a set of 12.

People can infer hidden causes from spatial coincidences even

in very small data sets for two reasons: locations are continuous

observations, potentially carrying a great deal of information in

their relative positions, and people have strong expectations about

the effects that hidden causes can have, in this case producing

unimodal clusters. We now consider how this kind of inference can

be captured within our framework, formalizing the intuitive theory

that was implicit in the Bayesian model used by Griffiths and

Tenenbaum (2007a).

Theory-Based Causal Induction

Figure 20 shows a theory that can be used to generate a hypoth-

esis space for causal induction from spatial data. The same theory
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Figure 17. Hypothesis space for a two-ball stick-ball machine. A and B indicate Moves(a,T) and Moves(b,T)

for Ball a and b, respectively, while Hi indicates Active(hi,T) for the HiddenCause hi. These causal

relationships hold for all trials T. p indicates the probability of one ball causing another to move, q indicates the

probability of a hidden cause being able to move a ball, and s indicates the tendency of balls to have unique

hidden causes, as outlined in the theory shown in Figure 16.
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applies to both lemur colonies and cancer cases, although we use

lemur colonies as our running example for simplicity. The theory

allows two type of entities—lemur colonies and hidden causes—

each associated with a spatial predicate—a location or nexus—

constrained to lie within some region R. At most one hidden cause

exists, and that hidden cause has a probability p of influencing the

location of a given colony. If it does so, the location of the colony

follows a Gaussian distribution around the nexus of the hidden

cause. If not, the location of the colony is uniformly distributed

within R.

This theory generates a rich hypothesis of causal graphical

models differing in whether a hidden cause exists (via the value of

NC) and which colonies are influenced by that cause. We can thus

ask whether a hidden cause exists by summing the posterior

probability of those hypotheses for which NC � 1. We also

integrate over the values of p and �, using a uniform prior on the

former and an Inverse-Wishart prior on the latter (for details, see

Griffiths & Tenenbaum, 2007a). The result can be used to predict

human judgments and has no free parameters. The likelihood ratio

in favor of a hidden cause gives a rank-order correlation of 
 � .93

with the human data shown in Figure 18, and a rank-order corre-

lation of 
 � .80 with the human data shown in Figure 19,

producing all of the qualitative effects shown in the figures.

Coincidences in Time

A classic example of the effects of temporal contiguity on the

perception of a causal relationship is Michotte’s (1963) extensive

investigation of the perception of collisions. In these studies, a

mechanical device was used to generate the impression of two

objects interacting. Typically, these displays showed one object at

rest while another approached it. If the resting object began to

move at the moment when the approaching object came into

contact with it, people reported the impression that the motion of

one object had caused the motion of the other. This impression

proved very sensitive to the timing of the motion of the objects,

with separation between the end of one object’s motion and the

start of the other reducing the sense of causality.

More recently, several researchers have begun to examine how

the temporal structure of events interacts with contingency infor-

mation in guiding human causal induction. Shanks, Pearson, and

Dickinson (1989) established that delays between cause and effect

greater than 2 s significantly impair the ability to infer causal

relationships. Buehner and colleagues (Buehner & May, 2002,

2003; Buehner & McGregor, 2006) showed that this effect can be

attenuated by providing background information that leads people

to expect a delay. Greville and Buehner (2007) have built on these

results, providing a quantitative analysis of the interaction between

contingency and contiguity in causal induction. Finally, Lagnado

and Sloman (2006) examined how people use temporal informa-

tion in inferring causal relationships, finding that people relied

strongly on the temporal order in which a series of events occurred

when trying to identify the underlying causal structure.

The experiment we use to illustrate the ability to explain coin-

cidences in time uses a scenario that features a fictitious highly
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Figure 18. Inferences about hidden causes from spatial coincidences in the lemur colonies scenario. Each line

shows the three stimuli used to test the effects of manipulating one of the statistical properties of the stimulus,

together with the mean judgments of strength of coincidences from human participants and the predictions of the

Bayesian model. Predictions are a transformed version of the log-likelihood ratio in favor of a hidden cause (see

Griffiths & Tenenbaum, 2007a, for details).
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explosive compound called Nitro X, which is stored in cans. Nitro

X is so unstable that cans will sometimes explode spontaneously,

all on their own (presumably as the consequence of some kind of

internal chemical process). Furthermore, an exploding can often

causes neighboring cans to explode. The explosions exhibited by a

set of cans are thus the result of a complex causal process, and

identifying the elements of this process is a significant inductive

challenge. Since explosions propagate by invisible force waves,

the timing of explosions provides the only information about the

underlying causal structure and is not accompanied by any other

perceptual cues.

Griffiths et al. (2004) conducted an experiment using (computer

simulated) cans of Nitro X to examine whether people could

identify causal structure from the timing of explosions. In the

experiment, people were introduced to Nitro X and learned about

its dynamics: that cans of Nitro X could explode spontaneously

and could detonate one another after a time delay that was a linear

function of spatial separation, as would be expected from the slow

propagation of pressure waves. They then saw a number of dif-

ferent patterns of explosions and were asked about the underlying

causal structure.

The patterns of explosions were presented using a display in-

volving several cans placed side by side, as shown in Figure 21.

After each trial, participants were asked to indicate whether they

had seen a chain reaction, with the first can exploding spontane-

ously and each subsequent explosion resulting from the explosion

of a neighboring can; a spontaneous explosion, with each can

exploding all on its own; or something else. If they decided that the
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Figure 19. Inferences about hidden causes from spatial coincidences in the cancer clusters scenario. Each line

shows a set of stimuli used to test the effects of manipulating one of the statistical properties of the stimulus,

together with the mean judgments of strength of coincidences from human participants and the predictions of the

Bayesian model. Predictions are the log-likelihood ratio in favor of a hidden cause, transformed linearly to match

the mean and variance of the human judgments.

Figure 20. Theory for inducing hidden causes from spatial coincidences in the lemur colonies or cancer cluster

scenarios.
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explosion was the result of something else, they were asked to

write in a description of what they thought had happened. The first

two trials showed chain reactions. On the third trial, participants

saw the simultaneous explosion of several cans, as shown in

Figure 21b, without the delays characteristic of pressure waves

propagating from one can to the next. The number of cans used in

the final trial was varied, to see whether this had an effect on

people’s inferences.

Over 95% of participants correctly identified the causal chain in

the first two trials. For the third trial, the responses of people who

chose the third option, that something other than a causal chain or

spontaneous explosion had occurred, were coded by two raters.

The proportion of participants identifying a hidden cause behind

the simultaneous explosion is shown in Figure 22. There was a

statistically significant effect of NC: The number of cans influ-

enced whether people inferred hidden causal structure, with most

people seeing two simultaneously exploding cans as independent

but six such cans as causally related. This provides a compelling

illustration of the fact that people are able to infer hidden causes

from small samples—in this case, only a single observation—as

well as a challenge for computational models: How might such an

inference be explained?

Theory-Based Causal Induction

We can explain people’s inferences about Nitro X within the

theory-based causal induction framework. There are two aspects of

these inferences that require explanation: how people were able to

identify the causal structure as a chain reaction in the first two test

trials, and how they were able to infer a hidden cause in the third

test trial. Both of these aspects of human behavior can be ac-

counted for as Bayesian inferences informed by the causal theory

sketched in Figure 23. The ontology used in this theory has much

the same structure as the theory for the stick-ball machine (see

Figure 16), with the key difference being that rather than having a

set of discrete trials, the time at which events occur is a continuous

quantity. There is also a connection between the plausible relations

and functional form assumed by the two theories, although there

are important differences that reflect the physical structure of the

two systems.

The plausible relations identified by the theory are defined using

the same schema as in the stick-ball theory, but they differ in their

probabilities. For Nitro X, we know that the explosion of a can is

able to cause the explosion of any other can, and that each can is

able to explode spontaneously. As a consequence, links exist

between the ExplosionTime of any two cans and between the

ExplosionTime of each can and the ActivationTime of some

hidden cause. As with the stick-ball theory, the hidden cause

responsible for each can is selected in proportion to the number of

other cans that are currently influenced by that cause.

The functional form assumed by the theory expresses the same

qualitative commitments as the theory of the stick-ball machine

but translates these commitments into a domain where time is

continuous. The ActivationTime of a hidden cause follows an

exponential distribution with parameter 
, which is the continuous

limit of the case where a hidden cause activates on each trial with

probability 
, as in the stick-ball theory.15 The distribution of the

ExplosionTime of cans is similar to the movement of balls, except

that the causal relationship between cans is subject to a further

constraint: that there should be a delay between explosions com-

mensurate with the distance between cans. As with the stick-ball

theory, the assumptions of the Nitro X theory are consistent with

those of Newtonian physics: Cans do not explode without a cause

and are likely to explode when such a cause manifests itself.

We use a continuous version of the noisy-OR to define the

distribution of the ExplosionTime of each can. The time at which

the can explodes is assumed to be the time of the first arrival in a

nonhomogeneous Poisson process. This process defines some rate

function �(t) indicating the mean rate of arrivals at each point in

time t, with the probability of the first arrival occurring at time t�

being

P�first arrival at t�� � ��t��exp���
0

t�

��t�dt�, (9)

where the integral takes into account the probability of the event

not occurring before time t�. We define the rate function of the

Poisson process, �(t), to be a mixture of delta functions

15 Here, we assume that each hidden cause can become active only once

for any set of cans. This is not a necessary assumption—Griffiths et al.

(2004) explained these results using a model in which hidden causes could

have multiple activations. This assumption produces the same qualitative

predictions as our account, but requires more complex mathematical anal-

ysis. As with the stick-ball theory, it is also possible to allow multiple

hidden causes to act on a single can.

(b)

(a)

Figure 21. Nitro X. (a) Four dormant cans, as displayed in the experiment

described in the text. (b) A simultaneous explosion.
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��t� � �
i

wi��t, ti�, (10)

where wi and ti are the weight and time associated with the ith

cause, respectively. This formulation generalizes the noisy-OR, as

each cause has an independent opportunity to produce the effect

(see Griffiths & Tenenbaum, 2005, for details).

The hypothesis space generated by this theory with NC � 4 is

shown in Figure 24. The ActivationTime of a HiddenCause hi is

indicated with a variable Hi, and the ExplosionTime of a Can ci

is indicated with a variable Ci. All cans can influence the explo-

sions of other cans, in a generalization of the bidirectional rela-

tionship between A and B shown in Graph 3 of the hypothesis

space for stick-balls (see Figure 17). Likewise, all cans are influ-

enced by a hidden cause. The only difference between the graphs

shown in Figure 24 is the configuration of the hidden causes,

determining which cans will be correlated in their explosion times.

The 15 graphs shown in the figure correspond to all partitions of

four objects into different sets, where the objects are cans and all

cans within a set share a hidden cause. The distribution over these

partitions is provided by the Chinese restaurant process.

This theory can be used to explain how people are able to

identify the causal sequence responsible for a particular set of

explosions. If we assume that s is much larger than 1, then

P(Graph 0) is greater than the probability of any other graph, and

the data provide only evidence in support of this conclusion.

Consequently, to simplify our analysis we will outline how it

proceeds just in Graph 0. Under this causal structure, the first

explosion is always the consequence of a hidden cause becoming

active and is hence spontaneous. There are two possible explana-

tions for each subsequent explosion occurring at a time appropriate

to its distance from previous explosions: that it occurred sponta-

neously, or that it was caused by those previous explosions. Under

this model a set of NC appropriately spaced explosions is much

more probable under a causal chain than a spontaneous explosion

(see Griffiths, 2005, Appendix D, for a detailed proof).

Identifying a set of explosions as the consequence of a single

hidden common cause requires evaluating the posterior distribu-

tion over causal graphical models. In particular, it requires con-

cluding that some structure other than Graph 0 is appropriate.

Using the variable Cj to indicate the explosion time of the jth can,

the theory in Figure 23 gives the probability of a simultaneous

explosion (Cj � t for all j, denoted C � t) under Graph i as

P�C � t�Graph i� � �NC�
 exp��
t��k,

where k is the number of hidden causes influencing cans in Graph i.

The �NC results from the requirement that the NC cans all explode

at that moment, while the remainder of the expression is the

probability that the k hidden causes become active at that moment

(and not before). Combining this probability with the prior defined

by the theory, as shown in Figure 24, gives

P�Graph 0�C � t� �

�NC

�
j�0

NC�1

� j � ��

,

Figure 23. Theory for coincidences in explosion times. ExplosionTime(C) is the time at which can C

explodes, and ActivationTime(H) the time at which a hidden cause becomes active. Cans can be caused

to explode by the hidden causes or by the explosion of other cans. � is the rate at which force propagates from

one explosion to the next.
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where � � s
 exp{�
t}. This equation results from the fact that

Graph 0 requires NC hidden causes, and thus has posterior prob-

ability proportional to (s
 exp{�
t})NC, with the term in the

denominator being a normalizing constant for the resulting

posterior distribution. The probability of the existence of

some hidden cause, being 1 – P(Graph 0�C � t), increases as

NC increases for any choice of s and 
, and using � � 12 produces

the predictions shown in Figure 22. These predictions correlate

with the experimental results at r � .97, with equivalently high

correlations being produced for similar values of �.

Alternative Accounts

Standard algorithms for learning causal graphical models cannot

explain these results. If we imagine that time is broken into

discrete intervals, and a can either explodes or does not explode in

each interval, then we can construct a contingency table for each

pair of cans. Statistical significance tests will identify pairwise

dependencies among all cans that explode simultaneously, pro-

vided appropriate numbers of nonexplosion trials are included. The

existence of a hidden common cause is consistent with such a

pattern of dependency. However, as a result of reasoning deduc-

tively from this pattern, the evidence for such a structure does not

increase with NC: A hidden common cause is merely consistent

with the pattern for all NC � 2.

This experiment also illustrates that people are willing to infer

hidden causal structure from very small samples—just one data

point—and from observations alone. Standard constraint-based

algorithms cannot solve this problem: While a hidden common

cause is consistent with the observed pattern of dependency, causal

structures in which the cans influence one another cannot be ruled

out without intervention information. People do not consider this

possibility because they have learned that the mechanism by which

cans influence one another has a time delay.

Summary

The analyses presented in this section show how spatial and

temporal data can be incorporated into our formal framework,

illustrated through consideration of how causal relationships can

be inferred from coincidences in space and time. Our theory-based

approach makes it clear that these cases differ from causal induc-

tion from contingency data only in the assumptions that they make

about the functional form of causal relationships, allowing these

relationships to be expressed in spatial and temporal properties of

the observed data as well as in the co-occurrence of cause and

1 2 3 4

1 2 3 4 1 2 3 4

H H

C C C C

32H 1

P(Graph 1) = s /(1+s)(2+s)(3+s) 2

1 2 3 4

H 1 H 2 H 3

1 2 3 4

H 1 H 2 H 3

1 2 3 4

H 1 H 2 H 3

C C C C

P(Graph 4) = s /(1+s)(2+s)(3+s) 2

1 2 3 4

H 1 H 3H 2

1 2 3 4

H 2

C C C C

H 1

P(Graph 7) = s/(1+s)(2+s)(3+s) 

1 2 3 4

H 2H H

C C C C

31

P(Graph 2) = s /(1+s)(2+s)(3+s) 2

1 2 3 4

H 2

1 2 3 4

H 1 H 2

C C C C

P(Graph 9) = s/(1+s)(2+s)(3+s) 

1 2 3 4

H 1 H 2

C C C C

P(Graph 10) = 2s/(1+s)(2+s)(3+s) 

1 2 3 4

H 2H 1

C C C C

P(Graph 11) = 2s/(1+s)(2+s)(3+s) 

1 2 3 4

H 1

1 2 3 4

H 2H 2 H 1

1 2 3 4

H 1

H H H H

C C C C

P(Graph 0) = s /(1+s)(2+s)(3+s) 3

C C C C

2P(Graph 3) = s /(1+s)(2+s)(3+s) 

C C C C

P(Graph 5) = s /(1+s)(2+s)(3+s) 2

C C C C

2P(Graph 6) = s /(1+s)(2+s)(3+s) 

H

C C C C

1

P(Graph 8) = s/(1+s)(2+s)(3+s) 

C C C C

P(Graph 12) = 2s/(1+s)(2+s)(3+s) 

C C C C

P(Graph 13) = 2s/(1+s)(2+s)(3+s) 

C C C C

P(Graph 14) = 6/(1+s)(2+s)(3+s) 

Figure 24. Hypothesis space for four cans of Nitro X. Ci indicates ExplosionTime(ci) for Can ci, while Hi

indicates ActivationTime(hi) for HiddenCause hi. The dependence of ExplosionTime(ci) on Explosion-

Time(cj) and Position(ci) is suppressed. s indicates the tendency for cans to have unique hidden causes, as

outlined in the theory shown in Figure 23.
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effect. By separating the elements of prior knowledge that influ-

ence causal induction, we can emphasize those aspects that remain

the same—notions of causality, instantiated in causal graphical

models, and expectations about plausible causal structures—and

identify those aspects that differ.

The examples presented in this section address only the most

basic questions about causal induction from spatial and temporal

data, and we hope to have the opportunity to test the predictions of

these accounts further. The theories presented in each case make

interesting new predictions. For example, the Nitro X theory

predicts that the evidence for a hidden common cause should be

greater for a simultaneous explosion that occurs earlier. These

predictions deserve further investigation, as do more complex

instances of causal induction in dynamic physical systems, such as

those studied by Michotte (1963), which we have recently begun

to address (Sanborn, Mansinghka, & Griffiths, 2006). In addition,

we anticipate that the framework for modeling causal induction

from temporal data can be used to provide a deeper understanding

of the recent results concerning the relationship between temporal

contiguity and contingency data that were summarized earlier in

this section (Buehner & May, 2002, 2003; Lagnado & Sloman,

2006).

Causation Across Domains

We have presented a number of examples in which people’s

intuitions about causal relationships can be explained as the result

of rational statistical inference applied to causal structures gener-

ated by an appropriate causal theory. Since these theories express

knowledge relevant to a particular setting, we should expect that

they will be domain sensitive, having content that is affected by the

domain in which causal inferences are made. In this section, we

examine how the influence of domain knowledge on causal induc-

tion can be captured within our framework.

The definition of a domain is a problematic issue (e.g., Hir-

schfeld & Gelman, 1994), but the term is commonly used to refer

to a set of phenomena that can be explained by appealing to a

coherent set of causal principles. Physics, biology, and psychology

all involve quite different causal principles, such as force, growth,

and desire. Even young children are sensitive to this variation,

having different expectations about the causal relationships partic-

ipated in by biological and nonbiological (Springer & Keil, 1991)

and social and nonsocial (R. Gelman & Spelke, 1981; Shultz,

1982a) entities. The early manifestation of domain-specific causal

inferences, such as knowledge of the causal properties of objects

(e.g., Spelke, Breinlinger, Macomber, & Jacobson, 1992), has led

to claims that these inferences are the result of distinct and spe-

cialized cognitive modules (e.g., Leslie, 1994).

In attempting to formalize the content of intuitive theories

relevant to causal induction, we have the opportunity to consider

how the components of these theories might be affected by the

domain in which causal inferences are made. In particular, we

might expect that domain would have a strong influence on ex-

pectations about functional form and the plausibility of causal

relationships. We consider how domain affects each of these

aspects of causal relationships in turn, using the analysis of exper-

iments conducted by Schulz and Gopnik (2004) to support our

claims.

The Effect of Domain on Functional Form

Causal relationships in different domains involve very different

causal mechanisms. For example, you would probably use differ-

ent methods to move a heavy box a foot to the left than to move

a friend a foot to the left. However, this difference in the mecha-

nism by which effects are brought about need not be reflected in a

difference in the assumed functional form of the underlying rela-

tionship. If attempting to drag a heavy box and asking your friend

to move are both successful about 90% of the time, these two

relationships can be described by a similar functional form. The

mapping from domain-specific mechanism to functional form is

many-to-one, with a variety of different mechanisms reducing to

the same set of qualitative assumptions about functional form.

Consequently, causal induction involving systems in quite differ-

ent domains can have much the same character: Even if the content

of theories differs, the constraints they imply for causal relation-

ships can be the same.

An experiment conducted by Schulz and Gopnik (2004, Exper-

iment 3) illustrates this point. In this experiment, children learned

about causal relationships in two different domains: biology and

psychology. In the biology domain, children were asked to infer

which flowers caused a toy monkey to sneeze, and in the psychol-

ogy domain, they learned which animals scared a toy rabbit. There

were two conditions in each domain. Using A, B, and C to indicate

the presence of each of three flowers (or animals) and E to indicate

a sneezing monkey or a scared rabbit, the test condition consisted

of four events: e��a�b�c�, e��a�b�c�, e��a�b�c�, and

e��a�b�c�. The control condition featured four different events:

e��a�b�c�, e��a�b�c�, e��a�b�c�, and e��a�b�c�. Children

made quite similar inferences across the two domains, as shown in

Table 7, identifying C as the cause in the test condition, and all of

A, B, and C as causes in the control condition.

Schulz and Gopnik (2004) used the results of this experiment to

argue that children’s ability to infer causal relationships is domain

independent. A different interpretation of these results is that they

indicate that the same functional form can be assumed in different

domains (and for different underlying causal mechanisms). If the

theories characterizing two systems are isomorphic, then causal

inferences using those theories will be identical. A pair of isomorphic

theories for sneezing and scaring is shown in Figures 25 and 26.

There is a direct correspondence between the types of entities

identified by these theories and the predicates applied to those

entities, with Flower and Beast, Monkey and Rabbit, and

Sneezes and Scared all playing the same roles. The theories are

Table 7

Effect of Domain on Functional Form

Condition C All Other

Test (biology) .78 (.90) .11 (.00) .11 (.10)
Control (biology) .05 (.06) .89 (.86) .05 (.08)
Test (psychology) .67 (.90) .28 (.00) .05 (.10)
Control (psychology) .05 (.06) .83 (.86) .11 (.08)

Note. Numbers indicate the proportion of children identifying C as the
cause, indentifying A, B, and C as causes, or producing some other
response, from Schulz and Gopnik (2004, Experiment 3). Predictions of the
Bayesian model are given in parentheses. Boldface values indicate major-
ity.
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identical in their assumptions about the plausibility of causal

relationships and the functional form of those relationships. For the

stimuli shown to the children, both theories generate the same

hypothesis space of causal graphical models.

Under the theories shown in Figures 25 and 26, the influences of

multiple causes on both sneezing and scaring are described by the

noisy-OR parameterization. The use of the same functional form

across the two theories is a consequence of the applicability of the

same set of assumptions about the nature of causal relationships in

the domain: that causes influence their effects probabilistically,

and that each of these influences has an independent opportunity to

do so. This shared functional form results in the same predictions

for the two conditions, as shown in Table 7. These predictions used

p � .5 and ε � .05 for both biology and psychology.

The Effect of Domain on Plausibility

In many of the examples discussed in the previous sections,

assumptions about the plausibility of a causal relationship played

a less important role than assumptions about the underlying on-

tology and the functional form of causal relationships. In part, this

is because the stimuli used in experiments on causal learning tend

to involve variables among which causal relationships are quite

plausible. Studying problems of causal learning involving vari-

ables from different domains provides an opportunity to explore

the effect of domain on the plausibility of causal relationships. In

particular, one might expect that plausible relationships would be

restricted to causes that use forces appropriate to that domain. For

example, asking a box to move is far less likely to be successful

than dragging it. Using examples similar to this, Schulz and

Gopnik (2004) have recently investigated how children assess the

plausibility of causal relationships across domains and how this

assessment interacts with statistical evidence.

Schulz and Gopnik (2004, Experiment 4) introduced children to

causal systems in two domains. The physical domain involved a

machine that made noise, with the candidate causes of the activa-

tion of the machine being two magnetic buttons (the in-domain

objects a and b) and speech (the out-domain object c). The

psychological domain involved reasoning about what might make

a person giggle. The in-domain objects a and b were silly faces,

and the out-domain object c was a switch. In each domain, children

Figure 25. Theory for causal induction with “biology” (sneezing monkeys).

Figure 26. Theory for causal induction with “psychology” (scared rabbits).
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were first asked which objects were likely to produce the effect,

and they unanimously identified the in-domain causes. They then

saw a series of trials exactly the same as those used in the test

condition of Schulz and Gopnik’s (2004) Experiment 3, discussed

above. As shown in Table 8, the majority of the children now

identified the out-domain object c as the cause, despite its low

initial plausibility.

A simple theory that characterizes both the physical and the

psychological stimuli used by Schulz and Gopnik (2004) is shown

in Figure 27. Under this theory, both in-domain and out-domain

objects can influence the effect, but the plausibility of such rela-

tionships differs. The probability of an in-domain relationship is

set by p, while the probability of an out-domain relationship is set

by q. The hypothesis space generated by this model for objects a,

b, and c is functionally equivalent to that shown in Figure 12,

using A to indicate the presence of a, B to indicate the presence of

b, C to indicate the presence of c, and E to indicate the activation

of the effect.

The initial responses of the children in Schulz and Gopnik’s

(2004) experiment indicates that q is much less than p. The

predictions of the model with p � .4, q � .1, and ε � .1 are shown

in Table 8. The model identifies c as a cause, despite its low

plausibility, because of the strong assumptions about functional

form. This effect can be best understood by considering the limit

as ε3 0. If E never occurs in the absence of a cause, then seeing

E occur in the presence of c provides unambiguous evidence that

C causes E. Thus, provided q takes on some value greater than

zero, the probability that C causes E will be 1.00. Allowing ε to

take on values greater than zero increases the influence of q on the

outcome. In particular, if ε is somewhat greater than q, it becomes

more likely that A and B are causes of E, and the causal relation-

ship simply failed to manifest on the trials when a and b were

present.

Schulz and Gopnik (2004) interpreted this experiment as indi-

cating that children are aware of domain-specific constraints on

causal relationships but that these constraints can be overridden by

domain-general principles of causal learning. In the analysis

above, the probability of an out-domain variable being involved in

a causal relationship, q, has little effect on the predictions of the

model: The assumptions about the functional form of the causal

relationship mean that C will be identified as the cause even if q is

very small. The model predicts that the value of q would have a

greater effect given ambiguous evidence. For example, seeing

e��a�b�c� and e��a�b�c� would suggest that A and B cause E

if q is small, and that C causes E if q is large. Examining inferences

from ambiguous evidence thus provides an opportunity to explore

whether children really assign lower prior probability to cross-

domain causal relationships.

Bonawitz, Griffiths, and Schulz (2006) tested the prediction that

ambiguous evidence should trade off with priors based on domain,

presenting preschoolers with ambiguous evidence involving either

in-domain or cross-domain causes. The experiment was conducted

with 4- and 5-year-old children, who were assigned to either a

baseline or an evidence condition. Children in both conditions saw

both within-domain and cross-domain storybooks. In the baseline

condition, the storybooks featured the events of a single day, in

which a character interacted with two potential causes (a and b) of

an effect. For example, in the within-domain storybook, a deer ran

in two places and got itchy spots. In the cross-domain story book,

a bunny rabbit was scared (cause a) and ate something (cause b),

then got a tummy ache. Children were then asked to select which

of the causes they thought was responsible for the effect. In the

evidence condition, children saw 7 days in the life of the character,

and one of the two causes (a) recurred on each day, together with

a new potential cause each day. This provides ambiguous evidence

that a is the cause, as it is also possible that each of the seven other

potential causes produces the effect. At the end of the story,

children were asked which of the causes was responsible for the

effect. The results are shown in Figure 28 together with the

predictions of the theory-based Bayesian model outlined above,

with p � .4 and q � .1 and ε � .001. Children’s responses match

the qualitative predictions of this model, with the cross-domain

cause initially being given less credence than the within-domain

cause, but becoming increasingly acceptable as a result of the

provision of the ambiguous evidence. The model provides a rea-

sonable quantitative match to the data, with r � .84, although the

model predicts a stronger effect of the ambiguous evidence than

was observed with children. A replication of the cross-domain

condition (Experiment 2 of Schulz, Bonawitz, & Griffiths, 2007)

found that 60% of children chose A, expressing a preference more

consistent with that of the model. However, in general, children

were more conservative than the model predicts, being more

affected by the prior and less affected than the data.

Summary

Different domains operate by different causal principles, a fact

that can be captured in the theory-based framework by using

different causal theories and by allowing relationships to differ in

their plausibility. However, such differences need not always

result in different behavior: As shown by the results of Schulz and

Gopnik (2004, Experiment 3), if the theories that describe causal

systems in two domains imply the same constraints on causal

graphical models, then we should expect causal inferences to have

much the same character across those systems. Likewise, while

knowledge of the causal principles by which different domains

operate can influence the plausibility of causal relationships,

strong assumptions about functional form can overwhelm the

effects of plausibility, as in Schulz and Gopnik (2004, Experiment

4). These experiments thus leave open the possibility that domain-

specific knowledge guides causal induction. Some support for this

idea is provided by subsequent experiments, which suggest that

causes that cross domains are assigned lower prior probability

(Bonawitz et al., 2006; Schulz et al., 2007).

Table 8

Effect of Domain on Plausibility

Condition c a, b Other

Physical .75 (.72) .00 (.09) .25 (.19)
Psychological .81 (.72) .00 (.09) .19 (.19)

Note. Numbers indicate the proportion of children identifying c as a
cause, identifying a and/or b as a cause, or producing some other response,
from Schulz and Gopnik (2004, Experiment 4). Predictions of the Bayesian
model are given in parentheses. Boldface values indicate majority.
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Discussion

We have presented a computational framework for the expla-

nation of human causal induction—theory-based causal induction.

The case studies presented above illustrate how this framework

can be used to provide a unifying framework in which explana-

tions of causal learning in a broad range of settings can be

presented. The combination of powerful statistical inference with

constraints provided by prior knowledge makes it possible to

explain some of the most remarkable aspects of human causal

learning: that we can identify causal structure from only a few

observations, that we can identify complex hidden causal struc-

tures with ease, and that we can make inferences from spatial and

temporal coincidences. None of the alternative accounts we have

considered are capable of explaining all of these phenomena.

Expressing a wide range of causal induction problems within

this framework makes their common structure apparent and helps

to clarify their differences. Rather than being separate phenomena

requiring different kinds of explanations, causal induction from

contingency data, learning about physical causal systems, and

perceptual causality can be seen as lying on a continuum express-

ing the strength of constraints that prior knowledge imposes on

causal inference. In contingency learning, relatively weak prior

knowledge results in a need for relatively large samples, but

expectations about the form of causal relationships still influence

people’s judgments. With simple physical systems such as the

blicket detector or stick-ball machine, strong prior knowledge (such as

the assumption that physical devices are near deterministic) make it

possible for both adults and children to reach strong conclusions from

small amounts of evidence. Finally, when making inferences from

spatial or temporal data, strong expectations about the spatiotemporal

characteristics of causal relationships mean that a single event can be

sufficient to reveal the underlying causal structure.

In the remainder of the article, we deal with a set of questions

examining the adequacy of this account. The first question con-

cerns the characterization of the role of mechanism knowledge in

causal induction. We attempt to articulate exactly which aspects of

mechanism knowledge influence causal induction and identify the

relationship between the notion of causal mechanism and the

causal theories that form the basis of our account. We then turn to

two questions concerning our treatment of theories—how the

Figure 27. Theory for causal induction across domains.
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Figure 28. Results from Bonawitz et al. (2006). When presented with ambiguous evidence for a cross-domain

causal relationship (cause a), 4- and 5-year-old children initially prefer a within-domain cause (here, labeled

“other”) and then gradually shift to favor the cross-domain cause as evidence mounts.
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relatively low-level theories that we have discussed can be ex-

tended and how such theories might be learned—before briefly

considering the kinds of psychological processes that might sup-

port rational theory-based causal induction.

Causal Mechanisms and Causal Theories

As mentioned at the start of the article, psychological theories

about causal induction have traditionally fallen into two camps

(Newsome, 2003): Covariation-based approaches characterize hu-

man causal induction as the consequence of a domain-general

statistical sensitivity to covariation between cause and effect (e.g.,

Cheng & Novick, 1990, 1992; Shanks & Dickinson, 1987),

whereas mechanism-based approaches focus on the role of prior

knowledge about the mechanisms by which causal force can be

transferred (e.g., Ahn & Kalish, 2000; Shultz, 1982b; White,

1995). Recently, these two approaches have begun to be brought

together through theories that consider how prior knowledge can

be combined with covariational evidence (Koslowski, 1996; Wald-

mann, 1996; Waldmann et al., 2006). Our theory-based approach

formalizes the interaction between prior knowledge and statistical

learning in causal induction. In this section we attempt to clarify

how the theory-based prior knowledge appealed to by our ap-

proach connects to the notion of causal mechanism.

When researchers refer to causal mechanism, they typically

mean the chain of events mediating between cause and effect, as

illustrated in Figure 29a (e.g., Bullock et al., 1982; Glymour, &

Cheng, 1998; Shultz, Pardo, & Altmann, 1982; see Shultz &

Kestenbaum, 1985, for a discussion of different kinds of mecha-

nism). However, a detailed understanding of the mechanisms

mediating between cause and effect is clearly not necessary for

causal induction—if one possessed such knowledge there would

be nothing to learn. Furthermore, recent studies investigating the

limits of people’s understanding of causal systems suggests that in

fact, our mechanism knowledge may look more like Figure 29b.

For example, Rozenblit and Keil (2002) found that when asked to

explain how mechanical systems like crossbows and helicopters

work, people radically overestimated the extent of their mecha-

nism knowledge. It seems that, in general, our causal knowledge

identifies the fact that a mechanism exists but does not necessarily

articulate all of the steps that connect cause and effect (Keil, 2003).

Results like those of Rozenblit and Keil (2002) raise an inter-

esting question: If our knowledge of causal mechanisms is as

shallow as it appears to be, how is it possible for this knowledge

to inform causal induction? Our theory-based account provides an

answer to this question. Under our account, prior knowledge plays

two important roles in causal induction: identifying which relation-

ships are plausible and characterizing the functional form of those

relationships. The shallow mechanism knowledge described by Keil

(2003) is sufficient to fulfill these roles. Whether a causal relationship

seems plausible is affected by mechanism knowledge, but the key

determinant in this decision is not the particular details of the causal

mechanism, but whether such a mechanism could exist. Similarly,

evaluating the functional form of a causal relationship does not

require knowing every step between cause and effect, but knowing

what kind of relationship those steps might produce.

Neither assessing plausibility nor specifying functional form

requires a detailed account of a chain of events from cause to

effect. As mentioned previously, a number of studies have sug-

gested that simply believing a mechanism could exist makes a

causal relationship seem more plausible (Koslowski, 1996;

Koslowski & Okagaki, 1986; Koslowski et al., 1989). Lack of com-

plete mechanism knowledge is likewise no impediment to reasoning

about the functional form of a causal relationship. This point is

illustrated through our use of Halley’s inference as an example of a

case in which prior knowledge guided causal induction. Newton’s

theory was notoriously amechanistic, departing from its forebears by

introducing forces unmediated by particles (e.g., Westfall, 1977).

Physicists are still engaged in the project of providing a mechanistic

account of Newton’s ideas, and in particular the force of gravity.

Although Halley did not know the means by which the masses of stars

and planets influenced the orbits of comets, he was still able to use

information about the form of this influence to reason about the cause

of the events that he observed. Indeed, in introducing his own account

of causality, Pearl (1996) reduced mechanisms to “nothing but ordi-

nary physical laws, cast in the form of deterministic equations”

(p. 432), being no more than the specification of the functional form

of the relationship between two variables.

The causal theories used in theory-based causal induction can

thus be viewed as expressing the consequences of the shallow

knowledge people possess of the mechanisms that operate in

different domains. However, these theories do not express that

knowledge directly: They are just as amechanistic as Newton’s

theory of physics, characterizing the possible relationships among

entities and their form. The theories we have described are the

constraints on the functional relationships among variables that

can be the consequence of mechanism knowledge rather than the

knowledge itself. Many mechanisms can imply the same set of

constraints, as illustrated in the discussion of domain specificity in

the previous section.

Distinguishing between theories and mechanisms provides an

important insight into how causal induction is possible. A major

challenge for mechanism-based accounts of causal induction is

explaining how new causal mechanisms might be learned: If all

causal induction requires mechanism knowledge, one can never

discover a relationship that suggests a new mechanism (e.g.,

Cheng, 1993). If theory and mechanism are distinct, it becomes

possible to learn a set of causal relationships without knowing their

underlying mechanism. The existence of these relationships can

then encourage the search for a mechanism that accounts for them,

and the discovery of such a mechanism justifies further inferences

about possible causal relationships. Such a pattern is extremely

common in science—most of the suspicious coincidences that

suggest new causal relationships are followed by a search for an

explanatory mechanism (cf. Griffiths & Tenenbaum, 2007a).

C(b) E1M M2 M?
. . .

(a) EC 1M M2 M?
. . .

Figure 29. Two conceptions of causal mechanism knowledge. (a) The

causal mechanism specifies the chain of events mediating between cause C

and its effect E. (b) Often, people know that some mechanism (M) exists,

but not the details.
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Higher Level Causal Theories

The causal theories that we have used throughout this article have

the same constituents as the intuitive theories discussed in accounts of

cognition and cognitive development—ontologies and causal laws—

but are far more limited in scope. Our analogy to Wellman’s (1990;

Wellman & Gelman, 1992) notion of a framework theory is useful in

indicating the way that multiple levels of causal knowledge interact,

but misleading in suggesting that the causal theories we describe are

at the same level of generality as framework theories. Framework

theories are supposed to provide the fundamental principles used in

organizing an entire domain, such as intuitive physics, biology, or

psychology. The theories we have presented characterize the princi-

ples that underlie very simple causal systems, with well-delineated

boundaries. Although our theory of Nitro X makes predictions for any

array of arbitrarily many cans of explosive, it hardly provides a

complete theory of all physical systems.

The theories described in the article constitute the lowest level

of causal theory, identifying the causal principles involved in

specific kinds of systems. Doing justice to the notion of a frame-

work theory requires postulating the existence of higher level

theories, which express principles common to many systems.

Following our definition of theories as hypothesis space genera-

tors, these higher level theories should generate hypothesis spaces

that consist of different theories of particular causal systems (Te-

nenbaum et al., 2007). As discussed in the next section, such

hypothesis spaces can be used to determine which theory best

characterizes the forces at work in a system.

Identifying the kind of principles that should be included in these

higher level theories requires investigating the assumptions that guide

causal induction across a wide range of systems. By examining

inferences involving different systems in physics, biology, and psy-

chology, it should become possible to pick out the domain-specific

principles that generate the theories of these systems that people use.

Our investigation of different physical systems, such as the stick-ball

machine and Nitro X, suggests what some of these principles might be

for the domain of physics. The theories that we used to explain

people’s inferences about these systems had much the same character,

using hidden causes ( prime movers) to inject mechanical energy into

the system, and having rules stating that no object changes state

without a cause, and that causes produce changes in state with high

probability. These principles may be a part of the higher level theory

that organizes knowledge about all physical systems, constituting a

part of our intuitive physics.

Learning Causal Theories

We have argued that human causal induction—the inference to

causal structure from data—can be viewed as the result of a statis-

tical inference comparing hypotheses generated by a causal theory.

This approach explains how people are able to infer causal relation-

ships from small samples and identify complex causal structures.

However, it raises a new problem: explaining how people learn causal

theories.

Our account of how people learn causal theories will generally

have the same character as our account of how people learn causal

structure. As stated above, the three levels of representation used in

our account—theories, hypotheses, and data—and the assumption

that each level generates the one below define a hierarchical Bayesian

model (Tenenbaum et al., 2006). This model can be used to make

inferences about any level in the hierarchy. As mentioned in our

discussion of the blicket detector, the data D can be used to make

inferences about the theory T—this just requires applying Bayes’ rule

at the level of theories (Equation 8). However, in the case of the

blicket detector, there were only two theories to compare. In general,

the problem of learning a theory is much more complex.

Applying Bayes’ rule at the level of theories, T, requires having a

prior distribution over such theories, P(T). Just as people have strong

expectations about the causal relationships that might hold in a given

system, they have strong expectations about the kind of causal rela-

tionships that could operate in a domain. For example, theories of the

stick-ball machine are constrained by beliefs about how any physical

system could work. These constraints are expressed in higher level

domain theories. Assuming that such higher level theories generate

theories of particular systems, such higher level theories provide a

hypothesis space of theories, T, and a prior on those theories.

Developing and testing this account of how theories are learned

provides an important direction for future research. Our discussion of

the blicket detector example illustrates how people might learn the

functional form of a causal relationship, showing that assumptions

about deterministic relationships can be easily overruled. Empirical

investigation of the predictions of this account would reveal whether

people’s judgments can change in the same way. The question of how

types of entities might be inferred, and how this interacts with plau-

sibility, has recently been explored by Tenenbaum and Niyogi (2003),

who showed that people could learn about the existence of different

types of entities purely on the basis of the causal relationships in

which they participated. Kemp, Griffiths, and Tenenbaum (2004)

have developed a computational model that explains how such learn-

ing can take place, using Bayesian inference to simultaneously iden-

tify the number of types, the types themselves, and the plausibility of

causal relationships among entities of those types, and Kemp et al.

(2007) showed how this approach could be applied to human learning

of simple theories.

Providing an account of how people learn causal theories of

specific systems that appeals to higher level causal theories raises

a new problem: explaining how these higher level theories are

learned. Changes in the causal theories of domains constitute some

of the most interesting phenomena in cognitive development, and

in the history of science. However, at this point, concerns about an

infinite recursion, providing no ultimate solution to the question of

how people learn causal relationships, seem justified. There are

three reasons not to be concerned by such a recursion. First, the

mechanism by which the inference is performed at each step is the

same—regardless of the level of representation, inferences about

the level above can be made using Bayesian inference. There is

thus no mysterious new force of learning that enters at any point.

Second, this inference can become simpler at each level, with

potentially fewer hypotheses about the more abstract principles

that organize a domain, and a broader range of observed data that

provide information about those principles. Third, the recursion is

not infinite. At some point, it grounds out in a set of basic

assumptions about the nature of causality, which provide con-

straints on the most general domain theories. Some of the impli-

cations of this idea of a recursive hierarchy of causal theories are

explored in Tenenbaum et al. (2007).
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Psychological Mechanisms Supporting Rational Causal

Induction

Our focus in this article has been on providing a computational-

level analysis of causal induction, rather than an account of the

representations and algorithms that people use to solve this problem,

or the way in which those representations and algorithms are imple-

mented. However, Marr’s (1982) levels of analysis were not intended

to be completely independent, with constraints from the different

levels influencing one another. In this case, we can ask what con-

straints our computational-level analysis might impose on the kinds of

psychological processes we might expect to support causal induction.

The most fundamental question that our analysis raises is that of

how human minds might even be capable of performing the kind

of computations that are involved in the models of causal induction

that we have considered. The number of causal graphical models

that can be expressed using a given set of variables grows expo-

nentially in the number of variables, and the computational cost of

performing Bayesian inference increases linearly with the size of

the hypothesis space. Consequently, it would seem that we would

rapidly run into serious computational limitations in the kind of

causal learning we might expect people to be able to perform.

Our answer to this problem comes in two parts. The first part is

built into our framework, through the idea that theories provide

constraints on causal learning. These constraints effectively reduce

the size of the hypothesis space involved in causal learning—

something that makes it easier to learn from small amounts of data,

but that also reduces the amount of computation required in

learning. As we have argued throughout the article, the strong

constraints provided by prior knowledge are the key to why people

are so good at causal induction. Indeed, recent work in machine

learning has begun to explore ways of constraining hypotheses

about causal structure in order to be able to learn from smaller

amounts of data and to do so with less computation (e.g., Segal,

Pe’er, et al., 2003; Segal, Shapira, et al., 2003).

In considering the psychological plausibility of this kind of con-

strained combinatorial computation, it is worth returning to our lin-

guistic analogy. Under a standard (generative grammar inspired)

account of sentence processing, when people hear a sentence they

make an inference about the syntactic structure underlying the words

in the sentence. This is exactly the same kind of computation as we

are proposing the human mind performs in causal learning: The space

of possible syntactic structures increases exponentially in the length of

the sentence, and the grammar provides constraints that combine with

the words to yield the most likely interpretation. If people can inter-

pret sentences, even doing so online, in a way that is robust to

interference, then they have all the computational resources required

to perform theory-based causal induction.

The second part of our answer is that we expect the mind not to

be performing all of the computations required for Bayesian in-

ference but to be using an efficient approximation. One source of

heuristic approximations for the kind of computations involved in

causal inference is Monte Carlo simulation: rather than consider-

ing all possible hypotheses, considering a randomly generated

subset. Monte Carlo techniques are commonly used in the machine

learning literature on learning the structure of graphical models

(e.g., Friedman & Koller, 2000) and can also be found in solutions

to the problem of statistical parsing we have been using in our

analogy (e.g., Johnson, Griffiths, & Goldwater, 2007). In particu-

lar, a technique known as a particle filter provides a way to

maintain only a finite number of hypotheses over time, updating

those hypotheses as new data become available in order to approx-

imate the new posterior distribution (Doucet, Freitas, & Gordon,

2001). Particle filters have been proposed as psychological models

in other settings, including categorization (Sanborn, Griffiths, &

Navarro, 2006), change detection (Brown & Steyvers, 2009), and

sentence processing (Levy, Reali, & Griffiths, 2009).

We remain agnostic about the specific psychological processes

underlying causal induction and open to proposals of ways in

which simple heuristics and associative learning might be used to

approximate the statistical computations at the heart of our ac-

count. However, our computational-level analysis provides clearly

specified goals for what such algorithms and representations

should aim to approximate, and we suspect that considering strat-

egies for approximating these computations will provide a produc-

tive means of generating hypotheses about psychological mecha-

nisms that could support rational theory-based causal induction.

Conclusion

The human ability to infer causal structure from observed data has

traditionally been studied in several very different settings, with

correspondingly different kinds of cognitive capacities invoked to

explain this ability. Causal learning from contingency data has been

viewed as the result of associative learning or intuitive statistical

reasoning processes. Learning about causality in simple physical

systems has been explained in terms of mechanistic reasoning. De-

tecting hidden causal structure in patterns of spatial and temporal

coincidence has been attributed to innate, modular perceptual pro-

cesses. However, all of these different species of causal induction

have at their heart the same computational problem, which suggests

common principles by which they might operate.

The common challenge is the classic problem of induction: to infer

the true causal relations that hold among a set of events, given a small

finite set of observations that could have been produced by (and hence

are logically consistent with) many possible causal structures. This

problem can be approached as a statistical inference, but learning

from small amounts of data can be successful only if constrained by

strong and appropriate prior knowledge. We have argued that in order

to capture the background knowledge that guides human causal learn-

ing, we need a representational framework that is richer and more

abstract than the language of causal graphical models or Bayesian

networks that has recently become influential in psychology. We have

shown how to formalize causal background knowledge in terms of

probabilistic logical theories and shown how such theories can be

integrated with a Bayesian framework for causal learning. The theory

generates a hypothesis space of candidate causal structures that could

explain a set of observed data, along with a prior distribution over

those hypotheses which serves to favor some candidate explanations

over others.

We have applied our theory-based approach to a number of case

studies in causal induction, covering a broad range of different

kinds of causal systems, and a variety of settings in which people

learn about causal relationships. Learning in each of these settings

can be explained as a Bayesian inference constrained by a different

causal theory. The variation in human judgments across settings

provides insight into the roles that background knowledge plays in

guiding human causal learning: As background knowledge be-
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comes stronger, both our models and human observers require less

data to make confident causal inferences. By exploring the con-

straints that are necessary to explain causal inferences across a

range of settings—from the orbits of comets to the workings of

gears, patterns of explosions and patterns of disease—we can

begin to understand the common principles governing how ab-

stract knowledge is organized and used in solving some of the

most difficult inductive problems at the heart of human cognition.
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Appendix A

Materials for Experiment on Manipulation of Functional Form

Generative Condition

Imagine that you are working in a laboratory and you want to

find out whether certain chemicals cause certain genes to be

expressed in mice. Below, you can see laboratory records for a

number of studies. In each study, a random sample of mice were

injected with a certain chemical and later examined to see if they

expressed a particular gene. Each study investigated the effects of

a different chemical on a different gene, so the results from

different studies bear no relation to each other.

Of course, these genes may sometimes be expressed in animals

not injected with a chemical substance. Thus, a random sample of

mice who were not injected with any chemical were also checked

to see if they expressed the same genes as the injected mice. For

each study below, you can see how many of the injected mice were

found to have expressed the gene, as well as how many of the

uninjected mice were found to have expressed the same gene.

What you must decide is whether a given chemical increases the

likelihood of expressing a given gene.

Preventive Condition

Imagine that you are working in a laboratory and you want to

find out whether certain chemicals prevent viruses in mice. Below,

you can see laboratory records for a number of studies. In each

study, a random sample of mice were injected with a certain

chemical and later examined to see if they caught a particular

virus. Each study investigated the effects of a different chemical on

a different virus, so the results from different studies bear no

relation to each other.

Of course, these viruses vary in how often they occur. Thus, a

random sample of mice who were not injected with any chemical

were also checked to see if they caught the same viruses as the

injected mice. For each study below, you can see how many of the

injected mice were found to have the virus, as well as how many

of the uninjected mice were found to have the same virus. What

you must decide is whether a given chemical decreases the like-

lihood of catching a given virus.

Difference Condition

Imagine that you are working in a laboratory and you want to

find out about the genetic properties of different kinds of mice.

Below, you can see records for a number of studies conducted by

the laboratory. In each study, a random sample of mice from two

different species were examined to see if they expressed a partic-

ular gene. Each study investigated the expression of a different

gene in different species of mice, so the results from different

studies bear no relation to each other.

For each study below, you can see how many of the mice were

found to have expressed the gene for each of the two species. The

mice in GROUP 1 were all from one species, while the mice in

GROUP 2 were all from a second species. The number of mice

expressing the gene provides you with information about the two

species, but these numbers are also affected by chance. What you

must decide is whether there is a real difference between the two

species in their tendency to express the gene.
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Appendix B

Bidirectional Causal Relationships

The hypothesis spaces generated by the theory of stick-ball ma-

chines can include structures in which balls can cause one another to

move, such as that shown in Figure B1a. Cyclic relationships are

usually prohibited in graphical models (Pearl, 1988), although some

kinds of cycles can be dealt with in causal graphical models (e.g.,

Pearl, 2000). One common approach to dealing with cycles is to

impose temporal structure on a set of events, unrolling the cycle into

a set of dependencies that hold between two variables in successive

time slices. In this Appendix, we outline how this approach can be

used to deal with cyclic causal relationships in stick-ball machines.

Given NB balls, with Bi indicating Moves(bi, T) and NH hidden

causes, with Hj indicating Active(hj, T), the following procedure can

be used to generate values of Bi and Hj on any given trial:

1. Determine which hidden causes are active by sampling

the values of Hj.

2. Determine which balls are moved by the hidden causes

by sampling the values of Bi, conditioned just on Hj. If

Hj 3 Bi and hj � 1, then bi � 1 with probability �.

3. Determine which balls move other balls. Every ball that

moves has one opportunity to move the balls to which it

has causal connections. If Bi 3 Bj, bj is currently 0, and

bi has not previously attempted to move bj, then bj � 1

with probability �.

4. Repeat Step 3 with the balls that were just moved by

other balls. This procedure continues until all balls that

have moved have had one opportunity to influence each

of the balls to which they are connected.

This procedure implicitly defines a temporal succession of events,

with hidden causes becoming active, then moving a subset of the

balls, each of which moves some subset of the remaining balls,

each of which moves further balls, and so forth. This temporal

succession removes the cycles in the underlying causal graphical

model, allowing events to unroll through time.

The generative procedure described in the previous paragraph can

be expressed as a recipe for constructing an “unrolled” graphical

model from the basic graphical model. The unrolled model can be

used to compute the probability of events, and is constructed as

follows:

1. Create NB � 1 copies of Bi, numbered from 0 to NB,

indicating successive points in time within the trial. We

use Bi
�t� to refer to the copy of Bi at time t.

2. Bi
�t � 1�

3 Bi
�t� for all t � 1. If Hj3 Bi in the basic model,

then Hj3 Bi
�1� in the unrolled model. If Bi 3 Bj in the

basic model, then Bi
�t � 1�

3 Bj
�t� and Bi

�t � 2�
3 Bj

�t� for all

t � 2 in the unrolled model.

3. Set bi
�0�

� 0. Parameterize Bi
�1� as a noisy-OR of Hj. For

t � 2, parameterize Bi
�t� as

P�bi
�t�

� 1�b
�

�t � 1�,b
�

�t � 2��

� 1 � �1 � bi
�t � 1���1 � ��� j�i bj

�t � 1�
�1�b

j

�t � 2�
�,

where b
�

(t�1) denotes the value of all bj at t � 1. Under this param-

eterization bi
�t) � 1 if bi

�t � 1�
� 1, and is otherwise a noisy-OR of all Bj

that changed between t – 2 and t – 1.

The probability of a set of observed values for Bi in the basic

model is the probability of Bi
�NB� taking those values in the unrolled

model, summing over all latent variables. Figure B1b shows the

unrolled model for the basic model shown in Figure B1a.
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Figure B1. Dealing with bidirectional causal relationships in stick-ball machines. (a) A causal graphical model

generated by the theory of stick-ball machines. H1 and H2 are hidden causes, with A and B the motion of two

balls. (b) The same model “unrolled” through time, removing the cyclic causal relationship. Superscripts indicate

a sequence of points in time, with each variable now being represented distinctly at each point.

(Appendixes continue)
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Appendix C

Materials for Cancer Cluster Experiment

Instructions for the cancer cluster experiment were as follows:

Researchers are investigating the effects of environmental contami-

nants on the spatial distribution of rare forms of cancer. They are

studying 12 different rare cancers, trying to establish which cancers

show evidence of being caused at least in part by some localized

environmental factor, such as living near to a toxic waste dump or a

chemical leak, in addition to random genetic mutations that are

thought to be the usual causes of these diseases in the general

population.

Each of the images below shows the places of residence (“x” marks)

for every individual who developed a particular rare form of cancer

within a one square mile area of a major city in a single year.

(Approximately 20,000 people live within this area.) For each image,

please rate HOW LIKELY you think it is that there is an underlying

environmental cause that makes people living near some particular

location more likely than the general population to develop that

particular disease. Use a scale from 1 to 10, where 1 means “very

UNLIKELY to have a localized environmental cause,” and 10 means

“very LIKELY to have a localized environmental cause.”

The stimuli consisted of three sets of 12 images. Each set was

generated by the same stochastic process—a mixture of a uniform

and a Gaussian distribution—but the parameters of the mixture

were varied as shown in Table C1. Since there was some random-

ness in the stimulus generation program, three different sets were

used to make sure the effects found were not due to some idio-

syncrasy in the particular stimuli used. Each participant saw one of

these three sets.

Results with each of the three sets were virtually identical and

they were averaged together for all analyses presented in the

article. Shown next to each of the 12 types of stimuli are the

parameters of the random process used to generate them. In addi-

tion, the stimulus generating program filtered out any stimuli

where events occurred too close to the boundary, too close to each

other, or without sufficient separation between the events gener-

ated by the Gaussian cluster and those drawn uniformly over the

whole rectangle.
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Table C1

Parameters Used to Generate Stimuli for Cancer Cluster

Experiment

Image
Number of

points
Number in

cluster
Variance of

cluster

1 3 2 .2
2 6 4 .2
3 12 8 .2
4 8 2 .2
5 8 3 .2
6 8 4 .2
7 8 5 .2
8 6 4 .8
9 6 4 .05

10 3 0 .2
11 8 0 .2
12 12 0 .2

Note. All points were plotted in a square 10 units in width and length,
with the locations of points outside the cluster and the mean of the cluster
all being chosen uniformly in that space. The variance of the cluster refers
to the diagonal entries of the covariance matrix � of the two-dimensional
Gaussian from which the points in the cluster were generated.
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