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Abstract
Psychological theories of habit posit that when a strong habit is formed through behav-
ioral repetition, it can trigger behavior automatically in the same environment. Given
the reciprocal relationship between habit and behavior, changing lifestyle behaviors
is largely a task of breaking old habits and creating new and healthy ones. Thus,
representing users’ habit strengths can be very useful for behavior change support
systems, for example, to predict behavior or to decide when an intervention reaches
its intended effect. However, habit strength is not directly observable and existing
self-report measures are taxing for users. In this paper, building on recent computa-
tional models of habit formation, we propose a method to enable intelligent systems
to compute habit strength based on observable behavior. The hypothesized advantage
of using computed habit strength for behavior prediction was tested using data from
two intervention studies on dental behavior change (N = 36 and N = 75), where we
instructed participants to brush their teeth twice a day for three weeks and monitored
their behaviors using accelerometers. The results showed that for the task of predict-
ing future brushing behavior, the theory-based model that computed habit strength
achieved an accuracy of 68.6% (Study 1) and 76.1% (Study 2), which outperformed
the model that relied on self-reported behavioral determinants but showed no advan-
tage overmodels that relied on past behavior.We discuss the implications of our results
for research on behavior change support systems and habit formation.
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1 Introduction

Behavior change support systems (BCSSs) are digital systems that support users to
change their behaviors in desirable ways such as living a healthier or more sustainable
lifestyle (Oinas-Kukkonen 2013; Lathia et al. 2013). To facilitate behavior change,
BCSSs may use the means of education, persuasion (Fogg 2002; IJsselsteijn et al.
2006), or a combination of theory-based behavior change techniques (Abraham and
Michie 2008). In many application domains where behaviors are repeated frequently,
such as when promoting healthy lifestyles, one of the challenges for successful change
is the task of breaking bad old habits and forming healthy new habits (Gardner and
Rebar 2019; Karppinen et al. 2018; Pinder et al. 2018). Habitual behaviors are charac-
terized as automatic responses triggered by cues in the environment (e.g., eating crisps
when watching TV) or by goals activated in one’s working memory (e.g., using a bike
when commuting to work) (Sheeran et al. 2005; Wood and Neal 2007). The lack of
deliberations of behavioral consequences explains why bad habits persist even when
they conflict with one’s current goals (Dickinson 1985). On the bright side, when a
good habit is formed, it helps behavioral maintenance and prevents relapses.Modeling
users’ habits can potentially increase the effectiveness of BCSSs.

Although the term “habit” is intuitively understood by most people, it is important
to clarify what we mean by “habit” in this paper. In the field of ubiquitous computing,
modeling habits usually refers to themodeling of users’ actual behaviors, i.e., detecting
and recognizing recurrent behavioral patterns and routines (Kalantarian et al. 2015;
Meng et al. 2017; Shoaib et al. 2015), sometimes contingent on specific user con-
texts (Banovic et al. 2016). In contrast, based on psychological theories (Marien et al.
2019; Sheeran et al. 2005; Verplanken et al. 2018; Wood and Neal 2007; Wood and
Rünger 2016), we define habits as the cognitive associations between user behaviors
and the triggering user contexts, thus separating habits from habitual behaviors them-
selves. The strengths of these associations (or simply habit strengths) build up through
context-dependent behavior repetitions and they in turn increase the probability that
the behavior is performed in the same context.

Modeling the habit strength of a particular user behavior can benefit BCSSs in at
least two ways. First, assuming a causal effect of habit on behavior, knowing the habit
strength can assist a system to predict a user’s behavior more accurately. Accurate
behavior prediction is the basis for personalizing interventions, for example, sending
a reminder when the system predicts that the user is unlikely to perform the desirable
behavior on their own. Second, it is widely acknowledged that reminders in many
so-called “habit-formation” apps induce behavior repetition but hinder the formation
of real habits that are supposed to be connected to environmental cues (Renfree et al.
2016; Stawarz et al. 2014, 2015). Thus, representing habit strength as a cognitive
state enables a system to distinguish genuine context-driven habitual behaviors from
repeated behaviors that are simply prompted by digital systems. It also allows a system
to decide when to withdraw proactive interventions on a specific behavior, knowing
from the model that the user’s behavior will likely be maintained by the strong habit
alone.

Habit strength can be measured using the Self-report Habit Index (SRHI) (Ver-
planken andOrbell 2003) or its behavioral automaticity sub-scale (Gardner et al. 2012).
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Although these questionnaires can be implemented in a BCSS on a daily basis, they
pose a burden to users and may suffer from memory and social desirability biases and
even interfere with primary intervention techniques. Recently developed theory-based
computational models of habit formation provide a new approach of quantifying habit
strength based on observable behavior and context (Klein et al. 2011; Miller et al.
2019; Psarra 2016; Tobias 2009), but the usefulness of these models has not been
extensively tested in real-world behavior change interventions. In this paper, we test
whether computing habit strength and related variables based on existing computa-
tional models improves behavior prediction in two real-world intervention studies on
dental behavior change. If the theory-based approach outperforms theory-free predic-
tive models in behavior prediction, the results provide empirical support for the more
widespread use of computational models and encourage other use cases of computing
habit strength, such as intervention personalization.

In the remainder of the paper, we start with the theoretical background of our work,
followed by the overall modeling and evaluation approach. Next, the data-collection
method and results of the two field studies are presented. The paper concludes with a
general discussion, including implications for designing more personalized BCSSs.

2 Theoretical background

2.1 The psychology of habit

Habits are formed through behavior repetitions in the context of goal-directed learn-
ing (Marien et al. 2019; Wood and Neal 2007; Wood and Rünger 2016). According
to the fundamental principles of reinforcement learning in humans and animals (Post-
man 1947; Sutton and Barto 2018; Thorndike 1932), given a goal and a context (e.g.,
search for food in a cage), a learner learns the associations between their behaviors
and outcomes through trial and error and the behavior with the highest probability of
obtaining positive outcomes is repeatedmore andmore frequently (e.g., a rodent press-
ing a lever to obtain pellet). Crucially, in addition to this response-outcome learning
(or goal-directed learning), the learner also picks up an association between the con-
text (or stimulus) and the behavior, referred to as stimulus-response learning or habit
learning. Decades of psychological research has shown that goal-directed learning and
habit learning play distinct roles in animal and human behavioral control (Dickinson
1985; Thorndike 1932) and the two types of learning have distinct underlying brain
regions (Yin and Knowlton 2006). This effect of context-specific behavior repetition
on habit strength provides the basis for habit modeling.

Two addition points regarding habit formation are worth noting. First, in this cog-
nitive perspective, habits and habitual behaviors are context-specific. Even when the
behavior seems to be the same at the level of motor control, performing the same
behavior in two different contexts should be considered as two different habits, with
potentially different habit strengths. For example, one person may have a strong habit
of brushing their teeth after getting up in the morning, but only starts to form a new
habit of brushing their teeth before sleep in the evening. Second, while the initial
behavior repetitions can be driven by different motivational factors (e.g., intrinsic
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enjoyment of the behavior, external reward, or even coercion), it is generally assumed
that the accompanied habit learning (the build-up of a context-behavior association)
follows exactly the same principle. Therefore, a general habit modeling approach is
theoretically applicable to a wide range of behaviors.

Once a strong habit is formed, habit strength as a cognitive construct reinforces
the associated behavior. When the same context is encountered or the same goal is
activated, this association immediately brings a representation of the behavior into
one’s working memory (Tobias 2009) or enhances the baseline preference signal of
the behavior in decision-making (Roe et al. 2001;Zhang2019).Both thesemechanisms
increase the probability that a behavior is repeated in the same context. This reciprocal
effect of habit strength on actual behavior provides the rationale for using computed
habit strength for behavior prediction.

2.2 Computational models of habit learning

Following the theories of habit, Klein and colleagues (2011) proposed a computational
model that formally accounts for the relationship between behavior repetition and habit
strength. The basic idea of the model was inspired by the Hebbian learning principle
in neuroscience (Hebb 1949): assuming a network of cognitive nodes representing
behaviors and contextual cues, the link between a behavior node and a cue node is
strengthened whenever the two nodes are activated at the same time, i.e., when the
behavior is performed with the presence of that particular cue in the environment.

Figure 1a shows the mathematical equation of the model and a simulation result of
how habit strength changes over time in a simple scenario andwith plausible values for
themodel parameters.When a behavior is consistently performed in the first half of the
simulation, habit strength increases over time but the rate of growth decreases so that
habit strength approaches a plateau. When the behavior is abandoned in the second
half, habit strength decays proportionally but at lower rate than the habit growth.
These basic patterns are consistent with the empirical data from a field study on habit
formation where participants reported their habit strength using the SRHI (Lally et al.
2010). In addition to the model by Klein and colleagues, other very similar models of
habit formation have been developed over the years and in various application contexts
(Miller et al. 2019; Psarra 2016; Tobias 2009). Figure 1b–d illustrate the very similar
model simulation results1. For our purpose of testing the usefulness of the general
modeling approach for behavior prediction, we decided that it was sufficient to focus
on the Klein et al. (2011)’s model2.

1 Tobias’s equation does not simulate habit decay while in isolation, but one should note that the equation
for habit formation is meant to be used together with other equations in a complex model of behavior
change.
2 In a more recent unpublished work, we also found that Klein’s model fitted the empirical data of forming
a habit of hand washing in the COVID-19 context better than the alternative models.
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Fig. 1 Equations of different computational models of habit learning and their simulation results under a
simple scenario where the target behavior is consistently performed from step 1 to 60 but is abandoned
from step 61 to 120 (the vertical dotted line separates the two phases). (HS, habit strength; Beh, behavior;
HDP, habit decay parameter; HGP, habit gain parameter. Note that we unified the original parameter names
for the clarity of presentation, but their exact meanings are bounded by each of the equations)

2.3 Habit formation andmemory process

Habit formation is also closely related to memory processes. In order to perform a
desirable behavior (e.g., brushing one’s teeth before going to sleep), a person first
needs to recall the behavioral option before they evaluate it with competing options
(e.g., going to bed directly) (Kamphorst and Kalis 2015; Zhang et al. 2021). A similar
idea was presented in B.J. Fogg’s behavior model for persuasive design that even with
sufficientmotivation and ability to performabehavior, a trigger for the behavior is often
needed (Fogg 2009). When a strong habit is formed, the context in which a behavior
has been repeatedly performed can function as such a trigger by itself (Psarra 2016;
Tobias 2009; Wood and Neal 2007). In contrast, when a habit is still weak, a newly
learned behavior can be “forgotten” in relevant contexts and this requires additional
triggers such as reminders from a BCSS.

In addition to modeling habit formation, Tobias (2009) also proposed a computa-
tional model of how memory accessibility of behavioral options changes over time.
Like any other memory process, the accessibility of a behavioral option decays grad-
ually over time but can be restored upon receiving reminders or when the behavior is
performed. Other unobservable factors, such as the mental rehearsal of an option (Ein-
stein and McDaniel 1996), also influence accessibility but their effects are integrated
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into a single decay parameter in Tobias (2009). The equation is formally introduced
in the next section.

3 Modeling and evaluation approach

3.1 Computing habit strength andmemory accessibility

Based on the theories and computational models reviewed, we focus on two cognitive
quantities that can be computed by a digital system. Of our primary interest, the habit
strength of a target behavior for a user in a behavior change process is computed based
on Klein et al. (2011)’s model. The equation with a habit decay parameter (HDP) and
a habit gain parameter (HGP) is as follows:

HSt+1 = HSt − HSt × HDP+ (1− HSt ) × Beht × Cuet × HGP (1)

The equation implies that given an initial habit strength of a user (HS0), the sub-
sequent habit strength at any time point (HSt ) can be computed as long as the past
occurrences of behavior (Beh) and cues (Cue) are known. In an empirical study or
a behavior change application, users can be asked to self-report their habit strengths
at the beginning and the self-reported values (scaled to [0, 1]) can be used as initial
values. Both actual behavior and environmental cues can be potentially monitored
by sensors in a BCSS. In the current research, we make a simplifying assumption
that users always perform the target behavior in the same context (i.e., participants in
our studies always brushed teeth in their own bathrooms and at similar time), so the
variable Cuet is always 1.

In addition to habit strength, the memory accessibility of a behavioral option can
be computed using the equation in Tobias (2009). Accessibility (Acc) decays natu-
rally as a natural memory process, but can be enhanced by behavior executions (Beh)
and external reminders (Rem). The equation controlled by three free parameters—
accessibility decay parameter (ADP), accessibility gain parameter with behavior
execution (AGPbeh), and accessibility gain parameter with reminder (AGPrem), is as
follows:

Acct+1 = Acct − Acct × ADP+ (1− Acct )

×(Beht × AGPbeh + Remt × AGPrem) (2)

When a user is persuaded by a BCSS to learn a new behavior, the initial value of
memory accessibility (Acc0) of the target behavior can be assumed to be 1 (maximum).
Subsequent memory accessibility can be easily updated bymonitoring actual behavior
and reminders sent by the digital system itself. For simplification, any procedure
used in our empirical studies (e.g., face-to-face meeting, email communication, etc.)
that reminded participants of the target behavior was assumed to restore memory
accessibility by the same amount controlled by a single parameter AGPrem.
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Fig. 2 Visual representations of the three differentmodeling approaches: a survey approach;b past-behavior
approach; c theory-based approach

3.2 Using computed variables in predictive modeling

The primary goal of the current research is to evaluate the usefulness of comput-
ing habit strength and memory accessibility in the use case of behavior prediction.
In a behavior change intervention, predicting future behavior based on information
already collected is an important but challenging task. For example, when a user is
prompted by a BCSS to brush their teeth every morning, it is a useful task to predict
whether they will brush their teeth the next morning (also known as a 1-step forecast)
based on all the system knows about the user at that point. A conventional approach
for behavior prediction in psychology relies on self-reported behavioral determinants
measured by periodical surveys (survey approach, see Fig. 2a), such as attitude, inten-
tion, and self-report habit strength (Verplanken and Orbell 2003). Another approach
is simply to use past behavior to predict future behavior, for example, by calculating
the percentage of days in the past when the user brushed teeth in the morning (past-
behavior approach, see Fig. 2b). Instead of these two approaches, the system can also
compute habit strength and memory accessibility based on historical data (past behav-
ior, cue, reminder, etc.) and use the computed theoretical quantities to predict future
behavior (theory-based approach, see Fig. 2c). Computing the theoretical quantities is
fully justified if the theory-based approach predicts future behavior more accurately
than the past-behavior approach and at least as accurately as the survey approach,
given that it bypasses the need to burden users with questions. Note that we focus
on comparing the relative performance of the models rather than optimizing absolute
performance.
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3.3 Intervention studies for evaluating themodels

We used data sets from two intervention studies on dental health behavior to com-
pare the three approaches above. In these two studies, participants were instructed to
brush their teeth twice a day for about three weeks, while their brushing behaviors
were continuously monitored by sensors, and their attitudes toward toothbrushing
and self-reported habit strengths were measured once a week. In the context of
dental health, toothbrushing twice a day is recommended by most dentists as an
effective way to prevent dental plaque, but research has shown that compliance
with this optimal dental routine is not universal (Aunger 2007). For someone who
only brushes teeth once a day, for example in the morning, brushing for a sec-
ond time in the evening would require forming a new habit. This behavior change
requires changes in one’s attitude and intention in the beginning, preferably supported
by external reminders (e.g., from a BCSS), but with enough practice the behavior
should become a habit or part of one’s bedtime routine (Aunger 2007). We chose
to study toothbrushing behavior because of its relative simplicity, context stability
(e.g., usually in the bathroom at home) and high occurrence frequency, but the general
approach of modeling habit should apply to other lifestyle behaviors (Zhang et al.
2021).

Despite the differences between the two studies in their study samples, intervention
techniques used, and procedures, for our modeling purpose, they can be considered
as two conceptual replications and together they provide a stronger test of our mod-
eling approach. Therefore, we report the methods and results of the two studies in
parallel3.

4 Method

4.1 Design and procedure

Study 1 Study 1 was a 4-week intervention program during which study participants
were persuaded to change their oral health routine from brushing their teeth once a day
to brushing twice a day. The main outcome variable was whether they complied with
the new target brushing behavior (i.e., brushing also in the morning or in the evening)
on each day during the study period. At the beginning, a face-to-face meeting was
held between the experimenter and each participant. During this meeting, participants
were introduced to the study and the intervention, signed a consent form, and were
given a sensor to be attached to their own toothbrush. After participants returned
home, their toothbrushing behaviors were monitored by the sensors for 3 weeks, and
at the end of the third week they returned the sensor to the experimenter. To facilitate
habit formation at the beginning, reminders for the target brushing behaviors were
sent daily in the first week and every other day in the second week using a self-
programmed mobile app. The reminders were cancelled after the second week since

3 Data, analysis script, and other materials can be found in a Open Science Framework repository: https://
osf.io/adkb4/.
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Fig. 3 Timeline of a Study 1 and b Study 2

we were interested in whether the newly learned behavior could be maintained by
habit alone. At the end of each week, a short survey was sent using the same app to
ask questions about attitude and habit strength. (see Fig. 3a for the timeline of Study
1).

Study 2 Study 2 was a multi-phase intervention program during which participants
were persuaded to develop an optimal oral health routine of two brushing sessions that
both last for at least 2minutes (or at least a 4-minute brushing daily). Themain outcome
variable was whether they brushed their teeth twice a day or not. In the beginning,
participants came to the laboratory in groups of 10–15 for an introduction session, in
which general study information and procedure were explained, but not the specific
intervention. Also in the meeting, participants were offered new manual toothbrushes
with sensors attached and were asked to sign a consent form and to complete the first
survey. After the baseline period of about 5–10 days, they were invited back to the
laboratory for the intervention session individually. They were shown presentations
about oral healthcare and were exposed to the intervention target of brushing twice
a day for at least 4 minutes. During the laboratory session, additional intervention
techniques were used and physiological data from the participants were recorded for
purposes unrelated to this paper (for details, see Spelt et al. 2020). The second and third
survey, with mostly identical questions, was completed by the participants before and
after the laboratory session. After the laboratory session, participants returned home
and were monitored for a follow-up period that led to a total of approximately 3
weeks. Two additional surveys were sent by e-mail in the middle and at the end of the
follow-up period. (see Fig. 3b for the timeline of Study 2)
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4.2 Participants

Study 1 Forty healthy university students or young graduates were recruited through
a local participant database and personal network. The main inclusion criterion was
that they used to only brush their teeth once a day (or at least rarely brushing twice),
and the criterion was checked by personal communication with the participants. This
highly educated sample consisted of 26 males and 14 females, and the average age
was 24.48 (SD = 3.13, median = 24). All participants entered a lottery and eight were
randomly selected to win a prize of 25 euros. The study was reviewed and approved
by an ethical review board at Eindhoven University of Technology.

Study 2 Study 2 was conducted in collaboration with Philips Research. Seventy-
nine adults from diverse educational and professional backgrounds were recruited
through a recruitment agency contracted by Philips. A lenient main criterion was used
that the participants used to brush only once a day, or they usually brushed less than
two minutes for each session. Other criteria include that they were between 18 and 60
years old, understood Dutch, and were manual toothbrush users. The eventual sample
consisted of 41 females and 37 males (one chose “other”), with ages between 20 and
63 years old (mean = 39.63, median = 38, SD = 10.97).Most participants were healthy,
except that one suffered from cystic fibrosis and one from narcolepsy. Each participant
was paid 80 euros by the recruitment agency. The study was reviewed and approved
by the Internal Committee on Biomedical Experiments (ICBE) at Philips Research.

4.3 Measurements

Toothbrushing behavior Participants’ toothbrushing behavior was measured by the
Axivity AX3 sensors attached to the lower-end of their toothbrush grips (see Fig. 4).
The Axivity AX3 sensor is a 3-axis accelerometer developed by Newcastle University
specifically for scientific research on human movements (Doherty et al. 2017). Con-
strained by the memory space of the device, the sampling frequency was set at 50 Hz
to ensure the storage of data for three weeks. The sensitivity range for accelerations
was set at±8g. The sensor was waterproof, and a fully-charged sensor could work for
3 weeks without additional charges. Participants in both studies also self-reported on
how many days of the previous week they brushed their teeth in the morning/evening
(Study 1) or brushed teeth twice a day for at least 2 minutes each time (Study 2).

Habit strength Habit strength was measured using the 4-item Self-report Behavior
Automaticity Index (SRBAI) with 7-point response scales (Gardner et al. 2012). It
assessed behavioral automaticity by prompting participants to rate their agreements
with descriptions of performing a target behavior (e.g., “Behavior X is something...”),
including “I do automatically”, “I do without having to consciously remember”, “I do
without thinking”, and“I start doing before I realize I amdoing it”. The target behavior
in Study 1 was “brushing my teeth in the morning” or “brushing my teeth in the
evening”, depending on which behavior was not performed by each participant before
the study. In Study 2, because of the lenient inclusion criterion, the behavior was more
generally phrased as “brushing my teeth twice a day and in total at least 4 minutes”.
Internal reliabilities of the SRBAI were very high in both Study 1 (Cronbach’s α =
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Fig. 4 An example of how the
Axivity AX3 accelerometer was
attached to a toothbrush in the
studies

0.95) and Study 2 (Cronbach’s α = 0.94). These items were translated into Dutch in
Study 2.

AttitudeAttitude was measured using 7-point semantic differential scales that were
typically used in studies that followed the Theory of Planned Behavior (Verplanken
et al. 1997). Four items were used in Study 1 (brushing my teeth in the morn-
ing/evening is: bad–good, useless–useful, harmful–beneficial, unpleasant– pleasant),
while in Study 2 three more items were added (brushing my teeth twice every day is:
foolish–wise, unhealthy–healthy, difficult–easy). We also made a common distinction
between instrumental attitude and affective attitude (Tobias 2009), because inter-item
correlations and factor analysis clearly suggested that there were two separate factors.
Instrumental attitude focuses on how a behavior satisfied instrumental goals, such as
health benefits in the context of dental behaviors, while affective attitude taps more
onto the emotional aspects of the experience relating to the behavior (e.g., comfort
of brushing, effort spent on brushing). The affective attitude score was based on a
single item in Study 1 (unpleasant–pleasant) and the average score of two items in
Study 2 (unpleasant–pleasant, difficult–easy). Internal reliabilities (Cronbach’s α) for
instrumental attitude were 0.94 and 0.93 for the two studies, while affective attitude
also had a satisfying internal reliability of 0.71 in Study 2. The attitude items were
translated into Dutch in Study 2.

4.4 Preprocessing

Preprocessing was performed to transform the raw 3-axis accelerometer data into the
outcome variable to be predicted at the day-level, i.e., whether a person performed
the target toothbrushing behavior or not on a specific day4. First, using the default
Axivity AX3 software, the 3-axis signals were converted to a vector of signal vector
magnitudes (SVM), which quantified the total movement magnitudes by integrating
the accelerations on the x, y, and z-axis. The raw data were also down-sampled from 50
Hz to 1 Hz, so the output represented the average movement magnitude per second for
the whole study period. Second, a threshold-based algorithmwas used to scan the data

4 A more technical description of the preprocessing steps can be found in Zhang (2019) and the code is
accessible on Open Science Framework: https://osf.io/adkb4/. A similar procedure of detecting toothbrush-
ing episodes was validated against self-reports in an internal study at Philips Research.
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sequentially to extract all potential brushing episodes and then a manual check was
performed to exclude invalid episodes. Through this step, discrete brushing episodes
were identified for each participants with timestamps, separated from rest states and
non-brushing movements.

In the third step, the identified episodeswere classified into 6 categories based on the
starting time of the episodes: morning (5:00–12:00), early afternoon (12:00– 15:00),
late afternoon (15:00–19:00), early evening (19:00–21:00), late evening (21:00–
24:00), andmidnight (0:00–5:00). At the data level, two variables—morning brushing
and evening brushing—were created, and their values (0 or 1) were determined by
searching in the relevant categories on the same date to see if any episode existed.
For morning brushing, the category morning was searched for first, and if no episode
was found, the category early afternoon was searched for. For evening brushing, the
categories late evening and midnight were searched for first, and if no episode was
found, the category early evening was searched for. Brushing episodes that were not
counted as morning or evening brushing (e.g., brushing one’s teeth in the middle of the
day) were disregarded because they were unrelated to the context-specific brushing
behaviors. When there were known or unknown events that caused noise in the data
in a certain period, the values for the two brushing variables were coded as missing
data. Finally, at the day level, dichotomous indicators (0 or 1) for the target brushing
behavior and for brushing twice were used as the outcome variable in Study 1 and
Study 2 respectively. After the last step, four participants from Study 1 and three par-
ticipants fromStudy 2were removed from further analyses due to their large pecentage
of missing sensor data.

4.5 Model comparison

The target for predictionwas the brushing behavior on the next day,with the occurrence
of brushing as thenegative cases and the absence of brushing as thepositive cases. They
were coded in this way because for real applications a potentially more important goal
would be to detect the positive cases, i.e., the days on which the brushing behavior was
likely to be omitted. To compare the theory-based approach with the survey approach
and the past-behavior approach, logistic regression models with 5 different feature
sets were compared5:

• Survey model: The primary features in the survey model were the variables mea-
sured by weekly surveys, including instrumental attitude, affective attitude, and
self-reported behavioral automaticity. In addition, the occurrence of laboratory
sessions (including the introduction meeting in Study 1) and the occurrence of
reminders (including notifications and e-mails for surveys) were also included as
features.

5 We tried other machine learning algorithms such as support vector machine and random forests, but they
performed equal to or slightly worse than the simple logistic regression. Since different algorithms did
not affect the model comparison results, we only report the logistic regression results. We also found that
combining features from the different models (e.g., theory-based model and past-BR model) did not lead
to better prediction performance, so the detailed results are not reported.
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• Past-BR model: The primary feature in this model was the past behavior rate (BR)
until the day of the last observation. For example, if the brushing behavior on the
11th day was to be predicted, the brushing rate in the last 10 days (e.g., 0.8) would
be the value for this variable. For the first day, self-reported behavior rates in the
previous weekwere used for the initial values. Again, the occurrence of laboratory
sessions and the occurrence of reminders were also included as features.

• Past-BR7 model: A variant of the past-BR model was to use the behavior rate of
the last 7 days, thus focusing only on recent behavioral information. In case of
time points with less than 7 days in the past, behavior rate since the start was used
(i.e., the same with past-BR model).

• Weighted past-BR model: Another way to focus more on recent data was to add
a temporal discounting parameter when counting past behavior frequency. This
weighted behavior rate feature used to predict behavior at time t was computed
as

∑t−1
i=1 Bi × γ (t−i)/(t − 1), with B as the behavior indicator at time i (0 or 1).

The optimal value for parameter γ was found through the two-level hierarchical
cross-validation procedure described below.

• Theory-based model: This was the model of our interest that includes only com-
puted habit strength and accessibility as features.

Two different approaches were used to compare model performance. First, a two-
level hierarchical k-fold cross-validation procedure was used on each of the two data
sets separately (see Fig. 5). For each data set, all observations were divided into k
non-overlapping groups (with the restriction that one participant’s data were always
in only one group), so that 1 group was reserved for model testing, and the remaining
k-1 groups were used for training in each round (the outer loop). Because tuning was
needed for the free parameters in the equations for habit strength,memory accessibility,
andweighted past behavior rate, the training set in each roundwas further divided,with
1 group reserved as the testing set for parameter tuning and the remaining k-2 groups
as the training set for parameter tuning (the inner loop). For each free parameter in the
theory-based model, a 1000-step random search was used, and in each step a random
value was drawn from a uniform distribution between 0 and 1. For the discounting
parameter γ , a 100-step grid searchwas used, including values between 0.01 and 1with
a step size of 0.01. These parameter values were optimized to obtain the best overall
prediction performance in the inner cross-validation loop, indicated by area under
curve (AUC) in receiver operating characteristic (ROC) curves. Due to the sample
size difference between the two studies, 9- fold was used for Study 1 (4 participants
in each group) and 5- fold was used for Study 2 (15 participants in each group), in
order to have sufficient data for training.

Since we had two similar data sets, in a second approach, we evaluated the ability
of each model type to predict new data. Specifically, one of the two data sets was used
to train the models, and the resultant models were used to predict the observations in
the other data set. When parameter tuning was required, a k-fold cross-validation was
used on the whole training data set, with the same search methods indicated above.
Again, 9-fold or 5-fold cross-validation was used when Study 1 or Study 2 was used
as the training data set respectively. This approach was used mainly to evaluate the
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Fig. 5 An illustration of the nested cross-validation procedure used (it shows the 5-fold scenario for Study
2, but the same idea applies to Study 1)

generalizability of the parameters used to compute theory-based features (e.g., HGP,
ADP) across intervention trials.

For model comparison, we primarily focused on AUC. Compared with other per-
formance metrics, AUC takes both positive and negative cases into account and is
generally considered the best for both balanced and unbalanced data sets (Halimu
et al. 2019). AUC was also chosen because we were more interested in predicted
probabilities of brushing rather than the classifications under a particular threshold.
As recommended by previous research (Dietterich 1998; Raschka 2018), we also
used the McNemar’s Chi-squared test to test whether the prediction performance dif-
ferences between pairs of models were statistically significant. This test basically
examines whether the correct and incorrect predictions would match the expected dis-
tribution under the assumption that two models are equally good. In addition, various
performance measures computed using the optimal threshold for each model, namely
Matthew correlation coefficient (MCC), overall accuracy, F-score, true positive rate,
false positive rate, precision, and negative prediction value, were also computed. All
analyses were performed in R statistical programming environment (version 3.3.3),
with the help of the mlr (machine-learning R, version 2.1.3) package (Bischl et al.
2016).

5 Results

5.1 Performance within individual datasets

Study 1 Study 1 included 711 non-missing observations from 36 participants for
the prediction task, with 376 positive cases (non-brushing) and 335 negative cases
(brushing) (for more detailed descriptives, see Fig. 6). Thus, the prediction accuracy
would be 53% if a no-skill model always predicts positive cases. Figure 7 shows
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Fig. 6 Descriptives of Study 1. a Raw brushing data of each participant over the course of Study 2. Each
row represents a participant (ordered from top to bottom based on brushing frequencies from low to high)
and each column represents a day. b Histogram of individual participants’ brushing rates over the course
of the study. c Change of daily brushing rate over time (aggregated over all participants)

Table 1 Comparison of model performances in predicting testing data (Study 1)

AUC MCC Acc TPR FPR Precision F1-score NPV

Survey 0.652 0.261 0.632 0.646 0.385 0.653 0.650 0.608

Past-BR 0.730 0.391 0.693 0.660 0.269 0.734 0.695 0.657

Past-BR7 0.727 0.361 0.681 0.678 0.316 0.706 0.692 0.654

wBR 0.727 0.392 0.689 0.609 0.221 0.756 0.675 0.640

Theory 0.734 0.390 0.686 0.593 0.209 0.761 0.667 0.634

wBR, weighted past-BR model; Theory, theory-based model; Acc, accuracy; TPR, true positive rate; FPR,
false positive rate; NPV, negative prediction value; MMC, Matthews correlation coefficient

the testing ROC curves of different models, and Table 2 compares additional testing
performancemeasures of themodels (aggregated over cross-validation iterations)6.All
models were able to perform substantially better than the no-skill model, with average
accuracy ranging between 63.2% and 69.3%.McNemar’s Chi-squared tests suggested
that the theory-based model performed clearly better than the survey models (χ2(1) =
6.48, p = .011) and just as good as the three models using different summaries of past
behavior as features (all ps > .701). Parameter values optimized for the theory-based
model were 0.10 for HDP, 0.20 for HGP, 0.28 for ADP, 0.13 for AGPbeh, and 0.26
for AGPrem, averaged over the 9 repetitions. For the weighted past-behavior model,
the optimized parameter γ was 0.98 on average.

Study 2 Study 2 included 1508 non-missing observations from 75 participants for
the prediction task, with 557 positive cases (non-brushing) and 951 negative cases
(brushing) (for more detailed descriptives, see Fig. 7). Thus, the data were less bal-
anced and the prediction accuracy would be 63% if a no-skill model always predicts
negative cases. Figure 8 shows the testing ROC curves of different models, and Table

6 Thresholds used for the logistic regression models were 0.5 (survey), 0.55 (past-BR), 0.51 (past-BR7),
0.59 (weighted past-BR), and 0.55 (theory-based).
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Fig. 7 Model comparison results
of Study 1 based on ROC curves
for different models (Note:
wBR, weighted past-BR model;
Theory, theory-based model)

Table 2 Comparison of model performances in predicting testing data (Study 2)

AUC MCC Acc TPR FPR Precision F1-score NPV

Survey 0.684 0.293 0.661 0.605 0.306 0.537 0.569 0.750

Past-BR 0.819 0.495 0.752 0.767 0.257 0.636 0.695 0.845

Past-BR7 0.820 0.523 0.776 0.715 0.188 0.690 0.702 0.829

wBR 0.800 0.486 0.763 0.648 0.169 0.692 0.669 0.801

Theory 0.809 0.482 0.761 0.657 0.179 0.683 0.670 0.803

wBR, weighted past-BR model; Theory, theory-based model; Acc, accuracy; TPR, true positive rate; FPR,
false positive rate; NPV, negative prediction value; MMC, Matthews correlation coefficient

3 compares additional testing performance measures of the models in Study 27. Since
the data were more unbalanced (more negative cases due to a higher brushing rate)
compared to Study 1, all models were able to predict more accurately, with average
accuracy between 66.1% and 77.6%. Like in Study 1, McNemar’s Chi-squared tests
showed again that the theory-based model performed much better than the survey
models (χ2(1) = 50.00, p < .001) and was on par with the three models based on
past behavior (all ps > .124). Parameter values optimized for the theory-based model
were 0.19 for HDP, 0.30 for HGP, 0.64 for ADP, 0.58 for AGPbeh, and 0.27 for
AGPrem, averaged over the nine repetitions. For the weighted past-behavior model,
the optimized parameter γ was 0.97 on average.

7 Thresholds used for the logistic regression models were 0.38 (survey), 0.29 (past-BR), 0.36 (past-BR7),
0.41 (weighted past-BR), and 0.36 (theory-based).
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Fig. 8 Descriptives of Study 2. a Raw brushing data of each participant over the course of Study 2. Each
row represents a participant (ordered from top to bottom based on brushing frequencies from low to high)
and each column represents a day. b Histogram of individual participants’ brushing rates over the course
of the study. c Change of daily brushing rate over time (aggregated over all participants)

Fig. 9 Model comparison results
of Study 2 based on ROC curves
for different models (Note:
wBR, weighted past-BR model;
Theory, theory-based model)

5.2 Performance across the two datasets

The results of themodels’ abilities for predicting unseen data from a different study are
summarized in Fig. 10 and Table 38. Overall, the theory-based model outperformed
the survey model when predicting Study 2’s data (χ2(1) = 39.91, p < .001) but not
when predicting Study 1’s data (χ2(1) = 1.08, p = .299). There were again no reliable
differences between the theory-based model and the models based on past behavior

8 When predicting Study 1’s data, thresholds used for the logistic regressionmodelswere 0.31 (survey), 0.33
(past-BR), 0.32 (past-BR7), 0.37 (weighted past-BR), and 0.37 (theory-based). When predicting Study 2’s
data, thresholds used for the logistic regressionmodels were 0.57 (survey), 0.53 (past-BR), 0.57 (past-BR7),
0.56 (weighted past-BR), and 0.57 (theory-based).
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Fig. 10 Model comparison results in terms of predicting new data, based on ROC curves of different models
(Note: wBR, weighted past-BR model; Theory, theory-based model)

(Study 1: all ps > .211; Study 2: all ps > .065). When comparing the cross-dataset
results and the within-dataset results (Sect. 5.1), there was a general trend that predict-
ing new data led to slightly worse performance (but except for the survey, Past-BR,
and Past-BR7 models when predicting Study 1’s data), but all the differences were not
statistically significant (Study 1: all ps > .462; Study 2: all ps > .241).

5.3 Parameter estimation

Lastly, for theoretical interests, we examined the optimal parameter values for the
free parameters in the theory-based equations of habit strength and accessibility. For
parameters governing the dynamics of habit strength, optimal ranges of parameter
values could be found, and the results were similar regardless of the data set used (see
Fig. 10). To achieve best performance based on AUC, the optimal value for the habit
decay parameter (HDP) was in the range of 0.15 and 0.2, while the optimal value for
the habit gain parameter (HGP) was in the range of 0.1 and 0.3.

In contrast, for parameters that determine the dynamics of accessibility, there was
no clear relationships between their values and model prediction performance (see
Fig. 11). If one examined the importance of individual features in the theory-based
models, habit strength was 2.46 times and 4.71 times more important than memory
accessibility in Study 1 and Study 2, respectively.
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Fig. 11 Tuning results for parameter HDP and HGP in the computational model of habit strength, shown
as the relationship between parameter values (x-axis) and model performance (area under curve, y-axis)

6 General discussion

6.1 Summary of results

Recently developed theory-based computational models allow BCSSs to model users’
habit learning in behavior change processes. In this paper, we reviewed the computa-
tional models of habit learning and evaluated whether computing habit strength could
improve behavior prediction, based on data collected in two field intervention studies
on toothbrushing behavior. Through a nested cross-validation procedure, a theory-
based model that computed habit strength and memory accessibility were compared
with four baseline models, in terms of how well they could predict brushing behav-
ior on the next day. In both studies, the theory-based model performed better than
the survey model that used self-reported behavioral determinants as features, but its
performance was only as good as the three models that relied on theory-free sum-
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Fig. 12 Tuning results for parameter ADP, AGPbeh , and AGPrem in the computational model of memory
accessibility, shown as the relationship between parameter values (x-axis) and model performance (area
under curve, y-axis)
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maries of past behavior. A similar pattern was found when we used models trained
from one dataset to predict the cases in the other dataset. The theory-based approach
showed reasonable generalizability across the two intervention trials since prediction
performance did not drop significantly for new data without re-optimizing the free
parameters.

6.2 Implications for BCSS and habit Research

While these results do not support an unique advantage of the theory-based approach,
they provide very useful information regarding the important task of behavior pre-
diction for BCSS. For the sole purpose of behavior prediction, tracking past behavior
and summarizing it in a sensible way might be sufficient without bothering the users
to self-report their motivation, attitude or habit strength. While the equation of habit
strength was motivated by theories (Klein et al. 2011; Miller et al. 2019), the com-
puted variable can be considered as a specific summary of past behavior as well. In
fact, similar to the weighted past-BR model, which discounts distant behaviors, the
equation of habit strength also discounts the contributions of behaviors that are far in
the past in an exponential way, given by the decay parameter to the power of n (HDPn),
where n denotes the number of time steps in the past. But unlike the weighted past-BR
model, behaviors in the later stage of habit formation also tend to have increasingly
smaller contributions to overall behavior summary because the habit gain parameter
is modulated by the term 1 - HSt . Despite these properties, our data suggest that the
two sophisticated summaries of past behavior are not superior to a simple calculation
of past behavior rate. Given its simplicity and robustness (i.e., no need for parame-
ter tuning), simple past behavior rate should be preferred as a feature for predictive
modeling in behavior change interventions.

For real-world applications, BCSSs can simply estimate the probability of brush-
ing (non-brushing) and then use different thresholds for delivering different types of
interventions. For example, if brushing probabilities stay very low for several days
(e.g., 10%), the system may decide to repeat an extensive education session about the
importance of an optimal oral health routine. Instead, if a user is predicted to brush
the next morning with a probability of 0.6, a gentle reminder may be sent. Such adap-
tive interventions are important because even though the costs of delivering digital
interventions are low, too frequent or inappropriate actions may disrupt or even irri-
tate users (Mehrotra et al. 2016). Besides behavior prediction, a system may use the
computed habit strength more directly. For example, tracking a user’ habit strength
of a newly adopted behavior may give the system a better idea about the progress of
behavior change. Even when the target behavior is already performed consistently, a
habit strength weaker than a certain threshold (e.g., 0.8) would suggest that the current
intervention should be continued to reduce the risk of relapse.

Besides the implications for behavior prediction and intervention, the parameter
estimation procedure used in our studies also has implications for the theoretical
understanding of habit formation. The optimal values tuned for the habit gain param-
eter are very close to the corresponding values of 0.19 obtained through a statistical
modeling of the temporal dynamics of self-reported habit strength or behavioral auto-
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maticity (Lally et al. 2010). However, inconsistent with previous studies that suggested
much smaller habit decay parameter (Tobias 2009; Lally et al. 2010), its value was in
the same range with the habit gain parameter in our studies. In general, these results
speak to the theoretical meaningfulness of the computational model of habit strength
used for prediction. In contrast, the parameters in the equation of accessibility did not
seem to have optimal values, which casts doubts onto the validity of modelingmemory
accessibility in its current form.

6.3 Limitations and future work

First, our research was limited by the types of data we could collect during the two
intervention studies. Because habits are theorized as context-dependent, the presence
or absence of behavior-associated contexts or cues needs to be monitored. Instead,
we assumed that the participants were always brushing their teeth in the same envi-
ronments and thus Cuet for computing habit strength was fixed at 1. Future studies
can benefit from tracking participants’ location, for example, whether they are at
home in the evenings, in order to compute habit strength more accurately. Moreover,
toothbrushing behavior or any lifestyle behavior in daily life is also influenced by the
immediate internal and external states of a person. For example, when someone is
very tired in an evening, they are more likely to skip toothbrushing and go directly to
bed. On the contrary, the presence or absence of one’s family member at night may
change the social pressure to comply with an optimal dental routine. Measuring these
context factors in future studies may further improve the prediction accuracy of the
current best models (i.e., 70–78%).

Second, while there are several computationalmodels of habit formation in the liter-
ature (Miller et al. 2019; Psarra 2016; Tobias 2009), we focused on testing the model
by Klein and colleagues (2011). In future work, researchers may want to compute
habit strength using the different models from the literature and more systematically
compare their contributions to behavior prediction. However, given the relative small
differences between themodels and themeasurement errors usually introduced in real-
world intervention studies, we doubt that using a different model would drastically
change the answers to the main research questions.

One final limitation is the inclusion of only toothbrushing behavior in our evalu-
ation studies. It is reasonable to question whether our findings can be generalized to
other behavioral domains, such as physical activities or dietary behaviors. Despite this
limitation, we wish to highlight that while different behaviors are regulated through
different processes, the mechanism that link behavior repetition to habit formation is
the same in theory. Hence, the computational models of habit formation are supposed
to be domain-general models and our idea of computing habit strength for behavior
prediction should also be widely applicable. Still, as different habits may change faster
or slower and they may influence actual behavior to a greater or lesser extent, param-
eter estimations and prediction performances can vary across domains (Stawarz et al.
2015).We hope our work will stimulate more interest in combining theory-based com-
putational modeling and data-driven methods for behavior prediction and intervention
in various application domains of BCSSs.
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