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ABSTRACT 
 
 

THEORY, DESIGN, AND FABRICATION OF 
 

DIFFRACTIVE GRATING COUPLER 
 

FOR SLAB WAVEGUIDE 
 
 

Kevin Randolph Harper 
 

Department of Electrical Engineering 
 

Master of Science 
 
 

 This thesis presents the theory design and fabrication of a diffractive grating 

coupler.  The first part of the design process is to choose the period of the grating 

coupler based on the desired coupling angle.  The second part of the design process is 

to choose the geometry of the grating that gives maximum coupling efficiency based 

on rigorous analyses. 

 The diffraction gratings are fabricated by recording the interference between 

two waves in photoresist.  The waveguide is fabricated from silicon nitride that is 

deposited by chemical vapor deposition.  The diffraction grating recording assembly 

is described along with the grating coupler fabrication process.  A grating coupler is 

fabricated with an input coupling efficiency of 15% at a coupling angle of 22.9°.  The 

results also show that the light is being coupled into the nitride waveguide indirectly.  

The light is coupled first into a photoresist slab and then into the nitride waveguide  



 



 

through modal coupling and scattering.  An analysis of the structure explains the 

coupling, and rigorous analyses are given to show that the measured results are in 

accordance with theory. 



 



 

ACKNOWLEDGEMENTS 

 

 There are many people that I would like to thank for helping to make this 

thesis possible.  I would first like to acknowledge and thank my wife, Bonnie, for her 

support of me throughout all of my schooling here at BYU, and especially for her 

support as I have written this thesis.  I am also greatful for my daughter, Maggie, who 

makes my life fun and interesting. 

 I am thankful to Dr. Stephen Schultz for his help, advice and patience as we 

have discussed the many challenges that we have faced in carrying out this research.  

I have learned much from sitting in his office for hours discussing the intricacies of 

this research.  I would also like to thank Dr. Richard Selfridge for his insight into the 

details of this research, and Dr. Aaron Hawkins for his advice relating to fabrication 

processes. 

 I am thankful to Eli Tamanaha and Chris Marchant for all of their help in 

performing much of the experimental work given in this thesis.  I also am greatful for 

Kevin Smith for listening to some of the difficulties that I have experienced in this 

research and offering suggestions and advice.  I am also thankful to John Barber for 

his seemingly encyclopedic knowledge of clean room equipment and procedures. 

 

 





 

 vii

Contents 

List of Figures xiii 

List of Tables xvii 

Chapter 1 1 

1 Introduction 1 

1.1 Diffraction Grating Applications .................................................................. 2 
1.1.1 Optical Interconnects ............................................................................ 2 
1.1.2 Integrated Optical Devices.................................................................... 2 
1.1.3 Fiber Optical Communications ............................................................. 3 

1.2 Research Focus ............................................................................................. 3 

1.3 Thesis Overview ........................................................................................... 4 

Chapter 2 7 

2 Diffraction Gratings 7 

2.1 Diffraction..................................................................................................... 7 
2.1.1 Diffraction Grating Specifications........................................................ 8 
2.1.2 Types of Diffraction Gratings............................................................... 8 

2.2 The Diffraction Equation ............................................................................ 12 

2.3 K-Space Diagrams ...................................................................................... 14 

2.4 Example ...................................................................................................... 15 

Chapter 3 21 

3 Diffraction Grating Analysis 21 

3.1 Theory of Rigorous Coupled Wave Analysis ............................................. 21 
3.1.1 Geometry of Problem.......................................................................... 22 
3.1.2 Electric Fields in Different Regions ................................................... 23 
3.1.3 Fourier Expansion of Permittivity of Grating Region ........................ 24 
3.1.4 Coupled Wave Expression of Fields inside Grating ........................... 25 
3.1.5 Application of Boundary Conditions .................................................. 26 
3.1.6 Total Electric Field in Each Region.................................................... 26 
3.1.7 Coupled Wave Equations.................................................................... 27 



 

 viii

3.2 Solution Method for Rigorous Coupled Wave Equations .......................... 28 
3.2.1 State Space Description for nth Slab Grating ..................................... 28 
3.2.2 Application of Boundary Conditions .................................................. 30 
3.2.3 Matrix Solution for System of Equations ........................................... 32 

3.3 Example Efficiency Calculations................................................................ 34 
3.3.1 Binary Grating .................................................................................... 35 
3.3.2 Blazed Grating .................................................................................... 36 
3.3.3 Sinusoidal Grating .............................................................................. 37 

3.4 Numerical Accuracy ................................................................................... 38 
3.4.1 Number of Orders Retained in Analysis............................................. 39 
3.4.2 Number of Slices in Grating Representation ...................................... 40 

Chapter 4 43 

4 Grating Coupler Design 43 

4.1 Basic Structure ............................................................................................ 44 

4.2 Wavevector Analysis .................................................................................. 46 
4.2.1 Input Coupling .................................................................................... 46 

4.2.1.1 Effect of Grating Period.............................................................. 47 
4.2.1.2 Effect of Angle of Incidence....................................................... 51 

4.2.2 Output Coupling.................................................................................. 55 
4.2.2.1 Reciprocity with Input Coupling ................................................ 55 
4.2.2.2 Effect of Grating Period.............................................................. 55 

4.2.3 Wavevector Design Method ............................................................... 62 

4.3 Efficiency Analysis for Grating Coupler .................................................... 64 
4.3.1 Power Coupled Out of Waveguide ..................................................... 65 
4.3.2 Intensity Profile of Light Coupled Out of Waveguide........................ 68 
4.3.3 Input Coupling Efficiency................................................................... 70 

4.4 Numerical Method for Determining Radiation Decay Factor .................... 74 
4.4.1 Solution Method.................................................................................. 74 

4.5 Optimal Grating Efficiency Design Method............................................... 78 
4.5.1 Determine Optimal Radiation Decay Parameter................................. 79 
4.5.2 Determine Optimal Grating Characteristics........................................ 80 
4.5.3 Validation of Numerical Results......................................................... 86 

4.6 Summary of Grating Coupler Designs........................................................ 87 

Chapter 5 89 

5 Grating Fabrication Methods 89 

5.1 Photolithography......................................................................................... 89 

5.2 E-Beam Lithography................................................................................... 91 

5.3 Mechanical.................................................................................................. 92 



 

 ix

5.4 Phase Masks................................................................................................ 92 

5.5 Holography ................................................................................................. 93 

Chapter 6 97 

6 Grating Coupler Fabrication 97 

6.1 Grating Coupler Fabrication Process .......................................................... 97 
6.1.1 Waveguide Formation......................................................................... 97 
6.1.2 Photoresist Application....................................................................... 98 
6.1.3 Grating Formation............................................................................... 99 

6.2 Holographic Recording Assembly.............................................................. 99 
6.2.1 Requirements of Assembly ................................................................. 99 
6.2.2 Description of Parts of Recording Assembly.................................... 102 
6.2.3 Holographic Assembly...................................................................... 103 
6.2.4 Further Possible Improvements ........................................................ 106 

6.3 Experiment to Determine Dosage for Recording Gratings in         
 Photoresist................................................................................................. 107 

6.3.1 Experimental Metric ......................................................................... 108 
6.3.2 Experimental Results for Exposure Time ......................................... 112 

Chapter 7 117 

7 Grating Coupler Results 117 

7.1 Atomic Force Microscope Image of Fabricated Grating Coupler ............ 117 

7.2 Measurement of Grating Period................................................................ 120 

7.3 Results for Input Coupling Angle and Efficiency..................................... 121 
7.3.1 Effect of Excess Photoresist beneath Grating................................... 122 
7.3.2 Measurement of Coupling Angle and Efficiency ............................. 123 
7.3.3 Effective Index at Coupling Angle ................................................... 125 
7.3.4 Modes in the Coupler Structure ........................................................ 125 

7.4 Measurement of Output Coupling Performance ....................................... 127 
7.4.1 Modes in the Bare Nitride Waveguide.............................................. 127 
7.4.2 Measurement of Output Intensity Profile ......................................... 129 

7.5 Discussion of Results................................................................................ 131 

Chapter 8 133 

8 Conclusion 133 

8.1 Summary ................................................................................................... 133 

8.2 Future Work .............................................................................................. 134 

Appendix A 139 



 

 x

A Fabrication Steps 139 

A.1 Slide Cleaning........................................................................................... 139 
A.1.1 Piranha Etch ...................................................................................... 139 
A.1.2 SC1 Solution ..................................................................................... 140 

A.2 PECVD Procedures................................................................................... 141 
A.2.1 Silicon Nitride Deposition ................................................................ 141 
A.2.2 Silicon Dioxide Deposition............................................................... 141 

A.3 Photoresist Application............................................................................. 142 

A.4 Exposure Procedures................................................................................. 142 

A.5 Developer Procedures ............................................................................... 143 

A.6 RIE Procedures ......................................................................................... 143 
A.6.1 O2 plasma .......................................................................................... 144 
A.6.2 O2 and CF4 based plasma.................................................................. 144 

Appendix B 145 

B Code Documentation 145 

B.1 K-Space Analysis...................................................................................... 145 
B.1.1 diffract.m........................................................................................... 145 

B.2 Free Space Rigorous Coupled Wave Analysis ......................................... 146 
B.2.1 Description........................................................................................ 146 
B.2.2 Grating Description in MATLAB Implementation .......................... 147 
B.2.3 sr_in.m .............................................................................................. 149 
B.2.4 sr_rcwa.m.......................................................................................... 149 

B.3 Grating Coupler Analysis ......................................................................... 154 
B.3.1 Description........................................................................................ 154 
B.3.2 example.m......................................................................................... 157 
B.3.3 mlayer_in.m ...................................................................................... 159 
B.3.4 temode.m........................................................................................... 159 
B.3.5 te.m.................................................................................................... 160 
B.3.6 find_eff.m.......................................................................................... 160 
B.3.7 intfun.m............................................................................................. 162 
B.3.8 mlayer.m ........................................................................................... 162 
B.3.9 pwr_surf.m........................................................................................ 166 

Appendix C 169 

C List of Components 169 

C.1 COHERENT INNOVA 306C Argon Laser.............................................. 169 

C.2 Newport 845HP Electronic Shutter System.............................................. 171 

C.3 Newport 10RP02-08 Quartz λ/2 Plate @ 354.7 nm ................................. 172 



 

 xi

C.4 Newport RSP-1T Rotation Stage.............................................................. 173 

C.5 Newport 900 3-Axis Spatial Filter............................................................ 174 

C.6 Newport M-10X Objective Lens .............................................................. 175 

C.7 Newport 900PH-5 5 micron pinhole......................................................... 175 

C.8 Melles Griot 03 PBS 127 Polarizing Beamsplitter Cube.......................... 176 

C.9 Newport CH-1 Beamsplitter Cube Mount ................................................ 177 

C.10 Newport SBX070-AR.10 Biconvex Lens................................................. 178 

C.11 Newport LH-2 Lens Mount ...................................................................... 179 

C.12 Newport 605-4 Precision Gimbal Mount.................................................. 179 

C.13 Newport Broadband Metallic Mirrors 20D10 .......................................... 181 

C.14 Melles Griot 02MPG 017/023 Round Flat Mirror with Enhanced  
 Aluminum Coating ................................................................................... 182 

References 183 

 



 

 xii



 

 xiii

List of Figures 

 

Figure 2.1 Amplitude grating........................................................................................ 9 

Figure 2.2 Examples of surface relief gratings: (a) binary, (b) blazed,                        
(c) sinusoidal ....................................................................................................... 11 

Figure 2.3 Volume grating.......................................................................................... 11 

Figure 2.4 Geometry of two dimensional surface relief grating................................. 13 

Figure 2.5 k-space diagram illustrating Snell's law .................................................... 16 

Figure 2.6 k-space diagram showing Floquet waves .................................................. 17 

Figure 2.7 Final k-space diagram showing diffractive orders. ................................... 18 

Figure 3.1 Geometry for surface relief grating ........................................................... 22 

Figure 3.2 The nth planar grating resulting from splitting the surface-relief grating 
into n thin slices .................................................................................................. 24 

Figure 3.3 Matrix-equation representation of boundary condition equations............. 33 

Figure 3.4 Binary grating with grating height .5 µm.................................................. 35 

Figure 3.5 Blazed grating with grating height 2.24 µm.............................................. 36 

Figure 3.6 Sinusoidal grating profile .......................................................................... 38 

Figure 3.7 Effect of number of orders retained in rigorous coupled wave analysis     
on accuracy of solution ....................................................................................... 40 

Figure 3.8 Effect of number slabs used in grating representation on accuracy of 
solution................................................................................................................ 41 

Figure 4.1 Basic structure of grating coupler.............................................................. 44 

Figure 4.2 Plot of effective index of refraction for single mode waveguide vs. 
thickness of waveguide ....................................................................................... 45 



 

 xiv

Figure 4.3 Diagram of .8 µm grating at normal incidence ......................................... 47 

Figure 4.4 Diagram of .5 µm grating at normal incidence ......................................... 48 

Figure 4.5 Diagram of .35 µm grating at normal incidence ....................................... 48 

Figure 4.6 Plot of neff for first diffractive order. ......................................................... 50 

Figure 4.7 Diagram of .35 µm grating at incidence of 30º ......................................... 51 

Figure 4.8 Diagram of .35 µm grating at incidence of 60º ......................................... 52 

Figure 4.9 Plot of neff for +1 diffracted order ............................................................. 53 

Figure 4.10 Output coupling from .37 µm period grating coupler ............................. 57 

Figure 4.11 Output coupling from .2 µm period grating coupler ............................... 58 

Figure 4.12 Second order Bragg grating coupler........................................................ 58 

Figure 4.13 First order Bragg grating coupler ............................................................ 59 

Figure 4.14 Plot of effective index vs. grating period for output coupler .................. 60 

Figure 4.15 Plot of angle of outcoupled light vs. grating period ................................ 61 

Figure 4.16 Wavevector diagrams for (a) input coupling and (b) output coupling     
for grating coupler with period of .374 µm......................................................... 63 

Figure 4.17 Wavevector diagrams for (a) input coupling and (b) output coupling     
for grating coupler with period of .517 µm......................................................... 64 

Figure 4.18 Illustration of power coupled out of waveguide into various diffractive 
orders................................................................................................................... 67 

Figure 4.19 Power coupled out of  small section of waveguide ................................. 68 

Figure 4.20 Illustration of (a) output coupling and (b) input coupling....................... 71 

Figure 4.21 Contour plot of the input coupling efficiency of a Gaussian beam......... 72 

Figure 4.22 Normalized intensity of input and output beams..................................... 73 

Figure 4.23 Fields in the regions of the grating coupler ............................................. 75 

Figure 4.24 (a) Grating coupler fabricated with photoresist gratings; (b) Grating 
coupler fabricated by etching gratings into the nitride waveguide ..................... 78 

Figure 4.25 Intensity profile of Gaussian Laser beam................................................ 79 



 

 xv

Figure 4.26 Input coupling efficiency for 0.57 radius Gaussian beam and   
exponential decaying grating coupler ................................................................. 80 

Figure 4.27 Grating coupler characteristics for binary photoresist grating with     
0.374 µm period as a function of grating height................................................. 81 

Figure 4.28 Grating coupler characteristics for binary photoresist grating with     
0.517 µm period as a function of grating height................................................. 82 

Figure 4.29 Grating coupler characteristics for binary etched grating with 0.374      
µm period as a function of grating height........................................................... 84 

Figure 4.30 Grating coupler characteristics for binary etched grating with 0.517      
µm period as a function of grating height........................................................... 85 

Figure 4.31 Computation of the radiation decay factor as a function of diffractive 
orders retained in the analysis............................................................................. 86 

Figure 5.1 Diagram of the photolithographic process for grating fabrication ............ 90 

Figure 5.2 Binary grating with 1 µm period ............................................................... 91 

Figure 5.3 Operation of a phase mask ........................................................................ 93 

Figure 5.4 Holographic recording of sinusoidal diffraction grating ........................... 95 

Figure 6.1 Spin speed curve for AZ® 3312 photoresist .............................................. 98 

Figure 6.2 Example grating displaying problem of nonuniform intensity profile         
of recording beam ............................................................................................. 100 

Figure 6.3 Example grating displaying problem of diffraction rings ....................... 101 

Figure 6.4 Diagram of final recording assembly ...................................................... 104 

Figure 6.5 SEM image of 1 µm period grating......................................................... 105 

Figure 6.6 SEM image of .517 µm grating ............................................................... 106 

Figure 6.7 I-line swing curve for AZ® 3312 photoresist .......................................... 107 

Figure 6.8 Plot of efficiency of reflected orders of binary photoresist grating as a 
function of grating amplitude............................................................................ 109 

Figure 6.9 Plot of efficiency of transmitted orders of binary photoresist grating as      
a function of grating amplitude......................................................................... 109 

Figure 6.10 Plot of efficiency of reflected orders of sinusoidal photoresist grating as    
a function of grating amplitude......................................................................... 110 



 

 xvi

Figure 6.11 Plot of efficiency of transmitted orders of sinusoidal photoresist      
grating as a function of grating amplitude ........................................................ 110 

Figure 6.12 Plot of efficiency of reflected orders of triangular photoresist grating      
as a function of grating amplitude .................................................................... 111 

Figure 6.13 Plot of efficiency of transmitted orders of triangular photoresist      
grating as a function of grating amplitude ........................................................ 111 

Figure 6.14  Results of dosage optimization experiment.......................................... 113 

Figure 6.15 Variation of results at the same dosage ................................................. 114 

Figure 7.1 AFM image of surface of diffraction grating .......................................... 118 

Figure 7.2 Cross sectional analysis of diffraction grating from AFM...................... 119 

Figure 7.3 Measurement of the grating period.......................................................... 120 

Figure 7.4 SEM image of fabricated grating coupler ............................................... 121 

Figure 7.5 Effect of excess photoresist under grating on αr and neff ......................... 122 

Figure 7.6 Schematic of basic grating coupler testing assembly .............................. 123 

Figure 7.7 Normalized transmitted power as a function of incidence angle ............ 124 

Figure 7.8 Intensity profiles of both modes in Region 1 and 3 of the fabricated  
grating coupler .................................................................................................. 126 

Figure 7.9 Diagram of fabricated grating coupler .................................................... 127 

Figure 7.10 Intensity Profile of the mode in region 2 of the fabricated grating   
coupler............................................................................................................... 128 

Figure 7.11 Augmented measurement assembly for scanning intensity of output  
beam.................................................................................................................. 129 

Figure 7.12 Intensity profile of the out-coupled beam at the grating surface........... 130 

Figure B.1 Demonstration of geometry used in MATLAB rigorous coupled wave 
analysis code ..................................................................................................... 148 

Figure B.2 Computational process for MATLAB implementation to solving for 
complex propagation constant in grating coupler ............................................. 157 

 



 

 xvii

List of Tables 

Table 2.1 Angles of diffractive orders for a 1 µm period diffraction grating 
illuminated by 632.8 nm light ............................................................................. 18 

Table 3.1 Efficiency for binary diffraction grating with 1 µm period........................ 36 

Table 3.2 Efficiency of blazed grating with 1 µm period........................................... 37 

Table 3.3 Efficiency of sinusoidal grating with 1 µm period ..................................... 38 

Table 4.1 Design for grating couplers where Λ is the grating period, tg is the  

thickness of the grating, tw is the thickness of the waveguide, i

cη  is the input 

coupling efficiency from the cover, i

sη  is the input coupling efficiency from    

the substrate, ng is the refractive index of the grating, nw is the refractive      
index of the waveguide,  and θc is the coupling angle. ....................................... 87 

Table 7.1 Material parameters used in analyzing fabricated coupler ....................... 125 

Table B.8.1 Description of variables for MATLAB implementation of rigorous 
coupled wave analysis....................................................................................... 146 

Table B.8.2 Description of variables that must be declared in MATLAB script 
mlayer_in.m ...................................................................................................... 154 

Table B.8.3 Additional global variables that must be declared in MATLAB 
implementation of grating coupler analysis ...................................................... 154 

Table B.8.4 Additional global variables in MATLAB implementation ................... 155 

Table B.8.5 variables to specify important grating parameters ................................ 155 

 



 

 xviii

 



 

 1

Chapter 1 

1 Introduction 

 For decades diffraction gratings have been used by scientists in many fields to 

analyze the spectrum of light.  The diffraction grating has been a tool of such 

importance and in so many fields of science that MIT spectroscopist G. M. Harrison 

said: 

"It is difficult to point to another single device that has brought more 

important experimental information to every field of science than the 

diffraction grating. The physicist, the astronomer, the chemist, the 

biologist, the metallurgist, all use it as a routine tool of unsurpassed 

accuracy and precision, as a detector of atomic species to determine 

the characteristics of heavenly bodies and the presence of atmospheres 

in the planets, to study the structures of molecules and atoms, and to 

obtain a thousand and one items of information without which modern 

science would be greatly handicapped. [1]" 

 Today the diffraction grating is still used in the application of spectroscopy; 

however, with the recent advances in computers and communications technology, 

diffraction gratings have found even more applications.  Some of these applications 
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include optical interconnects for computer systems, integrated optical devices, and 

optical communications. 

1.1 Diffraction Grating Applications 

1.1.1 Optical Interconnects 

 As the complexity and speed of integrated circuits and computer systems 

increase, there is a trade off between the length of a wire signal path and the 

bandwidth supported by those paths.  Optical interconnects do not exhibit this trade 

off and in the future will likely replace metal wiring for long interconnects.  

Researchers have also shown that optical interconnects provide advantages over 

electrical interconnects in terms of fanout [2], energy conversion [3], latency [4], and 

electromagnetic interference immunity.  Several researchers have implemented 

diffractive grating couplers as the coupling element for optical interconnect systems 

[5-13].  Diffraction gratings are desirable because they are more compact than other 

coupling schemes. 

1.1.2 Integrated Optical Devices 

 Diffraction gratings also find an application in integrated optical devices.  

Integrated optical devices attempt to accomplish the same task as bulk optics, but on a 

compact and integrated scale.  Some examples of diffractive integrated optical 

devices are beam expanders [14,15], polarization dependant devices [16-21], and 

holographic filters for beam intensity profile reshaping [22-26].  Other integrated 

optical devices with applications to computer systems are optical read/write heads 
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[27-30], grating coupled surface emitting lasers [31,32], optical sensors [33-35], and 

printer heads [36]. 

1.1.3 Fiber Optical Communications 

 Another area in which diffraction gratings have found application is in fiber 

optical communications.  Optical communications over fiber optic links have 

potentially large bandwidths and experience low loss for long distances.  One 

advance in the bandwidth of optical communications is wavelength division 

multiplexing.  Wavlength division multiplexing and dense wavelength division 

multiplexing require devices that are highly sensitive to wavelength for interacting 

with narrow wavelength communication channels.  Diffraction gratings have the 

potential to play an important role in this arena.  Some diffraction grating devices that 

have been demonstrated by researchers are Bragg gratings for wavelength division 

multiplexing [37-41] and optical filters [42,43]. 

1.2 Research Focus 

 While there are many areas in which diffraction grating based devices can 

make a significant impact, the focus of our research is diffractive grating couplers.  

Grating couplers have their uses in many of the applications listed above, especially 

in optical interconnects and integrated optical devices.  Grating couplers can either 

diffract light into substrate guided modes, meaning that the light propagates in a 

substrate by total internal reflection, or grating couplers can diffract light into the 

mode of a single mode waveguide.  The research focus for this thesis is the theory, 

design, and fabrication of diffractive grating couplers to couple light into single mode 

slab waveguides. 
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1.3 Thesis Overview 

 The goals of this thesis are twofold.  The first goal is to present the research 

that has been done in developing the design and fabrication processes for 

holographically recorded diffraction gratings in general and more specifically, for 

grating couplers.  Other researchers at Brigham Young University have investigated 

grating coupling into fibers [44], but this is the first thesis at Brigham Young 

University in the Electrical and Computer Engineering Department to study the topic 

of grating couplers for broader application in integrated optical devices.  Therefore, 

the second goal of this thesis is to provide future researchers in this area at Brigham 

Young University all of the background and theory that is necessary for continuing 

this research. 

 The background for diffraction by gratings is given in Chapter 2.  Different 

types of diffraction gratings are discussed.  The physical description of the behavior 

of diffraction gratings is derived culminating in the diffraction grating equation.  

Also, the wavevector diagram is presented as a tool for the analysis of diffraction 

gratings. 

 Chapter 3 presents a rigorous analysis technique for determining the 

efficiency of an arbitrary surface relief grating.  This method is known as rigorous 

coupled-wave analysis.  The electromagnetic behavior of the electric fields in the 

system is derived.  The solution method is discussed as well as a numerical 

implementation.  Examples using this analysis technique are given, and a discussion 

of the numerical accuracy is also presented. 
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 Chapter 4 presents the method of design for grating couplers for slab 

waveguides.  First the design is presented from the perspective of wavevectors.  The 

design is also discussed in terms of the optimal efficiency.  A numerical technique for 

determining the characteristics of grating couplers is presented along with its 

implementation.  Finally, some grating couplers are designed using the methods 

described.  Fabricating these couplers is the goal of the research. 

 Chapter 5 presents an overview of different diffraction grating fabrication 

methods.  The method of holography is presented as being the best choice for this 

research. 

 Chapter 6 explains the fabrication process of the grating couplers.  A 

discussion on the holographic recording assembly is given.  The results of some 

experimentation done to characterize the holographic recording process are also 

given.  Experimental results are presented for finding the optimal exposure dosage for 

our holographic diffraction gratings.  It is shown that we are able to make gratings in 

the proper range of performance, but that we experience a low yield.  Possible causes 

for our low yield are given. 

 Chapter 7 presents the results of our attempts to fabricate the grating coupler 

from the design given in Chapter 4.  There is first a discussion of the testing method 

for qualifying the performance of our grating couplers.  The results of our fabricated 

grating coupler are then given.  It is shown that we were successful in fabricating a 

grating coupler.  Although the efficiency of the grating coupler is less than the 

designed value, the reasons for the degraded performance are accounted for. 
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 Chapter 8 is a summary of the research presented here.  A discussion of future 

research in the area of diffraction gratings and grating couplers is given. 
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Chapter 2 

2 Diffraction Gratings 

2.1 Diffraction 

 If an opaque object is placed between a light source and an observation 

screen, the edges of the shadow cast by the object will contain intricate patterns that 

cannot be explained by simple geometric ray optics.  This phenomenon was first 

discussed in a publication in 1665 by Francesco Grimaldi, a professor of physics and 

mathematics at the Jesuit college of Bologna, Italy.  In Grimaldi’s experiments, he 

allowed a small pencil of light to come into a dark room.  He observed that the 

shadow cast by a rod held in the cone of light was wider than the shadow predicted by 

geometric optics.  He also noted that colored bands bordered the edges of the shadow.  

Grimaldi named this phenomenon “diffractio” which literally means “breaking up”.  

Grimaldi used the results of this experiment to be one of the first to argue for the 

wave nature of light.  Grimaldi’s original name for this phenomenon, “diffraction”, is 

still used today [45].  Diffraction is a general characteristic of wave phenomena.  If a 

wavefront encounters a blocking object, the portions of the wave that pass beyond the 

object interfere to cause the diffraction pattern [46].  A very important application of 

diffraction is if the blocking object is a repetitive array of diffracting elements that 
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produce a periodic alteration of the amplitude or phase of the transmitted wave.  Such 

an object is said to be a diffraction grating. 

2.1.1 Diffraction Grating Specifications 

 Diffraction gratings are so important because they transmit or reflect light 

only at discrete angles and because the angles of the diffractive orders are highly 

sensitive to the wavelength content of the incident light, which is why diffraction 

gratings are used so heavily in the area of spectroscopy.  A diffraction grating can be 

characterized by two important specifications.  The first specification is the direction 

of the diffracted beams or the set of angles that the incident light will be diffracted 

into for a given wavelength and angle of incidence.  This specification depends only 

on the period of the diffraction grating and the material parameters of the incident and 

transmitted medium, and is solved by a simple geometric relationship that is 

discussed in this chapter.  The second important specification of a diffraction grating 

is its efficiency or the ratio of power in each order relative to the total incident power.  

This specification depends very strongly on the physical shape and structure of the 

grating and is a more difficult problem to solve.  Chapter 3 is dedicated to this 

analysis. 

2.1.2 Types of Diffraction Gratings 

 Having discussed the important specifications for diffraction gratings, we now 

examine some common types of diffraction gratings.  For a more complete discussion 

of the types of diffraction gratings, see [47].  The earliest and simplest diffraction 

gratings were periodic slits.  The first diffraction grating was invented by American 

astronomer David Rittenhouse in about 1785, who reported constructing a half-inch 
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wide grating with fifty-three apertures.   Joseph von Fraunhoffer independently 

created diffraction gratings and studied their uses in spectroscopy.  Using his 

diffraction gratings, Fraunhoffer was able to measure the spectra of solar radiation 

[48].  Over the years, the ability to make quality diffraction gratings has increased, 

and the use of diffraction gratings has become very widespread in the scientific 

community.  Generally diffraction gratings fall into two broad categories: amplitude 

gratings and phase gratings. 

 Amplitude gratings are simply an array of multiple slits, either etched out of 

an opaque surface, or consisting of a grid of fine wires.  As discussed above, the first 

gratings built were amplitude gratings.  It was through the study of amplitude gratings 

that the theory of how diffraction gratings work was experimentally verified.  These 

gratings spatially modulate only the amplitude of the transmitted wave by either 

periodically blocking the beam, or only attenuating it slightly.  Figure 2.1 shows an 

example of an amplitude grating. 

 

Figure 2.1 Amplitude grating 
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 A second type of diffraction grating is the phase grating.  A phase grating is 

made up of an array of extremely narrow ridges of alternatively repeating indices of 

refraction.  These gratings spatially modulate only the phase of the transmitted wave 

by periodically adjusting the phase of the portions of the beam that are transmitted 

through the ridges of alternating refractive index.  There are two important classes of 

phase gratings: surface relief gratings and volume gratings. 

 For surface relief gratings, the physical topography of the grating changes 

periodically.  The two alternating indices of refraction are the index of the grating 

substrate and the index of the cover medium, which is usually air.  The simplest 

example of a surface relief grating consists of periodic thin rectangular ridges.  This 

type of grating is known as a binary grating.  The binary grating is important because 

it is easily manufactured by the method of photolithography, however, it is difficult to 

manufacture binary gratings with small periods.  The method of photolithography is 

discussed in Chapter 5.  Binary gratings are also important because, as discussed in 

Chapter 3, the method to analyze the efficiency of arbitrary grating shapes slices the 

arbitrary grating into thin binary gratings.  Other important surface relief gratings 

include the sinusoidal grating and the blazed grating.  The sinusoidal grating is 

important because it is fabricated easily by holographic recording or recording the 

sinusoidal interference between two uniform beams.  The method of holographic 

recording is discussed in Chapter 5.  The blazed grating is important in that it can 

exhibit strong preferential coupling into one of its diffractive orders.  A blazed grating 

would be desirable in an application where efficiency is critical such as an optical 

interconnect system.  Larger period blazed gratings are manufactured by a scribing or 
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mechanical process, which is discussed in Chapter 5.  Small period blazed gratings 

are difficult to manufacture, however, and are thus not as widely used as other types 

of gratings.   Figure 2.2 shows examples of surface relief gratings. 

 

Figure 2.2 Examples of surface relief gratings: (a) binary, (b) blazed, (c) sinusoidal 

 

 A volume grating has a flat surface topography.  The periodicity of this 

grating is in the alternating index of refraction between repeating periodic sections.  

One advantage of volume gratings is that the direction of periodicity can easily be 

made in a direction other than parallel to the substrate surface.  By this property, 

volume gratings can be made with efficiencies of almost 100% into a desired 

diffractive order.  Volume gratings are attractive for uses in optical interconnect 

systems because of their high efficiencies.  A volume grating can be manufactured 

easily by a modified holographic recording process. Figure 2.3 shows an example of a 

volume grating. 

 

Figure 2.3 Volume grating 
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2.2 The Diffraction Equation 

 Now that we have discussed some different types of diffraction gratings, let’s 

take a closer look and examine how they interact with light to redirect incident light 

into diffractive orders.  A diffraction grating is characterized by its grating vector K, 

which is defined as having magnitude Λ= π2K , where Λ is the period of the 

grating, and points in the direction of periodicity.  The interaction of the grating in 

redirecting the incident light is simply the discrete addition of integer multiples of the 

grating vector to the undiffracted transmitted wavevector. 

 Kkk quq −= , (2.1) 

where ,...2,1,0 ±±=q  is the diffracted order number, uk  is the wavevector of the 

undiffracted, i.e. q = 0, beam, and qk is the wavevector of the qth diffracted order.  

The condition just described, where the grating vector adds to the undiffracted 

wavevector, is known as the Floquet condition, and the infinite set of resulting 

wavevectors are known as Floquet waves.  Although the set of Floquet waves 

contains an infinite number of diffracted orders, only certain of those orders can exist 

physically.  To explore further, we rewrite (2.1) by substituting the vector 

components of the wavevectors into a two-dimensional geometry as shown in Figure 

2.4.   

 ( ) ( ) x
q

zx
n

zx
n

uu
t

qq
t ˆ

2
ˆcosˆsin

2
ˆcosˆsin

2

Λ
−+=+

πθθ
λ

π
θθ

λ
π

, (2.2) 

where nt is the index of refraction for the transmitted medium, θu is the angle of the 

undiffracted beam, θq is the angle of the qth diffracted beam, and λ is the wavelength.  

We can solve for qθsin  by examining the x̂  components of equation (2.2) 
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Λ

−=
λθθ qnn utqt sinsin . (2.3) 

In order to relate (2.3) to the incident light we need only use Snell’s law and 

substitute utn θsin with iin θsin .  Finally, we are left with what is known as the 

diffraction equation. 

 
Λ

−=
λθθ qnn iiqt sinsin  (2.4) 

 

Figure 2.4 Geometry of two dimensional surface relief grating 

 What we have really done in deriving (2.4) is to apply the electric field 

boundary condition for tangential components that requires the tangential components 

at the boundary to be continuous.  From the diffraction equation we can see the strong 

dependence on λ.  If the grating period is chosen such that it is small with respect to 

the wavelength, then small changes in the wavelength affect θq significantly.  Because 
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gratings are highly dispersive, i.e. sensitive to wavelength, they find a natural and 

direct application to spectroscopy. 

 We also can see from equation (2.4) that if the magnitude of the right side is 

greater than nt, the angle θq is complex, and therefore non-physical.  This requirement 

gives a range for the physical solutions for q. 

 ( ) ( )⎥⎦
⎥

⎢⎣
⎢ −
Λ

≤≤⎥⎥
⎤

⎢⎢
⎡ +
Λ

tiitii nnqnn θ
λ

θ
λ

sinsin , (2.5) 

where the notation ⎡ ⎤ , or “ceiling”, means to round up to the nearest integer, and the 

notation ⎣ ⎦ , or “floor”, means to round down to the nearest integer.   In general the 

greater the ratio of the grating period to the incident wavelength, the more diffractive 

orders exist.  Also, higher index incident and transmitted mediums results in more 

diffractive orders. 

2.3 K-Space Diagrams 

 A handy tool for understanding and analyzing diffraction gratings is the k-

space, or wavevector diagram.  The k-space diagram models the transmission and 

reflection of the incident beam due to the effect of the diffraction grating.  The 

diagram uses concentric circles whose radii represent the magnitude of the 

wavevector k in the medium in question.  Rays, with magnitude equal to the 

magnitude of k, travel towards and away from the center of the circle at angles 

representing the direction of propagation.  The diffraction grating is modeled as 

existing at the center of all circles. 

 As discussed earlier, diffraction gratings are characterized by their grating 

vector K.  The grating vector is an important graphical tool used to make the 
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wavevector diagram.  Recall that the Floquet condition states that each diffractive 

order is the result of adding integer multiples of the grating vector to the undiffracted 

transmitted wave.  Graphically, the Floquet condition can be easily represented by 

successively adding multiples of the grating vector to the undiffracted wave vector of 

the transmitted field by the head to tail method.  

 The remaining task is to translate the result of the Floquet addition to actual 

reflected and transmitted diffracted waves in the incident and transmitted mediums.  

This is done as before by applying the boundary conditions for tangential electric 

fields.  Applying this boundary condition is also known as phase matching.  We can 

represent phase matching graphically by drawing sets of lines that pass through the 

head of each Floquet wave vector and are perpendicular to the boundary between the 

concentric circles representing the incident and transmitted mediums.  The reflected 

and transmitted diffracted wave vectors start at the center of the circles, and end 

where the lines of matched phase intersect with the circles. 

2.4 Example 

 Now that all of the pieces of the K-space diagram have been described, we 

can demonstrate how a K-space diagram is created with an example.  For this 

example, light of wavelength λ = 632.8 nm is incident on a diffraction grating with 

period Λ=1 µm, periodic in only the x-dimension.  The incident material is free space, 

and the transmitted material has index of refraction n=1.5.  The incoming light has an 

angle of incidence of   10°.  We start the diagram by drawing semicircles with radii 

representing the magnitude of the wave vector, 
λ
π n

k
2

= , in the incident and 
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transmitted mediums.  The top semicircle represents the incident medium, and the 

bottom semicircle represents the transmitted medium.  The next step is to plot the 

incident vector and the undiffracted reflected and transmitted vectors.  For this step, 

we are ignoring the diffraction grating and are simply looking at the reflection of the 

incident wave due to Snell’s law.  The incident vector is drawn pointed toward the 

center of the circles with angle of incidence measured with respect to the normal.  

The undiffracted reflected beam is drawn pointing away from the center of the circles 

at an angle opposite the angle of incidence.  The undiffracted transmitted beam is 

phase matched to the undiffracted reflected beam.  Figure 2.5 shows the k-space 

diagram at this point, as well as a physical picture representing an air-glass interface.  

The angles of the reflected and transmitted beams in the k-space diagram are the same 

as the angles shown in the physical picture on the right.     

r=|ki|

r=|kt|

θiθi

θt

air

glass

Ei Er

Et

 

Figure 2.5 k-space diagram illustrating Snell's law 

 The next step is to apply the Floquet condition and draw the lines of matched 

phase.  We first draw the set of grating vectors pointed away from the head of the 

undiffracted transmitted beam.  Each grating vector that is added corresponds to a 

different diffractive order.  The Floquet waves are drawn from the center of the circle 
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to the head of each added grating vector.  Recall that the Floquet waves are an infinite 

set of waves that exist only in the grating, and determine the interaction of the grating 

with the incident wave.  The lines of matched phase are drawn from the head of each 

Floquet wave perpendicular to the interface of the two circles.  These lines of 

matched phase represent the tangential components of the Floquet waves, which must 

be matched to the waves outside of the grating according to electromagnetic boundary 

conditions.  Figure 2.6 shows the k-space diagram at this point.  The dashed lines are 

the Floquet waves, and the dotted vertical lines are the lines of matched phase 

corresponding to the tangential component of each Floquet wave. 

-K+K -2K+2K
 

Figure 2.6 k-space diagram showing Floquet waves 

 The final step is to match boundaries with the Floquet waves, and obtain the 

vectors for the transmitted and reflected diffractive orders.  The diffracted rays start at 

the center of the circles, and end at the intersections of the lines of matched phase 

with the k-space circles.  This set of vectors represents the transmitted and reflected 

waves from the diffraction grating.  The angles of these vectors in the diagram are the 

same as the angles of the transmitted and reflected waves.  Figure 2.7 shows the final 
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diagram, where the Floquet vectors have been removed, but the lines of matched 

phase remain.  Figure 2.7 also shows the physical picture that the k-space diagram 

represents. 
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Figure 2.7 Final k-space diagram showing diffractive orders. 

 For this example we can see that there are three reflected orders and five 

transmitted orders.  If we use equation (2.5), we can calculate how many orders there 

should be in the reflected region and in the transmitted region.  For the transmitted 

region we have 22 ≤≤− q , and for the incident region we have 11 ≤≤− q .  These 

are the same results obtained graphically. Also for this example, the angles of the 

transmitted and reflected diffractive orders calculated from equation (2.4) are given in 

Table 2.1 below.  Positive angles are defined as counterclockwise from normal. 

Table 2.1 Angles of diffractive orders for a 1 µm period diffraction grating illuminated 

by 632.8 nm light 

Diffractive 
Order 

-2 -1 0 1 2 

Reflected -- -53.7503º -10.0º 27.3324º -- 
Transmitted 73.6375º 32.5226º 6.6478º -17.8244º -46.7163º 
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 The values of these calculated angles are the same as those that could be 

found by measuring the angles, with respect to the normal, of each ray in the k-space 

diagram in Figure 2.7 with a protractor. While this example only shows the angles of 

the diffractive orders, in the following chapter, we explore how to analyze the 

structure of a grating to determine the efficiencies of each diffractive order.  We 

revisit this example in the next chapter, and see what the efficiencies of these orders 

are for different shaped diffraction gratings. 
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Chapter 3 

3 Diffraction Grating Analysis 

 In the previous chapter, the behavior of diffraction gratings in redirecting light 

into various diffractive orders was discussed.  The number of diffractive orders that a 

grating produces and the angles of these orders was explained.  Another important 

characteristic of a diffraction grating is the efficiency, meaning the ratio of power in 

each of the orders to the total incident power.  The angles of the diffractive orders are 

independent of the shape of the periodic structure of the grating; however, the 

efficiency is strongly dependant on the shape of the grating.  The topic of this chapter 

is to explain a formulation for calculating the efficiency of surface relief gratings.   

3.1 Theory of Rigorous Coupled Wave Analysis 

 Rigorous analyses, which provide “exact” numerical solutions to the 

diffraction problem, have been and continue to be the subject of extensive research 

[49-79]  The method explained here is known as rigorous coupled-wave analysis.  

This method was developed by researchers at Georgia Tech in the 1980s, and is 

important because it computes the efficiencies of the diffraction grating directly with 

no approximations in the analysis, and up to an arbitrary degree of accuracy.  The 
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computational method is easy to implement numerically, and can achieve results 

quickly [55,58-61,78,79]. 

3.1.1 Geometry of Problem  

 Before we begin, we should first define the geometry of the problem that we 

are investigating.  The development presented here of this solution follows the 

formulation in [58].  The general surface-relief diffraction grating for this problem is 

shown below in Figure 3.1.   
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Figure 3.1 Geometry for surface relief grating 

 This structure consists of a surface relief grating between a cover region with 

relative permittivity εc and a semi-infinite substrate region with relative permittivity 

εs.  The ridges of the grating have a relative permittivity εr.  The structure is divided 

into three regions with Region 1 being the region of the cover, Region 2 being the 

region of the diffraction grating, an Region 3 being the region of the substrate.  The x̂  
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( x̂ and ẑ  are the unit vectors in the x and z directions) direction is tangential to the 

boundaries between the different regions.  The ẑ  direction is normal to the boundary 

and points toward the substrate region.  The diffraction grating has height d and 

grating period Λ.  The grating vector K is defined which has magnitude Λ= π2K  

and points in the x̂  direction.  The grating is illuminated by a plane wave of free 

space wavelength λ at an angle of incidence θ'.  The wavevector for this incident 

plane wave in the cover region, region 1, is defined to be zxk ˆˆ 1,1,1 zx kk += , where 

θε ′= sin2/1
01, cx kk , θε ′= cos2/1

01, cz kk , and λπ20 =k is the free space wavevector 

magnitude.  The polarization is defined with respect to the plane of incidence, so that 

for the TE polarization considered here, the electric field E is perpendicular to the 

plane of incidence.  

3.1.2 Electric Fields in Different Regions 

 We begin by defining the total electric fields in the different regions.  In the 

cover region, region 1, the total electric field is the sum of the incident and all of the 

backward traveling waves.  The normalized total electric field in this region may be 

expressed as 

 ∑
∞

−∞=

⋅−⋅ +=
i

j

i

j
eReE

rkrk i1,1

1 , (3.1) 

where k1 is the wavevector of the incident field as defined above, and 

zyxr ˆˆˆ zyx ++= .  Ri is the normalized amplitude of the ith reflected wave in region 1 

with wavevector k1,i.  We can also define the total electric field in the substrate 

region, region 3, as consisting of the sum of all transmitted waves.  The normalized 

total electric field in region 3 may be expressed as 
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 ∑
∞

−∞=

−⋅−=
i

dj

ieTE
)ˆ(

3
3 zrk i, , (3.2) 

where Ti is the normalized amplitude of the ith transmitted wave into region 3 with 

wave vector k3,i and d is the grating depth. The quantities k1,i and k3,i are determined 

later by the phase matching requirement. 

3.1.3 Fourier Expansion of Permittivity of Grating Region 

 Having defined all of the field quantities in region 1 and region 3, we now 

look at the fields in the grating region, region 2.  For this analysis we divide the 

grating region into N thin planar strips perpendicular to the z axis.  Each strip 

represents a thin planar binary grating.  The rigorous coupled wave analysis for 

binary gratings is applied to each of the N strips, and the result of the total analysis 

gives the behavior of the entire structure.  If each strip is thin enough than the 

analysis is accurate to an arbitrary level.  Figure 3.2 shows the nth slab within region 

2.  Each slab consists of a periodic distribution of the relative permittivity of the 

ridge, and the relative permittivity of the cover region.   

x

zn

εr εr εr

εcεc

 

Figure 3.2 The nth planar grating resulting from splitting the surface-relief grating into 

n thin slices 

 Because the relative permittivity distribution for the nth slab is periodic, i.e. 

),(),( nnnn zxzx Λ+= εε , this distribution can be expanded in a Fourier series which is 

written 
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 ∑
∞

−∞=

−+=
h

jhKx

nhcrcnn ezx ,
~)(),( εεεεε , (3.3) 

where zn is the z coordinate of the nth slab, h is the harmonic index, K is the 

magnitude of the grating vector ( Λ= /2πK ), and nh,
~ε  are the normalized Fourier 

coefficients of the nth slab given by 

 ∫
Λ

−Λ=
0

, )exp(),()/1(~ dxjhKxzxf nnhε , (3.4) 

where the function ),( nzxf  has a value of one or zero depending on if for a particular 

value of x, the relative permittivity of the nth slab grating is εr or εc, respectively. 

3.1.4 Coupled Wave Expression of Fields inside Grating 

 Now we express the electric fields inside the grating region with a coupled-

wave representation.  In the coupled-wave representation, the fields in each of the N 

slabs are expanded in terms of the space harmonics of the fields in the periodic 

structure.  Each of these space harmonics inside the grating correspond to different 

diffractive orders outside of the grating.  The partial fields inside the grating can be 

visualized as diffracted waves that progress through the grating and couple energy 

between each other as they propagate.  In this coupled-wave formulation, the total 

electric field in the nth slab grating can be expressed 

 ∑
∞

−∞=

⋅−=
i

j

in
niezSE

rσ ,)(,2 , (3.5) 

where i is an integer representing the space-harmonic index, or the diffracted order.  

Si,n(z) are the amplitudes of the space-harmonic fields.  The vectors σi,n are the wave 

vectors for the diffracted waves, and are given from the Floquet theorem as  
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 Kkσ inni −= ,2, , (3.6) 

where for this geometry xKˆ=K and k2.n is the wave vector for the zero order, i.e. i = 

0, diffracted wave with magnitude λπε /2 2/1
,0 nk = , where n,0ε  is the average relative 

permittivity of the nth slab grating. 

3.1.5 Application of Boundary Conditions 

 Now we are ready to discuss the phase matching requirement.  Each of the ith 

diffracted waves in regions 1 and 3 must be phase matched to the ith space harmonic 

fields inside each nth slab grating.  Therefore the equalities 

xxix ini
ˆˆ)(ˆ ,3,2,1 ⋅=⋅−=⋅ kKkk  must hold true for any i and n.  We know the 

magnitudes of the wavevectors in regions 1 and 3, and the x components from the 

phase matching boundary condition.  Knowing these quantities, the z components are 

determined to be  

 ( ) ( )2

,1

22/1
,1 ˆ/2ˆ xz ici ⋅+=⋅ kk λπε and ( ) ( )2

,3

22/1
,3 ˆ/2ˆ xz isi ⋅+=⋅ kk λπε . (3.7) 

3.1.6 Total Electric Field in Each Region 

 Now we are ready to express the total electric fields for each of the three 

regions.  Using the vector quantities defined above, these fields can be rewritten 
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and 

 
( ) ( )
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3.1.7 Coupled Wave Equations 

 We have three unknown quantities in equations (3.8-10).  We begin by 

solving for Si,n(z), the amplitudes of the space-harmonic fields in the grating.  The 

electric fields in the grating region must satisfy Maxwell’s equations.  The wave 

equation for the TE polarization in region 2 is  

 0),( ,2
2

,2
2 =+∇ nnnn EzxkE ε . (3.11) 

Substituting the expressions for E2,n and εn(x,zn) given in (3.9) and (3.3) into this wave 

equation, and performing all of the derivations and setting the coefficient of each 

exponential term equal to zero for nontrivial solutions yields the rigorous coupled 

wave equations for the nth slab grating: 
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 (3.12) 

These coupled wave equations are an infinite set of second-order coupled difference-

differential equations.  Each diffracted wave (i) is coupled to other diffracted waves 

through the harmonics of the grating (i - h and i + h).  The quantity m has been 

defined as 

 .sin)(2 2/1 λθε ′Λ= cm  (3.13) 

When m is equal to an integer, this represents a Bragg condition, which simply means 

that one of the diffractive orders is retro-reflected onto the incident beam. 
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3.2 Solution Method for Rigorous Coupled Wave Equations 

 The dielectric surface-relief grating diffraction problem described above is 

solved in a sequence of steps.  First, the rigorous coupled wave equations are solved 

for the nth slab grating using a state-variables method.  Second, the electromagnetic 

boundary conditions (continuous tangential E and tangential H) are applied between 

the cover region and the first slab grating, then between the first slab grating and the 

second slab grating and so forth, and finally between the Nth slab grating and region 

3.  Third, the resulting matrix of boundary condition equations is solved for the 

amplitudes of the reflected and transmitted diffracted orders, Ri and Ti.  From these 

amplitudes, the efficiencies of each diffractive order is determined directly. 

3.2.1 State Space Description for nth Slab Grating 

 First, we use the methods of linear systems analysis to transform the coupled-

wave differential equation description in (3.12) to a state-space description.  By 

defining the state variables for the nth slab grating as 

 )()( ,,,1 zSzS nini = , (3.14) 

and 
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we can transform the infinite set of second order differential equations into two sets 

of first order state equations 
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and 
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These state equations for the nth slab grating can be written in matrix form as 
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where dzdSS /=& , nicsni ka ,
2

,
~)( εεε −−= , )(2

, imiKb ni −−= , ∗−−= nicsni kc ,
2

,
~)( εεε , 

and )sin(2 22
1

2
,2 θ ′−= kkjd nn .  The elements of the four submatrices have local 

indices p and q.  The value of the size of the four submatrices, s, is the number of 

diffracted orders retained in this analysis. The value p = 1 corresponds to the most 

negative diffracted order retained, and the value p = s corresponds to the most 

positive order retained.  The matrix equation above can be written concisely as 

ASS =& , where S& and S are the column vectors, and A is the total coefficient matrix.  

Although the dimensions are infinite, results may be obtained to an arbitrary level of 

accuracy by truncating the matrices.  Each of the four submatrices is truncated to size 
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s x s.  As s increases, the solution converges rapidly.  The solution to this matrix 

equation is written 

 ∑
=′

′′′′′ =
s

q

nqnqpnqnp zwCzS
2

1
,,,,, )exp()( λ , (3.19) 

where p´and q´ are new index variables corresponding to the entire matrix-vector 

indices of the (3.18) with p´ = 1 to 2s and q´ = 1 to 2s, whereas p and q only 

correspond to the indices of the submatrices of A with size s x s.  Sl,p,n has been 

rewritten as Sp’,n with p´ = p + (l - 1)s.  The quantities λq’,n and wp’,q’,n are the 

eigenvalues and eigenvectors of the matrix A.  These values are easily determined by 

standard computational routines.  The quantities C q’,n are unknown coefficients that 

are determined from the boundary conditions.  Finally, the desired diffracted wave 

amplitudes for the nth slab grating are given by 

 )()( ,', zSzS npni = , (3.20) 

where p’ corresponds to the ith diffracted wave. 

3.2.2 Application of Boundary Conditions 

 We have just covered the solution method for the nth slab grating.  Now the 

task remains to connect the solutions of all slab gratings to the incident region and the 

transmitted region.  The way that this connection is to be made is through application 

of the electromagnetic boundary conditions, which require that the tangential electric 

and magnetic fields are continuous across all boundaries.  We start by defining the 

boundary condition between region 1 and the first slab grating with, then define the 

boundary condition between slab the first slab grating and the second slab grating and 
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so forth until we define the boundary condition between the Nth slab grating and 

region 3.   

 For the TE polarization shown here, the electric field only has a tangential 

component in the y direction.  The tangential component of the magnetic field is in 

the x direction and from Maxwell’s equations is given by zEjH yx ∂∂−= )( ωµ .  

Therefore, for the boundary between the incident region and the first slab, z = 0, the 

boundary condition for tangential E is 

 ∑
=′

′′′=+
s

q

qpqii wCR
2

1
1,,1,0δ , (3.21) 

and the boundary condition for tangential H is 

 [ ])ˆ())(ˆ( 1,1,

2

1
1,,1,01 zjwCRzj iq

s

q

qpqiii ⋅−=−⋅ ′
=′

′′′∑ σk λδ , (3.22) 

where 0iδ  is the Kronecker delta function and the value of p´ is chosen to correspond 

to the ith wave.  For the boundary between the nth and n+1th slab gratings, z = nd/N, 

the boundary condition for tangential E is 
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and the boundary condition for tangential H is 
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For the boundary condition between the Nth slab grating and region 3, z = d, the 

boundary condition for tangential E is 

 [ ]{ } iNiNq

s

q

NqpNq TdzjwC =⋅−′
=′

′′′∑ )ˆ(exp ,,

2

1
,,, σλ , (3.25) 

And the boundary condition for tangential H is 

 [ ] [ ]{ }
iiNiNqNiNq

s

q

NqpNq TzkjdzjzjwC )ˆ()ˆ(exp)ˆ( 3,,,,

2

1
,,, ⋅−=⋅−⋅− ′′

=′
′′′∑ σσ λλ .(3.26) 

Equations (3.21-26) represent a total of 2(N + 1)s equations.  There are s unknown 

values each of Ri and Ti and 2s unknown values of Cq´,n for each slab grating.  Thus 

the total number of unknowns is 2(N + 1)s, which is the same as the number of 

boundary condition equations.  If s values of i are retained in the analysis, then the 

calculations yield s transmitted wave amplitudes (Ti), and s reflected wave amplitudes 

(Ri). 

3.2.3 Matrix Solution for System of Equations 

 This system of equations can be solved by writing the boundary equations in 

matrix form.  Figure 3.3 depicts the matrix form resulting from the boundary 

condition equations.  The matrix is 2(N + 1)s by 2(N + 1)s  and consists of the 

coefficients of Cq´,n (for q´ = 1 to 2s) and n = 1 to N), Ri (s values) and Ti (s values).  

There are many well-known ways to solve this matrix equation.  The simplest way is 

multiply b by A-1.  To achieve accurate results, N would be in the range of 50-100, 

while s could also be in the same range.  Under these conditions A might be as large 

as 20,000 by 20,000.  A matrix of this size represented with 32-bit floating point 

complex numbers would require over 3 GB of storage space.  Even with today’s 

computing power, this requirement is high for a typical PC.   
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Figure 3.3 Matrix-equation representation of boundary condition equations 

 An alternative approach to attempting to invert the entire boundary condition 

matrix is to use a technique like Gauss elimination applied successively to each 

boundary starting at the z = 0 input surface.  By using this technique N + 1 times, the 

s values of Ri and Ti may be obtained on the last step.  For each slab grating, the 

boundary condition equations produce a 4s by 2s submatrix.  Starting with the first 

slab grating, represented by the upper-left-hand submatrix, a technique like Gauss 

elimination is applied to make all the elements of the lower half of the submatrix 

equal to zero.  In so doing, the system is reduced to 2Ns equations.  Repeating this 

process on the next submatrix also reduces the number of equations in the system by 
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one.  For each step in this process, a new 2s by s submatrix of coefficients for Ri is 

generated and is passed down, as shown by the dashed box in Figure 3.3.  After N 

steps, these coefficients have reached the bottom of the matrix, and the remaining 2s 

equations are solved for Ri and Ti.  This sequential process greatly reduces the storage 

and computational requirements for this problem, as only one 4s by 2s matrix is 

treated at each step.  In fact, the data-storage requirement  is reduced by a factor of 

3/)1( 2+N  and reduces the execution time by a factor of N2, where N is the number 

of layers [58]. 

 Having determined the complex amplitudes Ri and Ti, the diffraction 

efficiencies, or ratio of diffracted intensity to input intensity, can be directly 

determined.  The diffraction efficiencies in regions 1 and 3 are respectively 

 ( ) ( ){ } 2

1011 ˆˆReDE iii Rzkzk ⋅⋅=  (3.27) 

and 

 ( ) ( ){ } 2

1033 ˆˆReDE iii Tzkzk ⋅⋅= . (3.28) 

For a lossless grating, the output power is conserved, and the sum of all efficiencies 

of all diffracted transmitted and reflected waves sum to unity.  The above 

computational process has been implemented as a MATLAB script.  The script and 

instructions on how it is used is found in Appendix 8.2B.2. 

3.3 Example Efficiency Calculations 

 Having discussed the formulation of this computational method, we now look 

back to the example grating from Chapter 2.  This grating had a period of 1 µm and 

was periodic only in the x dimension.  The incident medium was free space, and the 
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transmitted medium had a refractive index nt of 1.5.  The light illuminating the 

grating had wavelength λ = 632.8 nm at an angle of incidence of -10º.  In Chapter 2 

we determined the angles of each diffracted order.  We can now use rigorous 

coupled-wave analysis to determine the efficiencies of those orders for different 

grating shapes. 

3.3.1 Binary Grating 

 First we examine the binary grating.  As stated in Chapter 2, binary gratings 

are made easily by photolithography.  We assume that the grating height is .5 µm, and 

that the grating material is a photoresist with an index of refraction of 1.6.  This 

grating geometry is chosen because it is realistic of the type of binary grating that 

could be made by photolithography.  Figure 3.4 below shows this grating. 
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Figure 3.4 Binary grating with grating height .5 µm 
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 For this shape of diffraction grating, the efficiencies of the reflected and 

transmitted orders are given in Table 3.1 below.  As seen from these calculations 

almost half of the power goes into the -1 order. 

Table 3.1 Efficiency for binary diffraction grating with 1 µm period 

Diffractive 
Order 

-2 -1 0 1 2 

Reflected -- 1.28% 1.50% 1.19% -- 
Transmitted 4.14% 45.62% 9.754% 25.79% 10.69% 

3.3.2 Blazed Grating 

 Now we look at an example with a blazed grating.  We assume that this 

grating was mechanically scribed into a glass substrate.  This means that the grating 

index of refraction isbe 1.5.  First, we choose the total blaze height to be 2.24 µm.    

This height is chosen because it maximizes the efficiency into the first diffractive 

order.  For this blazed grating, we use 50 slices in the analysis.  Figure 3.5 below 

shows the model of the grating that we analyze. 
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Figure 3.5 Blazed grating with grating height 2.24 µm 
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 For this shape of diffraction grating, the efficiencies of the different diffractive 

orders calculated from rigorous coupled-wave analysis are shown in Table 3.2 below. 

Table 3.2 Efficiency of blazed grating with 1 µm period 

Diffractive 
Order 

-2 -1 0 1 2 

Reflected -- .015% .006% .008% -- 
Transmitted .028% 12.37% 16.21% 64.3% 7.08% 

 

 As seen from the table, there is strong coupling into the +1 Transmitted order.  

In Chapter 2, blazed gratings were discussed as having this property of placing higher 

efficiencies into single diffractive orders.  In designing the blaze grating, the angle of 

the blaze is chosen such that if the incident beam were to encounter a surface at that 

angle, the angle of the refracted beam matches an angle of one of the diffractive 

orders.   

3.3.3 Sinusoidal Grating 

 Finally, we look at a sinusoidal grating.  In Chapter 2, it was said that 

sinusoidal gratings are easily recorded holographically.  We assume that the 

sinusoidal grating has been holographically recorded in photoresist with refractive 

index 1.6, and that the substrate is glass.  We choose grating heights of .5 µm and 

compare these results with the binary grating. We use 100 slices for this analysis.  

Figure 3.6 below shows the model of the grating that is analyzed. 
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Figure 3.6 Sinusoidal grating profile 

 For this shape of diffraction grating, the efficiencies of the different diffractive 

orders calculated from rigorous coupled-wave analysis are shown in Table 3.3 below. 

Table 3.3 Efficiency of sinusoidal grating with 1 µm period 

Diffractive 
Order 

-2 -1 0 1 2 

Reflected -- .33% 1.15% .01% -- 
Transmitted 5.97% 32.45% 15.27% 42.70% 2.12% 

 

 As shown in Table 3.3, the +1 transmitted order has the most power.  The 

efficiency of the sinusoidal grating is different than the efficiency of the binary 

grating, even though their heights are the same.  From all of these examples, it is 

easily seen how the shape of a diffraction grating impacts its efficiency. 

3.4 Numerical Accuracy 

 To complete this discussion on the implementation of the rigorous coupled-

wave analysis for surface relief gratings, we address the issue of numerical 
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convergence.  There are two factors in the implementation that affect the accuracy of 

the results.  One factor is the number of diffractive orders retained in the analysis.  

The second factor is the number of grating slices used in the analysis.  For a more 

formal discussion of the numerical accuracy of this method see [58,75]. 

3.4.1 Number of Orders Retained in Analysis 

 First, we explore the issue of how many orders must be retained in the 

analysis.  A common mistake is to assume that the numbers of orders retained should 

be the number of orders that the grating produces.  For instance, in the examples 

shown earlier, there were five diffractive orders.  If in the analysis only five orders 

were retained, the result would not be accurate.  Although only a finite number of 

diffractive orders exist outside the grating, the fields inside the grating contain an 

infinite number of Floquet waves.  The efficiency of the orders outside the grating 

depends on the coupling between the infinite set of Floquet waves inside the grating.  

Truncating the number of Floquet waves considered in the analysis too far results in 

an inaccurate solution, therefore a sufficient number of orders must be retained in the 

analysis beyond the number of physical diffractive orders. 

 To illustrate this convergence, we use the example of the binary grating 

above.  We calculate the efficiency of the first order transmitted while at each step 

increasing the number of orders retained in the analysis.  As the number of orders 

retained increases, the efficiency value converges to the actual solution.  The result of 

this calculation is shown below in Figure 3.7. 
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Figure 3.7 Effect of number of orders retained in rigorous coupled wave analysis on 

accuracy of solution 

 From Figure 3.7, we see that there is a knee in the value at about 10 orders.  

After 40 orders, the calculated value is converging very slowly.  Any additional 

orders retained does not improve the accuracy by a substantial amount.  When this 

implementation of rigorous coupled-wave analysis is used, it is important to calibrate 

the number of orders retained to be sure that the solution is accurate. 

3.4.2 Number of Slices in Grating Representation 

 The second issue of accuracy is how many grating slab slices are needed to 

converge to within a reasonable tolerance.  The more slabs are used, the more the 

modeled grating resembles the actual grating that is to be analyzed.  To explore this 



 

 41

issue, we use the sinusoidal grating example from above and calculate the efficiency 

of the first order transmitted beam.  At each step we increase the number of slab 

gratings.  For this analysis we retain 101 diffractive orders.  As the number of slab 

gratings used increases, the solution converges to the actual value.  The result of this 

analysis is shown below in Figure 3.8. 
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Figure 3.8 Effect of number slabs used in grating representation on accuracy of solution 

 From Figure 3.8, we can see that the convergence due to increasing the 

number of slabs is a little slower than the convergence due to the number of orders 

retained.  However, there is a knee in the curve at about 20 slabs.  After 60 slabs, the 

calculated value is converging slowly, and increasing the number of slabs beyond this 

point provides little increased accuracy.  In order to make sure that the results are 
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accurate, it is important to calibrate the number of slabs used in representing the 

grating. 

 With the methods discussed in this chapter, the efficiencies of any surface 

relief grating can be calculated to an arbitrary degree of accuracy, with no 

approximations used in the analysis.  This tool is very useful in the design of 

diffraction grating applications, especially the design of grating couplers to couple 

light into waveguides, which is the topic of Chapter 4. 
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Chapter 4 

4 Grating Coupler Design 

 In Chapter 2, the method of wavevector analysis was presented as a tool for 

analyzing the behavior of diffraction gratings in terms of the direction that the light is 

diffracted.  In Chapter 3, the method of rigorous coupled wave analysis was presented 

as a tool for analyzing the efficiencies of the diffraction grating based on the physical 

geometry of the diffraction grating.  This chapter applies these tools to the design of 

grating couplers.  The grating couplers that are of interest to us are those that diffract 

light into a guided mode of an optical waveguide.  First we show the basic structure 

for the design.  We then look at grating couplers from a wavevector standpoint.  

Following the wavevector analysis, we characterize the efficiency of a grating coupler 

based on a mathematical model.  We then discuss a method for finding the 

efficiencies of the grating coupler that involves the use of rigorous coupled wave 

analysis.  A discussion of the design variables and strategy is then be presented, and 

finally we display some calculations of the coupler parameters based on design 

variables. 
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4.1 Basic Structure 

 The basic structure of the grating coupler is shown in Figure 4.1.  As seen in 

Figure 4.1, the basic structure consists of a cover region, a waveguide region, and a 

substrate region.  There are two diffraction gratings.  One grating is for input coupling 

and the other is for output coupling.  The light is incident on the input grating which 

diffracts the light into the waveguide.  The output grating diffracts the propagating 

light out of the waveguide. 

waveguide

substrate

input output

cover

 

Figure 4.1 Basic structure of grating coupler 

 For our research purposes, we use light from a HeNe laser to test the grating 

couplers that are built.  Therefore, the incident light has a wavelength of 632.8 nm.  

The substrate we use is a glass slide with an index of refraction of about 1.46.  The 

waveguide region is a silicon nitride layer deposited by PECVD.  The index of 

refraction of our waveguide is 2.1 as measured by ellipsometry.  The cover region is 

free space.  The input and output gratings are recorded in photoresist and eventually 

etched into the SiN waveguide layer. The design parameters are the period of the 

input and output grating, the etch depth of the grating into the waveguide, the 
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thickness of the waveguide, and the angle of incidence.  From the parameters above, 

the waveguide thickness is chosen such that the waveguide supports a single mode.  

Using electromagnetic theory, the range of waveguide thicknesses is found to be from 

.0379 µm to .245 µm.  The thickness of the waveguide determines the effective index 

of refraction of the single mode.  The effective index of refraction for a guided wave 

is defined as the ratio of the propagation constant of the guided wave to the 

propagation constant of free space.  Based on the range of waveguide thicknesses 

above, Figure 4.2 shows a plot of the effective index of refraction of the mode in the 

slab waveguide as a function of waveguide thickness. 
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Figure 4.2 Plot of effective index of refraction for single mode waveguide vs. thickness of 

waveguide 

 In order for the diffraction gratings to couple light into the single mode 

waveguide, the diffraction gratings have to diffract the incident light in such a way 

that the effective index of the diffracted wave matches the effective index of the mode 
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in the waveguide.  The effective index of a diffracted wave is the ratio of the 

tangential component of the diffracted wavevector to the wavevector of free space.  

This quantity is very important in the design of the grating coupler, and its effect is 

discussed in greater detail later.  The remaining design parameters are the grating 

period, angle of incidence, grating depth, and waveguide thickness.  The effect of 

each of these are discussed in the following sections. 

4.2 Wavevector Analysis 

 We begin our discussion of grating coupler design with the wavevector 

analysis method.  This analysis method allows us to determine the period of the input 

and output grating, and the angle of incidence that allows coupling into the 

waveguide.  This analysis first addresses input coupling, and the effect of grating 

period and angle of incidence are discussed.  We then explore the effect of the grating 

in terms of the effective index of refraction for the diffractive orders.  The analysis 

then addresses output coupling, where the effect of grating period is discussed, along 

with the effective index of refraction.  Following the analysis of input and output 

coupling, the design method is discussed in more detail and actual parameters are be 

chosen for the period and angle of incidence. 

4.2.1 Input Coupling 

 We begin our wavevector analysis with input coupling.  First, we examine the 

effects of varying the grating period, and second, we examine the effects of varying 

the angle of incidence.   
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4.2.1.1 Effect of Grating Period 

 In general, as grating period decreases, eventually all diffractive orders other 

than the zero order are cutoff, meaning that the tangential component of the 

wavevector of the diffracted order is greater than the magnitude of the wavevector of 

that medium and therefore the field is evanescent in that medium.  The point at which 

the diffractive orders are cutoff depends on the refractive index of the transmitted 

medium.  The higher the refractive index of the transmitted medium, the smaller the 

grating period must be before the diffractive orders in that medium are cutoff.  Figure 

4.3 shows the diffraction from a .8 µm period grating at normal incidence with other 

parameters as defined above. 
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Figure 4.3 Diagram of .8 µm grating at normal incidence 

 Figure 4.3 shows that with this size period, the diffractive orders exist in all 

three regions, and have not yet been cutoff.  This type of coupling is simply free 

space coupling.  Figure 4.4 shows the diffraction from a .5 µm period grating at 

normal incidence. 
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Figure 4.4 Diagram of .5 µm grating at normal incidence 

 Figure 4.4 shows that the with this size period, the diffractive orders in air 

have been cutoff.  The transmitted orders in the substrate stay in the glass by total 

internal reflection.  This type of coupling is known as substrate coupling.  If the 

period of the diffraction grating is decreased further, the diffractive orders in glass 

also are cutoff, and only orders in the waveguide layer can exist.  Figure 4.5 shows 

the diffraction from a .35 µm period grating at normal incidence. 
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Figure 4.5 Diagram of .35 µm grating at normal incidence 

 Figure 4.5 shows that the light isonly be transmitted into the nitride region.  

While Figure 4.5 depicts the light in the waveguide region as rays, the light actually 
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couples into the mode supported by the waveguide.  This type of coupling is known 

as guided mode coupling, and is the type of grating coupler that we wish to design.  

However, it is important to note that the coupling depicted in Figure 4.5 only happens 

if the effective indices of the +1 and -1 diffractive orders match the effective index of 

the mode supported by the nitride waveguide, which is only the case if the diffracted 

beam into the nitride is within a very small range of angles. 

 It is important now to look at the effect of grating period on grating coupling 

in terms of effective index of refraction.  The dependence on grating period depicted 

in Figure 4.3-Figure 4.5 can all be explained in terms of effective index.  As 

mentioned earlier, the effective index of refraction is the ratio of the tangential 

component of the diffracted wavevector to the wavevector of free space.  The 

tangential component of the diffracted wavevector, kqx can be written 

 ( ) q
t

qq
t

qx

n
xzx

n
k θ

λ
πθθ

λ
π

sin
2

ˆˆcosˆsin
2

=⋅+= . (4.1) 

The ratio of this quantity to the wavevector of free space is simply ntsinθq, which 

happens to be the left side of the diffraction equation (2.4).  In terms of the effective 

index of refraction, neff, the diffraction equation is 

 
Λ

−=
λθ qnn ii

q

eff sin , (4.2) 

where q

effn  is the effective index of refraction for the qth diffracted order.  Figure 4.6 

shows a plot of 1
effn  for normal incidence. 
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Figure 4.6 Plot of neff for first diffractive order. 

 Figure 4.6 also shows the ranges over which different types of coupling occur.  

Free-space coupling occurs if the effective index is less than the effective index of 

free-space, which in this example corresponds to the grating period being greater than 

.6328 µm, or the wavelength of the incident light in free space.  Free space coupling 

was demonstrated in Figure 4.3.  Substrate coupling occurs if the effective index is 

between the index of the substrate and the index of the cover region, which in this 

example corresponds to a grating period between .4334 µm and .6328 µm.  Substrate 

coupling was demonstrated in Figure 4.4.  Guided mode coupling occurs if the 

effective index is between the index of the waveguide and the index of the substrate, 

which for this example corresponds to a grating period between .3013 µm and .4334 

µm.  Guided mode coupling was demonstrated in Figure 4.5.  An effective index 

higher than the index of the waveguide means that the diffracted order is cutoff.  The 
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effective index of refraction is a powerful design tool that allows for intuitive choices 

in design parameters. 

4.2.1.2 Effect of Angle of Incidence 

 In the previous section, we studied the effect of varying the grating period, 

assuming normal incidence.  We now study the effects of varying the angle of 

incidence while holding the grating period constant.  In general if the angle of 

incidence increases, the effective index of refraction for the diffractive orders 

changes.  This means that as the angle of incidence increases, diffractive orders that 

were once cutoff in a certain region rise above cutoff. To illustrate this dependence, 

we begin with the example in Figure 4.5, and increase the angle.  Recall that in this 

thesis, positive angles are measured counterclockwise from the normal.  Figure 4.7 

shows the diffraction from a .35 µm period grating at an angle of incidence of 30º. 

.35µm 30
o

air
glass

nitride

+K  

Figure 4.7 Diagram of .35 µm grating at incidence of 30º 

 Figure 4.7 shows that by changing the angle of incidence to 30º, the +1 order 

has risen above cutoff in the glass substrate, but not in air.  By changing the angle, we 

have moved from a guided mode coupling to a substrate coupling.  If we continue to 
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increase the angle of incidence, we are able to move to a free space coupling.  Figure 

4.8 shows the diffraction of a .35 µm period grating at an angle of incidence of 60º. 

.35µm 60
o

air
glass

nitride

+K  

Figure 4.8 Diagram of .35 µm grating at incidence of 60º 

 Figure 4.8 shows that by changing the angle of incidence to 60º, the +1 order 

has risen above cutoff in air.  While increasing the angle of incidence has decreased 

the effective index of the +1 order, the effective index of the -1 order has increased 

such that in both Figure 4.7 and Figure 4.8, the -1 order is cutoff in all regions. 

 As we did when we were investigating the effect of grating period, we now 

look at the effect of angle of incidence on grating coupling in terms of effective index 

of refraction.  If we hold the grating period at .35 µm, we can change incidence and 

see how neff varies with angle of incidence.  Figure 4.9 shows a plot of 1
effn  with 

respect to incidence angle. 
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Figure 4.9 Plot of neff for +1 diffracted order 

 Figure 4.9 shows that for the +1 diffractive order, increasing the angle of 

incidence decreases the effective index, and allows coupling into lower index 

mediums. As before, free space coupling occurs if the effective index is less than the 

effective index of free space, which in this example corresponds to the incidence 

angle being greater than 53.9º.  Free space coupling was demonstrated in Figure 4.8.  

Substrate coupling occurs if the effective index is between the index of the substrate 

and the index of the cover region, which in this example corresponds to the incidence 

angle being between 20.36º and 53.9º.  Substrate coupling was demonstrated in 

Figure 4.7.  Guided mode coupling occurs if the effective index is between the index 

of the waveguide and the index of the substrate, which for this example corresponds 

to the incidence angle being between -16.98º and 20.36º.  Guided mode coupling was 

demonstrated in Figure 4.5.  An effective index higher than the index of the 
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waveguide, or in this example, an angle of incidence below -16.98º, means that the 

diffracted order is cutoff.  From the above discussion we have shown that it is 

possible to adjust the effective index of a diffractive order by adjusting the angle of 

incidence.  However, the change in effective index due to changing the angle of 

incidence is limited.  Solving equation (4.2) for sinθi, we obtain 

 
i

q

eff

i
n

qn

Λ
+Λ

=
λ

θsin . (4.3) 

 

The sine function is bounded from its maximum of +1 to its minimum of -1.  

Therefore the maximum value for neff  is 
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eff )max( , (4.4) 

and the minimum value for neff  is 

 
Λ

−Λ−
=

λqn
n i

eff )min( . (4.5) 

 

The maximum change in effective index due to adjusting the angle of incidence is 
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Therefore, adjusting the angle of incidence can change the effective index of the 

diffractive order no more than twice the value of the index of refraction of the cover 

medium.  Choosing the right combination of angle of incidence and grating period 

allows us to design a grating coupler that couples light into a single mode slab 

waveguide. 
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4.2.2 Output Coupling   

 Having discussed the effect of grating period and angle of incidence on input 

coupling to a waveguide, we now look at how these parameters affect the output 

coupling from a waveguide.  First we discuss the reciprocal duality of input and 

output coupling.  Then we look at the effect of grating period on output coupling. 

4.2.2.1 Reciprocity with Input Coupling 

 A grating coupler is a reciprocal system [80,81].  Meaning that if the output 

beam becomes the input beam and is turned around such that it encounters the grating 

coupler in the same manner in which it left, the resulting output beam would be the 

same as the original input beam traveling in the opposite direction.  In other words, 

the output and input are interchangeable.  However, output coupling is a little simpler 

than input coupling, because instead of the incident beam coming into the grating at 

an arbitrary angle, the incident wave is the single mode of the waveguide.  Thus, 

given a waveguide, the only variable in the design is the period of the output grating 

coupler.  This period determines the angle at which the light is coupled out.  If the 

same grating is used as the input coupler, the output coupling angle is the same as the 

input coupling angle such that the incident beam is matched to the effective index of 

the waveguide. 

4.2.2.2 Effect of Grating Period 

 Having discussed the dual nature of input and output coupling, we now 

examine the effects of grating period on output coupling.  This discussion follows the 

same structure as the discussions in previous sections.  For this analysis, we assume 
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that the thickness of the SiN waveguide is .2 µm, and the index of refraction is 2.1.  

The single mode for this waveguide has an effective refractive index of 1.8663. 

 Before we get into the examples, we need to choose a range for the grating 

period.  Ideally, we would like only one diffracted order coupled out of the 

waveguide.  This request places a maximum on the grating period for the coupler.  

For output coupling, the diffraction equation is: 

 
Λ

−=
λθ qnn m

efftt sin , (4.7) 

 

where m

effn is the effective index of refraction of the mode in the waveguide.  We want 

orders higher than q = 1 to be cutoff.  Substituting this condition into (4.7) and 

solving for the grating period gives the following inequality for maximum grating 

period. 

 
s

m

eff nn +
<Λ

λ2
, (4.8) 

 

where ns is the index of refraction of the substrate.  Using the same reasoning, we can 

derive an expression for the minimum value of the grating period.  The requirement is 

that the first order diffracted beam be above cutoff.  Substituting this condition into 

(4.7) and solving for the grating period gives the following inequality for minimum 

grating period. 

 
t

m

eff nn +
>Λ

λ
, (4.9) 

 



 

 57

where nt is the index of refraction of either the cover or substrate region depending on 

which region we want the first order beam to be above cutoff.  Thus for the example 

we have chosen, Λ must be between .2208 µm and .3805 µm for diffraction into air, 

and Λ must be between .1902 µm and .3805 µm for diffraction into the glass. 

 To illustrate the effect of the grating period on output coupling, let’s first look 

at an example where the grating period is equal to .37 µm.  Figure 4.10 shows the 

diffraction from this output coupler 

.37µm

air
glass

+K  

Figure 4.10 Output coupling from .37 µm period grating coupler 

 Figure 4.10 shows that in this configuration the grating coupler produces free 

space coupling.  Note that, in the k-space diagram, the horizontal ray that is higher in 

magnitude than the wavevector of glass is the undiffracted wavevector corresponding 

to the guided mode in the waveguide. 

 As before, we can decrease the period even more until the diffracted order is 

cutoff in air.  Figure 4.11 shows the diffraction from a grating coupler with a period 

of .2 µm. 
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air
glass

+K  

Figure 4.11 Output coupling from .2 µm period grating coupler 

 Figure 4.11 shows that the diffracted beam only is transmitted into the 

substrate medium.  Thus, this grating provides substrate coupling. If the grating 

period is decreased further, the diffracted order in the substrate is also cutoff, and the 

grating does not have any interaction with the light in the waveguide as far as being 

able to couple light out.  In general as the grating period decreases, the angles of the 

outcoupled beams increase until they are cutoff. 

 There are two other special conditions that need to be considered in this 

discussion.  What if the grating diffracts light back down the waveguide in the 

opposite direction?  This type of grating is known as a Bragg grating.  Figure 4.12 

illustrates a Bragg coupler. 

.3391µm

air
glass

+K+2K  

Figure 4.12 Second order Bragg grating coupler 
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 The type of grating coupler shown in Figure 4.12 is known as a second order 

Bragg grating coupler, because the second order diffracted beam matches the 

effective index of the guided mode and is reflected back down the waveguide.  

Therefore, second order Bragg gratings achieve guided mode coupling between a 

forward traveling wave and a backwards traveling wave.  The grating vector K that 

results in the second order Bragg condition is equal to the wavevector of the guided 

mode.  Therefore the grating period is equal to the free space wavelength of the light 

divided by the effective index of the guided mode.  Another example of a Bragg 

coupler is the first order Bragg coupler.  Figure 4.13 shows the interaction of a first 

order Bragg grating coupler. 

.1695µm

air
glass

+K  

Figure 4.13 First order Bragg grating coupler 

 Figure 4.13 shows that the first order diffracted beam is reflected back down 

the  waveguide with no coupling of the light out of the waveguide.  For the first order 

Bragg grating coupler the grating vector K is equal to two times the wavevector of 

the guided mode.  Therefore the period is equal to the free space wavelength divided 

by two times the effective index of the guided mode. This discussion has shown that 

free space coupling, substrate coupling, and guided mode coupling are achievable 

with output grating couplers by adjusting the period. 
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 To finish this discussion, we address the concept of effective index of 

refraction, and output coupling angle.  Figure 4.14 shows the effective index of 

refraction of the diffracted orders from the output grating vs. grating period. 
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Figure 4.14 Plot of effective index vs. grating period for output coupler 

 In Figure 4.14, the solid line is the effective index of the first diffracted order, 

and the dotted line is the effective index of the second diffracted order.  The points 

where these lines have the value of the effective index of the guided mode are each 

labeled with an asterisk.  The asterisk on the solid curve is the point at which first 

order Bragg coupling occurs. Coupling at this point is illustrated in Figure 4.13.  The 

asterisk on the dotted curve is the point at which second order Bragg coupling occurs.  

Coupling at this point is illustrated in Figure 4.12. The plot is divided into five 

regions.  In region one, both the first and second order are cutoff in the cover and 

substrate layers.  In region two, the first order is cutoff in the air cover region, but is 
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not cutoff in the glass substrate region and the second order is still cutoff for both air 

and glass.  This region corresponds to the coupling illustrated in Figure 4.11.  In 

region three, the first order is below cutoff for both the air cover region and the glass 

substrate region, and the second order is still cutoff in both air and glass. Coupling in 

this region is illustrated in Figure 4.10.  In region four, the second order is below 

cutoff for the substrate layer, and in region five the second order is below cutoff for 

both the cover and substrate layers. 

 Not only can we analyze the effect of grating period in terms of effective 

index.  We can also analyze the effect of grating period in terms of output coupling 

angle.  For a given guided wavevector, the effect of decreasing the grating period is 

an increase in output coupling angle.  Figure 4.15 shows the relationship between 

grating period and output coupling angle in the air cover region. 
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Figure 4.15 Plot of angle of outcoupled light vs. grating period 
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 In Figure 4.15, the solid line is the first order diffracted wave, and the dotted 

line is the second order diffracted wave.  Positive angles are measured as being 

countercloskwise from normal.  Therefore, a beam with an outcoupled angle of 0º 

would be coupled out perpendicular to the waveguide.  The portions on the plot 

where the curve is flat at 90° are the regions where the diffracted order is in cutoff.  

The curve shows that output angles between +10° and –10° can be obtained for 

grating periods in the range of .3µm to .4µm.  For optical interconnect systems small 

angles with respect to the normal are desirable. 

4.2.3 Wavevector Design Method 

 Now that we have discussed both input and output coupling, and analyzed the 

effects of grating period and angle of incidence, we are ready to make some design 

decisions.  For a single mode waveguide with a given effective index of the guided 

mode, the method for designing a grating coupler starts with determining the desired 

output coupling angle.  Once the output coupling angle is chosen, the grating period is 

determined accordingly based on the effective index of the guided mode that we 

desire to couple into.  Because of the reciprocity of grating couplers, the input 

coupling angle is the same as the output coupling angle. 

 For our design, we choose an output coupling angle of 10º into air.  Based on 

the parameters of the system given earlier and from equation (4.7), we can calculate 

that the period of the grating coupler needs to be about 0.374 µm.  Figure 4.16 shows 

the wavevector diagrams for input and output coupling. 
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Figure 4.16 Wavevector diagrams for (a) input coupling and (b) output coupling for 

grating coupler with period of .374 µm. 

 Perhaps it may be difficult to actually fabricate this grating coupler with its 

0.374 µm period.  A grating coupler that is easier to manufacture is one with a 

slightly larger period. 

 As a second design for a grating coupler, we choose a period of 0.517 µm.  

This grating is less desirable because it gives more than one outcoupled order.  This 

grating coupler has output angles of 35.57º and -39.96º.  Therefore we can couple in 

to the waveguide with the -1 order diffracted beam if the input beam is at 35.57º, or 

we can couple into the waveguide with the -2 order diffracted beam if the input beam 

comes at -39.96º.  Figure 4.17 shows wavevector diagrams for input and output 

coupling for this design. 
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Figure 4.17 Wavevector diagrams for (a) input coupling and (b) output coupling for 

grating coupler with period of .517 µm. 

 For this research, we first attempt to build the 0.517 µm period grating 

coupler, and, if possible, attempt to build the 0.374 µm period grating coupler.  If the 

grating vector or effective index of the guided mode in the waveguide is slightly 

different than the design values after the coupler is fabricated, we can tune the 

coupling angle to compensate.  Having designed the periods and coupling angles of 

these two couplers, this concludes this section on wavevector analysis. 

4.3 Efficiency Analysis for Grating Coupler 

 Now that we have a design in terms of the period of the grating coupler and 

the coupling angle, let’s look closer at the grating coupler in terms of its efficiency in 
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coupling light out of the waveguide.  In this mathematical analysis we first address 

output coupling.  We derive expressions for the intensity profile of the light coupled 

out of the waveguide by the grating coupler. We use the results of the output coupling 

analysis to derive expressions for the input coupling efficiency.  The design variable 

of interest in this analysis is the height of the grating.  For this analysis we assume 

that the grating is binary.  Following the mathematical derivations, we outline how 

the problem is implemented and solved numerically using rigorous coupled-wave 

analysis. 

4.3.1 Power Coupled Out of Waveguide 

 If light traveling in a single mode waveguide encounters a diffraction grating, 

the waveguide becomes lossy, and light in the waveguide is be coupled out.  This 

type of waveguide is known as a leaky waveguide.  A leaky waveguide is 

characterized by a decay factor αr.  By definition for a leaky waveguide, the change in 

electric field in the direction of propagation is 

 )(
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xdE
rα−= . (4.9) 

 

This equation is a linear first order ordinary differential equation that is easily solved 

by rearranging the terms and integrating. 
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Equation (4.13) is an expression for the total electric field remaining in the waveguide 

at the point x0.  In terms of power, the power flowing in the waveguide is 
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Therefore, the power remaining in the waveguide at x = x0 is 
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and, because power is conserved, the total power coupled out of the waveguide at x = 

x0 is 
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where P0 is the initial power in the waveguide just after encountering the grating.  In 

this analysis, we assume that the guided field profile in the coupler region is the same 

as the guided field profile in the waveguide before the coupler region.  In other 

words, scattering of the wave due to mode mismatch is neglected.  The total 

outcoupled power is split between diffractive orders in the substrate and cover 

regions.  The efficiency of each order is the ratio of the power coupled into that order 

to the total power coupled out of the waveguide.  Therefore, the efficiencies of the 

diffracted orders in the cover region are 

 
out

c

q

q
P

P
R = , (4.17) 



 

 67

and the efficiencies of the diffracted orders in the substrate region are 
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where q is the diffracted order, and the superscripts c and s correspond to cover 

region and substrate region respectively.  The coupling of light out of the waveguide 

is illustrated in Figure 4.18. 
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Figure 4.18 Illustration of power coupled out of waveguide into various diffractive 

orders 

 Usually, the diffractive order that we want to have the highest efficiency is the 

first order in the cover region.  If the diffraction grating is of length L, then the total 

power coupled out of the grating in the desired diffractive order is 
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From equation (4.19), we see that the performance of a grating coupler in placing 

light into the desired diffractive order is determined by the parameters R1, L, and αr.  

The parameters R1 and αr depend on the physical characteristics of the grating and the 

waveguide.  For our binary analysis, these parameters depend on the height of the 

grating and the height of the waveguide. 
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4.3.2 Intensity Profile of Light Coupled Out of Waveguide 

 Now we examine the intensity of the outcoupled light.  In order to find the 

intensity we need to find the ratio of power to distance.  In order to derive the 

intensity, we first find the power at a point x = x0, which we call P1, and then at a 

point x = x0 + ∆x, which we call P2, as shown in Figure 4.19. 

x=x0 x=x +∆x0

P1 P2

∆P

 

Figure 4.19 Power coupled out of  small section of waveguide 

 The power in coupled out of the waveguide at point x = x0, P1, can be expressed 
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and the power coupled out at the point x = x0 + ∆x, P2, can be expressed 
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The difference between P1 and P2 is  
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The power in ∆P is split between diffracted orders, therefore  
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To find the intensity of the light exiting the coupler at the point x = x0, we allow ∆x to 

decrease, and take the ratio of ∆P to ∆x. 
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In order to take this limit, we need to use L’Hôpital’s rule and take the limit of the 

derivatives of the numerator and denominator. 
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First, we concentrate on taking the derivative in 4.27.  By the chain rule 
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where Ar is the antiderivative of αr.  Using the chain rule once again, the derivative of 

the term in parentheses can be taken easily and is given by 
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Using this result in (4.27), we now have 
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Taking the limit gives 

 ( ) ⎥⎦
⎤
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∫−=
0

0
000 2exp)(2)(

x

rrq dxxPRxI αα . (4.32) 

Equation (4.32) is the intensity profile for a beam coupled out of the waveguide by 

the grating coupler.  If the diffraction grating is uniform over its length, αr is a 

constant value.  In this case (4.32) may be rewritten 

 [ ]xPRxI rrq αα 2exp2)( 00 −=  (4.33) 

For this thesis, the gratings couplers that are of interest are built with the attempt that 

the gratings are uniform over the length of the coupling region.  Therefore, equation 

(4.33) describes the behavior that we attempt to observe in the light that is coupled 

out of our grating couplers. 

4.3.3 Input Coupling Efficiency 

 Now that we have derived an expression for the intensity profile of the 

outcoupled beam of a grating coupler, we are now ready to discuss input coupling 

efficiency.  We use the reciprocity theorem to analyze the input coupling.  From the 

reciprocity theorem, the maximum input coupling efficiency would be when the 

intensity profile of the input beam matches the intensity profile of the output beam, 

and the maximum input efficiency is the same as the output coupling efficiency of 

that order.  If the intensity profile does not match the output intensity profile, the 

input efficiency, or the ratio of the incident light to the amount of light that is actually 

coupled into the waveguide, is determined by an overlap integral of the intensity 

profiles given by 
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where i is either c or s depending on if the input coupling is coming from the cover or 

substrate medium, q is the diffractive order, Iin is the intensity profile of the input 

beam, and Iout is the intensity profile of the outcoupled beam given by (4.33).   Input 

coupling and output coupling and the quantities in (4.34) are demonstrated in Figure 

4.20 below. 
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Figure 4.20 Illustration of (a) output coupling and (b) input coupling 

 From (4.34) we see that the input coupling efficiency is decreased if there is a 

mismatch between the input and output beams, or if the output coupling efficiency is 

low.  Both of these two factors are dependant on the decay parameter αr.  Higher 

values of αr mean higher amounts of output coupling, but can also mean a poor 

overlap integral.  To illustrate this point, we give an example.  A common input 

intensity profile is a Gaussian beam from a laser.  Suppose the input beam to a grating 

coupler is a Gaussian beam with a diameter of 1mm.  The intensity profile for this 

beam is given by 
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xx

exI in
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where x0 is an offset parameter, and d is the diameter of the beam.  For this beam, 

given a grating length L, there is an optimal value for αr and x0 that maximizes the 

input coupling efficiency, which from (4.34) and (4.19) is given by 

 [ ]( )
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dxxIdxxI

dxxIxI
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R
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outin

r

c

)()(

)()(
2exp1

22/12/1

1

1 αη
. (4.36) 

The values that maximize the efficiency can be found by optimization routines.  

Figure 4.21 shows a contour plot of the right side of (4.36) for a coupler length of 5 

mm. 

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

x
0
 (mm)

α
r (

m
m

-1
)

Input Coupling Efficiency

0
.8

0
. 7

0
.6

0
.5

0
.4

0
.3

0
.2

0
.1

 

Figure 4.21 Contour plot of the input coupling efficiency of a Gaussian beam 

 As Figure 4.21 shows, there is a small rage of values of x0 and αr that can 

provide efficiencies of over 80%.  However, the true input efficiency into the 

waveguide would be this value multiplied by the efficiency of the diffracted order, R1.  

Figure 4.22 shows the normalized intensity profiles of a Gaussian beam, and the 
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output intensity profile as a function of position for x0 = 0.5152 mm and αr = 0.9697 

cm-1. 
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Figure 4.22 Normalized intensity of input and output beams 

 The example shown in Figure 4.22 has an input efficiency of .803 R1.  

Because the total outcoupled power is split into a cover beam and a substrate beam 

and the value of R1 could typically be in the range of .5, the maximum total efficiency 

would be in the range of 40%.  This problem of low efficiency can be improved 

slightly by adjusting the input Gaussian beam radius and lowering the decay factor; 

however, the underlying problem is in the mismatch between a Gaussian shape and a 

decaying exponential shape.  Better efficiencies can be obtained by designing more 

complex grating structures that have varying grating heights or fill factors.  By 

varying the decay parameter αr, a grating can be designed to have an output intensity 

profile to match any arbitrary input beam profile.  Such gratings are difficult to build 

in practice, and this thesis is only concerned with the design of uniform grating 

couplers with constant decay parameters.  A second and perhaps more significant way 
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that the efficiency can be increased is by increasing the efficiency of the grating in 

diffracting power into the desired order.  Preferential coupling also requires more 

complex schemes than those investigated in this thesis.  Some ways to improve the 

preferential coupling efficiency are given in [82-90]. 

4.4 Numerical Method for Determining Radiation Decay Factor 

 So far in this analysis, we have not addressed how the radiation decay factor 

relates to the physical structure of the grating coupler.  The purpose of this section is 

to explain how, given a grating coupler, to calculate the radiation decay factor and the 

efficiencies of each diffractive order using rigorous coupled wave analysis.  Before 

we begin, it is important to note that the radiation decay factor, αr, is simply the 

imaginary part of the propagation constant of the guided mode in the grating coupler 

region.  The real part of the propagation constant is k0neff.  Therefore, the propagation 

constant of the mode in the waveguide is 

 rjαβγ += . (4.37) 

If we can calculate the propagation constant, we are able to determine the effective 

index, and the decay parameter of the leaky mode in the grating coupler.  This 

calculation can be done using rigorous coupled wave analysis. 

4.4.1 Solution Method 

 Let’s first examine the system that we are analyzing [91].  Figure 4.23 shows 

the structure of the problem and the fields in the different regions of the problem. 
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Figure 4.23 Fields in the regions of the grating coupler 

 Figure 4.23 shows a TE polarized plane wave incident from the cover region 

on the grating coupler.  This wave excites scattering waves in the cover and substrate, 

with amplitudes R and T respectively.  Forward and backward propagating waves are 

also excited inside the grating and waveguide layers, with amplitudes C+, C-, U+, and 

U
- respectively.  Phase matching at the boundaries between the different layers 

requires each wave to have the same x wavevector component, denoted γ.  The z 

components of the wavevectors depend on γ via the dispersion relationships for the 

materials in each region, i.e. 2/1222
0 ][ γ−= p

p

z nkk , where p is c, g, w, or s depending on 

if the region is the cover, grating, waveguide, or substrate respectively.   Matching the 

tangential components results in a linear system that can be expressed in matrix form 

as 
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where M  is a matrix describing the coupling between all of the fields in the different 

regions.  The matrix M  for this problem is the same as the matrix equation developed 

in Chapter 3 by rigorous coupled wave analysis, with the addition of the waveguide 

layer.  This matrix depends on the shape of the grating and the physical constants of 

the materials in the system as well as the tangential component of the wavevectors in 

all regions, which in this chapter we have called γ.  Equation (4.38) can be written 

compactly as 

 AYM =  (4.39) 

where Y is a column vector of the field amplitudes for the fields of the different 

regions, and A is a column vector describing the input to the system.  If the system 

described by M  supports a guided mode, then the vector A is zero and we have 

 0=YM . 

Because M  and Y are nonzero, this requires that M  be a singular matrix, meaning its 

determinant is zero.  This fact can be used to find the propagation constants of a 

waveguide and is known as the transverse resonance method.  If M  is a singular 

matrix and a nonzero input A is applied, then the coefficient values of the vector Y 

becomes infinite.  Therefore, one way to find the complex propagation constant of the 
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leaky waveguide would be to search for values of γ that cause the determinant of M  

to go to zero.  As discussed in Chapter 3, the matrix M  can be very large.  Storing 

such a large matrix, and finding its determinant is not a numerically attractive 

implementation.  An alternative method is to find the value of γ that causes R in 

equation (4.38) to grow to infinity, or alternatively for 0)(1 →γR .  In this manner, 

the optimizations for solving the matrix equation discussed in Chapter 3 can be 

implemented.  Therefore, our solution strategy is to repeatedly solve the scattering 

problem of equation (4.39) using rigorous coupled wave analysis while varying γ, 

until a value of γ is found that minimizes )(1 γR .  This problem and its solution 

method are also addressed in [82,92-94].  Once we have found the complex value of 

γ, the real portion is the propagation constant of the guided mode, β, and the 

imaginary portion is the radiation decay parameter, αr. 

 The procedure described above for determining γ is a sensitive numerical 

problem, and requires a good starting value to succeed.  There are a discrete number 

of solutions corresponding to the modes guided by the structure.  The number of 

modes depends on the indices of refraction of the various layers and on the 

thicknesses of the grating and waveguide layers.  The structure is first analyzed to 

find the propagation constant of the waveguide without the diffraction grating.  This 

propagation constant is used as the starting guess for γ for the grating coupler 

structure.  Also it is often necessary to start the analysis with a weak grating, i.e. very 

small grating height, and gradually adjust to the desired level.  The computational 
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process described above has been implemented in a series of MATLAB scripts that 

are described in Appendix B.3. 

4.5 Optimal Grating Efficiency Design Method 

 Now that we have a method for determining the radiation decay parameter for 

a given grating coupler, we are ready to discuss further the design method.  We have 

already designed two grating couplers with periods of .374 µm and .517 µm.  What 

we do not know is what these gratings should look like physically.  For this analysis, 

there are two possibilities as far as the fabrication of these grating couplers goes.  The 

first possibility is that the gratings are fabricated in photoresist and sit on top of the 

waveguide.  The second possibility is that the gratings are actually etched into the 

nitride waveguide.  Both of these possible grating couplers are shown in Figure 4.24. 

 

(a) (b)  

Figure 4.24 (a) Grating coupler fabricated with photoresist gratings; (b) Grating 

coupler fabricated by etching gratings into the nitride waveguide 

 As indicated by Figure 4.24, for this analysis, we assume that the grating 

couplers are made with binary diffraction gratings; therefore, the design variable 

available to us is the height of the gratings.  The first step in this design method is to 

determine the optimal value for the radiation decay parameter, αr.  The second step is 

to determine the grating height to give the optimal value of αr.   
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4.5.1 Determine Optimal Radiation Decay Parameter 

 As described above, the optimal value for the radiation decay parameter 

depends greatly on the intensity profile of the input coupling beam.  Figure 4.25 

shows the intensity profile of the HeNe laser beam we use to test the grating couplers.  

This intensity profile was measured by scanning the beam with an optical fiber. 
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Figure 4.25 Intensity profile of Gaussian Laser beam 

 Figure 4.25 shows that the source laser Gaussian beam radius of about 0.57 

mm.  Using the same procedure from above, we can determine the optimal offset 

amount of the Gaussian beam, and the optimal decay parameter to give the best 

overlap integral.  These quantities are independent of the period of the grating 

coupler.  Therefore, the optimal value of αr that we find is the same for both of our 

designs; however the grating heights that achieve the optimal αr varies between 
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designs.  Figure 4.26 shows the contour for the input coupling efficiency for a 0.57 

mm radius Gaussian beam for different offset values and radiation decay parameters. 
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Figure 4.26 Input coupling efficiency for 0.57 radius Gaussian beam and exponential 

decaying grating coupler 

 From this analysis, the optimal values for x0 and αr are 0.5657 mm and 0.8788 

mm-1 respectively.  With these values the optimal input coupling efficiency is 85.6% 

multiplied by the efficiency of the diffractive order which is determined later.  

4.5.2 Determine Optimal Grating Characteristics  

 Now we need to look for the grating characteristics that give us the optimal 

decay parameter determined before.  After we determine the grating height that gives 

the desired value of αr, we can determine the efficiency of each order coming out of 

the grating coupler.  We can then determine input coupling efficiency by multiplying 

the efficiencies of the orders coupled out of the grating by the value obtained from the 
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overlap integral. For the first case, we assume that the gratings are binary photoresist 

gratings on top of the waveguide layer as shown in Figure 4.24(a).  The design 

process follows the rigorous coupled wave analysis method described above.  First 

we present results for the 0.374 µm grating, and then we present results for the 0.517 

µm grating. 

 Figure 4.27 shows the calculations for a 0.374 µm period binary photoresist 

grating coupler. 
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Figure 4.27 Grating coupler characteristics for binary photoresist grating with 0.374 

µm period as a function of grating height 

 From Figure 4.27, the grating height that gives the desired value for the decay 

parameter is 20 nm.  The dotted curve is the length of the coupler to couple out 99.9% 

of the power, which for this case is about 2.6 mm.  Also note from Figure 4.27, that 
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the effective index in the grating coupler region increases slightly with grating height.  

With a coupler length greater than 2.6 mm, the efficiency of the output beam in the 

cover region, R1, is about 27.62%, while the efficiency of the output beam in the 

substrate, T1, is about 72.38%.  Therefore if we input couple from the cover, our 

efficiency into the waveguide is about 23.64%, and if we input couple from the 

substrate side, our efficiency is about 61.96%. 

 Figure 4.28 shows the calculations for a 0.517 µm period binary photoresist 

grating coupler. 
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Figure 4.28 Grating coupler characteristics for binary photoresist grating with 0.517 

µm period as a function of grating height 

 The results in Figure 4.28 are close to the results in Figure 4.27.  This means 

that most of these parameters are not very sensitive to the period of the grating 
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coupler.  From Figure 4.28, the grating height that gives the desired value for the 

decay parameter is 18.2 nm and the coupler length to couple out 99.9% of the power 

is about 2.6 mm.  Also note from Figure 4.28, that the effective index in the grating 

coupler region increases slightly with grating height.  Also note that while there are 

two diffracted orders in the cover and substrate regions, the efficiency of the second 

order beams is very low.  With a coupler length greater than 2.6 mm, the efficiency of 

the output beam in the cover region, R1, is about 27.62%, while the efficiency of the 

output beam in the substrate, T1, is about 73.62%.  Therefore if we input couple from 

the cover, our efficiency is about 22.5%, and if we input couple from the substrate 

side, our efficiency is about 63.02%. 

 We now analyze the structure for the second possibility for the grating coupler 

fabrication where the gratings are etched into the nitride waveguide as shown in 

Figure 4.24(b).  First we present results for the 0.374 µm period grating, and then for 

the 0.517 µm period grating. 

 Figure 4.29 shows the calculations for a 0.374 µm period grating etched into 

the SiN waveguide. 
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Figure 4.29 Grating coupler characteristics for binary etched grating with 0.374 µm 

period as a function of grating height 

 From Figure 4.29, note that the decay parameters increase more rapidly with 

grating height than the previous two cases.  This is to be expected because the 

gratings are being etched into the waveguide, and should cause higher loss because 

not only is the grating height increasing, but the waveguide height is decreasing.  

From Figure 4.29, the grating height that gives the desired value for the decay 

parameter is 7 nm, and the coupler length to couple out 99.9% of the power is about 

2.6 mm.  Also note from Figure 4.29, that the effective index in the grating coupler 

region decreases slightly with grating height.  With a coupler longer than 2.6 mm, the 

efficiency of the output beam in the cover region, R1, is about 30.02%, while the 

efficiency of the output beam in the substrate, T1, is about 69.91%.  Therefore if we 
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input couple from the cover, our efficiency is about 25.69%, and if we input couple 

from the substrate side, our efficiency is about 59.85%. 

 Figure 4.30 shows the calculation for a 0.517 µm period grating etched into 

the SiN waveguide. 
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Figure 4.30 Grating coupler characteristics for binary etched grating with 0.517 µm 

period as a function of grating height 

 From Figure 4.30, we see that as with the 0.374 µm grating, the loss 

parameters increase very rapidly with grating height, and that the effective index of 

the guided mode decreases slightly as the grating height increases.  While for this 

grating coupler, there is more than one diffracted order, the efficiencies of the second 

order beams are very small.  From Figure 4.30, the grating height that gives the 

desired value for the decay parameter is 7.8 nm, and the coupler length required to 
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couple out 99.9% of the power is 2.6 mm.  For a coupler length greater than 3 mm, 

the efficiency of the output beam in the cover region, R1, is about 31.22%, while the 

efficiency of the output beam in the substrate, T1, is about 68.78%.  Therefore if we 

input couple from the cover, our efficiency is about 26.73%, and if we input couple 

from the substrate side, our efficiency is about 58.87%. 

4.5.3 Validation of Numerical Results 

 All of the above calculations were done retaining 21 diffractive orders in the 

analysis.  To validate this choice, I calculated the decay parameter for a binary 

photoresist grating with a grating period of 0.517 µm and a grating height of 18.2 nm.  

Figure 4.31 below shows αr as a function of number of orders retained in the analysis. 
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Figure 4.31 Computation of the radiation decay factor as a function of diffractive orders 

retained in the analysis 
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 From Figure 4.31, we see that after only 15 orders are retained, that the 

calculated value settles down.  With 21 orders, we can be confident that our 

calculations are accurate. 

4.6 Summary of Grating Coupler Designs 

 The results of these designs are given in Table 4.1 below. 

Table 4.1 Design for grating couplers where Λ is the grating period, tg is the thickness of 

the grating, tw is the thickness of the waveguide, 
i

cη  is the input coupling efficiency from 

the cover, 
i

sη  is the input coupling efficiency from the substrate, ng is the refractive 

index of the grating, nw is the refractive index of the waveguide,  and θc is the coupling 

angle. 

Λ tg tw 
i

cη  
i

sη  ng nw θc 

Binary Photoresist Gratings on top of SiN Waveguide 

374 nm 20 nm 200 nm 23.64% 61.96% 1.6 2.1 10º 

517 nm 18.2 nm 200 nm 22.50% 63.02% 1.6 2.1 35.57º 

Binary Grating Etched into SiN Waveguide 

374 nm 7 nm 193 nm 25.69% 59.85% 2.1 2.1 10º 

517 nm 7.8 nm 192.2 nm 26.73% 58.87% 2.1 2.1 35.57º 

 

 As a discussion on the results of the design as shown in the table above, we 

notice that the grating heights are rather small.  Achieving the desired heights requires 

tight control in the fabrication process.  The reason that the decay parameter increases 

rapidly with grating depth is because of the high contrast in refractive indices of the 

waveguide, the grating, and the cover region.  Also, it is interesting to note that there 

is little difference between the grating couplers designed with a 0.517 µm period and 

a 0.374 µm period.  Although the larger period grating coupler supports more 

diffractive orders, the efficiencies of the second order beams are small.  However, the 

efficiencies are also low, which could make testing the gratings difficult.  
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Chapter 5 

5 Grating Fabrication Methods 

 Now that we can analyze and understand the behavior any surface relief 

grating, the next topic of discussion is how to make a diffraction grating.  The subject 

of this chapter is the fabrication of diffraction gratings.  We examine several methods 

of grating fabrication and discuss their advantages and disadvantages, and the types 

of gratings that each method is able to produce effectively.  While the list of methods 

discussed in this chapter is not exhaustive, the methods that are treated include 

photolithography, electron-beam writing, scribing, phase masks, and holography. 

5.1 Photolithography 

 The electronics industry has used photolithography to fabricate integrated 

electronic circuits for many years.  The principles of photolithography all rely on the 

use of photoresist.  Photoresists are polymers whose chemical properties changes 

based on exposure to light.  Photolithography is the process of patterning selective 

areas of a substrate with photoresist and etching away these areas to build up an 

electronic circuit.  These techniques are well developed, and are the basis of an entire 

industry.  The method of photolithography can also be used to create diffraction 
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gratings.  Figure 5.1 shows the photolithographic process for fabricating a diffraction 

grating. 

1. Coat Substrate with Resist

2. Expose Resest with Light

3. Develop Resist

Substrate

Resist

Mask

Grating

4. Etch Grating into Substrate

 

Figure 5.1 Diagram of the photolithographic process for grating fabrication 

 As Figure 5.1 suggests, this fabrication method works very well for making 

binary gratings.  With multiple expose and develop stages, other types of gratings can 

also be fabricated, but the difficulty and expense increases.  The main advantage of 

this process is that it uses standard and well developed procedures widely used in 

industry, and it is well suited for mass-production.  The main problem with this 

process is that the mask used to make the grating is an amplitude diffraction grating, 

and unlike the lines shown in Figure 5.1, when the light passes through the mask it 

gets diffracted.  This problem of diffraction from the mask as well as resolution 

limitations, prevent this method from being used to make gratings with very small 

feature sizes.  In the BYU cleanroom, a grating was fabricated using this method that 

had a period of 1 µm.  Figure 5.2 shows an SEM image of this diffraction grating. 
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Figure 5.2 Binary grating with 1 µm period 

 Another reason that photolithography is not good for research is it is not a 

flexible method.  There is a high cost to making a mask, and once that mask is made 

it can only be used to create one type of grating.  For our research, we want a 

fabrication method that is more flexible, and can obtain smaller feature sizes. 

5.2 E-Beam Lithography 

 A method similar to photolithography, but that can produce very small feature 

sizes is e-beam lithography [95-99].  Like photolithography, this method involves a 

photoresist material, but instead of using a mask to block sections of the photoresist 

from being exposed, an electron beam writes the pattern directly in the photoresist.  

With this method, extremely small feature sizes can be obtained.  Also, variable 
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dosages in the photoresist are easily obtained as the pattern is written.  This method 

can produce binary gratings, as well as blazed gratings through variable dosage.  

However, unlike photolithography this method is not suited well for mass production 

because every sample must be patterned by the e-beam.  Therefore, this method is 

slow and very costly.  A method like this does not fit within the budget or time frame 

of our research. 

5.3 Mechanical 

 Perhaps one of the oldest methods for fabricating gratings is through the 

mechanical method known as scribing or ruling [100-102].  Ruled gratings are made 

by a mechanical process where the surface of the substrate is carved away.  This 

method produces wonderful blazed gratings with the blaze angle determined by the 

shape of the tip of the scribing tool.  Once a master grating is made, it can be 

replicated by stamping, thus this method is suited for mass production. However, it is 

difficult with this method to make small period gratings due to mechanical 

limitations.  Recent advanced ruling engines have been developed that can produce 

grating periods as small as .8 µm, but these engines are very costly and are very slow 

[103, 104].  Like photolithography, this method is not very flexible in terms of cost 

and time.   

5.4 Phase Masks 

 A further method of grating fabrication is to use phase masks [105-111].  A 

phase mask is a diffraction grating that is optimized for usually the +1 and -1 

transmitted orders.  The phase mask is illuminated with light, and the sinusoidal 
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interference pattern created from the +1 and -1 diffractive orders of the phase mask is 

recorded in photoresist.  Figure 5.3 shows the operation of a phase mask. 

Phase mask

sample

i=+1i=-1
 

Figure 5.3 Operation of a phase mask 

 One advantage of phase masks is that they can be used on standard 

photolithography equipment, and can be designed to record gratings with small 

periods.  However, like all of the other methods discussed above, they are not flexible 

for research purposes, and having a phase mask made is very expensive.   

5.5 Holography 

 All of the methods discussed above are too slow, too expensive, or not 

flexible enough for use in researching diffraction grating applications.  For research 

purposes we want to adjust the period of the fabricated diffraction gratings.  We also 

want to have the potential of recording very small periods.  We would also like to be 

able to make gratings quickly, and we are not concerned at this point with mass 

production.  The method that provides us with all of these requirements is holography 

[112-121]. 
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 In the holographic recording of diffraction gratings records the interference of  

two plane waves traveling at an angle with the z-axis.  One wave is at an angle θ with 

the z-axis, and the other wave is at an angle -θ with the z-axis, so that the total angle 

between the object and reference wave is 2θ.  Figure 5.4 shows the geometry of this 

holographic recording.  The first wave is given by   

 ( )))cos()sin((exp2/1
1 θθ zxjkIE o +−= ,  (5.1) 

and the second wave is given by 

 ( )))cos()sin((exp2/1
2 θθ zxjkIE r −= .   (5.2) 

The photosensitive material records the intensity of the sum of these two waves.  The 

intensity profile, C, of the sum of (5.1) and (5.2) evaluated at the z = 0 plane is 

 **
ororro EEEEIIC +++∝ , 

 )sin2exp()()sin2exp()( 2/12/1 θθ jkxIIjkxIIII rororo −+++= , 

 )sin2cos()(2 2/1 θkxIIII roro ++= . (5.3) 

It is clear that the recorded holographic code has sinusoidal variation in x.  By setting 

the argument of the cosine term equal to 2π and using λπ2=k , the period of this 

sinusoidal intensity variation can be expressed as 

 
θ

λ
sin2

=Λ . (5.4) 

When the intensity profile described above is recorded in a photosensitive material, 

the resulting hologram is a sinusoidal diffraction grating with period Λ.  Figure 5.4 

below illustrates the holographic recording method for this diffraction grating.   
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Figure 5.4 Holographic recording of sinusoidal diffraction grating 

 The ability to record diffraction gratings having any arbitrary period is crucial 

to this research.  The holographic recording method, described above, allows us to 

record diffraction gratings of a given period simply by adjusting the angle between 

the two interfering waves. 
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 Chapter 6 

6 Grating Coupler Fabrication 

 This chapter deals with the fabrication of the diffractive grating coupler.  The 

formation of the waveguide is discussed, along with the process of actually recording 

the sinusoidal interference patterns generated by the holographic recording assembly 

into photosensitive materials.  This chapter first gives an overview of the fabrication 

scheme.  The method of fabricating the waveguide is then given and then the grating 

fabrication processes are discussed.  The holographic recording assembly is also 

described.  As part of the diffraction grating fabrication optimization, an experiment 

is presented to characterize the recording process with the accompanying 

experimental results.  Then a discussion is provided on the results and the merits of 

our fabrication scheme. 

6.1 Grating Coupler Fabrication Process 

6.1.1 Waveguide Formation 

 Our waveguides are formed by using a Plasma Enhanced Chemical Vapor 

Deposition (PECVD).  The silicon nitride film is deposited with Ammonia and Silane 

based plasma.  The recipe that we use grows the nitride layer at a rate of 
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approximately 70 Å/min.  Our desired waveguide thickness is 200 nm.  When the 

nitride layer is being deposited, we place a piece of silicon wafer in the chamber with 

our glass substrates.  The purpose of the silicon wafer is to measure approximate 

values for the thickness of the nitride film and the index of refraction by ellipsometry.  

For our waveguides the measured thickness is about 200 nm and the measured index 

of refraction is about 2.1. 

6.1.2 Photoresist Application 

 After the waveguide has been formed, we apply the photoresist that will be 

used to record our diffraction gratings.  The photoresist that we use is AZ® 3312 

Photoresist manufactured by Clariant.  This photoresist is spin coated on our sample 

surface.  Figure 6.1 shows the spin speed curve for this photoresist supplied by the 

manufacturer. 

 

Figure 6.1 Spin speed curve for AZ
®
 3312 photoresist 
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 We spin coat the photoresist at a spin speed of 5000 rpm, which, as Figure 6.1 

shows, corresponds to a photoresist thickness of a little under 1 µm.   

6.1.3 Grating Formation 

 After the photoresist is applied, it is then exposed using our holographic 

recording assembly.  The exposure records a large circular shaped diffraction grating 

in the middle of the sample.  The next step is to form the input grating and the output 

grating.  This is done by masking off two strips close to the center of the circular 

shaped grating and exposing the rest with a flood UV exposure.  After the second 

exposure, the samples are developed.  Once the samples are developed, there are two 

strips of diffraction gratings sitting on top of the nitride waveguide, and the sample is 

ready for testing. 

6.2 Holographic Recording Assembly 

6.2.1 Requirements of Assembly 

 In Chapter 5, the theory behind holographic recording of diffraction gratings 

was explained.  The conclusion was that by interfering two identical plane waves at a 

certain angle, the resulting sinusoidal interference pattern could be recorded as a 

diffraction grating.  Therefore, the most important requirement for our recording 

assembly is the delivery of two collimated beams of equal intensity.  The second 

requirement for the recording assembly is that the angle between the two beams must 

be adjustable to provide control of the period that we record.  We also need to have 

control of the exposure time because the gratings are recorded in photoresist.  Also, in 

order to record small periods, we would like the wavelength of the exposing light to 



 

 100

be small.  Because we are recording such small features, we must isolate the 

recording assembly from mechanical vibrations as much as possible.  Additionally, 

we would like to have large area gratings; therefore, other requirements are that the 

interfering beams be large and have a uniform intensity cross-section.   

 The uniformity of the intensity profile of our recording beams is affected by 

two factors.  The first factor is the source laser, which has a Gaussian beam profile 

and the second factor is diffraction either from clipping the beam, or from dust 

particles.  The result of the Gaussian intensity profile of the incident beam is a 

reduction of usable grating area as Figure 6.2 depicts.  From Figure 6.2 we can 

observe the results of recording a grating with a non-uniform intensity profile.  The 

grating area is the dark black crescent.  In the central white area, all of the photoresist 

was exposed because the beam had higher intensity in this center region. 

 

Figure 6.2 Example grating displaying problem of nonuniform intensity profile of 

recording beam 
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 We can solve this problem of the nonuniform Gaussian intensity profile by 

expanding the beam out and collimating only the center section of the beam.  This 

uniformity is obtained at the expense of power.  Instead of using the full Gaussian 

beam profile, we use the middle section where the intensity profile is flatter, throwing 

out the excess power on the sides.   

 The second factor in grating uniformity is diffraction rings that result from 

clipping the beam, or from dust particles.  If there are apertures that clip the beam 

after it is collimated, than Fresnel rings will show up in the recording beams.  These 

Fresnel rings are recorded along with the sinusoidal interference pattern.  Their effect 

is an extreme reduction in the usable grating area.  Figure 6.3 shows a grating that 

was recorded with clipped beams.  In Figure 6.3, the ring patterns are easily seen, 

even in the center of the grating. 

 

Figure 6.3 Example grating displaying problem of diffraction rings 
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 Dust particles in the recording assembly will also produce diffraction patterns 

that will be recorded in the grating.  Spatial filtering, which is discussed in greater 

detail in the next section, will smooth out the intensity profile of the beam and 

remove the effects of diffraction from dust particles.  In addition to spatial filtering, 

we must make sure that beams are not clipped by apertures in our recording assembly 

after collimating the beams, and that components are kept as clean as possible. 

6.2.2 Description of Parts of Recording Assembly 

 Having defined the requirements of this recording assembly, I now discuss 

some of the pieces that are used to fulfill these requirements. For a detailed list of the 

specifications of each part, see Appendix C.   

 The laser source is a Coherent® INNOVA 306C Argon Laser.  This laser has 

lines in the ultra-violet range, and we use the line at 363.8 nm.  Additionally, this 

laser has a long coherence length which is important when we split the laser beam 

into two beams and then interfere them.  The coherence length of the laser is the 

maximum path length difference between the two beams, such that when they are 

combined, they produce an interference pattern. 

 To control the amount of exposure time, we use an electronic controlled 

shutter system.  The shutter system that we are using can be set for exposure times 

from  10 milliseconds up to 990 seconds. 

 The laser splitting is accomplished using a polarizing beamsplitter cube.  The 

beamsplitter cube passes through the p polarization and reflects the s polarization. In 

order to adjust the power of both beams, we use a half wave plate to control the 

amounts of power into each polarization state.  Finally, because both beams need to 
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have the same polarization, a second fixed half wave plate is added to the p 

polarization branch after the beamsplitter cube to rotate it back to s polarization.  This 

arrangement allows for precise adjustment of the power split into the two beams. 

 Another important piece of the assembly is the spatial filter.  Spatial filtering 

removes spatial nonuniformities in the intensity profile of the laser beam, as well as 

diffraction from dust particles.  Spatial filtering is accomplished by focusing the beam 

through a small pinhole.  At the focus of the beam, the pinhole acts as a spatial low-

pass filter, and the result is a smoothed, approximately spherical beam.  Spatial 

filtering increases the quality and uniformity of the gratings we record.   

 The other pieces in the assembly are the necessary mirrors to move the beams 

around, and necessary collimating optics to collimate the beam after it has been 

through the spatial filter.  To control the angle between the two beams, we use two 

large mirrors on precision gimbal mounts.  These mirrors are the last component that 

the beams encounter before they converge on the sample. 

 To isolate the recording process from mechanical vibrations, the recording 

assembly is mounted on a heavy floating tabletop.  Vibrations in our recording 

assembly will prevent us from recording the interference pattern in photoresist.  

Because the grating periods that we are recording are on a micron scale, even tiny 

fluctuations will move the interference pattern with respect to the photoresist, and 

wash out the grating. 

6.2.3 Holographic Assembly 

 Figure 6.4 shows the layout of our holographic recording assembly. 
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Figure 6.4 Diagram of final recording assembly 

 From Figure 6.4, we can see that all spatial filtering is done after the 

beamsplitter cube.  Thus, two spatial filters are required.  Moving the spatial filter 

after the beamsplitter cube allows beam degradation due to dust particles on the 

beamsplitter to be filtered out.  Also, when the beam passes through the beamsplitter, 

it has not yet been expanded and is not clipped by apertures in the beamsplitter cube 

mount.  The only components that could add to the beam degradation are the lenses 

and the mirrors, which are not very difficult to clean.  The collimating lenses have a 
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long focal length.  Therefore, before the beam is collimated it is expanded such that 

the portion of the Gaussian profile that is collimated is nearly uniform.  Because the 

beams travel along the edges of the table, the sample can move to any point along the 

center of the table.  Thus, a wide range of periods can be recorded with this assembly.  

Based on the possible angles of the two beams in this assembly, we should be able to 

record any period from .2 µm to 2.4 µm.  Additionally we added two iris diaphragms 

to each path, to eliminate stray light.  One iris is placed before the objective lens to 

block reflected light, and another is placed after the spatial filter, and adjusted such 

that light just fills the collimating lens.  In this assembly, there is a difference in the 

two path lengths of about a meter.  This difference in path length does not prevent us 

from recording the diffraction gratings because the coherence length of our laser 

source is longer than the difference in path length. 

 Some examples of gratings recorded with this assembly are now given. Figure 

6.5 shows a Scanning Electron Microscope (SEM) image of a 1 µm grating that was 

recorded with our assembly. 

 

Figure 6.5 SEM image of 1 µm period grating 
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Also with this assembly, we have been able to record gratings with periods as small 

as .517 µm.  Figure 6.6 shows an SEM image of a .517 µm grating recorded with this 

assembly. 

 

Figure 6.6 SEM image of .517 µm grating 

6.2.4 Further Possible Improvements 

 There are further improvements that could be made to this assembly in terms 

of power efficiency.  As discussed earlier, our method for obtaining uniform intensity 

is essentially to throw away power by expanding out the Gaussian profile beam, and 

collimating only the center, more uniform intensity section.  A better way would be to 

use aspheric lenses to focus the Gaussian profile to a flat profile.  In this way, we 

could get uniform intensity without a loss of power.  Another option would be to use 

a hologram to transform the intensity profile [22-26].  Both of these methods are 

costly, and it may be that we can accomplish our goals in this research without them. 
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This recording assembly should be able to fulfill all of our requirements, and allow us 

to fabricate diffraction gratings for use in grating couplers, as well as many other 

potential applications. 

6.3 Experiment to Determine Dosage for Recording Gratings in Photoresist 

 This section presents some experimentation that was done to find the dosage 

that produces the diffraction grating with the maximum possible amplitude.  Figure 

6.7 shows the swing curve for this photoresist provided by the manufacturer for the 

recording wavelength of 365 nm.  The swing curve relates the required dosage to the 

thickness of the photoresist film. 

 

Figure 6.7 I-line swing curve for AZ
®
 3312 photoresist 

 From Figure 6.7, we see that the required dosage for a 1 µm film thickness is 

about 29 mJ/cm2.  The actual dosage that we need varies from the number given by 

Figure 6.7 because instead of recording using uniform intensity light, our light has 

sinusoidal intensity variation, but for our experimentation, we use the dosage of 29 
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mJ/cm2 as the starting point.  The method of this experiment is to record gratings of 

varying dosages and find the dosage that gives the best results. 

6.3.1 Experimental Metric 

 In order to determine which grating is the best, we need to first select an 

appropriate experimental metric that we can measure for each case.  The metric must 

correlate to the desired grating feature, namely the amplitude of the grating.  Once a 

grating is fabricated, an easy quantity to measure is the efficiency of the diffractive 

orders.  If the efficiency of the diffractive orders correlates to grating amplitude, 

meaning that there is a one to one relationship, then the efficiency can be used as the 

experimental metric.  To test this requirement, we use rigorous coupled wave analysis 

and calculate the efficiency of the diffraction grating based on the amplitude of the 

grating.  Because our photoresist thickness is 1 µm, the maximum possible grating 

amplitude that we are able to achieve in photoresist gratings is 1 µm.  Here, we need 

to assume something about the shape of our grating.  While the interference pattern 

that we are recording has sinusoidal variation, what is actually recorded in the 

photoresist may not be sinusoidal due to nonlinearities in the photoresist.  Because of 

this uncertainty, we analyze three structures: binary, sinusoidal, and triangular.  The 

gratings that we record are somewhat like these structures, and if all three structures 

show similar behavior, then we can assume that the grating we record also shows 

similar behavior.  Figure 6.8-Figure 6.13 show plots of the efficiency of the +1 

transmitted order and the +1 reflected order at different angles of incidence for 

binary, sinusoidal, and triangular diffraction gratings.  These gratings are assumed to 

be photoresist (n=1.6) gratings on a glass (n=1.5) substrate.   
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Figure 6.8 Plot of efficiency of reflected orders of binary photoresist grating as a 

function of grating amplitude 
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Figure 6.9 Plot of efficiency of transmitted orders of binary photoresist grating as a 

function of grating amplitude 
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Figure 6.10 Plot of efficiency of reflected orders of sinusoidal photoresist grating as a 

function of grating amplitude 
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Figure 6.11 Plot of efficiency of transmitted orders of sinusoidal photoresist grating as a 

function of grating amplitude 
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Figure 6.12 Plot of efficiency of reflected orders of triangular photoresist grating as a 

function of grating amplitude 
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Figure 6.13 Plot of efficiency of transmitted orders of triangular photoresist grating as a 

function of grating amplitude 
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 As Figure 6.8-Figure 6.13 illustrate, all of the structures exhibit similar 

behavior.  Therefore, the grating that we record should also exhibit similar behavior.  

The reflected efficiencies have several oscillations, and would thus be unsuitable for 

use as an experimental metric.  However, the transmitted orders for each structure 

increase slower and reach their maxima later with respect to grating amplitude.  This 

behavior is even more pronounced at certain angles.  Therefore, by measuring the 

efficiency of the transmitted order at a specific angle for different exposure times, we 

should be able to determine the optimal dosage.  We assume that as the dosage time 

increases, the grating amplitude increases up to a point where the maximum 

amplitude is reached based on the intensity contrast of our sinusoidal interference 

pattern, and then decreases as the grating pattern reaches the substrate surface.  As we 

measure the efficiency of the transmitted order, it should vary the same as the grating 

amplitude, and the grating with the maximum transmitted efficiency is the grating 

with the maximum grating amplitude. 

6.3.2 Experimental Results for Exposure Time 

 Using the experimental procedure and metric described above, we attempted 

to characterize the optimal dosage for a 0.517 µm photoresist diffraction grating.  The 

efficiency measurements were done at an angle of 20º, and the dosage range was from 

about 50 mJ/cm2 to 67 mJ/cm2.  Figure 6.14 shows the results of the experiment. 
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Figure 6.14  Results of dosage optimization experiment 

 As seen in Figure 6.14, the experimental results vary from what was expected.  

It is likely that process variations are affecting the results, and that the dosage may 

not be the only variable that is changing.  However, from these results we can infer 

that the optimal dosage is likely somewhere in the range of 52 to 62 mJ/cm2.  As a 

second experiment, a series of exposures at 52.2 mJ/cm2 were taken so that we could 

get an idea of the repeatability of our results.  Figure 6.15 shows the results of this 

second test. 
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Figure 6.15 Variation of results at the same dosage 

 As Figure 6.15 shows, there is about as much variation in exposing different 

samples with the same dosage as there is in exposing different samples at different 

dosages.  These results show that we have some serious variations in our process that 

are not being accounted for.  Some possible culprits might be photoresist thickness 

variations, laser power fluctuations during exposure, laser polarization drift during 

exposure, vibrations of recording assembly during exposure, or photoresist 

developing variations.  Each sample was measured more than once and similar results 

were obtained each time.  Therefore, the differences in results are not likely due to 

inconsistent measurement techniques.  It is possible that the variations could be due in 

part to nonuniformities within the gratings themselves, and that the point where the 
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measurement is taken is differs between samples; however, in observing the gratings 

under ambient light, those with high measured efficiencies diffract the ambient light 

strongly, while those with low measured efficiencies do not.  In the effort to fabricate 

a diffraction grating, these reasons for process variation are not thoroughly 

investigated as a part of this thesis.  Our results have shown that while the process is 

not repeatable to a high degree, we can make gratings that have reasonable 

efficiencies.  The best efficiency that we have observed is about 1.28%, which from 

Figure 6.8-Figure 6.13 corresponds to grating amplitudes in the range of 50-80 nm.  

From the design of the grating couplers in Chapter 4, the required grating amplitude 

for photoresist gratings was in the range of 18-20 nm, which is attainable within these 

results.  Therefore, we make gratings at the dosage of 52.2 mJ/cm2, and those samples 

that come out well are used in further fabrication steps, while samples that do not are 

attributed to low yield and recycled.  The above results have shown that we can 

manufacture diffraction gratings that have grating amplitudes in the design range for 

our grating couplers.  While we do see a variation in our yield, we are able to 

manufacture gratings with desirable amplitude. 
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Chapter 7 

7 Grating Coupler Results 

 So far in this thesis, the design, and analysis of grating couplers has been 

presented.  The grating coupler fabrication process has been discussed.  In this 

chapter the results of a fabricated grating coupler is presented.  The quantities that are 

measured to characterize our grating couplers are the period of the grating, the angle 

at which the grating couples light into the waveguide, the input coupling efficiency, 

and the decay loss parameter of the output grating.  This chapter shows the results of 

all of these measurements, and discusses the results in relation to the expected 

theoretical results. 

7.1 Atomic Force Microscope Image of Fabricated Grating Coupler 

 The Figures below are Atomic Force Microscope (AFM) images of the 

grating recorded with a dosage of 52.2 mJ/cm2.  As these AFM data show, the 

gratings have a nearly sinusoidal profile. 
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Figure 7.1 AFM image of surface of diffraction grating 

 Figure 7.1 shows that the gratings are in straight lines as was expected and are 

fairly uniform.  The short horizontal lines on the image are artifacts of the AFM 

probe. 
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Figure 7.2 Cross sectional analysis of diffraction grating from AFM 

 Figure 7.2 shows that the amplitude of the sinusoidal grating is 54.684 nm.  

The measurement for the period is 546.88 nm, but this value could be off by as much 

as 20 nm due to the resolution of the AFM scan in the horizontal direction.  A more 

precise measurement of the grating period is given in the next section. 
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7.2 Measurement of Grating Period 

 The measurement of the grating period is done by rotating the sample on a 

motorized rotation stage until the +1 reflected diffractive order is retro reflected onto 

the incident beam.  This situation is illustrated in Figure 7.3. 
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Figure 7.3 Measurement of the grating period 

 The incident beam is passed through an iris diaphragm and the angle is tuned 

until the retro reflected beam is centered on the hole in the iris diaphragm.  Our 

motorized rotational stage has a resolution of a hundredth of a degree; therefore, the 

angle that is measured is precise to a fraction of a percent.  Once the angle of retro 

reflection is found, the period of the grating can be easily calculated.  From the k-

space diagram of Figure 7.3, it is readily seen that 

 θsin2 ikK = . (8.1) 

Substituting into (8.1) and rearranging the expression gives 
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θ

λ
sin2

=Λ . (8.2) 

By measuring the angle of retro reflection and using equation (8.2) the period of the 

diffraction grating can be easily measured.  For our grating coupler, the measured 

period is 0.528 µm, which is slightly higher than the design value. 

7.3 Results for Input Coupling Angle and Efficiency 

 The input coupling angle and efficiency is highly dependant on the interaction 

with the diffraction grating and the waveguide.  Figure 7.4 below shows a Scanning 

Electron Microscope (SEM) cross-sectional image of the fabricated grating coupler. 

 

Figure 7.4 SEM image of fabricated grating coupler 

 In Figure 7.4, the bright line going across the image is the nitride waveguide.  

On top of this is a photoresist layer, with the sinusoidal gratings on the top.  From this 

image it appears that the sinusoidal gratings are about 40-60 nm deep, and that the 
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gratings are separated from the waveguide layer by about 400-600 nm of unexposed 

photoresist.  This structure is different from the assumed design given in Chapter 4.   

7.3.1 Effect of Excess Photoresist beneath Grating 

 The design of the grating coupler assumed that the gratings would be adjacent 

to the waveguide, but Figure 7.4 shows that this is not the case.  We now look at the 

effect of having excess photoresist beneath the diffraction grating.  Figure 7.5 shows 

plots of the decay parameter, αr, and the effective index, neff, for the 0.517 µm period 

binary photoresist grating designed in Chapter 4 as a function of thickness of 

photoresist beneath the grating. 
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Figure 7.5 Effect of excess photoresist under grating on αr and neff 

 As Figure 7.5 shows, the value of αr decreases rapidly as the photoresist 

thickness increases.  This is expected because the grating’s interaction on the guided 

wave will decrease as the grating moves away because the evanescent fields decay 

exponentially.  Also, the effective index settles to a constant value.  This value is the 

effective index of the nitride waveguide with a photoresist cladding on top.  By the 

time the photoresist thickness reaches 200 nm, the grating ceases altogether to 
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interact with the mode in the nitride at all, and the radiation parameter is essentially 

zero.  From this information, the conclusion seems that with a photoresist layer of 

400-600 nm, we cannot couple directly into the nitride waveguide; however as Figure 

7.4 shows, there is a thick photoresist slab as well.  The photoresist is thick enough 

that it also will support guided modes that we can couple into. 

7.3.2 Measurement of Coupling Angle and Efficiency 

 To measure the coupling angle, we use the assembly shown in Figure 7.6. 
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Figure 7.6 Schematic of basic grating coupler testing assembly 

 The basic testing assembly consists of a motorized rotational stage that the 

sample is mounted on.  The incident light is from a HeNe laser.  The laser beam 

passes through the center of the axis of rotation.  A detector measures the undiffracted 

through power.  The sample is rotated, and when the coupling angle is reached, there 

is a visible streak of light in the waveguide.  With our measurement assembly we can 

adjust the angle of incidence by hundredths of a degree.  Once the angular range of 

coupling is determined qualitatively, we can rotate the sample, and measure the 
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intensity of the undiffracted beam as shown in Figure 7.6.  In our measurement 

assembly, both the rotational stage and the detector are interfaced with LABVIEWTM 

and the undiffracted intensity is measured as a function of rotation angle.  When the 

sample is rotated such that the incident beam is at the coupling angle, the incident 

power is coupled into the guided mode of the waveguide.  The observed effect is a 

sharp decrease in the power of the undiffracted beam.  The range of angles for 

coupling should be small, and the dip in the undiffracted intensity should be narrow. 

For the fabricated grating coupler structure, we were able to observe coupling, and 

Figure 7.7 shows a plot of the undiffracted transmitted power as a function of angle of 

incidence. 
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Figure 7.7 Normalized transmitted power as a function of incidence angle 

 As Figure 7.7 shows, there is a narrow dip in the transmitted power at 22.9º.  

This coupling angle is not the same as the designed angle of 35.57º because we are 
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not coupling directly into the nitride mode as designed.  If the dip in the transmitted 

power is only accounted for due to power being coupled into the waveguide, then the 

coupling efficiency is about 16%. 

7.3.3 Effective Index at Coupling Angle 

 To explain the coupling that we observe, let us look at the effective refractive 

index of the coupled diffracted beam.  Above, the coupling angle was measured at 

22.9º, and the period of the diffraction grating was measured at 0.528 µm.  Using 

equation (4.2) for the effective index of the -1 diffracted order, which is the coupling 

order, the effective index of the coupling beam is 1.5876.  This effective index is 

lower than the effective index of the photoresist, which is about 1.6.  Therefore, the 

input beam is coupling into a mode in the photoresist slab and not into the nitride 

waveguide. 

7.3.4 Modes in the Coupler Structure 

 As a further explanation, we can analyze the modes of the coupler structure.  

Because we know what the effective index is of the mode that we couple into and we 

have ranges for the material thicknesses and indices of refractions, we make 

assumptions about the exact material parameters of our structure.  These assumptions 

are given in the table below. 

Table 7.1 Material parameters used in analyzing fabricated coupler 

refractive index of substrate 1.515 
refractive index of nitride 2.15 
thickness of nitride 200 nm
refractive index of photoresist 1.64 
thickness of photoresist 590 nm
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 With the parameters given above, we can use a numerical solver for 

multilayer waveguides to calculate the electric field profiles and the propagation 

constants of the modes of in the coupler region. 

 In the coupler region, there are two modes.  The effective index of the 

fundamental mode is 1.9502, and the effective index of the higher order mode is 

1.5876.  The effective index of the higher order mode is the same as the effective 

index of the mode that we are coupling into, and has most of its energy in the 

photoresist region.  The fundamental mode is only guiding in the nitride region, and 

we are not coupling directly into this mode.  The two modes are orthogonal, but if we 

launch into the higher order photoresist mode, light may scatter due to waveguide 

nonuniformities into the fundamental nitride mode.  The electric field intensity 

profiles for both of these modes are shown in the figure below. 
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Figure 7.8 Intensity profiles of both modes in Region 1 and 3 of the fabricated grating 

coupler 
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7.4 Measurement of Output Coupling Performance 

 In order to observe output coupling, the light must be coupled into the nitride 

waveguide at some point and back into the output coupler.  A diagram of our 

fabricated coupler structure is shown below. 
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Figure 7.9 Diagram of fabricated grating coupler 

 There are three regions in Figure 7.9.  Regions 1 and 3 are the input and 

output coupler regions respectively.  Region 2 connects the input and output couplers 

through the nitride waveguide.  If there is any overlap between the fields in regions 1 

and 3 with the fields in region 2, then power is coupled between the input and output 

couplers, although there is scattering loss due to modal mismatch.   

7.4.1 Modes in the Bare Nitride Waveguide 

 In the bare nitride region, there is only one mode.  The effective index of this 

mode is 1.92.  We can perform an overlap integral on the electric fields of the 

photoresist mode in regions 1 and 3 with the electric fields of the fundamental mode 

of region 2.  The resulting percentage is the amount of light that is coupled into 

region 2 from region 1, neglecting scattering.  The overlap between these two modes 
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is 1.1%.  Because we go through one transition from region 1 into region 2, and 

another transition from region 2 to region 3, the total efficiency through both 

interfaces is 0.012%.  The electric field intensity profile for the single mode in region 

2 is shown in the figure below.   
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Figure 7.10 Intensity Profile of the mode in region 2 of the fabricated grating coupler 

 The above analysis has shown that it is possible to couple light between both 

couplers with very low efficiency.  Although the light is launched at first into the 

photoresist slab, it is coupled into the mode of the nitride waveguide at the interface 

between region 1 and region 2 and also possibly from scattering.  At the interface 

between regions 2 and 3, light is coupled back into the photoresist slab, and out of the 

photoresist through the diffraction grating.  Thus, if we get enough power into the 

structure, we should be able to measure the output intensity profile of the grating 

coupler. 
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7.4.2 Measurement of Output Intensity Profile 

 In order to measure the output intensity profile, the sample is placed at the 

coupling angle determined by the methods in the previous section.  The assembly 

used for this measurement is shown in Figure 7.11. 
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Figure 7.11 Augmented measurement assembly for scanning intensity of output beam 

 The optical fiber is a graded index multi-mode fiber with a core diameter of 

52 µm.  Because the multimode fiber has a larger numerical aperture than single 

mode fiber, our measurements have a larger angular tolerance.  Also, more light is 

coupled into the fiber giving us more sensitivity to low intensity light.  One end of the 

optical fiber is mounted on a motorized linear stage.  The other end is placed in the 

detector.  Both the detector and the linear stage are interfaced with LABVIEWTM and 

the intensity is measured as a function of the position of the optical fiber.  If the 

diffraction grating is uniform, the intensity profile should be a decaying exponential 

as explained in Chapter 4.  By measuring the intensity profile, we can fit the 

measurement to an estimate of the decay parameter. 
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 Using the configuration shown in Figure 7.11, we were able to scan the 

intensity profile of the output beam with an optical fiber.  Figure 7.12 shows the 

intensity profile measured by the fiber scan. 
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Figure 7.12 Intensity profile of the out-coupled beam at the grating surface 

 Figure 7.12 also shows the exponential curve that best fits this intensity 

profile.  From these results, we see that the value of our decay parameter is about 0.2 

mm-1.  This value is lower than the optimal design value of 0.8788 mm-1.  This result 

is consistent with our input coupling efficiency being lower.  Because the decay 

parameter is lower, the overlap integral is smaller.  With a decay parameter of 0.2 cm-

1, the value of the overlap integral of the decaying exponential with the input 

Gaussian shaped beam is only 45.8%, which alone reduces the input coupling 

efficiency to 12% from the cover, which is more consistent with the result shown in 

Figure 7.7. 
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7.5 Discussion of Results 

 The results so far have shown that we were successful in making a grating 

coupler, but that the measured results differ from the theoretical design.  We can now 

compare our measured result with calculations based on our grating coupler structure.  

We use the values from Table 7.1, and the effective index of the photoresist slab 

mode to calculate the loss parameter of our structure and the efficiencies of the 

orders.  If we assume a grating amplitude of 40 nm, the calculated value for αr
 is 

0.813 mm-1.  This value is larger than the measured value, but is close, based on the 

number of assumptions we have made in our analysis.  The power splitting ratio into 

the cover first order beam is 25.8%, and the power splitting ratio into the substrate 

first order beam is 72.8%.  The overlap integral between our input laser beam and the 

outcoupled intensity profile with the simulated value of αr is 80%.  Therefore if the 

assumptions are correct, we should be able to couple in 20% of the input power.  

These calculated values are qualitatively close to the experimental values. 
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Chapter 8 

8 Conclusion 

8.1 Summary 

 The theory, design, and fabrication of grating couplers for a slab waveguides 

is the emphasis of this thesis.  Because this is the first research done in this area at 

Brigham Young University, all of the fabrication processes had to be developed from 

the ground up.  These processes as well as the theory of the design of diffractive 

grating couplers have been given for the use of later researchers in this area. 

 A grating coupler was fabricated by holographic recording in photoresist with 

a period of 0.528 µm to couple light into a photoresist and silicon nitride waveguide.  

The results showed that this coupling was achieved at an angle of 22.9º.  The input 

efficiency of this grating coupler was measured to be about 16%.  The out-coupled 

beam from the grating coupler was measured and the radiation decay parameter for 

the grating coupler was determined to be about 0.2 mm-1.  These experimental values 

differ from the design values, but the discrepancies have been accounted for, and it 

has been shown that the results are in accordance with theory. 
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8.2 Future Work 

 There is much more research that can be done in the area of diffractive optics.  

This work has focused on the design of slab grating couplers.  Other areas for future 

development include the further characterization of fabrication processes, the 

investigation into other methods of grating fabrication, using grating couplers in 

conjunction with optical fibers, and the investigation of other integrated optical 

devices based on diffraction gratings. 

 Perhaps the most important area that future research may address is solving 

the problem of the excess photoresist slab beneath our diffraction gratings.  Some 

possible solutions to this problem could be using thinner photoresist, using the RIE to 

etch the gratings down, or to explore different fabrication methods.  Also, as the 

results given in Chapter 7 showed, there are some variations in our processes.  These 

variations were not found and corrected as a part of this research, because we were 

able to fabricate desirable gratings with a low yield.  Further research should be done 

to find the cause of and eliminate these process variations.  If these variations can be 

eliminated than better quality diffraction gratings can be fabricated with repeatability. 

 Investigation into alternate methods for grating fabrication should also be 

pursued.  First, it would be beneficial to use thinner photoresist for our diffraction 

grating recording.  We must either find thinner photoresist from a manufacture, or be 

able to mix the resist with solvents so that it spins on thinner.  Thinner photoresist 

allows for shorter exposure times, which makes our process more immune to 

vibrations.  Also thinner photoresist allows us to be sure that our diffraction gratings 
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are adjacent to the substrate surface, which was a process that we had little control 

over in this research. 

 The Electro Optics lab at Brigham Young University has been investigating 

in-fiber devices for many years.  The platform of research is the D-fiber.  Further 

research should be done to attempt to place gratings onto a D-fiber.  With our 

recording techniques, gratings could be placed on the fibers that would act as 

selective wavelength filters. 

 Finally, there are many other integrated optical devices that should be studied 

in further research.  Some of these potential research areas include: integrated 

spectrometers, chemical sensors, optical interconnects, volume gratings, focusing 

gratings for improved alignment tolerance, non homogeneous grating couplers for 

improved coupling efficiency, and novel phase mask topologies.  
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Appendix A 

A Fabrication Steps 

 This Appendix outlines the most current fabrication steps at the time of the 

writing of this thesis.  These steps are in no means definitive, and with further 

optimization could be significantly improved. 

A.1 Slide Cleaning 

 It is important that before any photoresist or film of any kind is deposited on 

the slide, that the surface of the slide be clean.  Below are two procedures for slide 

cleaning. 

A.1.1 Piranha Etch 

 Piranha Etching gets its name from its ability to dissolve organic compounds.  

Special care must be taken with this procedure, and appropriate safety precautions 

must be used.  The substrates should be cleaned with acetone and isopropanol and 

dried before being placed in the piranha etch, as the piranha etch is only used to 

remove residues.  The hot etch solution should always be kept in an open container.  

Metallic compounds should never be put in the piranha etching solution.  The Piranha 

etch should only be done in a well ventilated area.  The procedures are as follows: 

• Heat 3 parts concentrated sulfuric acid (H2S04) in a glass beaker to 70º C 



 

 140

• Add 1 part 30% hydrogen peroxide (H202) to the sulfuric acid 

• The solution will begin to bubble and will heat up even more as the chemicals 

begin to react 

• Immediately place the substrate to be cleaned into the piranha etch 

• Let the substrate soak in the piranha etch for at least 15 minutes 

• After a while the chemical reaction will begin to be completed 

• When the etching solution has cooled to below room temperature, carefully 

pour the spent solution into an appropriately marked waste container. 

A.1.2 SC1 Solution 

 SC1 or Standard Clean 1 solution is not as dangerous as piranha etching, and 

can be used to remove residual organic materials and some metallic substances.  This 

cleaning procedure should also be done in a well ventilated area, and the substrates 

should be cleaned with acetone and isopropanol and dried first.  The procedures are 

as follows 

• Combine 5 parts DI water, 1 part ammonium hydroxide (NH4OH), and 1 part 

30% hydrogen peroxide (H202) in a glass beaker 

• Heat the solution to 70º C.  Solution will begin to bubble off oxygen 

• Submerge substrate in the solution for at least 10 minutes 

• Allow solution to cool 

• Solution may be diluted and disposed of down the drain 
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A.2 PECVD Procedures 

 The PECVD, or plasma enhanced chemical vapor deposition, is used to 

deposit thin films onto substrates.  The films that we are interested are silicon nitride 

(Si3N4) and silicon dioxide (Si02).  Here only the recipes used for deposition will be 

given.  A step by step usage of the PECVD itself can be found on the cleanroom 

website. 

A.2.1 Silicon Nitride Deposition 

 The recipe used to deposit silicon nitride is as follows. 

• Ammonia flow rate: 2.5% MFC 

• Silane flow rate: 89.5% MFC 

• RF power: 100 W 

• Pressure: .9 Torr 

• Temperature: 240º C 

• Deposition rate: 70 Å/min 

A.2.2 Silicon Dioxide Deposition 

 The recipe used to deposit silicon dioxide is as follows. 

• Silane flow rate: 70% MFC 

• Nitrous oxide flow rate: 26% MFC 

• RF power: 120 W 

• Pressure: .515 Torr 

• Temperature: 250º C 

• Deposition rate: 200 Å/min 
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A.3 Photoresist Application 

 After the slides have been cleaned, and the desired film, if any, has been 

deposited.  The slides are ready to be coated with photoresist.  The process is as 

follows: 

• Soak the slides in SurPass 3000 adhesion promoter for 60 seconds 

• Rinse slides and blow dry 

• Mount slides on spinner 

• Apply AZ 3312 Photoresist 

• Spin at 5000 rpm for 60 seconds 

• Soft bake at 90º C for 90 seconds 

• Slides should be kept in dark container until exposure 

A.4 Exposure Procedures 

 Once the slides are coated with photoresist, they are ready to have the 

holographic diffraction grating recorded in them.  This process is as follows: 

• Allow the Laser to warm up for about 15 minutes 

• Power reading on laser head should be 60 mW 

• Check the alignment of the spatial filters 

• Measure the power in both beams and, if needed, adjust half wave plate to 

equalize them 

• Dial in desired exposure time into electronic shutter 

• Mount sample on the sample holder 

• Open shutter 

• After desired amount of time, shutter will close automatically 



 

 143

• If desired, mark slide with permanent marker for identification later 

• Place slide back into dark container 

A.5 Developer Procedures 

 After the patterns have been recorded in the photoresist, they must be 

developed in the cleanroom.  Also, additional features may be recorded into the 

photoresist such as the input and output strips for a grating coupler.  These processes 

are as follows: 

• Take samples back into the cleanroom 

• If desired, record any additional patterns into the photoresist with the mask 

aligner 

• Place the slide into a sample holder 

• Immerse the sample in AZ 300 MIF developer for 60 seconds while agitating 

the sample. 

• Place the sample in the nitrogen bubble tank for about 30 seconds 

• Rinse the sample in DI water 

• Blow dry with nitrogen gas 

A.6 RIE Procedures 

 After the sample has been developed it may be desirable to further process the 

sample with the RIE.  We can use either an O2 based plasma, which should only etch 

photoresist, or we can use an O2 and CF4 based plasma to etch either nitride or silicon 

dioxide.  The recipes for these plasmas are as follows: 
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A.6.1 O2 plasma 

• Oxygen flow rate: 3.1 sccm 

• Pressure: 50 mTorr 

• RF power: 100 W 

A.6.2 O2 and CF4 based plasma 

• Oxygen flow rate: 3.1 sccm 

• CF4 flow rate: 25 sccm 

• Pressure: 50 mTorr 

• RF power: 100 W 
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Appendix B 

B Code Documentation 

 This Appendix documents the MATLAB code used for all of the analysis in 

this thesis.  There are codes to analyze diffraction angle, diffraction efficiency, and 

grating couplers. 

B.1 K-Space Analysis 

B.1.1 diffract.m 

function [D_mat]=diffract2(lambda,ni,nt,L,thetai,p) 
%function [D_mat]=diffract2(lambda,ni,nt,L,thetai,p) 
%returns array containing the transmitted diffracted angle,  
%the order number for each diffracted order, and the reflected 
%diffracted angle.  Also can produce k-space plot of the diffraction. 
% 
%Parameters: 
%lambda: wavelength of incident light in microns 
%ni: index of refraction of incident medium 
%nt: index of refraction for transmitted medium 
%L: period of the grating in microns 
%thetai: angle of incident light in degrees 
%p: 1 for plot, 0 for no plot 
 
q=ceil(L*(ni*sin(thetai*(pi/180))-
nt)/lambda):1:floor(L*(ni*sin(thetai*(pi/180))+nt)/lambda); 
thetad=-asin((-ni*sin(thetai*(pi/180))*L+q*lambda)/nt/L)*180/pi; 
thetar=-asin(nt*sin(thetad*pi/180)/ni)*180/pi; 
D_mat=[thetad' q' thetar']; 
2*pi/L 
 
%plot the figure 
if p==1 
    kt=2*pi*nt/lambda; 
    ki=2*pi*ni/lambda; 
    arrowb(ki,[0 0],thetai,'red') 
    for v=1:length(q) 
        if q(v) <0 
            arrowt(2*pi/L,[(q(v)+1)*2*pi/L+kt*sin(pi/180*thetad(find(q==0)))... 
                    -kt*cos(pi/180*thetad(find(q==0)))],90,'black'); 
        elseif q(v) >0 
            arrowt(2*pi/L,[(q(v)-1)*2*pi/L+kt*sin(pi/180*thetad(find(q==0)))... 
                    -kt*cos(pi/180*thetad(find(q==0)))],-90,'black'); 
        end 
        pl=line([-(q(v))*2*pi/L+kt*sin(pi/180*thetad(find(q==0)))... 
                -(q(v))*2*pi/L+kt*sin(pi/180*thetad(find(q==0)))],... 
            [-kt*cos(pi/180*thetad(find(q==0))) ki*cos(pi/180*thetai) ]); 
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        set(pl,'Linestyle',':','Color','m') 
        if q(v)==0 
            arrowt(kt,[0 0],thetad(v),'b') 
            if isreal(thetar(v)) 
                arrowt(-ki,[0 0],thetar(v),'b') 
            end 
        else 
            arrowt(kt,[0 0],thetad(v)) 
            if isreal(thetar(v)) 
                arrowt(-ki,[0 0],thetar(v)) 
            end             
        end 
        text(1.1*kt*sin(thetad(v)*pi/180),-1.1*kt*cos(thetad(v)*pi/180)... 
            ,num2str(q(v)),'HorizontalAlignment','center') 
    end 
    hold on; 
    plot(linspace(-ki,ki,1000),sqrt(ki^2-(linspace(-ki,ki,1000)).^2),'g') 
    plot(linspace(-kt,kt,1000),-sqrt(kt^2-(linspace(-kt,kt,1000)).^2),'g') 
    plot([-max(ki,kt) max(ki,kt)],[0 0],'g'); 
    axis off; 
    title(['K-Space Diagram for \lambda = ' num2str(lambda) '\mum and \Lambda =' 
num2str(L) '\mum']) 
end 

B.2 Free Space Rigorous Coupled Wave Analysis 

B.2.1 Description 

 I now briefly discuss the MATLAB program for free space diffraction 

efficiency, and its interface.  The MATLAB file that does all of the computation is 

called sr_rcwa2.m.  This file computes the diffracted amplitudes of a multilayer 

lamellar surface-relief grating for an arbitrarily polarized unit amplitude wave, 

incident from an arbitrary angle and plane of incidence in an isotropic lossless cover 

medium.  The grating and substrate media can be lossy, but must be isotropic.  There 

are several input parameters that sr_rcwa2.m needs to perform this computation.  All 

of these parameters are set in an input file called sr_in.m.  Table B.8.1 describes all of 

the variables that are set in sr_in.m. 

Table B.8.1 Description of variables for MATLAB implementation of rigorous coupled 

wave analysis 

Variable Description 
NumOrds Number of diffractive orders maintained 
nc Region 1 (cover) refractive index 
ns Region 3 (substrate) refractive index 
Ngrat Number of grating slices 
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Period Grating period in microns 
depth Vector containing grating depth for each grating; size is 1xNgrat 
ng Vector containing groove refractive indices for each grating; size is 

1xNgrat 
Nr Vector containing ridge refractive indices for each grating; size is 

1xNgrat 
FilFac Vector containing the percent fill factor for the ridges of each grating; 

size is 1xNgrat 
Disp Vector containing ridge displacements in fractions of a period for each 

grating; size is 1xNgrat 
Lambda0 Free space wavelength in microns 
theta0 Polar angle of incidence in degrees 
phi0 Azimuthal angle of incidence in degrees 
Psi Polarization angle 
Delta Input wave retardation phase from TE to TM 

B.2.2 Grating Description in MATLAB Implementation 

 In order to understand some of the variables in the table above, I now explain 

how the diffraction grating is represented in this MATLAB code.  The representation 

used follows the method given in [75].  As stated in the derivation of rigorous 

coupled wave analysis, a diffraction grating is sliced into thin slabs, and their 

permittivity distribution is expressed in terms of a Fourier series.  Each of these slabs 

is treated as a binary grating and in this code is characterized by a filling factor, a 

ridge displacement, a grating depth, a ridge refractive index, and a groove refractive 

index.  By characterizing the slices this way, the Fourier series expression is a well-

known analytic expression.  The filling factor represents the percentage of the period 

that the ridge occupies.  The displacement represents the shift of the ridge in the x 

direction expressed in terms of percentage of the grating period.  The depth is, of 

course, the height of the slab grating.  The specifications for the slabs are expressed 

starting at the top of the grating and ending at the bottom of the grating.  Figure B.1 

demonstrates this representation. 
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Figure B.1 Demonstration of geometry used in MATLAB rigorous coupled wave 

analysis code 

In Figure B.1 we see that the slabs are numbered from top to bottom.  The length 

labeled “a” corresponds to the filling factor for ridge 3, with length a  =  

FilFac(3)*Period.  The length labeled “b” corresponds to the displacement for ridge 1, 

and can be expressed as   b = Disp(1)*Period.  The quantity labeled “c” is the depth 

of ridge 2.  Figure B.1 also illustrates the ridge and groove refractive indices for slab 

number 2.  All of these quantities are defined for each slab grating in this formulation 

of the rigorous coupled-wave analysis. 

 For binary gratings, only one slab is needed to represent the grating.  For a 

blazed grating, if a total amplitude is defined, then the MATLAB expression for the 

appropriate displacement, filling factors, and depth vectors is: 

%Blazed Grating 
FilFac=(linspace(1/Ngrat,1-1/Ngrat,Ngrat)); 
Disp=(linspace(.5/Ngrat,.5-.5/Ngrat,Ngrat)); 
depth=Amplitude/Ngrat*ones(1,Ngrat); 
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where “Amplitude” is the total amplitude of the grating.  For a sinusoidal grating, the 

MATLAB expression for the appropriate displacement, filling factors, and depth 

vectors is: 

%Sinusoidal Grating 
FilFac=fliplr(acos(linspace(-1+1/Ngrat,1-1/Ngrat,Ngrat))/pi); 
Disp=(.5*ones(1,Ngrat)); 
depth=Amplitude/Ngrat*ones(1,Ngrat); 
 

The above expressions enable the analysis of any binary, blazed, or sinusoidal 

grating. 

B.2.3 sr_in.m 

% 
% TE Multilayer test cases 
% 
% 
 
NumOrds=21; 
 
nc     = 1.0;      % Region 1 refractive index 
ns     = 1.5;   % Region 3 refractive index 
 
%   Grating region parameters 
 
Ngrat = 1;        % Number of gratings 
Period  =.8;        % Grating period in microns for all gratings 
depth   = [.1] % grating depths in microns 
ng = [ns];         % Groove indicies 
nr = [nc];         % Ridge indices 
FilFac  = [.5];     % Filling factors 
Disp = [0];  % Ridge displacements in fractions of 1 Period 
 
%   Angle of incidence and wavelength information 
 
lambda0 = .6328;     % Freespace wavelength in microns 
theta0  = 0;       % Polar angle of incidence (deg) 
phi0 = 0;        % Azimuthal angle of incidence (deg) 
psi = 0;            % Polarization angle (deg): 0 => TE,  90 => TM 
delta = 0;   % Input wave retardation phase from TE to TM (deg) 

 

B.2.4 sr_rcwa.m 

% SR_RCWA computes the diffracted amplitudes of a multilayer 
% lamellar surface-relief grating for an arbitrarily polarized unit 
% amplitude wave, incident from an arbitrary angle and plane 
% of incidence in an isotropic lossless cover medium.  The grating 
% and substrate media can be lossy, but must be isotropic. 
% The analysis is Rigorous Coupled Wave Analysis, as presented in 
% 
% M. G. Moharam, E. B. Grann, D. A. Pommet, and  
% T. K. Gaylord "Formulation for stable and efficient 
% implementation of the rigorous coupled-wave analysis 
% of binary gratings," J. Opt. Soc. Am. A, vol. 12,  
% pp. 1068-1076, May 1995. 
% 
% and 
% 
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% M. G. Moharam, E. B. Grann, D. A. Pommet, and  
% T. K. Gaylord "Stable implementation of the rigorous 
% coupled-wave analysis of surface-relief gratings:   
% enhanced transmittance matrix approach," J. Opt. Soc.  
% Am. A, vol. 12, pp. 1068-1076, May 1995. 
% 
% User must edit sr_in.m to set up the input parameters. 
% 
% Author: Dave Brundrett 
% 
% Revised by Stephen M. Schultz 
% 
 
%clear all;  
%close all; 
%   Define the program constants. 
 
j=sqrt(-1); 
deg=pi/180; 
t0=clock; 
 
sr_in; 
 
%   Define the dimensioning variables 
    
Nmax   = (NumOrds-1)/2;         % NumMax is the highest order number retained, 
I      = (-Nmax:Nmax)';         % I is the order index, 
p      = (NumOrds+1)/2;         % and p is the index of the zeroth order. 
    
%   Set up the input variables 
 
%   Change angles to radians 
 
theta0=theta0*deg; 
phi0=phi0*deg; 
delta=delta*deg; 
 
%   Define the relative permittivities 
 
epsc    = nc^2;                          % Cover     relative permittivity 
epss    = ns^2;                          % Substrate relative permittivity 
 
%   Define the grating vector and the wavevectors 
k0  = 2*pi/lambda0;                            % Freespace wavevector 
K  = 2*pi/Period;          % Grating vector 
 
kc  = k0*nc;                                   % Region 1 wavevector components 
kx = kc*sin(theta0)*cos(phi0) - I*K;          % 
ky = kc*sin(theta0)*sin(phi0)*ones(size(kx)); %  
 
kzc = sqrt(kc^2 - kx.^2 - ky.^2);              %  
bad_indices=find((real(kzc)-imag(kzc))<0);     % locate incorrect signs 
kzc(bad_indices)=-kzc(bad_indices);            % correct the signs 
 
ks  = k0*ns;                               % Region 3 wavevector components 
kzs = sqrt(ks^2 - kx.^2 - ky.^2);              %  
bad_indices=find((real(kzs)-imag(kzs))<0);     % locate incorrect signs 
kzs(bad_indices)=-kzs(bad_indices);            % correct the signs 
 
%   Define the diffraction angles 
 
tc = -atan2(kx,kzc);               % Cover     order polar angles 
ts = -atan2(kx,kzs);               % Substrate order polar angles 
 
if abs(phi0) > 1e-6,               % Diffraction plane azimuthal angles 
   phi_d=atan2(ky,kx);     % 
else       % 
   phi_d=zeros(size(kx));    % 
end       %  
 
%    Define some auxillary matrices and vectors 
 
Zm    = zeros(NumOrds,NumOrds); 
Zv    = zeros(NumOrds,1); 
Dv    = Zv;  Dv(p)=1; 
Zv2   = [Zv;Zv]; 
Eye   = eye(NumOrds); 
Kx    = diag(kx)/k0; 
Kxsq  = Kx.^2; 
Ky    = diag(ky/k0); 
Kysq  = Ky.^2; 
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Kzc   = diag(kzc)/k0; 
Kzcsq = Kzc.^2; 
Kzs   = diag(kzs)/k0; 
Kzssq = Kzs.^2; 
M     = NumOrds-1; 
 
% 
%   Trap out planar diffraction cases, otherwise do the full-blown problem 
% 
 
if phi0==0,  
 
   if (psi==0|psi==180|psi==-180), 
      psi=psi*deg; 
      temp1=Eye; 
      fmat=Eye; 
      gmat=j*Kzs; 
      for ii=Ngrat:-1:1, 
     epsg    = ng(ii).^2;                          % Groove permittivity 
     epsr    = nr(ii).^2;                          % Ridge permittivity 
     epsG    = (1-FilFac(ii))*epsg + FilFac(ii)*epsr; % average grating 
permittivity 
     iepsG   = (1-FilFac(ii))/epsg + FilFac(ii)/epsr; % average inverse grating 
permittivity 
        Sinc    = sin(pi*FilFac(ii)*[ 1:M])./(pi*[ 1:M]); 
     vm      = (  epsr -   epsg)*fliplr(Sinc); 
     v0 = epsG; 
     vp = (  epsr -   epsg)*Sinc; 
     v = [vm v0 vp].*exp(-j*2*pi*Disp(ii)*[-M:M]); 
     ivm     = (1/epsr - 1/epsg)*fliplr(Sinc); 
     iv0 = iepsG; 
     ivp = (1/epsr - 1/epsg)*Sinc; 
     iv = [ivm iv0 ivp].*exp(-j*2*pi*Disp(ii)*[-M:M]); 
     Epsilon = toeplitz(fliplr( v(1:NumOrds)), v(NumOrds:2*NumOrds-1)); 
     Alpha   = toeplitz(fliplr(iv(1:NumOrds)),iv(NumOrds:2*NumOrds-1)); 
        clear Sinc v iv vm iivm v0 iv0 vp ivp 
 
     A     = Kxsq - Epsilon; 
        [W,V]=eig(A); 
        Q=sqrt(V); 
        M0=W*Q; 
        E=expm(-k0*Q*depth(ii)); 
        v=[W,W;M0,-M0]\[fmat;gmat]; 
     temp2=v(1:NumOrds,:)\E; 
     temp3=E*v(NumOrds+1:2*NumOrds,:)*temp2; 
     temp1=temp1*temp2; 
     fmat=W+W*temp3; 
     gmat=M0-M0*temp3; 
      end 
      gfi=gmat/fmat; 
      RHS=-gfi(:,p); RHS(p)=RHS(p) + j*kzc(p)/k0; 
      Rs=[gfi + j*Kzc]\RHS; 
      Ts=(temp1/fmat)*(Rs + Dv); 
%      [Rs Ts] 
      Rx=Zv; 
      Ry=Rs*cos(psi)*exp(+j*delta/2); 
      Rz=Zv;        
      Tx=Zv; 
      Ty=Ts*cos(psi)*exp(+j*delta/2); 
      Tz=Zv;        
      IR=(abs(Rs).^2) .* real(kzc ./ kzc(p)) * 100; 
      IT=(abs(Ts).^2) .* real(kzs ./ kzc(p)) * 100; 
 elseif (psi==90|psi==-90), 
      psi=psi*deg; 
      temp1=Eye/ns; 
      fmat=Eye; 
      gmat=j*Kzs/ns^2; 
      for ii=Ngrat:-1:1, 
     epsg    = ng(ii)^2;                          % Groove permittivity 
     epsr    = nr(ii)^2;                          % Ridge permittivity 
     epsG    = (1-FilFac(ii))*epsg + FilFac(ii)*epsr; % average grating 
permittivity 
     iepsG   = (1-FilFac(ii))/epsg + FilFac(ii)/epsr; % average inverse grating 
permittivity 
        Sinc    = sin(pi*FilFac(ii)*[ 1:M])./(pi*[ 1:M]); 
     vm      = (  epsr -   epsg)*fliplr(Sinc); 
     v0 = epsG; 
     vp = (  epsr -   epsg)*Sinc; 
     v = [vm v0 vp].*exp(-j*2*pi*Disp(ii)*[-M:M]); 
     ivm     = (1/epsr - 1/epsg)*fliplr(Sinc); 
     iv0 = iepsG; 
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     ivp = (1/epsr - 1/epsg)*Sinc; 
     iv = [ivm iv0 ivp].*exp(-j*2*pi*Disp(ii)*[-M:M]); 
     Epsilon = toeplitz(fliplr( v(1:NumOrds)), v(NumOrds:2*NumOrds-1)); 
     Alpha   = toeplitz(fliplr(iv(1:NumOrds)),iv(NumOrds:2*NumOrds-1)); 
        clear Sinc v iv vm iivm v0 iv0 vp ivp 
% 
     B  = Kx*(Epsilon\Kx) - Eye; 
        [W,V]=eig(Alpha\B); 
        Q=sqrt(V); 
        M0=Alpha*W*Q; 
        E=expm(-k0*Q*depth(ii)); 
        v=[W,W;M0,-M0]\[fmat;gmat]; 
     temp2=v(1:NumOrds,:)\E; 
     temp3=E*v(NumOrds+1:2*NumOrds,:)*temp2; 
     temp1=temp1*temp2; 
     fmat=W+W*temp3; 
     gmat=M0-M0*temp3; 
      end 
      gfi=gmat/fmat; 
      RHS=-gfi(:,p); RHS(p)=RHS(p) + j*kzc(p)/k0/epsc; 
      Rp=[gfi + j*Kzc/nc^2]\RHS; 
      Tp=(temp1/fmat)*(Rp + Dv)*nc; 
%      [Rp Tp] 
      Rx=-Rp.*cos(tc)*sin(psi)*exp(-j*delta/2); 
      Ry= Zv; 
      Rz= Rp.*sin(tc)*sin(psi)*exp(-j*delta/2); 
      Tx= Tp.*cos(ts)*sin(psi)*exp(-j*delta/2); 
      Ty= Zv; 
      Tz= Tp.*sin(ts)*sin(psi)*exp(-j*delta/2); 
      IR=(abs(Rp).^2).*real(kzc./kzc(p))*100; 
      IT=(abs(Tp).^2).*real(kzs./kzc(p))*100; 
   else 
      psi=psi*deg; 
      [Ws,Vs]=eig(A); 
      Qs=sqrt(Vs); 
      M0s=Ws*Qs; 
      M1s=j*Kzc*Ws; 
      M2s=j*Kzs*Ws; 
      [Wp,Vp]=eig(Alpha_I*B); 
      Qp=sqrt(Vp); 
      M0p=Alpha*Wp*Qp; 
      M1p=j*Kzc*Wp/epsc; 
      M2p=j*Kzs*Wp/epss; 
      RHSs = Zv2; RHSs(p) = j*2*kzc(p)/k0; 
      RHSp = Zv2; RHSp(p) = j*2*kzc(p)/k0/epsc; 
      Es=expm(-k0*Qs*depth); 
      Xs=[(M1s+M0s)    (M1s-M0s)*Es; 
          (M2s-M0s)*Es (M2s+M0s)  ]; 
      Cs=inv(Xs)*RHSs;  Cps=Cs(1:NumOrds,1); Cms=Cs(NumOrds+1:2*NumOrds,1); 
      Rs=Ws*(Cps+Es*Cms) - RHSs(1:NumOrds)/(j*2*kzc(p)/k0); 
      Ts=Ws*(Es*Cps + Cms); 
      IRs=(abs(Rs).^2).*real(kzc./kzc(p))*100 
      ITs=(abs(Ts).^2).*real(kzs./kzc(p))*100; 
      Ep=expm(-k0*Qp*depth); 
      Xp=[(M1p+M0p)   (M1p-M0p)*Ep; 
          (M2p-M0p)*Ep (M2p+M0p)  ]; 
      Cp=inv(Xp)*RHSp;  Cpp=Cp(1:NumOrds,1); Cmp=Cp(NumOrds+1:2*NumOrds,1); 
      Rp=Wp*(   Cpp + Ep*Cmp) - RHSp(1:NumOrds)/(j*2*kzc(p)/k0/epsc); 
      Tp=Wp*(Ep*Cpp +    Cmp)*nc/ns; 
      IRp=(abs(Rp).^2).*real(kzc./kzc(p))*100 
      ITp=(abs(Tp).^2).*real(kzs./kzc(p))*100; 
      Rx=-Rp.*cos(tc)*sin(psi)*exp(-j*delta/2); 
      Ry= Rs *        cos(psi)*exp(+j*delta/2); 
      Rz= Rp.*sin(tc)*sin(psi)*exp(-j*delta);       
      Tx= Tp.*cos(ts)*sin(psi)*exp(-j*delta/2); 
      Ty= Ts         *cos(psi)*exp(+j*delta/2); 
      Tz= Tp.*sin(ts)*sin(psi)*exp(-j*delta/2);       
      IR=IRs*cos(psi)^2 + IRp*sin(psi)^2; 
      IT=ITs*cos(psi)^2 + ITp*sin(psi)^2; 
   end 
 
else, 
 
   psi=psi*deg; 
   ux0=sin(psi)*cos(theta0)*cos(phi0)*exp(-j*delta/2) ... 
     - cos(psi)            *sin(phi0)*exp(+j*delta/2); 
   uy0=sin(psi)*cos(theta0)*sin(phi0)*exp(-j*delta/2) ... 
     + cos(psi)            *cos(phi0)*exp(+j*delta/2); 
   Kxy=Kx*Ky;  
   Kyzc=Kysq+Kzcsq; 
   Kyzs=Kysq+Kzssq; 
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   Kxzc=Kxsq+Kzcsq; 
   Kxzs=Kxsq+Kzssq; 
   Eye=eye(NumOrds); 
    
    
 epsg    = ng^2;                          % Groove permittivity 
 epsr    = nr^2;                          % Ridge permittivity 
 epsG    = (1-FilFac)*epsg + FilFac*epsr; % average grating permittivity 
 iepsG   = (1-FilFac)/epsg + FilFac/epsr; % average inverse grating 
permittivity 
    Sinc    = sin(pi*FilFac*[ 1:M])./(pi*[ 1:M]); 
         
 vm      = (  epsr -   epsg)*fliplr(Sinc); 
 v0 = epsG; 
 vp = (  epsr -   epsg)*Sinc; 
 v = [vm v0 vp].*exp(-j*2*pi*Disp*[-M:M]); 
 Epsilon = toeplitz(fliplr( v(1:NumOrds)), v(NumOrds:2*NumOrds-1)); 
    Epsilon_I=inv(Epsilon); 
     
    ivm     = (1/epsr - 1/epsg)*fliplr(Sinc); 
 iv0 = iepsG; 
 ivp = (1/epsr - 1/epsg)*Sinc; 
 iv = [ivm iv0 ivp].*exp(-j*2*pi*Disp*[-M:M]); 
    Alpha   = toeplitz(fliplr(iv(1:NumOrds)),iv(NumOrds:2*NumOrds-1)); 
    Alpha_I=inv(Alpha); 
 A  = Kxsq - Epsilon; 
    B  = Kx*(Epsilon\Kx) - Eye; 
    
   Ainv=inv(A); 
   Binv=inv(B); 
   [Ws,Vs]=eig(Kysq + Kx*Epsilon_I*Kx*Alpha_I - Alpha_I); 
   [Wu,Vu]=eig(A+Kysq); 
   Qs=sqrt(Vs); 
   Qu=sqrt(Vu); 
   clear Vu Vs 
   Dx=Zv; Dx(p)=ux0; 
   Dy=Zv; Dy(p)=uy0; 
   Es=expm(-k0*Qs*depth); 
   Eu=expm(-k0*Qu*depth); 
   X25=-Ainv*Kxy*Ws; 
   X27= Ainv*Wu*Qu; 
   X37= j*Kzc*Wu; 
   X45= j*Kzc*Binv*Ws*Qs; 
   X47=-j*Kzc*Binv*Kx*Epsilon_I*Ky*Wu; 
   X78=-j*Kzs*Wu; 
   X86= j*Kzs*Binv*Ws*Qs; 
   X88= j*Kzs*Binv*Kx*Epsilon_I*Ky*Wu; 
   X=[Eye,  Zm,   Zm,   Zm,  -Ws,    -Ws*Es,  Zm,      Zm; 
      Zm,   Eye,  Zm,   Zm,   X25,    X25*Es, X27,    -X27*Eu; 
      Kxy,  Kyzc, Zm,   Zm,   Zm,     Zm,     X37,     X37*Eu; 
      Kxzc, Kxy,  Zm,   Zm,   X45,   -X45*Es, X47,     X47*Eu; 
      Zm,   Zm,   Eye,  Zm,  -Ws*Es, -Ws,     Zm,      Zm; 
      Zm,   Zm,   Zm,   Eye,  X25*Es, X25,    X27*Eu, -X27; 
      Zm,   Zm,   Kxy,  Kyzs, Zm,     Zm,     X78*Eu,  X78; 
      Zm,   Zm,   Kxzs, Kxy, -X86*Es, X86,    X88*Eu,  X88]; 
   RHS=[-Dx;-Dy;Kxy*Dx + Kyzc*Dy; Kxzc*Dx + Kxy*Dy; Zv; Zv; Zv; Zv]; 
   F=inv(X)*RHS;   
   Rx=F(1:NumOrds,1); Ry=F(NumOrds+1:2*NumOrds,1); 
   Tx=F(2*NumOrds+1:3*NumOrds,1); Ty=F(3*NumOrds+1:4*NumOrds,1); 
   bad_indices=find(kzc==0); kzc(bad_indices)=-j*1e-16*ones(size(bad_indices)); 
   Rz=(Rx.*kx + Ry.*ky)./kzc; 
   bad_indices=find(kzs==0); kzs(bad_indices)=-j*1e-16*ones(size(bad_indices)); 
   Tz=-(Tx.*kx + Ty.*ky)./kzs; 
   IR = (abs(Rx).^2 + abs(Ry).^2 + abs(Rz).^2).* real(kzc./kzc(p)) * 100; 
   IT = (abs(Tx).^2 + abs(Ty).^2 + abs(Tz).^2).* real(kzs./kzc(p)) * 100; 
end 
 
%    Sum the efficiencies. 
 
%SUM=sum(IR+IT); 
 
 
Eff_mat=[I,IR,IT]; 
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B.3 Grating Coupler Analysis 

B.3.1 Description 

I now briefly describe the MATLAB code implementation for analyzing a grating 

coupler.  The overall process is to first specify the fixed parameters of the problem, 

calculate the propagation constant of the waveguide without the grating, define the 

variable grating parameters, calculate αr, and finally calculate the power distribution 

into each diffractive order. 

 The basic parameters of the problem are set in the file mlayer_in.  The basic 

parameters that need to be set are listed in Table B.8.2. 

Table B.8.2 Description of variables that must be declared in MATLAB script 

mlayer_in.m 

lambda0 free space wavelength 
FilFac fill factors for grating layers 
Disp ridge displacements of grating layers 
NumOrds number of orders retained in analysis

 

Additionally the following global variables need to be declared and set. 

Table B.8.3 Additional global variables that must be declared in MATLAB 

implementation of grating coupler analysis 

lr free space wavelength 
nf refractive index of waveguide
nc refractive index of cover 
ns refractive index of substrate 
ngrat refractive index of grating 
h height of waveguide 

 

Additional global variables that are determined later in the code, but must be declared 

are listed below. 
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Table B.8.4 Additional global variables in MATLAB implementation 

Depth depth vector = [grating depth, waveguide depth] 
KX the grating vector 

 

 The first step is to calculate the guided mode propagation constant of the 

waveguide.  This is done with the file temode.m to calculate kx0.  This file requires the 

optimization toolbox, and calls the function te.m to perform the optimization.  The 

output of temode.m is the effective index of refraction for the guided mode, Neff and 

the propagation constant kxo.   

 The next step is to specify the grating.  Often these values are adjusted in a 

loop.  The variables describing the grating that need to be set at this point are 

Table B.8.5 variables to specify important grating parameters 

theta angle of incidence in degrees
KX1 the grating vector 
period the grating period 
d the grating height 

 

 After the grating is described, the next step is to begin finding the complex 

propagation constant.  The complex propagation constant is stored in a variable u2 

with u2(1) being the real part of the propagation constant, and u2(2) being the 

imaginary part.  We need an initial guess, and the best guess is to set u2(1) equal to 

kxo as solved from temode.m.  A good starting guess for u2(2) depends on the 

description of the grating.  Usually a good starting point would be to set the grating 

height to a small value and give an initial guess for u2(2) of 0, and gradually increase 

the grating depth. At each grating depth level, a good initial guess is the value of 
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u2(2) calculated from the previous level, or a projected value based on a curve fit of 

the previously calculated values.  This process is repeated until the desired level is 

reached.  The file that is used to find the complex propagation constant is called 

find_eff.  This file does an optimization routine, and the function that is used in the 

optimization is called intfun.m.  The function intfun.m calls the function that does the 

rigorous coupled wave analysis solving, which in this development is called 

mlayer.m.  The program mlayer.m uses the parameters set in the file mlayer_in.m.  

The input to the rigorous coupled wave solver is the variable beta, the complex 

propagation constant.  The output of the rigorous coupled wave solver is the variable 

Ro, which, in the optimization routine, we want to be very large.  After the 

optimization routine is over, find_eff.m returns the optimal value of the propagation 

constant in the variable u2.  The value of u2(1) is β, the real part of the propagation 

constant, and the value of u2(2) is αr the radiation decay parameter and imaginary 

part of the propagation constant. 

 The last step is to calculate the power distribution ratios.  The program 

pwr_surf.m uses the variables beta and KX to calculate the efficiencies of the beams 

diffracted into the cover and substrate.  The efficiencies of the beams in the cover are 

returned in the variables R1-R2, and the efficiencies of the beams in the substrate are 

returned in the variables T1-T3. 

 A summary of this computational process is given in Figure B.2. 
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specify general

parameters

calculate propagation constant

without grating

setup variable

grating parameters

temode.m

output: Neff, kxo
te.m

calculate

α,β
find_eff.m

output: u

intfun.m

input: u

output: 1/Ro

mlayer.m

calls mlayer_in.m

input: beta

output: Ro

calculate power

distributions

pwr_surf.m

input: KX1, beta

output: Ri, Ti  

Figure B.2 Computational process for MATLAB implementation to solving for complex 

propagation constant in grating coupler 

B.3.2 example.m 

% This file contains an example of the calculation of 
% a surface relief grating coupler 
% 
 
fprintf(1,'This file contains instructions and an example\n') 
pause 
 
%set up global vaiables 
global lr h nf ns nc KX depth ngrat 
 
fprintf(1,'(1) Set up the basic parameters\n') 
fprintf(1,'change the following parameters in the file mlayer_in.m\n') 
fprintf(1,'lambda0,nc,ns,FilFac,Disp,NumOrds\n') 
pause 
 
fprintf(1,'set the following paramters\n') 
fprintf(1,'lr: wavelength\n') 
fprintf(1,'nf: waveguide index\n') 
fprintf(1,'nc: cover index\n') 
fprintf(1,'ns:substrate index\n') 
fprintf(1,'ngrat: grating index\n') 
fprintf(1,'depth: waveguide and grating thickness (depth=[grating, waveguide])\n') 
lr=1 
ko=2*pi/lr; 
nf=1.5 
nc=1 
ns=1.46 
ngrat=1.5 
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h=1 
pause 
depth(2)=h 
 
fprintf(1,'(2) Calculate guided mode propagation constant\n') 
fprintf(1,'run temode.m to calculate kxo (requires optimization toolbox)\n') 
fprintf(1,'this program is for a single layer slab waveguide with TE polarization\n') 
fprintf(1,'the grating will change the effective index but it is initially 
ignored.\n') 
pause 
temode 
pause 
 
fprintf(1,'(3) Specify the grating\n') 
fprintf(1,'  KX1=2*pi/period: the grating vector \n') 
fprintf(1,'    (KX1 can be a vector)\n') 
fprintf(1,'  d: the grating height\n') 
fprintf(1,'    (d is a vector the same length as KX1)\n') 
 
fprintf(1,'design the grating to have an outcoupled angle of 5 degrees\n') 
pause 
 
theta=5 
fprintf(1,'ko*sin(theta)=Neff*ko-KX1\n') 
KX1=Neff*ko-ko*sin(theta*pi/180) 
period=2*pi/KX1 
d=0.1*ones(size(KX1)); 
pause 
 
fprintf(1,'(4) Calculate alpha\n') 
fprintf(1,'u2=beta+j alpha\n') 
fprintf(1,'set u2(1)= kxo (from temode)\n') 
fprintf(1,'guess a value for u2(2) (u2(2)=-2)\n') 
pause 
 
%beta=u2(1)+j*u2(2)/1000; 
%alpha=imag(u2)*1000 
 
ui=[]; %the imaginary part 
ur=[]; %the real part 
 
u2(1)=kxo; %the guess is the propagation constant of the original waveguide 
u2(2)=-2; 
for lp=1:length(KX1) 
 KX=KX1(lp); 
    depth(1)=d(lp); 
 find_eff %a file that finds the complex propagation constant 
 lp 
    %intfun(u2) calculates the resonance that should be close to zero 
 if intfun(u2)>.001 
  fprintf(1,'Could not find resonance\n') 
  fprintf(1,'You need to play around with u2 until you find the 
resonance\n') 
 end 
 ur(lp)=u2(1); 
 ui(lp)=u2(2); 
end 
fprintf(1,'alpha in mm^{-1}\n') 
ui 
pause 
 
fprintf(1,'(5) Calculate R1,R2,T1,T2,T3\n') 
fprintf(1,'run pwr_surf.m\n') 
pause 
pwr_surf %a file that calculates the power distribution ratios 
         % R1 is the first order into air (this is the desired order) 
         % R2 is the second order into air (should be zero for this problem) 
         % T1 T2 T3 are the orders into the glass substrate 
 
          
 
 
fprintf(1,'(6) What is the fraction of the total outcoupled power (Po=1)\n') 
fprintf(1,'Pout=1-exp(-2*alpha*L)\n') 
 
fprintf(1,'What is coupler length for an outcoupled power .99\n') 
fprintf(1,'Pout=.99=1-exp(-2*alpha*L)\n') 
 
L=log(.01)/(2*ui) %units of mm 

 



 

 159

B.3.3 mlayer_in.m 

% 
% TE Multilayer test cases 
% 
% 
global period 
NumOrds=21; 
 
nc     = 1.0;      % Region 1 refractive index 
ns     = 1.46;   % Region 3 refractive index 
nf     = 1.5; 
 
%   Grating region parameters 
 
Ngrat = 2;   % Number of gratings 
Period  = 0.8;     % Grating period in microns for all gratings 
depth   = [.1,1.15];    % grating depths in microns 
ng = [nc,nf];     % Groove indicies 
nr = [ngrat,nf];     % Ridge indices 
FilFac  = [.5,.5];   % Filling factors 
Disp = [0,0];  % Ridge displacements in fractions of 1 Period 
 
%   Angle of incidence and wavelength information 
 
lambda0 = lr; % Freespace wavelength in microns 
theta0  = 0;         % Polar angle of incidence (deg) 
phi0 = 0;      % Azimuthal angle of incidence (deg) 
psi_ = 0;    % Polarization angle (deg): 0 => TE,  90 => TM 
delta = 0;   % Input wave retardation phase from TE to TM (deg) 
D=Disp; 
F=FilFac; 

B.3.4 temode.m 

global lr h nf ns nc 
 
Neff=[];  
kxo=[]; 
no=100; 
 
%lr=.85; 
%h=1; 
%nf=1.54; 
%ns=1.456; 
%nc=1.0; 
 
 
nn1=min([nc,ns]); 
nn2=max([nc,ns]); 
 
ko=2*pi/lr; 
 
stp=.0001; 
 
while no~=length(kxo) 
 
 N=nn2:stp:nf; 
 kfx=ko.*sqrt(nf^2-N.^2); 
 gc=ko.*sqrt(N.^2-nc^2); 
 gs=ko.*sqrt(N.^2-ns^2); 
 
 BB1=tan(kfx.*h); 
 BBtop=kfx.*(gs+gc); 
 BBbot=kfx.^2-gs.*gc; 
 
 BB2=BBtop./BBbot; 
 
    %Plot result 
  plot(N,BB1,'b') 
  hold 
  plot(N,BB2,'r') 
  hold 
  axis([nn2 nf -30 30]) 
  zoom 'on' 
  grid 'on' 
 



 

 160

 hc=(pi+atan(sqrt((nn2^2-nn1^2)/(nf^2-nn2^2))))/(2*pi/lr*sqrt(nf^2-nn2^2)); 
 V=2*pi*h/lr*sqrt(nf^2-nn2^2); 
 ate=(nn2^2-nn1^2)/(nf^2-nn2^2); 
 no=floor(1+1/pi*(V-atan(sqrt(ate)))); 
 
 BB=BB1-BB2; 
 sBB=sign(BB); 
 dBB=diff(sBB); 
 I=find(abs(dBB)>0); 
 if I(1)==1 
  I(1)=2; 
 end 
 J=find(sign(BB1(I-1))-sign(BB1(I+1))==0 & sign(BB2(I-1))-sign(BB2(I+1))==0); 
 I=I(J); 
 
 for kxoind=1:max(size(I)) 
  Neff(kxoind)=fminbnd('te',N(I(kxoind)-1),N(I(kxoind)+1)); 
  kxo(kxoind)=Neff(kxoind)*ko; 
 end 
 Neff 
 
 stp=stp*.1; 
end 
 
clear BB1 BB2 BBtop BBbot kfx N gc gs nn1 nn2 no 
clear BB sBB dBB I J stp kxoind stp I J ate ans V 

B.3.5 te.m 

function ans=te(N) 
 
global NumOrds lr depths ns epsmods KX KZS layers nsub ncov u2 
 
global h 
nf = ns; 
nc = ncov; 
 
ko=2*pi/lr; 
 
 
kfx=ko.*sqrt(nf^2-N.^2); 
gc=ko.*sqrt(N.^2-nc^2); 
gs=ko.*sqrt(N.^2-nsub^2); 
 
ans=abs(tan(kfx.*h)-(kfx.*(gs+gc))./(kfx.^2-gc.*gs)); 

B.3.6 find_eff.m 

% FIND_EFF.M finds the complex quatity beta0 for a  
% given grating vector KX, and depth 
%  
% The resonance is narrow, thus a good starting point is needed.  
% Loop the real part and then the imaginary part until a good  
% starting point is reached then do the optimization 
% 
 
global lr h nf ns nc KX depth ngrat 
 
% define upper and lower search bounds 
vlb=[9. -90];  
vub=[19 0]; 
options(1)=0;   
options(2:3)=[1e-7 1e-7];  
options(14)=200; 
options(16)=1e-22; 
options(17)=1e-6; 
 
if intfun(u2)<.7 
 ff=constr('intfun',u2,options,vlb,vub); 
 if (ff(1)>(u2(1)-.01) & ff(1)<(u2(1)+.01)) 
  done=1; 
  u2=ff; 
 end 
end 
 
mm=100;  
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str=-.1; 
endr=.1; 
sti=-.5*u2(2); 
endi=.5*u2(2); 
done=2; 
pass=1; 
exit_it=1; 
 
streal=str; 
endreal=endr; 
stimag=sti; 
endimag=endi; 
 
 
while intfun(u2)>1e-5 & exit_it~=2 
 
% Vary the imaginary part of u2 
 for jj=1:mm; 
  u=u2;  
  nn=stimag+2*endimag/mm*(jj-1); 
  u(2)=u2(2)+nn; 
  f1(jj)=intfun(u); 
  fi1(jj)=u(2); 
 end 
  subplot(2,1,1) 
  plot(fi1-u2(2),f1,'b') 
  title(['u2(2) = ',num2str(u2(2))]) 
  pause(1) 
   
% Find the minimum value  
 II=find(f1==min(f1)); 
 II=II(1); 
% If the minium value in not an end point  
% make it the new imaginary part and reduce the search range  
 if II~=1 & II~=100 
  u2(2)=fi1(II); 
  stimag=fi1(max([II-3,1]))-u2(2); 
  endimag=-stimag; 
  
% If the minimum is at an end point   
 elseif II==1 
  u2(2)=fi1(II);  
  endimag=5*(fi1(100)-u2(2)); 
  stimag=-endimag; 
  done=3; 
 elseif II==100 
  u2(2)=fi1(II);  
  stimag=5*(fi1(1)-u2(2)); 
  endimag=-stimag; 
  done=3; 
 end 
 
% If the value is low enough do the optimization 
 
 if intfun(u2)<.7 
  ff=constr('intfun',u2,options,vlb,vub); 
  if (ff(1)>(u2(1)-.01) & ff(1)<(u2(1)+.01)) 
   done=1; 
   u2=ff; 
  end 
 end 
 
 if done~=1 
   
% Vary the real part of u2 
  for jj=1:mm; 
   u=u2; 
   nn=streal+2*endreal/mm*(jj-1); 
   u(1)=u2(1)+nn; 
   f2(jj)=intfun(u); 
   fr1(jj)=u(1); 
  end 
   subplot(2,1,2) 
   plot(fr1-u2(1),f2,'b') 
   title(['u2(1) = ',num2str(u2(1))]) 
   pause(1) 
 
% Find the minimum  
  KK=find(f2==min(f2)); 
  KK=KK(1); 
 % If not an end point  
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  if KK~=1 & KK~=100 
   u2(1)=fr1(KK); 
   streal=fr1(max([KK-3,1]))-u2(1); 
   endreal=-streal; 
 % If an endpoint  
  elseif KK==1 
   endreal=5*(fr1(100)-u2(1)); 
   streal=-endreal; 
   if pass==1 & done==3 
    exit_it=2; 
    fprintf(1,'error\n') 
   end  
  elseif KK==100 
   streal=5*(fr1(1)-u2(1)); 
   endreal=-streal; 
   if pass==1 & done==3 
    exit_it=2; 
    fprintf(1,'error\n') 
   end    
  end   
  
% Do the optimization if value low enough 
  if intfun(u2)<.7 
   ff=constr('intfun',u2,options,vlb,vub); 
   if (ff(1)>(u2(1)-.01) & ff(1)<(u2(1)+.01)) 
    done=1; 
    u2=ff; 
   end 
  end 
  
 end 
 pass=pass+1; % The number of passes 
  
 if pass>10 % Give up too many passes 
  exit_it=2; 
 end 
end 
 
 
clear f1 f2 ff fi1 fr1 str sti streal stimag endi endr  
clear endreal endimag KK II exit_it done mm  pass jj nn 
 

B.3.7 intfun.m 

function [f,g]=intfun(u) 
 
global lr h nf ns nc KX depth ngrat 
 
beta0=u(1)+j*u(2)/1000;  %the complex propagation constant to be optimized 
 
f=abs(1/mlayer(beta0)); 
 
% the contraints for the optimization 
g(1)=-u(1)+8.; %Re(beta0)>10 
g(2)=u(1)-16; %Re(beta0)<16 
g(3)=u(2); %Imag(betao)<0 
g(4)=-u(2)-100; %Imag(beta0)>-100 
 
return 

B.3.8 mlayer.m 

function ANS=mlayer(beta0) 
 
% MLAYER computes the diffracted amplitudes of a multilayer 
% lamellar surface-relief grating for an arbitrarily polarized unit 
% amplitude wave, incident from an arbitrary angle and plane 
% of incidence in an isotropic lossless cover medium.  The grating 
% and substrate media can be lossy, but must be isotropic. 
% The analysis is Rigorous Coupled Wave Analysis, as presented in 
% 
% M. G. Moharam, E. B. Grann, D. A. Pommet, and  
% T. K. Gaylord "Formulation for stable and efficient 
% implementation of the rigorous coupled-wave analysis 
% of binary gratings," J. Opt. Soc. Am. A, vol. 12,  
% pp. 1068-1076, May 1995. 
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% 
% and 
% 
% M. G. Moharam, E. B. Grann, D. A. Pommet, and  
% T. K. Gaylord "Stable implementation of the rigorous 
% coupled-wave analysis of surface-relief gratings:   
% enhanced transmittance matrix approach," J. Opt. Soc.  
% Am. A, vol. 12, pp. 1068-1076, May 1995. 
% 
% Usage is ANS=Mlayer(beta0) 
% 
% where beta0 is the complex propagation constant, 
% and ANS contains the zero order reflected complex amplitude 
% 
% User must edit mlayer_in.m to set up the input parameters. 
% 
% Author: Dave Brundrett 
% 
% Revised by Stephen M. Schultz 
% 
 
 
%   Define the program constants. 
 
global lr h nf ns nc KX depth ngrat  
        % add any variables here and in INTFUN.M and in FIND_EFF.m 
     % remove the variables from MLAYER_IN.M  
 
j=sqrt(-1); 
deg=pi/180; 
t0=clock; 
 
mlayer_in; 
 
%   Define the dimensioning variables 
    
Nmax   = (NumOrds-1)/2;         % NumMax is the highest order number retained, 
I      = (-Nmax:Nmax)';         % I is the order index, 
p      = (NumOrds+1)/2;         % and p is the index of the zeroth order. 
    
%   Set up the input variables 
 
%   Change angles to radians 
 
%theta0=theta0*deg; 
phi0=phi0*deg; 
delta=delta*deg; 
 
%   Define the relative permittivities 
 
epsc    = nc^2;                          % Cover     relative permittivity 
epss    = ns^2;                          % Substrate relative permittivity 
 
%   Define the grating vector and the wavevectors 
k0  = 2*pi/lambda0;                            % Freespace wavevector 
%K  = 2*pi/Period;          % Grating vector 
K   = KX; 
 
kc  = k0*nc;                                   % Region 1 wavevector components 
%kx = kc*sin(theta0)*cos(phi0) - I*K;          % 
%ky = kc*sin(theta0)*sin(phi0)*ones(size(kx)); %  
kx  = beta0-I*K; 
ky  = zeros(size(kx)); 
 
kzc = sqrt(kc^2 - kx.^2 - ky.^2);              %  
bad_indices=find((real(kzc)-imag(kzc))<0);     % locate incorrect signs 
kzc(bad_indices)=-kzc(bad_indices);            % correct the signs 
 
ks  = k0*ns;                               % Region 3 wavevector components 
kzs = sqrt(ks^2 - kx.^2 - ky.^2);              %  
bad_indices=find((real(kzs)-imag(kzs))<0);     % locate incorrect signs 
kzs(bad_indices)=-kzs(bad_indices);            % correct the signs 
 
%   Define the diffraction angles 
 
tc = -atan2(kx,kzc);               % Cover     order polar angles 
ts = -atan2(kx,kzs);               % Substrate order polar angles 
 
if abs(phi0) > 1e-6,               % Diffraction plane azimuthal angles 
   phi_d=atan2(ky,kx);     % 
else       % 
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   phi_d=zeros(size(kx));    % 
end       %  
 
%    Define some auxillary matrices and vectors 
 
Zm    = zeros(NumOrds,NumOrds); 
Zv    = zeros(NumOrds,1); 
Dv    = Zv;  Dv(p)=1; 
Zv2   = [Zv;Zv]; 
Eye   = eye(NumOrds); 
Kx    = diag(kx)/k0; 
Kxsq  = Kx.^2; 
Ky    = diag(ky/k0); 
Kysq  = Ky.^2; 
Kzc   = diag(kzc)/k0; 
Kzcsq = Kzc.^2; 
Kzs   = diag(kzs)/k0; 
Kzssq = Kzs.^2; 
M     = NumOrds-1; 
 
% 
%   Trap out planar diffraction cases, otherwise do the full-blown problem 
% 
 
if phi0==0,  
 
 
   if (psi_==0|psi_==180|psi_==-180), 
      psi_=psi_*deg; 
      temp1=Eye; 
      fmat=Eye; 
      gmat=j*Kzs; 
      for ii=Ngrat:-1:1, 
 epsg    = ng(ii)^2;                          % Groove permittivity 
 epsr    = nr(ii)^2;                          % Ridge permittivity 
 epsG    = (1-FilFac(ii))*epsg + FilFac(ii)*epsr; % average grating 
permittivity 
 iepsG   = (1-FilFac(ii))/epsg + FilFac(ii)/epsr; % average inverse grating 
permittivity 
        Sinc    = sin(pi*FilFac(ii)*[ 1:M])./(pi*[ 1:M]); 
 vm      = (  epsr -   epsg)*fliplr(Sinc); 
 v0 = epsG; 
 vp = (  epsr -   epsg)*Sinc; 
 v = [vm v0 vp].*exp(-j*2*pi*Disp(ii)*[-M:M]); 
 ivm     = (1/epsr - 1/epsg)*fliplr(Sinc); 
 iv0 = iepsG; 
 ivp = (1/epsr - 1/epsg)*Sinc; 
 iv = [ivm iv0 ivp].*exp(-j*2*pi*Disp(ii)*[-M:M]); 
 Epsilon = toeplitz(fliplr( v(1:NumOrds)), v(NumOrds:2*NumOrds-1)); 
 Alpha   = toeplitz(fliplr(iv(1:NumOrds)),iv(NumOrds:2*NumOrds-1)); 
        clear Sinc v iv vm iivm v0 iv0 vp ivp 
% 
 A     = Kxsq - Epsilon; 
% B     = Kx*Epsilon_I*Kx - Eye; 
        [W,V]=eig(A); 
        Q=sqrt(V); 
        M0=W*Q; 
        E=expm(-k0*Q*depth(ii)); 
        v=[W,W;M0,-M0]\[fmat;gmat]; 
 temp2=v(1:NumOrds,:)\E; 
 temp3=E*v(NumOrds+1:2*NumOrds,:)*temp2; 
 temp1=temp1*temp2; 
 fmat=W+W*temp3; 
 gmat=M0-M0*temp3; 
      end 
      gfi=gmat/fmat; 
      RHS=-gfi(:,p); RHS(p)=RHS(p) + j*kzc(p)/k0; 
      Rs=[gfi + j*Kzc]\RHS; 
      Ts=(temp1/fmat)*(Rs + Dv); 
%      [Rs Ts] 
      Rx=Zv; 
      Ry=Rs*cos(psi_)*exp(+j*delta/2); 
      Rz=Zv;        
      Tx=Zv; 
      Ty=Ts*cos(psi_)*exp(+j*delta/2); 
      Tz=Zv;        
      IR=(abs(Rs).^2) .* real(kzc ./ kzc(p)) * 100; 
      IT=(abs(Ts).^2) .* real(kzs ./ kzc(p)) * 100; 
 elseif (psi_==90|psi_==-90), 
      psi_=psi_*deg; 
      temp1=Eye/ns; 
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      fmat=Eye; 
      gmat=j*Kzs/ns^2; 
      for ii=Ngrat:-1:1, 
 epsg    = ng(ii)^2;                          % Groove permittivity 
 epsr    = nr(ii)^2;                          % Ridge permittivity 
 epsG    = (1-FilFac(ii))*epsg + FilFac(ii)*epsr; % average grating 
permittivity 
 iepsG   = (1-FilFac(ii))/epsg + FilFac(ii)/epsr; % average inverse grating 
permittivity 
        Sinc    = sin(pi*FilFac(ii)*[ 1:M])./(pi*[ 1:M]); 
 vm      = (  epsr -   epsg)*fliplr(Sinc); 
 v0 = epsG; 
 vp = (  epsr -   epsg)*Sinc; 
 v = [vm v0 vp].*exp(-j*2*pi*Disp(ii)*[-M:M]); 
 ivm     = (1/epsr - 1/epsg)*fliplr(Sinc); 
 iv0 = iepsG; 
 ivp = (1/epsr - 1/epsg)*Sinc; 
 iv = [ivm iv0 ivp].*exp(-j*2*pi*Disp(ii)*[-M:M]); 
 Epsilon = toeplitz(fliplr( v(1:NumOrds)), v(NumOrds:2*NumOrds-1)); 
 Alpha   = toeplitz(fliplr(iv(1:NumOrds)),iv(NumOrds:2*NumOrds-1)); 
        clear Sinc v iv vm iivm v0 iv0 vp ivp 
% 
 B     = Kx*(Epsilon\Kx) - Eye; 
        [W,V]=eig(Alpha\B); 
        Q=sqrt(V); 
        M0=Alpha*W*Q; 
        E=expm(-k0*Q*depth(ii)); 
        v=[W,W;M0,-M0]\[fmat;gmat]; 
 temp2=v(1:NumOrds,:)\E; 
 temp3=E*v(NumOrds+1:2*NumOrds,:)*temp2; 
 temp1=temp1*temp2; 
 fmat=W+W*temp3; 
 gmat=M0-M0*temp3; 
      end 
      gfi=gmat/fmat; 
      RHS=-gfi(:,p); RHS(p)=RHS(p) + j*kzc(p)/k0/epsc; 
      Rp=[gfi + j*Kzc/nc^2]\RHS; 
      Tp=(temp1/fmat)*(Rp + Dv)*nc; 
%      [Rp Tp] 
      Rx=-Rp.*cos(tc)*sin(psi_)*exp(-j*delta/2); 
      Ry= Zv; 
      Rz= Rp.*sin(tc)*sin(psi_)*exp(-j*delta/2); 
      Tx= Tp.*cos(ts)*sin(psi_)*exp(-j*delta/2); 
      Ty= Zv; 
      Tz= Tp.*sin(ts)*sin(psi_)*exp(-j*delta/2); 
      IR=(abs(Rp).^2).*real(kzc./kzc(p))*100; 
      IT=(abs(Tp).^2).*real(kzs./kzc(p))*100; 
   else 
      psi_=psi_*deg; 
      [Ws,Vs]=eig(A); 
      Qs=sqrt(Vs); 
      M0s=Ws*Qs; 
      M1s=j*Kzc*Ws; 
      M2s=j*Kzs*Ws; 
      [Wp,Vp]=eig(Alpha_I*B); 
      Qp=sqrt(Vp); 
      M0p=Alpha*Wp*Qp; 
      M1p=j*Kzc*Wp/epsc; 
      M2p=j*Kzs*Wp/epss; 
      RHSs = Zv2; RHSs(p) = j*2*kzc(p)/k0; 
      RHSp = Zv2; RHSp(p) = j*2*kzc(p)/k0/epsc; 
      Es=expm(-k0*Qs*depth); 
      Xs=[(M1s+M0s)    (M1s-M0s)*Es; 
          (M2s-M0s)*Es (M2s+M0s)  ]; 
      Cs=inv(Xs)*RHSs;  Cps=Cs(1:NumOrds,1); Cms=Cs(NumOrds+1:2*NumOrds,1); 
      Rs=Ws*(Cps+Es*Cms) - RHSs(1:NumOrds)/(j*2*kzc(p)/k0); 
      Ts=Ws*(Es*Cps + Cms); 
      IRs=(abs(Rs).^2).*real(kzc./kzc(p))*100 
      ITs=(abs(Ts).^2).*real(kzs./kzc(p))*100; 
      Ep=expm(-k0*Qp*depth); 
      Xp=[(M1p+M0p)   (M1p-M0p)*Ep; 
          (M2p-M0p)*Ep (M2p+M0p)  ]; 
      Cp=inv(Xp)*RHSp;  Cpp=Cp(1:NumOrds,1); Cmp=Cp(NumOrds+1:2*NumOrds,1); 
      Rp=Wp*(   Cpp + Ep*Cmp) - RHSp(1:NumOrds)/(j*2*kzc(p)/k0/epsc); 
      Tp=Wp*(Ep*Cpp +    Cmp)*nc/ns; 
      IRp=(abs(Rp).^2).*real(kzc./kzc(p))*100 
      ITp=(abs(Tp).^2).*real(kzs./kzc(p))*100; 
      Rx=-Rp.*cos(tc)*sin(psi_)*exp(-j*delta/2); 
      Ry= Rs *        cos(psi_)*exp(+j*delta/2); 
      Rz= Rp.*sin(tc)*sin(psi_)*exp(-j*delta);       
      Tx= Tp.*cos(ts)*sin(psi_)*exp(-j*delta/2); 
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      Ty= Ts         *cos(psi_)*exp(+j*delta/2); 
      Tz= Tp.*sin(ts)*sin(psi_)*exp(-j*delta/2);       
      IR=IRs*cos(psi_)^2 + IRp*sin(psi_)^2; 
      IT=ITs*cos(psi_)^2 + ITp*sin(psi_)^2; 
   end 
 
else 
 
   psi_=psi_*deg; 
   ux0=sin(psi_)*cos(theta0)*cos(phi0)*exp(-j*delta/2) ... 
     - cos(psi_)            *sin(phi0)*exp(+j*delta/2); 
   uy0=sin(psi_)*cos(theta0)*sin(phi0)*exp(-j*delta/2) ... 
     + cos(psi_)            *cos(phi0)*exp(+j*delta/2); 
   Kxy=Kx*Ky;  
   Kyzc=Kysq+Kzcsq; 
   Kyzs=Kysq+Kzssq; 
   Kxzc=Kxsq+Kzcsq; 
   Kxzs=Kxsq+Kzssq; 
   Eye=eye(NumOrds); 
   Ainv=inv(A); 
   Binv=inv(B); 
   [Ws,Vs]=eig(Kysq + Kx*Epsilon_I*Kx*Alpha_I - Alpha_I); 
   [Wu,Vu]=eig(A+Kysq); 
   Qs=sqrt(Vs); 
   Qu=sqrt(Vu); 
   clear Vu Vs 
   Dx=Zv; Dx(p)=ux0; 
   Dy=Zv; Dy(p)=uy0; 
   Es=expm(-k0*Qs*depth); 
   Eu=expm(-k0*Qu*depth); 
   X25=-Ainv*Kxy*Ws; 
   X27= Ainv*Wu*Qu; 
   X37= j*Kzc*Wu; 
   X45= j*Kzc*Binv*Ws*Qs; 
   X47=-j*Kzc*Binv*Kx*Epsilon_I*Ky*Wu; 
   X78=-j*Kzs*Wu; 
   X86= j*Kzs*Binv*Ws*Qs; 
   X88= j*Kzs*Binv*Kx*Epsilon_I*Ky*Wu; 
   X=[Eye,  Zm,   Zm,   Zm,  -Ws,    -Ws*Es,  Zm,      Zm; 
      Zm,   Eye,  Zm,   Zm,   X25,    X25*Es, X27,    -X27*Eu; 
      Kxy,  Kyzc, Zm,   Zm,   Zm,     Zm,     X37,     X37*Eu; 
      Kxzc, Kxy,  Zm,   Zm,   X45,   -X45*Es, X47,     X47*Eu; 
      Zm,   Zm,   Eye,  Zm,  -Ws*Es, -Ws,     Zm,      Zm; 
      Zm,   Zm,   Zm,   Eye,  X25*Es, X25,    X27*Eu, -X27; 
      Zm,   Zm,   Kxy,  Kyzs, Zm,     Zm,     X78*Eu,  X78; 
      Zm,   Zm,   Kxzs, Kxy, -X86*Es, X86,    X88*Eu,  X88]; 
   RHS=[-Dx;-Dy;Kxy*Dx + Kyzc*Dy; Kxzc*Dx + Kxy*Dy; Zv; Zv; Zv; Zv]; 
   F=inv(X)*RHS;   
   Rx=F(1:NumOrds,1); Ry=F(NumOrds+1:2*NumOrds,1); 
   Tx=F(2*NumOrds+1:3*NumOrds,1); Ty=F(3*NumOrds+1:4*NumOrds,1); 
   bad_indices=find(kzc==0); kzc(bad_indices)=-j*1e-16*ones(size(bad_indices)); 
   Rz=(Rx.*kx + Ry.*ky)./kzc; 
   bad_indices=find(kzs==0); kzs(bad_indices)=-j*1e-16*ones(size(bad_indices)); 
   Tz=-(Tx.*kx + Ty.*ky)./kzs; 
   IR = (abs(Rx).^2 + abs(Ry).^2 + abs(Rz).^2).* real(kzc./kzc(p)) * 100; 
   IT = (abs(Tx).^2 + abs(Ty).^2 + abs(Tz).^2).* real(kzs./kzc(p)) * 100; 
end 
 
%    Sum the efficiencies. 
 
%SUM=sum(IR+IT); 
 
%       Form the output matrix 
 
%ANS=[I Ry Ty]; 
ANS=[Ry(p)]; 
 
%fprintf('\n       Sum of efficiencies = %g %%\n',SUM) 
%fprintf('       Elapsed time is %g seconds\n\n\n',etime(clock,t0)) 

B.3.9 pwr_surf.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This program calculates the percent of the power into 
% each mode 
% 
 
global lr h nf ns nc KX depth ngrat 
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% The poynting vector is calculated at the cover and  
% substrate boundaries. 
 
mlayer_in 
ii=-(NumOrds-1)/2:1:(NumOrds-1)/2; 
p=(NumOrds-1)/2+1; 
  
for jj=1:length(KX1) 
 KX=KX1(jj); %get the parameters for each point 
    depth(1)=d(jj); 
 jj; 
 beta0=ur(jj)+j*ui(jj)/1000; 
 f(jj)=abs(1/mlayer(beta0)); 
  
 rt=mlayer2(beta0); %this function calculates the R & T 
 R=rt(:,1); 
 T=rt(:,2); 
 R(p)=0;  % throw out non-diffracted orders 
 T(p)=0; 
  
 k1z=rt(:,3); 
 k4z=rt(:,4); 
 kx=real(rt(:,5)); 
  
 II=find(abs(kx)>ko*nc);  %find which orders are propagating 
 JJ=find(abs(kx)>ko*ns); 
 II1=find(abs(kx)<ko*nc); 
 JJ1=find(abs(kx)<ko*ns)-p; 
 [aa,I]=sort(abs(JJ1)); 
 JJ1=JJ1(I)+p; 
  
% R(p)=0; 
% T(p)=0; 
 R(II)=zeros(size(II)); 
 T(JJ)=zeros(size(JJ)); 
  
  
%calculate the poynting vectors 
 poyntr=abs(R).^2.*real(k1z); 
 poyntt=abs(T).^2.*real(k4z);  
  
%normalize the poynting vectors to sum to 1  
 percr=poyntr./(sum(poyntr)+sum(poyntt)); 
 perct=poyntt./(sum(poyntr)+sum(poyntt));  
  
 R1(jj)=percr(II1(1)); 
 T1(jj)=perct(JJ1(1)); 
 if length(II1)>1  %if the second order exist 
  R2(jj)=perct(II1(2)); 
 else 
  R2(jj)=0; 
 end 
  
 if length(JJ1)>2  %if the second order exist 
  T3(jj)=perct(JJ1(3)); 
  T2(jj)=perct(JJ1(2));   
 elseif length(JJ1)>1 
  T3(jj)=0; 
  T2(jj)=perct(JJ1(2)); 
 else 
  T3(jj)=0; 
  T2(jj)=0;  
 end 
end 
 
if max(f)>1e-3 
 'There is an error' 
 'f > 1e-3' 
 II=find(f>1e-3) 
end  
 
clear JJ II II1 JJ1 poyntr poyntt k1z k4z percr perct R T sz jj beta0 
clear ans rt phi0 psi theta0 
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Appendix C 

C List of Components 

 This appendix includes most of the optics and components used in our 

recording assembly.  Some of the mounts for the optics are also included.  Not 

included are posts, post holders and bases used to hold the optics on the table. 

 

C.1 COHERENT INNOVA 306C Argon Laser 
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Multiline 

Visible 

Single-line 488.0nm, 

TEM00 

Single-line 514.5nm, 

TEM00 

Output Power (W) 6 1.8 2.4 

Standard Single-line Power Specifications 

 
Argon Wavelength (nm) 1090 528.7 501.7 496.5476.5472.7465.8457.9454.5333.6-363.8 351.1363.8

TEM00 Output Power (W) 0.07 0.42 0.48 0.72 0.72 0.24 0.18 0.42 0.14 0.5 0.17 0.17

Optional Single-line Power Specifications 

Minimum Tube Discharge Current 

Maximum 

Tube 

Discharge 

Current High Field Low Field 

50 Amps 20 Amps 15 Amps 

Maximum/Minimum tube Current 

 
Long-Term Power Stability 

  30 Min. Period 8 Hour Period 

Light Regulation Mode     

With PowerTrack(1) ± 0.5% ± 1.0% 

Without PowerTrack(2) ± 0.5% N/A 

Current Regulation Mode     

With PowerTrack(1) ± 1.0% ± 1.0% 

Without PowerTrack(2) ± 2.0% N/A 

Beam Pointing Stability
(2)

 

Angle < 5 µrad/°C change in air or water temperature 

Offset < 5 µm/°C change in air or water temperature 

Optical RMS Noise
(3)

 

All models 0.20% 
Notes: 
(1)   After fifteen minute warm-up 
(2)   After one hour warm-up 
(3)   Measured with a 10 Hz to 2 MHz photo diode at 514.5 nm 
Power Stability, Beam Pointing Stability and Noise Specifications 

 

Characteristic 

TEM00 Beam Measurement 

@ 514.5 nm 
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Beam Diameter 
@ 1/e2 points at output mirror 1.5 mm 
Virtual Beam Waist Location 
(measured from the output mirror 
towards the high reflector) 1.2 m 
Beam Divergence 
(full angle) 0.5 mrad 
Cavity Length 
     Single-line 
     Multiline 

1.16 m 
1.14 m 

Beam Parameters 

C.2 Newport 845HP Electronic Shutter System 

  
 
Specifications 
Shutter  

Aperture  5.6 mm  

Height  46.9 mm  

Maximum Optical Power  5 W CW  

Cable  2.44 m (8 ft) terminated in a 4-pin DIN connector  

Electrical Input  Positive or negative pulse with 5-30 V amplitude into 13 Ω  

Dimensions [in. (mm)]  2.25 x 1.35 x 1.14 (57.2 x 34.3 x 29)  

Controller  

Shutter Response Time  <3 msec  

Exposure Duration  10 msec–990 sec  

Timing Accuracy  0.05% ± 10 µsec  

Maximum Repetition Rate  10 Hz  

Operating Modes  TIME:  Timed shutter opening  

Operating Modes  MANUAL:  Open and close shutter independent of time setting  

Operating Modes  START:  Initiates time or manual exposure  

Operating Modes  RESET:  Closes shutter  

Operating Modes  DELAY:  Optional 10 sec delay before shutter opening  

Pushbutton Cable [ft (m)]  8 (2.44)  

Power Requirements  115 VAC at 100 mA or 230 VAC at 50 mA  

Dimensions [in. (mm)]  3.25 x 6.00 x 6.25 (82.6 x 152.4 x 158.8)  
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C.3 Newport 10RP02-08 Quartz λ/2 Plate @ 354.7 nm  

             

 
 
  Dimension (mm)  

Model  øA  øB  C  

10RP  25.4  15.0  9.7  

 
  
Specifications 
Material  Quartz, schlieren grade  

Construction  Two plates, air spaced  

Retardation  λ/4 or λ/2  

Retardation Accuracy  ±λ/300  

Wavefront Distortion  ≤λ/10 at 632.8 nm over the full aperture  

Surface Quality  10-5 scratch-dig  

Wedge  <1 arc sec  

Diameter Tolerance  +0/-0.076 mm  

Inside Diameter Tolerance  +0.25/-0 mm  

Thickness Tolerance  +0/-0.25 mm  

Antireflection Coating  Laser Line V-coating, R <0.25%  

Cleaning  
Non-abrasive method, acetone or isopropyl alcohol 
on lens tissue recommended, caution: fragile, thin optic  

Damage Threshold  2 MW/cm2 CW, 2 J/cm2 with 10 nsec pulses, typical  
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C.4 Newport RSP-1T Rotation Stage 

 
 

  Thread  Dimension [in. (mm)]  Thread  

Model  A  B  C  D  E  F  G  H  J  K  L  M  N  P  Q  R  

RSP-1T  8-32  1/4-20  1.063-20   2.5 2.0 0.25 1.25 0.56 0.50 1.07 2.18 1.375 1.01 0.875  0.755 8-32   

 
Specifications 
  RSP-1, RSP-1T  

Rotation per knob turn  60°  

Sensitivity (arc min)  4  

Load Capacity [lb (N)]  10 (44.5)  

Maximum Off-Axis Load (horiz.) [in-lb (Nm)]  35 (4)  

Maximum Drive Torque [in-lb (Nm)]  10 (1.2)  

Runout (radial and axial) [in. (µm)]  <0.001 (25)  
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C.5 Newport 900 3-Axis Spatial Filter 

 
 
  Thread  Dimension [in. (mm)]  

Model (Metric)  A  B  

900 (M-900)  1/4-20 (M6)  25.4 (25.0)  

 
 

 

Specifications 

  
Travel Range 

(mm)  

Resolution 

(µm)  

X axis  13  <2  

Y axis  13  <2 µm  

Z axis, optical  13  <2 mm  
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C.6 Newport M-10X Objective Lens 

 
 

Model  Magnification  

Numerical 

Aperture 

(NA)  

Focal 

Length 

(mm)  

Working 

Distance 

(mm)  

Clear 

Aperture 

(mm)  

M-
10X  

10x  0.25  16.5  5.5  7.5  

 
 

C.7 Newport 900PH-5 5 micron pinhole 

 

 
Specifications 
Material  Molybdenum  

Outside Diameter  9.525 ±0.125 mm  

Thickness  15.24 µm (13 µm for 1 µm aperture)  

Mounting Thread  0.875-20 (910PH Series)  

Damage Threshold  75 MW/cm2 CW, 700 mJ/cm2 with 10 nsec pulses, typical  

Aperture Diameter (µm) 5 ±0.75  
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C.8 Melles Griot 03 PBS 127 Polarizing Beamsplitter Cube 

 
Specifications:  

Dimension: 25.4 ± 0.3 mm 

Material UV grade synthetic fused silica 

Wavelength (nm) 351 

Principal Transmittance >90% for p polariztion 

Principal Reflectance >95% for s polariztion 

Surface Quality 20-10 scratch and dig 

Transmitted Wavefront Distortion <λ/2 at 632.8 nm 

Entrance/Exit Face Flatness <λ/8 at 632.8 nm 

Beam Deviation <5 arc minutes 

Transmission (straight through) 46% 

Transmission (polarizer pair) 41% 

Extinction Ratio 0.05 

Coating 
Laser-line multilayer antireflector with R 
<0.2 
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C.9  Newport CH-1 Beamsplitter Cube Mount 
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C.10 Newport SBX070-AR.10 Biconvex Lens 

 

     
 

Model  Diameter 

(mm)  

EFL 

(mm)  
f/#  

BFL, FFL 

(mm)  

P1 

(mm)  

P2 

(mm)  

Tc 

(mm)  

R 

(mm)  

SBX070  50.8  1000  19.7  988.73  1.27 -1.27 3.703 917.459 

 
Specifications 
Focal Length at 546.1 nm  ±1%  

Material  UV grade fused silica  

Wavelength  195–2100 nm, uncoated  

Surface Accuracy  
≤3 fringes (1.5λ) power, 1/4 fringe (λ/8) irregularity 
at 546.1 nm over the clear aperture  

Clear Aperture  ≥central 90% of diameter  

Surface Quality  40-20 scratch-dig  

Centration, Spherical Lenses  ≤3 arc min  

Diameter Tolerance  +0/-0.1 mm  

Center Thickness (Tc) 
Tolerance  

±0.1 mm  

Edge Thickness (Te)  3.0 mm, Nominal Value  

Chamfers  0–0.8 mm face width x 45° ±15°, typical  

Antireflection Coating  
AR.10, AR.14, AR.16, AR.18: broadband, multilayer antireflection coating, Ravg 
<0.5% 
AR.33: laser line, multilayer V-coat, Rmax <0.25%  

Durability  MIL-C-675C, moderate abrasion  

Cleaning  
Non-abrasive method, acetone or isopropyl alcohol 
on lens tissue recommended  

Damage Threshold  
AR.10: 100 W/cm2 CW, 1 J/cm2 with 10 nsec pulses, typical 
Other AR coated: 100 W/cm2 CW, 2 J/cm2 with 10 nsec pulses, typical  
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C.11 Newport LH-2 Lens Mount 

 
 
 Thread  Diameter [in. (mm)]  Dimension [in. (mm)]  

Model  A  B MIN.  C  D  E  F  G  

LH-2  2.063-20  2.008 (51.0)  1.937 (49.2)  1.690 (42.9)  1.500 (38.1)  1.500 (38.1)  1.250 (31.8)  

  H  I  J  K  L  M  N  

 3.000 (76.2)  2.407 (61.1)  0.500 (12.7)  0.250 (6.4)  0.500 (12.7)  0.250 (6.4)  0.127 (3.2)  

C.12 Newport 605-4 Precision Gimbal Mount 

 
 
Specifications 
  

  
605-4  

Coarse/Fine Range (each axis)  360°/10°  

Sensitivity with AJS Adjustment Screws (arc sec)  4  

Sensitivity with DM-13 Differential Micrometers (arc sec)  0.3  

Vernier Graduations (arc min)  15  

Orthogonality (arc min)  1  
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C.13 Newport Broadband Metallic Mirrors 20D10 

 

 
 
 
Substrate 

Number  

Diameter 

[in. (mm)]  

Thickness 

[in. (mm)]  
Material 

Surface 

Flatness  

Surface 

Quality  

20D10  2.0 (50.8)  0.5 (12.7)  Pyrex®  λ/5  20-10  

 
Specifications 

0.5 (12.7)–4.0 (101.6)  +0/-0.13 mm  

6.0 (152.4) & 8.0 (203.2)  +0/-0.25 mm  

Elliptical Minor Axis Tolerance  +0/-0.18 mm  
Diameter [in. (mm)]  

Elliptical Major Axis Tolerance  +0/-0.25 mm  

0.5 (12.7)–4.0 (101.6)  ±0.25 mm  

6.0 (152.4) & 8.0 (203.2)  ±0.38 mm  Thickness [in. (mm)]  

Elliptical  ±0.25 mm  

Clear Aperture  ≥central 80% of diameter  

0.5 (12.7) & 1.0 (25.4)  0.25–0.76 mm face width x 45° ±15°  

1.181 (30.0)–4.0 (101.6)  0.38–1.14 mm face width x 45° ±15°  

6.0 (152.4) & 8.0 (203.2)  0.51–1.52 mm face width x 45° ±15°  
Chamfers [in. (mm)]  

Elliptical  0.38–1.14 mm face width x 45° ±15°  

S2 Surface  Ground  

Durability  MIL-M-13508C  

Cleaning  
Non-abrasive method, acetone or isopropyl alcohol 
on lens tissue recommended 

Damage Threshold  
AL.2, 50 W/cm2 CW, 5 mJ/cm2 with 10 nsec pulses at 308 nm, typical 
ER.1, 100 W/cm2 CW, 10 mJ/cm2 with 10 nsec pulses at 532 nm, typical 
ER.2, 1000 W/cm2 CW, 1 J/cm2 with 10 nsec pulses at 1064 nm, typical  
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C.14 Melles Griot 02MPG 017/023 Round Flat Mirror with Enhanced 

Aluminum Coating 

 

 
Detailed Specifications:  
Diameter :  100  +0/-0.15 mm  
Thickness (t) :  19  ± 0.25 mm  
Flatness :  /10  
Surface Quality :  60-40  Scratch and Dig 
Clear Aperture :  90 mm  

Parallelism :  
3 arc minutes 
 

Material :  LEBG  
Standard Coating :  Protected Aluminum /011  
Wavelength :  450-750 nm  



 

 183

References 

 

[1] J. Strong, “The Johns Hopkins University and diffraction gratings,” J. Opt. 

Soc. Am., vol. 50, pp. 1148-1152, Dec. 1960,  quoting G. R. Harrison.  

[2]  P. R. Haugen, S. Rychnovsky, and A. Husain, “Optical interconnects for high 
speed computing,” Opt. Engr., vol. 25, pp. 1076-1084, Oct. 1986.  

[3] D. A. B. Miller, “Optics for low-energy communication inside digital 
processors: Quantum detectors, sources, and modulators as efficient 
impedance converters,”  Opt. Lett., vol. 14, pp. 146-148, Jan. 1989.  

[4] L. B. Aronson and L. Hesselink, “Photorefractive waveguide switches for 
optical interconnects,” Proc. SPIE, vol. 1212, pp. 304-314, 1990.  

[5] H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” The Bell 

System Technical Journal, vol. 49, pp. 1602-1608, Sept. 1970.  

[6] C. Zhao and R. Chen, “Performance consideration of three-dimensional 
optoelectronic interconnection for intra-multichip-module clock signal 
distribution,” Appl. Opt., vol. 36, pp. 2537-2544, Apr. 1997.  

[7] J. H. Harris, R. K. Winn, and D. G. Dalgoutte, “Theory and design of periodic 
couplers,” Appl Opt., vol. 11, pp. 2234-2241, Oct. 1972.  

[8] A. Katzir, A. C. Livanos, J. B. Shellan, and A. Yariv, “Chirped gratings in 
integrated optics,”  IEEE J. Quantum Electron., vol. 13, pp. 296-304, Apr. 
1977.  

[9] D. Heitmann and R. V. Pole, “Two-dimensional focusing holographic grating 
coupler,” Appl. Phys. Lett., vol. 37, pp. 585-587, Oct. 1980.  

[10] M. Li, J. Bengtsson, M. Hagberg, A. Larsson, and T. Suhura, “Off-plane 
computer-generated waveguide hologram,” IEEE J. Selected Topics in 

Quantum Electron., vol 2, pp. 226-235, June 1996.  

[11] M. Li, P. Modh, S. Kristjansson, A. Larsson, C. Silfvenius, and G. Landgren, 
“Demonstation of computer-generated waveguide hologram on InGa AsP-InP 

 



 

 184

 

waveguide for 1550-nm optical wavelength,” IEEE Phot. Lett., vol 9. pp. 958-
960, July 1997. 

[12] N. Streibl, R. Vokel, J. Schwider, P. Habel, and N. Lindlein, “Parallel 
optoelectronic interconnections with high packing density through a light-
guiding plate using grating couplers and field lenses,” Opt. Commun., vol 99, 
pp. 167-161, June 1993. 

[13] S. H. Song and S. D. Jung, “Back-board optical signal interconnection module 
using focusing grating coupler arrays,” U. S. Patent No. 5,469,518 assigned to 
Electronics and Telecommunications Research Institute, issued 21 Nov 1995. 

[14] I. Shariv, Y. Amitai, A. A. Friesem, “Compact holographic beam expander,” 
Opt. Lett., vol. 18, pp. 1268-1270, Aug. 1993. 

[15] R. Shechter, Y. Amitai, A. A. Friesem, “Compact Beam Expander with Linear 
Gratings,” Appl. Opt. OT, vol. 41, pp. 1236-1240, March 2002. 

[16] D L. Brundrett, T. K. Gaylord, E. N. Glytsis, “Polarizing mirror/absorber for 
visible wavelengths based on a silicon subwavelength grating: design and 
fabrication,” Appl. Opt., vol. 37, pp. 2534-2541, May 1998. 

[17] D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic 
dielectrics,” Appl. Phys. Lett., vol 42, pp. 492-494, 1983. 

[18] S. Aoyama and T. Yamashita, “Grating beam splitting polarizer using 
multilayer resist method,” Proc SPIE, vol. 1545, pp. 241-250, 1991. 

[19] E. N. Glytsis and T. K. Gaylord, “High-spatial-frequency binary multilevel 
stairstep gratings: polarization-selective mirrors and broadband antireflection 
surfaces,” Appl. Opt., vol 31, 4459-4470, 1992. 

[20] M. Schmitz, R. Brauer, and O. Bryngdahl, “Gratings in the resonance domain 
as polarizing beamsplitters,” Opt. Lett., vol 20, pp. 1830-1831, 1995.  

[21] R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, 
F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-
birefringent multilayer polarizing beamsplitter,” J. Opt. Soc. Am. A, vol. 14, 
pp. 1627-1636, 1997.  

[22] I. Koudela, M. Miler, M. Skalsky, “Holographic optical element converting 
the Gaussian laser beam into a more uniform one,” Proc. SPIE, vol. 2169, pp. 
84-88, 1984. 

 



 

 185

 

[23] M. Quintanilla and A. M. de Frutos, “Holographic filter that transforms a 
Gaussian into a uniform beam,” Appl. Opt., vol. 20, pp. 879-880, 1981. 

[24] C. Y. Han, Y. Ishii, and K. Murata, “Reshaping collimated laser beams with 
Gaussian profile to uniform profiles,” Appl. Opt., vol. 22, pp. 3644-3647, 
Nov. 1983. 

[25] F. S. Roux, “Intensity distribution transformation for rotationally symmetric 
beam shaping,” Opt. Engr., vol. 30, pp. 529-536, 1991. 

[26] C. C. Aleksoff, K. K. Ellis, and B. D. Neagle, “Holographic conversion of a 
Gaussian beam to a near-field uniform beam,” Opt. Engr., vol. 30, pp. 537-
543, 1991. 

[27] S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disk 
pickup device,” J. Lightwave Tech., vol. 4, pp. 913-918, July 1986. 

[28] S. Nishiwaki, J. Asada, and S. Uchida, “Optical head employing a concentric-
circular focusing grating coupler,” Appl. Opt., vol. 33, pp. 1819-1827, Apr. 
1994. 

[29] S. Nishiwaki, Y. Taketomi, S. Uchida, T. Tomita, and J. Asada, “Optical head 
apparatus including a waveguide layer with concentric or spiral periodic 
structure.” U. S. Patent No. 5,200,939 assigned to Matushida Electric 
Industrial Co., Ltd., issued 6 Apr. 1993. 

[30] H. Sunagawa, T. Suhara, and H. Nishihara, “Optical pickup apparatus for 
detecting and correcting focusing and tracking errors in detected recorded 
signals.” U. S. Patent No. 5,153,860 assigned to Fuji Photo Film Co., issued 6 
Oct. 1992. 

[31] N. Eriksson, M. Hagberg, and A. Larsson, “Highly directional grating 
outcouplers with tailorable radiation characteristics,” IEEE J. Quantum 

Electron., vol. 32, pp. 1038-1047, 6 June 1996. 

[32] S. Kristjansson, M. Li, N. Eriksson, K. Killius, and A. Larsson, “Circular 
grating coupled DBR laser with integrated focusing outcoupler,” IEEE 

Photon. Tech. Lett., vol. 9, pp. 416-418, Apr. 1997. 

[33] S. Ura, H. Sunagawa, T. Suhara, and H. Nishihara, “Focusing grating couplers 
for polarization detection,” J. Lightwave Tech., vol. 6, pp. 1028-1033, June 
1988. 

 



 

 186

 

[34] S. Ura, M. Shinohara, T. Suhara, and h. Nishihara, “Integrated-optic grating-
scale-displacement sensor using linearly focusing grating couplers,” IEEE 

Photon. Techn. Lett., vol. 6, pp. 239-241, Feb. 1994. 

[35] T. Suhara, T. Taniguchi, M. Uemukai, H. Nishihara, T. Hirata, and S. Iio, 
“Monolithic integrated-optic position/displacement sensor using waveguide 
gratings and QW-DFB laser,” IEEE Photon. Lett., vol. 7, pp. 1195-1197, Oct. 
1995. 

[36] T. Suhara, N. Nozaki, and H. Nishihara, “An integrated acoustooptic printer 
head,” in Proceedings of the Fourth European Conference on Integrated 

Optics, vol. 87, pp. 119-122, 1987. 

[37] O. Beyer, I. Nee, F. Havermeyer, and K. Buse, “Holographic recording of 
Bragg gratings for wavelength division multiplexing in doped and partially 
polymerized poly(methyl methacrylate),” Appl. Opt., vol 42, pp. 30-37, Jan. 
2003. 

[38] S. Breer and K. Buse, “Wavelength demultiplexing with volume phase 
holograms in photorefractive lithium niobate,” Appl. Phys. B, vol. 66, pp. 339-
345, 1998. 

[39] S. Breer, H. Vogt, I. Nee, and K. Buse, “Low-crosstalk WDM by Bragg 
diffraction from thermally fixed reflection holograms in lithium niobate,” 
Electron. Lett., vol. 34, pp. 2419-2421, 1999. 

[40] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in 
optical fibers by a transverse holographic method,” Opt. Lett., vol 14, pp. 823-
825, 1989. 

[41] N. Yoshimoto, S. Morino, M. Nakagawa, and K. Ichimura, “Holographic 
Bragg gratings in a photoresponsive cross-linked polymer-liquid-crystal 
composite,” Opt. Lett., vol. 27, pp. 182-184, 2002. 

[42] G. A. Rakuljic and V. Leyva, “Volume holographic narrow-band optical 
filter,” Opt. Lett., vol. 18, pp. 459-461, 1993. 

[43] V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume 
holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. 

Phys. Lett., vol. 65, pp. 1079-1081. 

[44] J. Freeze, Fabrication of high efficiency diffraction gratings in single-mode d-

fibers using a holographic beam interference approach, Masters  
 



 

 187

 

Thesis, Department of Electrical and Computer Engineering, Brigham Young 
University, 1991. 

[45]  B. S. Eastwood “Francesco Maria Grimaldi,” Dictionary of Scientific 

Biography, Gillispie, Charles. C. ed., 16 vols., vol 5. pp. 543-544, New York: 
Charles Scribner and Sons, 1972 

[46]  E. Hecht and A. Zajac, Optics, Addison Wesley, Reading, MA, 1975, pp. 329-
393. 

[47] E. G. Lowen and E. Popov, Diffraction Gratings and Applications, Marcel 
Dekker, New York, 1997, Chapter 3. 

[48]  E. G. Lowen and E. Popov, Diffraction Gratings and Applications, Marcel 
Dekker, New York, 1997, pp. 2-3. 

[49]  H.A. Kahlor, “Numerical evaluation of rayleigh hypothesis for analyzing 
scattering from corrugated gratings – TE polarization,” IEEE Trans. Antennas 

Propagat., vol. AP-24, pp. 884-889, Nov. 1976. 

[50]  R. Chu and J. A. Kong, “Modal theory of spatially periodic media,” IEEE 

Trans. Microwave Theory and Tech., vol. 25, pp. 18-24, Jan. 1997. 

[51]  K. Knop, “Rigorous diffraction theory for transmission phase gratings with 
deep rectangular grooves,” J. Opt. Soc. Amer., vol. 68, pp. 1206-1210, Sept. 
1978. 

[52]  L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. 
Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta, vol. 28, 
pp. 413-428, Mar. 1981. 

[53]  L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. 
Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. 

Acta, vol. 28, pp. 1087-1102, Aug. 1981. 

[54] L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. 
Andrewartha, “Highly conducting lamellar diffraction gratings,” Opt. Acta, 
vol. 28, pp. 1103-1106, Aug. 1981. 

[55] M. G. Moharam and T. K. Gaylord, “Coupled-wave analysis of reflection 
gratings,” Appl. Opt., vol. 20, pp. 240-244, 15 Jan 1981. 

 



 

 188

 

[56]  J. Chandezon, M.T. Dupuis, G. Cornet, and D. Maystre, “Multicoated 
gratings: A differential formalism applicable in the entire optical region,” J. 

Opt Soc. Amer., vol.72, pp. 839-846, July 1982. 

[57] P. Sheng, R.S. Stepleman, and P.N. Sanda, “Exact eigenfunctions for square-
wave gratings: Application to diffraction and surface-plasmon calculations,” 
Phys. Rev. B, vol 26, pp. 2907-2916, 15 Sept. 1982. 

[58] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-
relief gratings,” J. Opt. Soc. Amer., vol. 72, pp. 1385-1392, Oct. 1982. 

[59] M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave 
analysis of planar-grating diffraction,” J. Opt. Soc. Amer., vol. 73, pp. 1105-
1112, Sept. 1983. 

[60] T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical 
diffraction by gratings,” Proc. IEEE, vol. 73, pp. 894-938, May 1985. 

[61] E. N. Glystis and T. K. Gaylord, “Rigorous three-dimensional dielectric 
coupled-wave diffraction analysis of single and cascaded anisotropic 
gratings,” J. Opt. Soc. Amer. A, vol. 4, pp. 2061-2080, Nov. 1987. 

[62] M. K. Moaveni, “Application of finite differences to the analysis of diffraction 
gratings embedded in an inhomogeneous and lossy dielectric,” Int. J. 

Electron. (GB), vol. 61, pp. 465-476, Oct. 1986. 

[63] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of 
metallic surface relief gratings,”  J. Opt. Soc. Amer. A, vol. 3, pp. 1780-1787, 
Nov. 1986.” 

[64] M. K. Moaveni, A. A. Rizvi, and B. A. Kamran, “Plane-wave scattering by 
gratings of conducting cylinders embedded in an inhomogeneous and lossy 
dielectric,” J. Opt. Soc. Amer. A, vol. 5, pp. 832-842, June 1988. 

[65] M. K. Moaveni, “Plane wave diffraction by dielectric gratings finite-
difference formulation,” IEEE Trans. Antennas Propagat., vol. 37, pp. 1026-
1031, Aug. 1989. 

[66] S. D. Gedney and R. Mittra, “Analysis of the electromagnetic scattering by 
thick gratings using a combined FEM/MM solution,” IEEE Trans. Antennas 

Propagat., vol. 39, pp. 1605-1614, Nov. 1991. 

 



 

 189

 

[67] D. M. Pai and K. A. Awada, “Analysis of dielectric gratings of arbitrary 
profiles and thicknesses,” J. Opt. Soc. Amer. A, vol. 8, pp. 755-762, May 
1991. 

[68] S. D. Gedney, “A combined FEM/MoM approach to analyze the plane wave 
diffraction by arbitrary gratings,” ,” IEEE Trans. Microwave Theory and 

Tech., vol. 40, pp. 363-370, Feb. 1992. 

[69] L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, 
depth, and permittivity,” J. Opt. Soc. Amer. A. vol. 10, pp. 2581-2591, Dec. 
1993. 

[70] L. Li, “A modal analysis of lamellar diffraction gratings in conical 
mountings,” J. Mod. Opt.. vol. 40, pp. 553-573, Apr. 1993. 

[71] S. E. Sandstrom, G. Tayev, and R. Petit, “Lossy multistep lamellar gratings in 
conical diffraction mountings: An exact eigenfunction solution,” J. 

Electromagnetic Waves Appl., vol. 7, pp. 631-649, 1993. 

[72] G. Bao, D. C. Dobson, and J. A. Cox, “Mathematical studies in rigorous 
grating theory,” J. Opt. Soc. Amer. A. vol. 12, pp. 1029-1042, May. 1995. 

[73] C. Hafner, “Multiple multipole program computation of periodic structures,” 
J. Opt. Soc. Amer. A. vol. 12, pp. 1057-1067, May. 1993. 

[74] M. G. Moharam , D. A. Pommet, E. B. Grann, and T. K. Gaylord, 
“Formulation for the stable and efficient implementation of the rigorous 
coupled-wave analysis of binary gratings,” J. Opt. Soc. Amer. A. vol. 12, pp. 
1068-1076, May. 1995. 

[75] M. G. Moharam , D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable 
implementation of the rigorous coupled-wave analysis for surface-relief 
gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Amer. A. vol. 
12, pp. 1077-1086, May. 1995. 

[76] R. H. Morf, “Exponentially convergent and numerically efficient solution of 
Maxwell’s equations for lamellar gratings,” ,” J. Opt. Soc. Amer. A. vol. 12, 
pp. 1043-1056, May. 1995. 

[77] S. Peng and G. M. Morris, “Efficient implementation of rigorous coupled-
wave analysis for surface-relief gratings,” ,” J. Opt. Soc. Amer. A. vol. 12, pp. 
1087-1096, May. 1995. 

 



 

 190

 

[78] M. G. Moharam and T. K. Gaylord, “Diffraction characteristics of photoresist 
surface-relief gratings,” Appl. Opt., vol. 23, pp. 3214-3220, Sept. 1984. 

[79] M. G. Moharam, “Coupled-wave analysis of two-dimensional dielectric 
gratings,” Proc. IEEE, vol. 883, pp. 8-11, 1988.  

[80] H. Nishihara, M. Haruna and T. Suhara, Optical Integrated Circuits, McGraw 
Hill, New York, 1985, pp. 88-90. 

[81] J. Harris, R. K. Winn, and D. G. Dalgoutte, “Theory and design of periodic 
couplers, Appl. Opt., vol. 11, pp. 2234-2241, Oct. 1972.  

[82] S. M. Schultz, E. N. Glytsis, and T. Gaylord, “Design of a high-efficiency 
volume grating coupler for line focusing,” Appl. Opt., vol. 37, pp. 2278-2287. 
April 1998.  

[83] H. Tanaka, T. Kobayashi, T. Saitoh, Y. Suzuki and Shigeru Kawai, “Design 
Technique of Crossed Gratings for Beam Couplers in Large-Core Optical 
Fibers,” Jpn. J. Appl. Phys., vol. 41, pp. 4817–4820, July 2002  

[84] M. Oh, S. Ura, T. Suhara, and H. Nishihara, “Integrated-optic focal-spot 
intensity modulator using electrooptic polymer waveguide,” J. Lightwave 

Tech., vol. 12, pp. 1569-1576, Sept. 1994. 

[85] N. Eriksson, M. Hagberg, and A. Larsson, “Highly efficient grating-coupled 
surface emitters with single outcoupling elements,” IEEE Phot. Lett., vol. 7, 
pp. 1394-1396, 12 Dec 1995. 

[86] A. Alphones, “Double grating coupler on a grounded dielectric slab 
waveguide,” Opt. Commun., vol. 92, pp. 35-39, 15 Aug. 1992. 

[87] I. A. Avrutskii, A. S. Svakhin, V. A. Sychugov, and O. Parriaus,  “High –
efficiency single-order waveguide grating coupler,” Appl. Opt., vol. 15, pp. 
1446-1448, Dec. 1990. 

[88] J. C. Brazas, L. Li, and A. L Mckeon, “High-efficiency input coupling into 
optical waveguides using gratings with double-surface corrugation,” Appl. 

Opot., vol. 34, pp. 604-609, Feb. 1995. 

[89] M. Hagberg, N. Eriksson, and A. Larsson, “High efficiency surface emitting 
lasers using blazed grating outcouplers,” IEEE J. Quantum Electron., vol. 32, 
pp. 1596-1605, Sept 1996. 

 



 

 191

 

[90] T. Liao, S. Sheard, M. Li, J. Zhu, and P. Prewett, “High-efficiency focusing 
waveguide grating coupler with parrallelogramic groove profiles,” J. 

Lightwave Tech., vol. 15, pp. 1142-1148, July 1997. 

[91] M. Neviere, “The homogeneous problem,” in Electromagnetic Theory of 

Gratings (R. Petit, ed.), ch 5, pp. 123-157, Berlin: Springer-Verlag, 1980.  

[92] T. Tamir, S. T. Pengm and H. L. Bertoni, “Theory of periodic dielectric 
waveguides,” IEEE Trans. Microwave Theory Tech., vol. 73, pp. 894-938, 
1985.  

[93] T. Tamir, and S. T. Peng, “Analysis and design of grating couplers,” IEEE J. 

Quantum Electron., vol. 22, pp. 544-550, 1986. 

[94] G. Hadjicostas, J. Butler, G. Evans, N. Carlson, and R. Amantea, “A 
numerical investigation of wave interactions in dielectric waveguides with 
periodic surface corrugations,” IEEE J. Quantum Electron., vol. 26, pp. 893-
902, 1990. 

[95] T. Fujita, H. Nishihara and J. Kozoma: “Blazed grating Fresnel lenses 
fabricated by e-beam lithography,” Opt. Lett., vol. 7, pp. 578-580, 1982. 

[96] S. Ogata, M. Tada, and M. Yoneda: “Electron-beam writing system and its 
application to large and high density diffractive optical elements,” Appl. Opt., 
vol. 33, pp. 2032-2038, 1994. 

[97] T. Shiono and H. Ogawa: “Diffraction-limited blazed reflection diffractive 
microlenses for oblique incidence fabricated by electron-beam lithography,” 
Appl. Opt.,vol. 30, pp 3643-3549, 1983. 

[98] Y. Handa, T. Suhara, H. Nishihara, and J. Koyama, “Microgratings for high-
efficiency guided-beam deflection fabricated by electron-beam direct-writing 
techniques,” Appl. Opt., vol 19, pp. 2842-2847, 1980. 

[99] S. M. Shank, M. Skvarla, F. T. Chen, H. G. Craighead, P. Cook, R. Bussjager, 
F. Hass, and D. A. Hone, “Fabrication of multi-level phase gratings using 
focused ion beam milling and electron beam lithography,” Tech. Digest Series 
Opt. Soc. Am., vol 11, Diffractive Optics: Design Fabricatio , and 

Applications, Rochester, pp. 302-305, 1994. 

[100] G. R. Harrison, “Production of diffraction gratings: I. Development of the 
ruling art,” J. Opt. Soc. Amer., vol. 39, pp. 413-426, 1949. 

 



 

 192

 

[101] T. Harada, S. Moriyama, and T. Kita, “Mechanically ruled stigmatic concave 
gratings,” Jpn. J. Appl. Phys., vol 14, suppl. 14-1, pp. 174-179, 1974. 

[102] E. G. Loewen, R. S. Wiley, and G. Portas, “Large diffraction gratings ruling 
engine with nanometer digital control system,” SPIE, vol 815, pp. 88-95, 
1987. 

[103] R. Bartlett and P. C. Wildy: “Diffraction grating ruling engine with piezo-
electric drive,” J. Appl. Opt., vol. 14, pp. 1-3, 1975. 

[104] T. Kita and T. Harada: “Ruling engine using piezo electric device for large 
and high groove density gratings,” J. Appl. Opt., vol. 21, pp. 1399-1406, 1992. 

[105] K. Hill, B. Malo, F. Bilodeay, D. Johnson, and J. Albert, “Bragg gratings in 
monomode photosensitive optical fiber by UV exposure through a phase 
mask,” Appl. Phys. Lett., vol 62, pp. 1035-1037, 1993. 

[106] M. Okai, S. Tsuji, N. Chinone, and T. Harada, “Novel method to fabricate 
corrugation for a λ/4 shifted distributed feedback laser using a grating 
photomask,” Appl. Phys. Lett., vol 45, pp. 415-417, 1989. 

[107] J. M. Verdiell, T. L. Koch, D. M. Tennant, R. P. Gnall, K. Feder, M. G. 
Young, B. I. Miller, U. Koren, M. A. Newkirk, and B. Tell, “Single step 
contact printing of Bragg gratings using a conventional incoherent source and 
a phase mask: Application to multi-wavelength BBR lase array,” Proc. 6

th
 

Europ. Conf. Integr. Opt., P. Roth, ed., Neuchatel, 1993, pp. 4.8-4.9. 

[108] D. M. Tennant, K. F. Dreyer, K. Feder, R. P. Gnall, T. L. Koch, U. Koren, B. 
I. Miller, C. Vartuli, and M. G. Young, “Advances in near field holographic 
grating mask technology,” J. Vac. Sci. Technol. B, vol. 12, pp. 3689-3694, 
Nov/Dec 1996. 

[109] C. H. Lin, Z. H. Zhu, and Y. H. Lo, “New grating fabrication technology for 
optoelectronic devices: Cascated self-induced holography,” Appl. Phys. Lett., 
vol. 67, pp. 3072-3074, Nov 1995. 

[110] C. H. Lin, S. H. Zhu, Y. Qian, and Y. H. Lo, “Cascade Self-Induced 
Holography: A New Grating Fabrication Technology for DFB/DBR Lasers 
and WDM Laser Arrays,” IEE Journal of Quant. Electr., vol. 32, pp. 1752-
1759, Oct. 1996. 

[111] P. I. Jensen, and A. Sudbo, “Bragg gratings for 1.55 µm wavelength 
fabricated on semiconductor material by grating-period doubling using a 
phase mask,” IEEE Photon. Lett., vol. 7, pp. 783-785, July 1995. 

 



 

 193

 

[112] L. Mashev, and S. Tonchev, “Formation of holographic diffraction gratings in 
photoresist,” Appl. Phys A., vol 26, pp. 143-149, 1981. 

[113] L. Mashev and S. Tonchev, “Formation of blazed holographic gratings,” Appl. 

Phys. B, vol. 28, pp. 349-353, 1982. 

[114] G. Schmahl, “Holographically made diffraction gratings for the visible, UV, 
and soft X-ray region,” J. Spectr. Soc. Jpn., vol 23, suppl. 1, 3-11, 1974. 

[115] S. Johansson, L. E. Nilsson, K. Beidermann, and K. Klevby, “Holographic 
diffraction gratings with asymmetrical groove profiles,” Proc. Conf. Appl. Of 

Holography and Opt. Data Processing, Jerusalem, 1976. 

[116] S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta, 
vol. 29, pp. 1371-1381, 1982. 

[117] R. A. Bartolini “Characteristics of relief phase holograms recorded in 
photoresist,” Appl. Opt., vol. 13, pp. 129-139, 1974. 

[118] M. J. Beesley and J. G. Castledine, “The use of photoresist as holographic 
recording medium,” Appl. Opt., vol. 9, pp. 2720-2724, 1970. 

[119] P. Lehmann, “Theory of blazed holographic gratings,” J. Mod. Opt., vol. 36, 
pp. 1471-1487, 1989. 

[120] U. Unrau and R. Nietz, “Quick precision alignment of interferometric 
equipment,” J. Phys. E. Sci. Instrum., vol. 13, pp. 608-610, 1980. 

[121] L. Wosinski and M. Breidne, “Large holographic diffraction gratings made by 
multiple exposure technique,” Research in Optics, Tech. Report of The Royal 

Inst. of Technology, vol 210, pp. 10-11, Stockholm, 1988. 


	Theory, Design, and Fabrication of Diffractive Grating Coupler for Slab Waveguide
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Chapter 1  Introduction
	1.1 Diffraction Grating Applications
	1.1.1 Optical Interconnects
	1.1.2 Integrated Optical Devices
	1.1.3 Fiber Optical Communications

	1.2 Research Focus
	1.3 Thesis Overview

	Chapter 2  Diffraction Gratings
	2.1 Diffraction
	2.1.1 Diffraction Grating Specifications
	2.1.2 Types of Diffraction Gratings

	2.2 The Diffraction Equation
	2.3 K-Space Diagrams
	2.4 Example

	Chapter 3  Diffraction Grafting Analysis
	3.1 Theory of Rigorous Coupled Wave Analysis
	3.1.1 Geometry of Problem
	3.1.2 Electric Fields in Different Regions
	3.1.3 Fourier Expansion of Permittivity of Grating Region
	3.1.4 Coupled Wave Expression of Fields inside Grating
	3.1.5 Application of Boundary Conditions
	3.1.6 Total Electric Field in Each Region
	3.1.7 Coupled Wave Equations

	3.2 Solution Method for Rigorous Coupled Wave Equations
	3.2.1 State Space Description for nth Slab Grating
	3.2.2 Application of Boundary Conditions
	3.2.3 Matrix Solution for System of Equations

	3.3 Example Efficiency Calculations
	3.3.1 Binary Grating
	3.3.2 Blazed Grating
	3.3.3 Sinusoidal Grating

	3.4 Numerical Accuracy
	3.4.1 Number of Orders Retained in Analysis
	3.4.2 Number of Slices in Grating Representation


	Chapter 4 Grating Coupler Design
	4.1 Basic Structure
	4.2 Wavevector Analysis
	4.2.1 Input Coupling
	4.2.1.1 Effect of Grating Period
	4.2.1.2 Effect of Angle of Incidence

	4.2.2 Output Coupling
	4.2.2.1 Reciprocity with Input Coupling
	4.2.2.2 Effect of Grating Period

	4.2.3 Wavevector Design Method

	4.3 Efficiency Analysis for Grating Coupler
	4.3.1 Power Coupled Out of Waveguide
	4.3.2 Intensity Profile of Light Coupled Out of Waveguide
	4.3.3 Input Coupling Efficiency

	4.4 Numerical Method for Determining Radiation Decay Factor
	4.4.1 Solution Method
	4.5 Optimal Grating Efficiency Design Method
	4.5.1 Determine Optimal Radiation Decay Parameter
	4.5.2 Determine Optimal Grating Cha
	4.5.3 Validation of Numerical Results

	4.6 Summary of Grating Coupler Designs

	Chapter 5 Grating Fabrication Methods
	5.1 Photolithography
	5.2 E-Beam Lithography
	5.3 Mechanical
	5.4 Phase Masks
	5.5 Holography

	Chapter 6 Grating Coupler Fabrication
	6.1 Grating Coupler Fabrication Process
	6.1.1 Waveguide Formation
	6.1.2 Photoresist Application
	6.1.3 Grating Formation

	6.2 Holographic Recording Assembly
	6.2.1 Requirements of Assembly
	6.2.2 Description of Parts of Recording Assembly
	6.2.3 Holographic Assembly
	6.2.4 Further Possible Improvements

	6.3 Experiment to Determine Dosage for Recording Gratings in Photoresist
	6.3.1 Experimental Metric
	6.3.2 Experimental Results for Exposure Time


	Chapter 7 Grating Coupler Results
	7.1 Atomic Force Microscope Image of Fabricated Grating Coupler
	7.2 Measurement of Grating Period
	7.3 Results for Input Coupling Angle and Efficiency
	7.3.1 Effect of Excess Photoresist beneath Grating
	7.3.2 Measurement of Coupling Angle and Efficiency
	7.3.3 Effective Index at Coupling Angle
	7.3.4 Modes in the Coupler Structure

	7.4 Measurement of Output Coupling Performance
	7.4.1 Modes in the Bare Nitride Waveguide
	7.4.2 Measurement of Output Intensity Profile

	7.5 Discussion of Results

	Chapter 8 Conclusion
	8.1 Summary
	8.2 Future Work

	APPENDIX
	Appendix A. Fabrication Steps
	A.1 Slide Cleaning
	A.1.1 Piranha Etch
	A.1.2 SC1 Solution

	A.2 PECVD Procedures
	A.2.1 Silicon Nitride Deposition
	A.2.2 Silicon Dioxide Deposition

	A.3 Photoresist Application
	A.4 Exposure Procedures
	A.5 Developer Procedures
	A.6 RIE Procedures
	A.6.1 O2 plasma
	A.6.2 O2 and CF4 based plasma


	Appendix B. Code Documentation
	B.1 K-Space Analysis
	B.1.1 diffract.m

	B.2 Free Space Rigorous Coupled Wave Analysis
	B.2.1 Description
	B.2.2 Grating Description in MATLAB Implementation
	B.2.3 sr_in.m
	B.2.4 sr_rcwa.m

	B.3 Grating Coupler Analysis
	B.3.1 Description
	B.3.2 example.m
	B.3.3 mlayer_in.m
	B.3.4 temode.m
	B.3.5 te.m
	B.3.6 find_eff.m
	B.3.7 intfun.m
	B.3.8 mlayer.m
	B.3.9 pwr_surf.m


	Appendix C. List of Components
	C.1 COHERENT INNOVA 306C Argon Laser
	C.2 Newport 845HP Electronic Shutter System
	C.3 Newport 10RP02-08 Quartz λ/2 Plate @ 354.7 nm
	C.4 Newport RSP-1T Rotation Stage
	C.5 Newport 900 3-Axis Spatial Filter
	C.6 Newport M-10X Objective Lens
	C.7 Newport 900PH-5 5 micron pinhole
	C.8 Melles Griot 03 PBS 127 Polarizing Beamsplitter Cube
	C.9 Newport CH-1 Beamsplitter Cube Mount
	C.10 Newport SBX070-AR.10 Biconvex Lens
	C.11 Newport LH-2 Lens Mount
	C.12 Newport 605-4 Precision Gimbal Mount
	C.13 Newport Broadband Metallic Mirrors 20D10
	C.14 Melles Griot 02MPG 017/023 Round Flat Mirror with Enhanced


	References

