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 Theory-Driven Choice Models  
 

Tülin Erdem, Kannan Srinivasan, Wilfred Amaldoss, Patrick Bajari, Hai Che, Teck Ho, Wes 
Hutchinson, Michael Katz, Michael Keane, Robert Meyer,  and Peter Reiss. 

 
Abstract 

 
We explore issues in theory-driven choice modeling by focusing on partial-equilibrium models of 
dynamic structural demand with forward-looking decision-makers, full equilibrium models that 
integrate the supply side, integration of bounded rationality in dynamic structural models of choice 
and public policy implications of these models.  
Key Words: Dynamic Choice, Structural Modeling and Estimation, Heuristics and Biases 
 

There are at least three reasons to care about choice and decision making: (a) knowledge for 

its own sake (i.e., explaining choice processes); (b) the design of business strategy and tactics; and (c) 

the design of public policy.  The goal of the theory-driven approach is to generate more accurate and 

useful models of choice for all three purposes. 

There has been considerable debate about what constitutes a “theory-driven” or “structural” 

model.  The underlying distinction is worth exploring, if not obsessing over.  The question of 

whether an empirical model is “theory driven” versus “data driven” comes down to whether the 

econometric specification is derived from theory. Theory is valuable to the extent it imposes a priori 

restrictions (from economics or marketing) on the statistical relationships to be estimated.  Choice 

modelers have adopted three general approaches to developing theory-driven choice models.  One 

approach is to use the rational-actor model of economics, which assumes that decision makers 

maximize profits or utility, to derive decision rules for actors.  A second approach uses psychological 

decision-making theories to predict choice behavior. A somewhat less often used third approach is 

to take as given empirical regularities observed in other data (e.g., the tendency of decision makers to 

put excessive weight on low probability events).  

Reiss and Wolak (2002) define a structural model as “Any model that provides a behavioral 

interpretation for some or all of the parameters.”  Since this definition is a rather broad one, 

emphasizing the implications of this definition helps us to set some boundaries:  
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(1.)  Explicit specification:  The econometric specification builds on a stated theoretical model of 

choice and decision making and involves explicit specification of the underlying behavioral 

processes. 

(2.) Policy Invariance: The parameters estimated are invariant to policy changes (Lucas 1976). This 

is essential if the choice model is to be used for prediction or generating counterfactuals.  

  (3)       Structural vs. Reduced-form Modeling: There are at least two meanings of reduced form.  The 

classical meaning is that one uses a fully specified theoretical model to derive specific predictions for 

data relationships.  Data are then analyzed to see if they fit those relationships, without reference to 

the full model or system (for example, if lagged choices matter and one specifies a utility function 

with lagged purchases without specifying the process by which past choices affect current choices, 

this would be a reduced-form model in the classical sense).  A more recent, and somewhat more 

colloquial, use of the term is to refer to a data-driven approach under which one fits a purely 

statistical model (such as the negative binomial distribution (NBD) model) to data without first 

developing an underlying theoretical model (such as one based on random utility maximization).  

This paper surveys several of the leading issues in theory-driven modeling of choice.  In each 

area, we identify some of the leading contributions.  We focus is on five themes: 

(1)       Dynamic demand models with forward-looking agents.  Consumers often make forward-looking 

choices in dynamic settings. Ignoring such behavior can lead to misleading conclusions (Section I). 

(2)  Supply-side choices.  The supply side matters for two reasons.  One, it is of interest in itself.  

Two, misspecification of the supply side can contaminate the estimates of demand-side parameters.  

(Section II). 

(3)     Boundedly rational decision-makers.  Boundedly rational decision-makers may employ simplifying 

decision heuristics.  Provided that these heuristics are stable, it may be possible to integrate these 

into current models (Section III). 

(4)     Computation costs. Theory-driven models may provide benefits in terms of improved parameter 

estimates and behavioral predictions, but they also impose a high computational cost. Recent work 

in structural estimation aims to decrease this cost (Section IV). 
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 (5)  Public policy.  We explore the role of choice models in public policy.  We identify some of the 

central policy issues driven by both traditional economic approaches to choice modeling and by 

more recent behavioral approaches (Section V).  

The paper closes with a very brief look toward future issues. 

I.  THE DEMAND SIDE: DYNAMIC STRUCTURAL MODELS OF CHOICE WITH FORWARD-
LOOKING AGENTS 

 In this paper, we focus on dynamic structural models of choice with forward-looking 

decision-makers. These models specify the consumer’s utility function with the explicit recognition 

of inter-temporal dynamics. Several papers in marketing and economics have investigated consumer 

learning about quality of alternative brands of an experience good. In these models, consumers are 

forward-looking in that they take into account how information from today’s purchases affects the 

expected future utility of subsequent purchases (e.g., Erdem and Keane 1996, Anand and Shachar 

2002, Ackerberg 2003). Several of these papers also incorporate advertising as a source of 

information and investigate the role it plays in consumer choices. Finally, Mehta, Rajiv and Srinivsan 

(2004) incorporated consumer forgetting into models strategic product trial behavior. 

Several papers have modeled consumer search utilizing dynamic structural choice models. 

Mehta, Rajiv and Srinivasan (2003) estimate a dynamic structural consideration set formation and 

brand choice model when (price) search is costly. One of their main findings is that while in-store 

display activities and feature ads do not influence consumers’ quality perceptions of the brands, they 

increase the probability of the brands being considered by reducing search costs. Erdem, Keane, ü 

and Strebel (2004) investigate consumer information search and choice behavior in high-tech 

durables. They estimate a dynamic structural model where consumers make sequential decisions 

about how much information to gather prior to making a PC purchase.  

 Finally, consumers’ may not only have quality expectations and update these based on new 

information but they may form price expectations as well. In frequently purchased product 
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categories, prices often fluctuate around a mean due price promotions (e.g., price cut or couponing). 

Gönül and Srinivasan (1996) examine the impact of consumer expectations of availability of 

coupons in the future on consumer choice behavior. Sun, Neslin and Srinivasan (2003) compare a 

structural model with expectations about future promotions and a number of reduced-form models. 

The comparisons reveal that the reduced form models that ignore such forward-looking behavior 

substantially overestimate switching probabilities.  Erdem, Imai and Keane (2003) and Hendel and 

Nevo (2003) model explicitly future price expectations and investigate the impact on when, what 

and how much to buy. Both papers conclude that future price expectations have a large impact on 

choices.  

         Price expectations play an important role in consumer choice in durables, especially high-tech 

consumer durables, as well. A key feature of high-tech durables markets is the tendency for prices to 

fall quickly over time, creating an incentive to delay purchases. Melinkov (2000) models consumer 

behavior in this context using data from the computer printer market. Song and Chintagunta (2003) 

analyze the impact of price expectations on the diffusion patterns of new high-technology products 

using aggregate data. Erdem, Keane, Öncü and Strebel (2004) model information search, purchase 

incidence and PC choice when consumers both learn about quality and form expectations about 

price drops. A key finding about price expectations in their paper is that estimates of dynamic price 

elasticities of demand exceed estimates that ignore the expectations effect by roughly 50%. 

There is ample empirical evidence that decision-makers can be forward-looking and ignoring 

such behavior when present may lead to misleading conclusions. However, there are also many 

challenges ahead. First, these models take the supply side of the market as given (see Section II), 

which may lead to “endogeneity” issues (since firm-consumer interactions are not modeled). 

Furthermore, possible correlations between observed (e.g., price) and unobserved variables (e.g., 

consumer inventory) in the demand equation may lead to omitted variables problem (this is so even 
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if prices are exogenous to consumers but this problem is also often referred to as endogeneity 

problem as well).   For example, Erdem, Imai and Keane (2003) show that when consumer 

stockpiling and consumer future price expectations are present, models that ignore this type of 

dynamics create “endogeneity” problems since inventories are correlated with prices and ignoring 

inventories create an omitted variables problem (and this is true even if in this context prices are 

exogenous to individual consumers, for which Erdem, Imai and Keane (2003) find empirical 

evidence).  

 Second, most of the papers in this area assume decision-makers to have rational 

expectations for tractability reasons. However, the objective functions can be specified in a way to 

allow for boundedly rational behavior (Section III discusses some possibilities in that context). In 

these settings, empirical identification will be a challenge. One way to alleviate identification 

problems would be to use multiple data sources (such as transactional data on purchases along with 

data on decision-makers’ expectations (e.g., Erdem, Keane, Öncü and Strebel 2004)). This would 

enable researchers to relax some of the restrictive behavioral assumptions commonly employed in 

these models. Finally, behaviorally richer models pose computational challenges. Recent work on 

two-step methods (see Section IV) can alleviate some of these challenges. 

II.   THE SUPPLY SIDE: STRUCTURAL MODELS OF FIRM CHOICES 

There are two broad reasons to consider supply-side choice (firms’ decisions).  First reason 

is to understand the nature of interactions among firms and competition. Second, ignoring the 

supply side may lead to biased demand parameter estimates due to potential endogeneity problems. 

Suppose, for example, that a supplier targets consumers based on their likely willingness to pay, with 

the result that consumers with higher demands are charged higher prices.  An econometrician using 

cross-sectional data and assuming that prices randomly vary might well fit an upward sloping 

demand curve to the resulting purchase data.  The problem is that, although prices are exogenous 
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from the perspective of any given consumer, they are endogenous from the perspective of the 

overall system of supply and demand. 

Given sufficient data, researchers ideally would specify a complete system of supply and 

demand equations.  Often, however, marketing researchers lack important information about the 

supply side, such as costs or variables that affect costs. Industrial organization economists have 

developed strategies for deriving estimates of costs from the first-order conditions for profit 

maximization.  To illustrate the logic of this process, consider how one might recover a monopolist's 

unknown constant marginal cost of production.  Suppose that the firm sets a single, uniform price, 

p.  The well-known Lerner equation implies that a profit-maximizing monopolist will operate at a 

point where 
η

1−
=

−
p
cp , where η is the elasticity of demand and c is the marginal cost.  Thus, one 

can estimate c if one has data on p and an estimate of η. 

This simple monopoly example suggests how we might proceed in more complicated 

competitive marketing settings.  Two notes of caution are in order, however.  First, if one is using 

this approach to advise managers, why not approach the firm directly to get access to cost data?  If 

the answer is that the firm lacks the data, then one must question whether the estimates derived by 

the technique above are meaningful.  The answer to that question will depend on how the firm sets 

its prices in the absence of such data.  Second, there are many complications that arise in actual 

applications, not the least of which are that firms: (1) sell multiple related products; (2) face strategic 

competitors; (3) are part of vertical distribution channels; (4) face inventory costs and demand and 

supply uncertainty; (5) may bundle or otherwise change product attributes; (6) make dynamic 

production and pricing decisions; and (7) may have reasons to change prices infrequently or 

irregularly.  Each of these issues poses important conceptual and practical issues that have received 

recent attention in the marketing and industrial organization literatures. 
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One important initial issue is how to specify the objectives of retailers and manufacturers.  

While the assumption of profit maximizing behavior is fairly standard, there is less agreement about 

how to model the frequency with which firms change prices and promote, the extent to which prices 

should vary across regions and products (e.g., Chintagunta et al. (2003) and Draganska and Jain 

(2004)) and expectations about competitors' objectives. Regarding the latter, there are important 

issues about how to model interrelations between the profitabilities of different products in a line 

and across product families. Sudhir (2001) is one example of a study that considers alternative 

objectives (e.g., category profit maximization, brand profit maximization, and choosing a constant 

markup). 

A second area of concern is modeling the rich nature of vertical relationships between 

manufacturers, wholesalers and retailers.  Berto Vilas-Boas (2002) and Vilas-Boas and Zhao (2004) 

use independent manufacturer-dealer models to recover simultaneously  estimates of manufacturers' 

and retailers' unobserved costs and competitive pricing behavior. Due to data limitations, analysis of 

more complex contracts between manufacturers and dealers (e.g., slotting allowances, nonlinear 

tariffs) await development. Furthermore, most empirical marketing and economic models assume 

product offerings and product attributes are fixed, including retailer attributes.  Such assumptions 

are likely reasonable assumptions in the short run.  Some progress has been made in modeling 

longer run changes in location or quality (e.g., Reiss, 1996) but much remains to be done (Berry and 

Reiss, 2004).  

To date, there has been less progress in modeling dynamic supply issues, largely because 

dynamic models raise complex game-theoretic, learning, and channel issues. Nevertheless, progress 

continues to be made. Che, Seetharaman and Sudhir (2004) study firms' intertemporal pricing 

behavior when consumer choices are state-dependent. Aguirregabiria (1999) studies the interaction 
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of inventory and price decisions in retailing firms, and allows for stock-out occasions to influence 

prices. 

The presence of strategic competitors requires changing the first-order condition above to 

take into account firms' equilibrium predictions of competitor behavior. The most common 

approach is to assume that firms are Bertrand-Nash competitors.  There is, however, evidence 

suggesting this may not be a reasonable assumption (e.g., McKelvey and Palfrey 1995).  This has led 

some to explore alternative game-theoretic models, such as Stackleberg, perfectly collusive, and 

Cournot-Nash.  Previous work has attempted to estimate so-called conjectural variation parameters 

and interpret them as behavioral parameters but Reiss and Wolak (2003) discuss problems with such 

interpretations. These problems include that: equilibrium outcomes do not necessarily reveal what 

firms would do in response to competitors’ actions;  most estimated parameters do not have an 

obvious behavioral interpretation, and conjectural parameters, like costs estimates, can be very 

sensitive to minor changes in functional form and distributional assumptions.  

III.   INCORPORATING BOUNDED RATIONALITY IN STRUCTURAL MODELS OF CHOICE 

 Dynamic structural models of choice assume a high degree of consumer sophistication; 

consumers are assumed to plan over long horizons, have stable preference structures, and, most 

importantly, make decisions in the short run that optimize long-run utility.  Research in economics, 

marketing and psychology, however, has long offered a quite different view of how decisions are 

actually made; consumers more often appear myopic, inconsistent, and make decisions that strongly 

depart from those prescribed by theories of rational choice.  One of the major future challenges of 

structural models is develop forms that offer a more realistic portrait of how decisions are actually 

made. For example, one assumption of traditional dynamic-structural models that is often called 

into question is that consumers are efficient forward planners.  That is, they consider the 

consequences of their current decisions over long time horizons, and take these consequences 
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optimally into account when making short-run decisions.   There is extensive evidence from the 

study of both games and dynamic decision problems, however, that not only do people fail to 

engage in the backward-inductive reasoning required by many multi-period optimizations, but that 

forward-reasoning is also often quite limited—typically not more than one or two periods ahead 

(e.g., Camerer et. al. 2004; Meyer and Shi 1995).  Fortunately, this is the easiest limitation to capture 

in dynamic models; by optimizing over increasingly limited horizons analysts can let the data decide 

the forward-planning ability that appears to best describes consumers’ and firms’ choices.  

A closely-related limitation is that dynamic models commonly adopt an extremely simple 

assumption about how consumers discount the future when making decisions over time—that of 

constant discounting. Empirical research, however, has consistently shown that intuitive discounting 

is better captured by a quasi-hyperbolic discount function of the form 2 3{1, , , , ....}β βδ βδ βδ where 

1β <  (e.g., Laibson (1997; Lowenstein and Prelec 1992).  This discounting function has been shown 

to account for behavior such as procrastination, addiction and job search (see O’Donoghue and 

Rabin 1999).   

A third area of behavioral concern is the treatment of learning.  Typically, decision makers 

are assumed to take in observations about the world and update beliefs by applying Bayes’ rule.  An 

active area of research in both economics and psychology has been to develop models that offer a 

more accurate description of how individuals actually learn in complex dynamic environments and 

games.  Developments in this area have been extensive, and include the Experience-Weighted 

attraction (EWA) learning model of learning proposed in economics by Camerer and Ho (1999),  

and cognitive-process models of learning proposed in psychology by (e.g., Busemeyer and Myung 

1992 and Kruschke 1992).  One important insight that has emerged form this work is the finding 

that highly-sophisticated patterns of behavior can emerge from quite simple assumptions about how 

people learn.  For example, March (1996) reports simulation results where the dynamics of learning 
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(based on several classic models of animal learning) induce risk averse and loss averse behavior, 

despite the assumption of a linear utility function. 

A final area of concern is the near-universal assumption of dynamic structural models is that 

utility functions are contextually and temporally invariant.  That is, the utility a consumer realizes 

from a good is modeled as being independent of the features of the set from which it was chosen 

and the historical sequence of choices that preceded it. There is ample empirical evidence, however, 

that this assumption is commonly violated, such as the tendency of decision makers tend to evaluate 

options relative to points of reference, and strongly prefer avoiding losses to acquiring gains 

(Kahneman and Tverksy, 1979).   

Although a large number of proposals for capturing such effects in static choice models have 

appeared (for example, representing attribute values as positive and negative departures from 

choice-set means or historical norms; Kahneman and Tversky 1979; Tversky and Simonson 1993), 

less work has focused on how best to incorporate such effects in dynamic models  One barrier has 

been computational complexity; estimating a model that allows preferences to be contingent on the 

features of current and previous choice sets requires optimization over an extremely large state 

space, something that may be infeasible in most applied problems. Second, even if estimation is 

possible, little is known about the degree to which classic context effects extend to tasks where 

consumers have the goal to maximize the utility gained from a series of decisions rather than just one.  

It is unlikely, for example, that the same aversion for extreme tradeoffs would apply to settings 

where decision makers anticipate making a series of such choices (hence smoothing risk) and can 

learn from their experienced utility. 

V.  REDUCING THE COMPUTATIONAL BURDEN OF STRUCTURAL ESTIMATION 

Estimating structural models can be computationally difficult.  For example, dynamic 

discrete choice models are commonly estimated using the nested fixed point algorithm (see Rust 
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1994). This requires solving a dynamic programming problem (DP) thousands of times during 

estimation and numerically maximizing a nonlinear likelihood function. To make estimation practical 

in all but the most simple models, it is therefore necessary to use rather fast approximate solutions 

to the DP problem rather than using exact solutions. Geweke and Keane (2001) develop methods 

for quasi-structural estimation in which structural parameters can be estimated without fully actually 

solving the DP problem. The idea is to treat the future component of agents value functions as 

flexible reduced-form functions that can be estimated jointly with the structural parameters of 

current payoff functions. Recently, Houser, Keane and McCabe (2004) applied this approach to 

experimental data to learn about how subjects form expectations. 

Estimation problems in equilibrium models can be at least as computationally challenging. In 

the reminder of this section, we discuss some recent research that proposes computationally simple 

estimators for structural models including auctions, demand in differentiated product markets, 

dynamic discrete choice and dynamic games.  The estimators we discuss use a two-step approach.  

In the first step, one flexibly estimates a reduced form for agents' behavior consistent with the 

underlying structural model.  In the second step, the one recovers the structural parameters, by 

plugging the first-step estimates into the model.  A simple auction game illustrates the approach: 

 Consider a first-price sealed-bid auction with i=1,...,N bidders, who have independent 

private values. Bidder i's valuation, vi is private information and is an i.i.d. draw from a distribution 

F.  Let π(bi;vi) denote bidder i's expected utility when her bid is bi.  If bidder i is risk neutral, then 

π(bi;vi) = (vi-bi)G(bi)N-1                              (1) 

In (1), G(b) denotes the equilibrium distribution of bids.  The term G(bi)N-1 is the probability that i 

wins the auction, i.e. that the other N-1 bidders bid less than bi.  Conditional on winning, i's utility is 
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her valuation minus her bid, vi−bi.  Bidder i's expected utility is therefore her surplus conditional on 

winning, vi-bi, times the probability that i wins, G(bi)N-1. 

    The first order condition with respect to bi is: 

- G(bi)N-1+(N-1)(vi- bi)G(bi)N-2g(bi) = 0 ,   (2) 
or 

)1)((
)(
−

+=
Nbg
bGbv

i

i
ii .                         (3) 

In a structural auction model, the goal of estimation is to learn F, the distribution of the bidders' 

private valuations. Guerre, Perrigne and Vuong (2000) proposed a computationally simple estimator 

based on (3).  Notice that all of the right hand side variables can either be directly observed (e.g., the 

bid bi) or can be estimated from the data (such as G and g).  This allows the economist to recover an 

estimate of vi by evaluating the empirical analogue of (3). 

There are three steps in this approach. Suppose that the econometrician observes t=1,...,T 

repetitions of the auction.  Let bi,t denote the bid that i submits in auction t. First, use nonparametric 

methods generate estimates Ĝ and ĝ of G and g. Given the bids TtIitib ,...,1,,...,1, }{ == , an estimate ĝ of g 

could be formed using kernel density estimation.  A nonparametric estimate Ĝ of G can also be 

formed using standard methods.  Given the first-step estimates ĝ and Ĝ, in a second step we 

estimate bidder i's valuation in auction t as: 
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By applying equation (4) to every bid in the data, we can generate estimates,  

TtIitiv ,...,1,,...,1, }ˆ{ == , of the valuations associated with each bid in our data set.  A third step is to 

estimate F as the cdf of the TtIitiv ,...,1,,...,1, }ˆ{ == .  An advantage of this estimator is that it is simple to 
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compute and imposes minimal parametric assumptions.  Bajari and Hortacsu (2003) were able to 

code a version of this estimator using just a few lines of STATA. 

  The key insight of Guerre, Perrigne and Vuong was that the first-order conditions (3) can be 

expressed as private information on the left-hand side and as functions of the bids on the right hand 

side.  By observing a large number of repetitions of the auction, one can recover all of the right hand 

side variables.  This identifies the private information vi.  Table 1 below gives examples of papers 

that utilized two-step estimators.   

Table 1: Two-Step Estimators for Structural Models in the Literature 

Class of Models Papers 

Auctions Guerre, Perrigne, Vuong (2000), Bajari and 
Hortacsu (2003), Bajari and Ye (2003) 

Demand in a differentiated product market Petrin and Train (2003), Bajari and Benkard 
(2003) 

Dynamic Discrete Choice Hotz and Miller (1993), Aguirregabiria and 
Mira(2002) 

Dynamic Games Pakes, Ostrovsky and Berry (2003), 
Pesendorfer and Schmidt-Dengler (2003)  

The two-step estimators can have also drawbacks.  First, there can be a loss of efficiency.  The 

parameters estimated in the second step will depend on a nonparametric first step.  If this first step 

is imprecise, the second step will be poorly estimated.  Second, stronger assumptions about 

unobserved state variables may be required.  In a dynamic discrete choice model, accounting for 

unobserved heterogeneity by using random effects or even a serially correlated, unobserved state 

variable may be possible using a nested fixed point approach.  However, two-step approaches are 

computationally light, often require minimal parametric assumptions and are likely to make 

structural models accessible to a larger set of researchers. 

V. PUBLIC POLICY IMPLICATIONS  

Theory-driven choice modeling can contribute to public policy formulation in several ways, 

but current modeling efforts must address a number of issues before they can be fully useful.  We 
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illustrate these points through application of theory-based choice models to antitrust policy.  

Theory-driven choice modeling can potentially improve antitrust analysis in at least two ways. 

One is by providing more sophisticated models of rational consumer choice.  American 

antitrust policy is largely based on rational-actor models that are used to form predictions of 

consumer behavior (often summarized in terms of cross-price elasticities) that are central to the 

assessment of market power and estimation of the efficiency effects of supplier practices such as 

product bundling or merger.  As discussed in Section I above, dynamic structural models of choice 

with forward-looking agents (e.g., Erdem, Imai, and Keane (2003)) can lead to dramatically different 

estimates of consumer responsiveness and brand-switching behavior.  Hence, a merger analysis 

based on elasticities estimated from a model that ignores dynamics may be seriously misleading. 

The use of more sophisticated structural models of consumer choice raises a number of 

issues.  In models in which consumers hold inventories, for example, the cross-elasticity of demand 

associated with a price decrease may be much larger than the elasticitiy associated with a price 

increase.  And the short-run cross-elasticity associated with a price decrease may be larger than the 

corresponding long-run elasticity.  These possibilities raise an important issue for future research: 

which elasticities are the correct ones to use in antitrust analysis?  Some would argue that long-run 

elasiticities are what matters for welfare calculations, but suppliers may respond to short-run 

elasticities in determining their optimal dynamic strategies.  Fully answering the question of which 

elastiticities to use will require modeling both supplier and buyer behavior simultaneously, and it will 

raise many of the thorniest issues identified in Section II above. 

A second potential contribution of theory-driven choice modeling to antitrust analysis is that 

it can provide more realistic predictions of buyer and supplier behavior by building on behavioral 

decision-making models.1  On the consumer side, for example, one could examine whether 

                                                 
1  Jolls et. al. 1998 address many of the implications of behavioral decision theory for public policy generally. 
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consumers take life-cycle costs of durable goods into account or are boundedly rational as discussed 

in Section III above.  The answer to such a question might be critical in the assessment of whether 

certain practices (e.g., tying the purchase of repair parts to the original supplier) create market power. 

Behavioral decision making models can also potentially contribute to our understanding of 

supplier behavior.  Consider a vertical merger.  Rational-actor models often indicate that a firm 

acquiring the supplier of a critical input would continue to have incentives to sell that input to rivals 

who also need it.  A behavioral approach, however, might assert that managers have an irrational 

tendency to exclude rivals and harm competition. 

This divergence points out a tension.  Proponents of the behavioral approach would assert 

that it provides greater realism and improves policy.  But an important current role of economics is 

to provide a logical check that limits governmental intervention.  There is a danger of using 

behavioral models that are still at an early stage of development and empirical testing: a wide range 

of accusations might be supported with little actual evidence, and the discipline provided by rational 

actor models could be lost.  It should also be noted that empirical testing must examine more than 

whether decision makers initially behave as predicted by the models.  One also has to check whether 

the decision-making processes have lasting consequences for market performance.  Suppose, for 

instance, that—as a result of their bounded rationality—the managers of a vertically merged firm 

engaged in exclusion but soon found that it was a very unprofitable strategy and abandoned it.  If 

the correction is made quickly enough, one might argue that the effects of bounded rationality and 

use of trial-and-error could reasonably be approximated by an assumption of rationality.  More 

generally, a fundamental issue is whether market outcomes exhibit the effects of irrationality when 

some agents are rational.2  

                                                 
2  In some settings, competition among rational suppliers may be a “substitute” for consumer rationality.  
Disclosure policy, such as truth-in-lending laws and mandatory food labeling, provides a good illustration of this issue.  
The rational-actor model of consumers indicates that, even with a monopoly seller, there will be complete information 
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VI.  GOING FORWARD 

There has been a great deal of progress in theory-driven choice modeling. Challenges provide also 

exciting future research opportunities in this area. A better taxonomy of ordered biases needs to be 

established and these biases need to be integrated into the objective functions. Integration of 

multiple and richer data sources can overcome empirical identification issues and may enable 

researchers to relax some of the behaviorally restrictive assumptions.  Finally, broadening the set of 

applications to settings with important policy implications would be a welcome development.  
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