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Abstract. ACL2(r) is a modified version of the theorem prover ACL2 that adds
support for the irrational numbers using non-standard analysis. It has been used to
prove basic theorems of analysis, as well as the correctness of the implementation of
transcendental functions in hardware. This paper presents the logical foundations
of ACL2(r). These foundations are also used to justify significant enhancements to
ACL2(r).

1. Introduction

ACL2(r) is a variant of the theorem prover ACL2 with support for the
real and complex numbers via non-standard analysis. Non-standard
analysis, introduced by Abraham Robinson [18] in the 1960s, gave rig-
orous foundations to the sort of reasoning about infinitesimal quantities
that was used by Leibniz back when he co-invented the calculus and
is still used today by engineers and scientists when applying calculus.
A feature of many arguments using non-standard analysis is the use of
mathematical induction and recursion in place of standard limit and
compactness arguments, and this feature makes non-standard analy-
sis well-suited for reasoning in ACL2, a first-order, inductive theorem
prover.

ACL2(r) was introduced in [5], and it has been used to verify basic
properties of the reals, such as the Fundamental Theorem of Calcu-
lus [8], Taylor’s Theorem [6] and results in interval arithmetic [14],
as well as the correctness of hardware designs that use transcendental
functions [19].

The focus of this paper is on the logical foundations of ACL2(r).
In introducing ACL2(r), [5] explains these foundations by invoking
Internal Set Theory, an axiomatic treatment of non-standard analysis
pioneered by Nelson [16] and developed more broadly later as Hrbaček
Set Theory [7]. But the treatment in [5] assumes a fixed ACL2(r) theory.
Given such a theory, [5] explains how we can interpret it using Internal
Set Theory, and how this justifies the axioms and inference methods
of ACL2(r). But this ignores the dynamic nature of ACL2(r) theories,
i.e., it gives no explanation of the way in which an ACL2(r) theory is
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extended when new function symbols are introduced via definitional
events.

The treatment of definitional events in ACL2 is presented rigorously
in [13]. Definitional events raise many subtle issues in ACL2, in part
because (a) ACL2 has several structuring mechanisms, such as local
definitions and theory inclusion, that are indispensible when dealing
with large theories but complicate the notion of an ACL2 theory, and
(b) ACL2, while strictly first-order, supports via constrained functions
and functional instantiation a style of reasoning reminiscent of higher-
order reasoning.

This paper shows the logical foundations of ACL2(r) in a manner
analogous to the way [13] presents the foundations of ACL2, by ex-
plaining how a logical theory is modified by definitional events. That
is the first contribution of this paper.

The second contribution of this paper is that it gives a logical
justification for important enhancements to ACL2(r). For example,
ACL2(r) as described in [5] does not support the introduction of recur-
sive functions that use non-classical functions, e.g., one that recognizes
infinitesimals. The logical foundations presented here support this, as
well as non-classical analogues of the other definitional principles of
ACL2, namely constrained and Skolem functions. These enhancement
are being implemented in a new version of ACL2(r).

This paper is organized as follows. Section 2 gives a brief intro-
duction to ACL2(r), while section 3 introduces most of the machinery
needed from first-order logic to build the foundations of ACL2(r). The
following sections detail the treatment of the definitional axioms in
ACL2(r): explicit definitions in section 4, implicit definition of classical
functions in section 5, constrained definitions in 6, and Skolem defini-
tions in section 7. The paper concludes in section 8 with an overview
of the enhancements to ACL2(r) enabled by this paper.

2. Brief Introduction to Non-Standard Analysis and
ACL2(r)

2.1. Non-Standard Analysis

Non-standard analysis is an extension to ordinary set theory that gives
rigorous semantics to the notions of “infinitely small” and “infinitely
large.” It was originally presented in [18], where it is shown via a careful
model-theoretic construction that (a) these informal notions can be
placed on a solid, logical footing, and (b) the resulting structure pro-
vides new ways of proving theorems of ordinary mathematics, without
producing new theorems of ordinary mathematics.
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ACL2(r) follows the axiomatic approach to non-standard analysis
developed by Nelson as Internal Set Theory (IST) [16]. Internal Set
Theory is an extension of ZF Set Theory. It extends the language of
set theory with a new undefined predicate called standard. IST makes
an important distinction between classical formulas, those that are in
the language of ZF Set Theory, and non-classical formulas, those that
depend on the predicate standard.

Classical formulas follow all the familiar properties of ZF Set Theory,
but non-classical formulas require special treatment. For example, the
specification axiom does not hold for non-classical formulas. Given a set
S and a first-order formula P (x) with free variable x, the specification
axiom of ZF set theory guarantees the existence of a set S′ = {x ∈
S | P (x)} that contains precisely the elements of S that satisfy the
property P (x). However, in IST this is only true if the formula P (x) is
classical. This means, for example, that it is impossible in IST to build
the set of all standard natural numbers. It is worth emphasizing that
if the formula P (x) is classical then the specification axiom does hold
in IST. More generally, any set that can be constructed with ZF Set
Theory can also be constructed in IST.

The restriction of the specification axiom to classical formulas has
some important consequences, particularly important in the context of
ACL2. For example, the principle of induction does not apply to non-
classical formulas. Suppose P (x) is classical, and assume for simplicity
that we are proving P (x) using induction on the natural numbers. That
is, given that P (0) is true and that P (n) ⇒ P (n + 1) is true, we are
allowed to conclude that P (x) is true for all x. However, if P (x) is not
classical we can only conclude that P (x) is true for all standard x1.

2.1.1. The Standardization Principle
IST does support a weak version of specification called the Standard-
ization Principle. Given the set S and arbitrary property P (x) as
above, this principle guarantees the existence of a unique standard
set S′ = ◦{x ∈ S | P (x)} whose standard elements are precisely those
standard elements of S that satisfy P (x). Notice that no guarantees
are made about the non-standard elements of S′. For example, this
principle guarantees that there is a set R′ such that R′ = ◦{x ∈ R |
standard(x)}, where R is the (classical, hence standard) set of real
numbers. The standardization principle guarantees that R′ is standard,
that it contains all standard members of R, and it is the unique stan-

1 An alternative view is that the standard natural numbers correspond to the
traditional set of natural numbers, and that the non-standard numbers are in fact
new natural numbers beyond the original number line. In this view, induction on
arbitrary formulas works only on the original natural numbers.
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dard set that does so. Since R itself is standard and R contains all
standard members of R, the principle guarantees that R′ is equal to
R. The reader can similarly verify that ◦{x ∈ R | ¬standard(x)} is the
empty set.

When P (x) is such that all x that satisfy it must be elements of some
set U , the standardization axiom provides a useful construction called
a shadow set. Applying the specification axiom to the class S = {x |
P (x)}, we can find a unique standard set ◦S = ◦{x ∈ U | P (x)} such
that standard(x) ⇒ (x ∈ ◦S ⇔ P (x)). The shadow set is extremely
useful. Applied to the graph of a non-classical function f(x), it can be
used to demonstrate the existence of a unique classical function ◦f(x)
such that standard(x) ⇒ f(x) = ◦f(x).

2.1.2. The Transfer Principle
IST derives much of its power from the Transfer Principle, which states
that if P (x) is a classical property such that standard(x) ⇒ P (x) is
true, then P (x) is also true for arbitrary x. This powerful principle
implies that any object which can be uniquely defined with a classical
property — e.g., 0, 1, π,

√
2 — must be standard. Note that this

principle does not apply to non-classical formulas.

2.1.3. The Idealization Principle
IST also includes the Idealization Principle. Its relevance to ACL2(r) is
limited to ensuring that there is at least one non-standard element of
each type. In particular, it guarantees the existence of a non-standard
natural number, which is necessarily larger than all the standard nat-
urals.

This description of IST is sufficient to build the foundations of
ACL2(r), although it gives little insight into the connection with non-
standard analysis or for that matter real analysis of any kind. Intu-
itively the connection stems from associating the “infinitesimaly small”
numbers (which can be called ε suggestively) with those numbers that
are smaller in magnitude than any non-zero standard real. We will not
explore this connection in this paper; the interested reader is referred
to [17, 4, 15] for details.

2.2. ACL2 and ACL2(r)

ACL2 denotes both a logic [12, 13] and a theorem prover for this
logic [10]. The logic, originally based on the Boyer-Moore logic [2, 3],
uses the syntax of Common Lisp. Its inference rules include proposi-
tional calculus, equality, instantiation, and well-founded induction up
to ε0. ACL2 also supports the introduction of new functions via a vari-
ety of mechanisms. The event defun in ACL2 allows the introduction

acl2r-theory.tex; 14/07/2006; 13:39; p.4



5

of possibly mutually recursive functions via an explicit definition. Re-
cursive functions introduced this way are subject to a well-foundedness
restriction: i.e., ACL2 will not accept a recursive definition unless it can
prove that the associated computation terminates on all possible inputs.
The event encapsulate in ACL2 allows the introduction of constrained
functions. This is equivalent to the common mathematical practice of
giving a name to an arbitrary function with some properties, e.g., “let
f be a continuous function. . . .” This allows ACL2 to reason about
generic functions, e.g., the class of continuous functions, even though it
is strictly first-order [1, 13]. Associated with constrained functions is a
derived rule of inference called “functional instantiation,” which allows
ACL2 to conclude that a given statement Th(g) that mentions the
function g is true, provided that (a) the formula Th(f) which results
by substituting the function g by the constrained function f in Th(g)
is true, and (b) the function g satisfies all the constraints of f . Fi-
nally, ACL2 supports the introduction of new function symbols via the
event defchoose. This event allows the introduction of universal and
existential quantifiers as Skolem functions. ACL2 provides an initial
boot-strap theory, called the Ground Zero Theory, which axiomatizes
many Lisp functions.

ACL2(r) modifies ACL2 by introducing some functions to its Ground
Zero Theory, definitional principles, and derived inference rules, all of
which correspond to their counterparts in IST. For example, ACL2(r)
introduces the built-in function standard which corresponds to the
predicate standard of IST. ACL2(r) also classifies function symbols as
either classical or non-classical: Functions which depend on standard
are non-classical, while all other functions (including all functions that
are also in ACL2) are classical. As with IST, ACL2(r) restricts the
use of induction on formulas that are non-classical. ACL2(r) includes
a new definitional principle via the event defun-std. This principle
corresponds to using the shadow of a non-classical function in IST
to construct a new classical function. Finally, ACL2(r) adds the de-
rived inference rule that corresponds to IST’s Transfer Principle with
the event defthm-std. This event allows users to submit to ACL2(r)
classical formulas that they want to be proved using transfer.

3. Preliminaries

We are concerned in this paper with first-order theories: sets of first-
order formulas that are closed under logical consequence. In the context
of reasoning about ACL2 or ACL2(r), it is sufficient to restrict ourselves
to first-order theories with equality and no other predicate symbols, and
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we implicitly assume this restriction for the remainder of this paper. We
assume that the reader is familiar with the following basic notions: The
language of a first-order theory is the set of function symbols occurring
in its formulas. It is common to assume, as we do in this paper, that the
language of a theory is countable. A theory T1 extends a theory T2 if
every theorem in T2 is also a theorem in T1. Moreover, T1 conservatively
extends T2 if every theorem of T1 in the language of T2 is also a theorem
of T2.

Since we use the classical notion of logical consequence as our only
inference scheme, the theories we consider must include axioms de-
scribing any other inference rules, such as induction or transfer. Now
we consider axiom schemas that characterize the derived inference rules
of ACL2(r).

The case for induction is straightforward. ACL2(r) contains the bi-
nary function symbol ≺, which (intuitively) represents a well-founded
relation on the ACL2(r) universe2. The induction axiom schema for
classical formulas φ is given in [13]. We extend this axiom schema here
to include non-classical formulas as well. Recall that in the context of
Internal Set Theory induction on non-classical formulas only guarantees
that the formula is true for standard values.

Definition. Let φ be a formula, let x be a free variable (or vector of
free variables) in φ, and let y be a variable (not occurring in φ. Then
the induction axiom for φ with respect to x is given by

(∀x)(((∀y ≺ x)φ[x := y]) ⇒ φ) ⇒ (∀x)φ

if φ is classical, and

(∀x)(((∀y ≺ x)φ[x := y]) ⇒ φ) ⇒ (∀x)(standard(x) ⇒ φ)

otherwise. A first-order theory T is said to be complete with respect to
induction if it includes every induction axiom in the language of T . 2

The transfer principle is also simple: We need to add a transfer
axiom for every possible classical formula φ. Notice that we only add
these axioms for classical formulas, since the transfer principle can only
be used in these cases.

Definition. Let φ be a classical formula with free variables x1, . . . , xn

and no other free variables. The transfer axiom for φ is as follows:

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ φ) ⇒ (∀x1 . . . xn)φ

2 The well-founded relation ≺ is not a well-ordering, because it is not total. Read-
ers familiar with ACL2 may think of x ≺ y as (o-< (acl2-count x) (acl2-count

y)). A similar definition for the corresponding ACL2 ordering is given in [13].
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A first-order theory T is said to be complete with respect to transfer if
it includes every transfer axiom in the language of T . 2

We now justify an inference rule needed to justify defun-std, the
definitional principle of ACL2(r) that allows under certain conditions
the introduction of classical functions with a non-classical definition.
The formal justification given in [5] for defun-std uses the idea of a
shadow set of a function graph to define the unique classical function
that agrees with the graph on standard arguments. But the problem
is that this argument, with its appeal to shadow sets and graphs of
functions, is in the language of set theory, a far richer setting than the
standard language of ACL2. To avoid this difficulty, we introduce the
classical function symbol fτ for each possible term τ a priori. These
function symbols are disjoint from the set of function symbols that can
be introduced by an ACL2(r) user.

Definition. Let L be a language. L contains all its term functions if
for any term τ in the language of L, L contains a function symbol fτ

with arity n, where n is the number of free variables in τ . 2

Definition. Let τ be a term with free variables x1, . . . , xn and no
other free variables. The standardization axiom for τ is as follows:

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(τ))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fτ (x1, . . . , xn) = τ))

We introduce the shorthand notation SA(τ, fτ ) to represent this axiom.
The function symbols fτ are said to be non-visible. All other function
symbols are visible. A term or formula is said to be visible if it mentions
only visible function symbols; otherwise, it is said to be non-visible. A
first-order theory T is said to be complete with respect to standardiza-
tion if it includes all the standardization axioms in the language of T .
2

Note: The preceding definition implies that a theory can only be
complete with respect to standardization if its language contains all
its term functions. 2

It is possible to start with a countable theory T that does not contain
any standardization axioms and derive a theory T ′ that extends T and
is complete with respect to standardization. The process is as follows.
Let Φ0 be an enumeration of the formulas φ0,1, φ0,2, . . . of T , and
let f1, f2, . . . be function symbols not in the language of T . Define
the enumerations Φi of formulas φi,1, φi,2, . . . as follows. Let L0 be
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the language of T and Li be the language of Li−1 with the addition
of fi. Then Φi is an enumeration of the formulas φi,1, φi,2, . . . in the
language of Li that are not in the language of Li−1. We are now ready
to introduce the standardization axioms as follows:

SA(φi,j , f(j−1)2+i+1) for i < j

SA(φi,j , fi2+2i+2−j), for i ≥ j

The indices of the fk are chosen to correspond to a left-right, bottom-up
enumeration of the φi,j , just as in a typical proof of the denumerability
of a denumerable union of denumerable sets. Notice that the φi,j enu-
merate all the formulas in the language of T and all the fk. Therefore,
the axioms resulting from this enumeration can be used to complete
the theory T with respect to standardization as claimed.

Observe that for j ≥ 1, (j − 1)2 + i + 1 > i. Similarly, when i ≥
j ≥ 1, i2 + 2i+ 2− j > i. Therefore, whenever SA(φi,j , τk) is an axiom
generated by this construction, we have that i < k, which guarantees
that fk is not in the language Li. This means that we can use the
standardization axioms to generate a partial ordering on the formulas
of the theory; we refer to this ordering as the ordering implied by
standardization. First let fτ be the fk such that SA(τ, fk) is one of the
standardization axioms. We say that τ1 � τ2 if fτ1 appears in τ2, and
the ordering implied by standardization is the transitive closure of �.
Note that this implied ordering is a well-founded partial order of the
formulas. The process outlined above to generate the standardization
axioms for a given theory generates a valid partial ordering �, since
whenever SA(τ, fk) is a standardization axiom we know that τ is in
the language of Ll for some l < k. For arbitrary theories complete
under standardization — i.e., when the completion is not formed by
the process outlined above — it is possible that the � relation involved
is in fact not a partial order. It may have loops, for example.

Convention. For the remainder of this paper, when we say that a
theory T is complete under standardization, we are also asserting that
the ordering implied by the standardization axioms of T is a valid
partial ordering. 2

Definition. A first-order theory T is said to be r-complete if it is
complete with respect to induction, transfer, and standardization. The
r-completion of the theory T is the theory resulting from extending T
by the induction, transfer, and standardization axioms in the language
of T . 2

The basic story that we lay out in this paper is as follows. We start
with an r-complete theory GZ of ACL2(r). Then we show that the
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axiomatic events of ACL2(r) — defun, defun-std, encapsulate, and
defchoose — conservatively extend an r-complete theory T into an
r-complete theory T ′. We will develop these ideas in the following sec-
tions. The important point of the story is that every ACL2(r) history —
i.e., every sequence of definitions, theorems, and other ACL2(r) events
— corresponds in our theoretical setting to the r-completion of the
definitional events in the history.

Moreover, in an r-complete theory the derived inference rules of
ACL2(r) — defthm-std, the non-standard principle of induction — are
simply first-order consequences of the axioms. Users suggest theorems
to ACL2(r) with the events defthm and defthm-std. The event defthm
directly invokes the theorem prover of ACL2(r), which will use (classical
and non-classical) induction schemes to prove formulas automatically.
The induction axioms introduced in this section correspond directly to
the induction schemes used by the theorem prover. ACL2(r) does not
use transfer directly, but it offers the event defthm-std that allows
users to suggest theorems to be proved by transfer. That is, when the
user suggests via defthm-std that the classical formula φ with free
variables x1, x2, . . . , xn, is a theorem, ACL2(r) verifies this by checking
that (∀x1 . . . xn)(

∧n
i=1 standard(xi) ⇒ φ is a theorem instead. If this

weaker theorem is true, ACL2(r) accepts φ as a theorem as well. The
formal justification for defthm-std follows from the definition of r-
complete theories.

Why is the r-complete Ground Zero theory of ACL2(r) consistent?
The answer comes from [16] and [5]. In [16] it is shown that Internal Set
Theory is a conservative extension of ZF set theory. Moreover, in IST
the predicate standard is given an interpretation. IST restricts the ways
in which non-classical terms (i.e., those defined in terms of standard)
can be manipulated. For instance, it restricts the use of induction for
non-classical formulas. But IST provides inference rules that justify the
use of non-classical formulas, such as idealization and standardization.
As shown in [5] these have direct counterparts in the r-complete theory
GZ.

4. Explicit Definitions with defun

The story of defun is told definitively in [13], where it is shown that
defun events result in conservative extensions of an ACL2 theory. In
this section, we modify the argument in [13] to ACL2(r) theories. We
will show three main results. First, definitional axioms introduced with
defun result in a conservative extension of the theory. Second, if the
original theory is r-complete, so is the extension. Third, the traditional
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notion in Nqthm and ACL2 of measure admissibility implies the notion
of interpreter admissibility which will be used in this section to show
the first two results.

4.1. Conservativity of Extension

Definition. A definitional axiom D over a theory T is a finite con-
junction of equations of the following form

f(x1, . . . , xn) = term

where the function symbols f in the left-hand side of this axioms are
distinct function symbols disjoint from the function symbols in T , term
is a term in the union of the language of T with the set of left-hand
side function symbols of D, the variables xi are distinct, and the only
variables that are free in term are the xi. If any term in the right-hand
side of the equations uses a non-classical symbol, the function symbols
f in the left-hand side are also taken to be non-classical. Otherwise,
these function symbols are considered classical. 2

Remark. Ignoring the distinction of symbols into classical and non-
classical, this definition is equivalent to the definition given in [13].
Therefore any function that can be introduced into an ACL2 session
using a definitional axiom of ACL2 can also be introduced into ACL2(r)
using the same definitional axiom. 2

For the remainder of this section fix an r-complete theory T and a
definitional axiom D over T . Further, assume that T is an extension
of the ACL2(r) Ground Zero Theory3. Let F be the set of function
symbols introduced by D, i.e., those in the left-hand side of equations
of D.

Following [13] we define the canonical interpreter for D as follows:
Suppose D contains the equation

f(x1, . . . , xn) = term

and let d be a variable not in term. Replace this equation with the
following

f ′(d, x1, . . . , xn) = if zp(d) then NIL else termd−1,1

where zp(d) is is false precisely when d is a positive integer. The formula
ud,b corresponds to a bounded execution of the term u. The variable d

3 This is not strictly necessary. What we need are axioms relating to car, cdr,
etc.
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limits the execution by preventing more than d uses of the definitions
in F . The b in ud,b is used to differentiate the occurrence of subterms
that are in the top-level of if-terms. Originally, b is set to 1, and the
recursive definition below sets it to 0 when a subterm is inside a non-if
function. The formal definition of ud,b is as follows:

− if u is a constant or variable, then ud,b = cons(u,NIL)

− else if u is if t0 then t1 else t2, b = 1, and (t0)d,0 = NIL, then
ud,b = NIL

− else if u is if t0 then t1 else t2, b = 1, and car((t0)d,0) 6= NIL,
then ud,b = (t1)d,1

− else if u is if t0 then t1 else t2 and b = 1, then ud,b = (t2)d,1

− else if u is f(t1, . . . , tn) and at least one of (ti)d,0 = NIL, then
ud,b = NIL

− else if u is f(t1, . . . , tn) where f 6∈ F (f is possibly if ),
then ud,b = cons(f(car((t1)d,0), . . . , car((tn)d,0)), NIL)

− else u must be f(t1, . . . , tn) for some f ∈ F ,
and ud,b = f ′(d, car((t1)d,0), . . . , car((tn)d,0))

The symbols f ′ can be thought of as new function symbols, not
in the language of T or F . However, we can define them instead as
expressions in the language of T as follows. It is clear that the functions
f ′ terminate: The variable d serves to limit the number of times a term
involving f ′ is “opened” and all other branches through the definition
of ud,b dive into a subterm of u. A computation of f ′ can be thought of
as a sequence of equalities, e.g., the sequence produced by expanding
the leftmost term into its definition: f ′(d, t1, . . . , tn) = u if and only if
there is a sequence of terms starting with f ′(d, t1, . . . , tn) and ending
with u such that each element (other than the first) of the sequence
follows from the previous one by the expansion of its leftmost term.
This condition can be stated as a first-order formula in the language
of T ; in other words, the f ′ are first-order definable in T . From now
on, when we say f ′ what we mean is this first-order definition in the
language of T , so that in fact the f ′ are not new function symbols.

We are interested only in definitions D that correspond to compu-
tations that are guaranteed to terminate on all possible inputs. When
all the definitions in D are classical, we insist that for each formula

f(x1, . . . , xn) = term
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in D, it is a theorem of T that

(∀x1 . . . xn)(∃d)(f ′(d, x1, . . . , xn) 6= NIL)

When at least one definition in D is non-classical, we require a stronger
condition, namely that the value of d that shows f ′ terminates is
standard:

(∀x1 . . . xn)(∃d)(standard(d) ∧ f ′(d, x1, . . . , xn) 6= NIL)

Definitions that meet these criteria are called interpreter admissible.

Definition. Let T be an r-complete theory and D an interpreter ad-
missible definitional axiom over T . Then TD is the extension of T by
the universal completions of the following equations, one for each f
defined in D:

f(x1, . . . , xn) =



car(f ′(d, x1, . . . , xn)),
where d is the least natural
(additionally required to be
standard if D is non-classical)
such that
car(f ′(d, x1, . . . , xn)) 6= NIL

NIL, if there is no such d

2

Observation. The theory TD is a conservative extension of T . This
follows because the new functions f ∈ F are explicitly defined using
only terms in the language of T (i.e., without recursion). Recall, in
particular, that the f ′ are first-order definable in T . 2

In the next section, we define the theory TD as the r-completion
of TD, and it is TD that serves to explain what happens when a
definitional axiom is introduced into ACL2(r). While it is clear that
TD is a conservative extension of T , it remains to be seen that TD

is also a conservative extension of T . To demonstrate this, we prove
that the induction and transfer axioms in the language of TD are first-
order derivable in TD from the induction and transfer axioms in the
language of T , and that the standardization axioms in the language of
TD are first-order derivable with explicit definitions from the standard-
ization axioms in the language of T . Consequently, TD is a conservative
extension of TD.
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4.2. Completion of the Extension

Lemma (Term Equivalence). Let T2 be the extension of T1 formed
by explicit definitions of new function symbols in F . Then for every
term τ in the language of T2, there is a term τ ′ in the language of T1

with the same free variables as τ such that τ = τ ′ is a theorem of T2.
Moreover, τ ′ is classical if τ is classical.

Proof. We proceed by induction on the terms τ of T2. If τ is a variable
or constant symbol, then τ is already in the language of T1 (since we
are extending the language of T1 only by introducing new function
symbols), and τ = τ is certainly a theorem of T2. Otherwise, τ is of the
form f(τ1, . . . , τn) for some terms τi. Using the induction hypotheses,
there are terms τ ′1, . . . , τ ′n in the language of T1 such that τi = τ ′i is
a theorem of T2 for each i, and τ ′i has the same free variables as τi.
Moreover, if τ is classical, each of the τi are classical, and so are each
of the τ ′i . If f 6∈ F , then f must be in the language of T1, in which
case letting τ ′ = f(τ ′1, . . . , τ

′
n) it follows that τ = τ ′ is a theorem of

T2, τ ′ has the same free variables as τ , and clearly τ ′ is classical if
τ is classical. Otherwise, f is one of the functions explicitly defined
to extend T1. I.e., there is a term τf in the language of T2 such that
(∀x1 . . . xn)(f(x1, . . . , xn) = τf ) is an axiom of T2, and moreover the
xi are the only variables free in τf . But then letting τ ′ = τf [xi := τ ′i ],
we can conclude in T2 that τ = τ ′, and τ ′ is in the language of T1.
Since τ ′ replaces all free variables in τf , it follows that τ ′ has no more
free variables than τ , and it is easy to extend τ ′ so that it has exactly
the same free variables as τ . Moreover, if τ is classical f is a classical
function, which means that τf is classical. So τ ′ is also classical. 2

Lemma (Formula Equivalence). Let T2 be the extension of T1

formed by explicit definitions of new function symbols in F . Then for
every formula φ in the language of T2, there is a formula φ′ in the
language of T1 such that φ⇔ φ′ is a theorem of T2 and φ′ has the same
free variables as φ. Moreover, φ′ is classical if φ is classical.

Proof. This is an simple extension of the Term Equivalence Lemma,
proved using induction on the logical structure of φ. 2

Theorem (Induction Completeness Preservation). Let T1 be a
theory that is complete with respect to induction and let T2 be the
extension of T1 formed by explicit definitions of new function symbols
in F . Then T2 is complete with respect to induction.

Proof. We prove this by showing that each induction axiom over the
language of T2 is a theorem of T2. Let φ be an induction axiom over the
language of T2. Recall that there are two types of induction axioms,
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depending on whether the underlying formula is classical or not. We
consider each case separately. Suppose φ takes the following form, where
ψ is classical:

(∀x)(((∀y ≺ x)ψ[x := y]) ⇒ ψ) ⇒ (∀x)ψ

Using the Formula Equivalence Lemma, we can find ψ′ in the language
of T1 such that ψ ⇔ ψ′ is a theorem of T2 and ψ′ is also classical. There-
fore, the following is an induction axiom in T1 and hence a theorem of
T2:

(∀x)(((∀y ≺ x)ψ′[x := y]) ⇒ ψ′) ⇒ (∀x)ψ′

Since ψ ⇔ ψ′ is also a theorem of T2, it trivially follows that

(∀x)(((∀y ≺ x)ψ[x := y]) ⇒ ψ) ⇒ (∀x)ψ

is a theorem of T2.
A similar argument suffices to show that φ is a theorem of T2 when

φ is of the form

(∀x)(((∀y ≺ x)ψ[x := y]) ⇒ ψ) ⇒ (∀x)(standard(x) ⇒ ψ)

for a non-classical ψ. So we conclude that T2 contains all induction
axioms over its language; i.e., it is complete with respect to induction.
2

Theorem (Transfer Completeness Preservation). Let T1 be a
theory that is complete with respect to transfer and let T2 be the
extension of T1 formed by explicit definitions of new function symbols
in F . Then T2 is complete with respect to transfer.

Proof. Let φ be a transfer axiom over the language of T2. Then φ has
the form

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ ψ) ⇒ (∀x1 . . . xn)ψ

for some classical formula ψ in the language of T2. There is a formula
ψ′ in the language of T1 such that ψ ⇔ ψ′ is a theorem of T2, and
moreover ψ′ is classical. That means that the transfer axiom for ψ′ is
a theorem of T1:

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ ψ′) ⇒ (∀x1 . . . xn)ψ′

But then φ is provable in T2. 2
Matters are not as straightforward in the case of standardization.

The problem is that the standardization axiom requires a classical
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function symbol fτ for each term τ in the language of T2. But since
the language of T2 extends the language of T1 (by the new function
symbols in F ), we now have formulas τ (using one of the new function
symbols) for which there is no fτ . What the next lemma shows is that
it is always possible to extend the theory T2 to contain the needed
function symbols.

Theorem (Standardization Completeness Preservation). Let T1

be a theory that is complete with respect to standardization and let T2

be the extension of T1 formed by explicit definitions of new function
symbols in F . Then there is a conservative extension ∗T2 of T2 (and
hence of T1) that is complete with respect to standardization. We call
∗T2 the standardization completion of T2 with respect to T1.

Proof. In section 3 we introduced a construction that starts with a
theory T and produces an extension T ′ that is complete with respect
to standardization. We apply this process to T2, but we adapt it so that
the new function symbols introduced are defined explicitly in terms of
functions in T1. This ensures that the resulting theory is a conservative
extension that is also complete with respect to induction and transfer.

The modification is as follows. Suppose we are considering a term τ
in the language of T2 (or an extension of it) that is not in the language of
T1. By the Term Equivalence Lemma, there is a term τ ′ in the language
of T1 such that T2 proves τ = τ ′. Let x1, . . . , xn be all the free variables
in τ and define fτ (x1, . . . , xn) = fτ ′(x1, . . . , xn).

Since T2 is an extension of T1 and T1 is complete with respect to
standardization, T2 contains all the standardization axioms for terms in
the language of T1. In particular, it contains the standardization axiom
for τ ′:

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(τ ′))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fτ ′(x1, . . . , xn) = τ ′))

It immediately follows that the following is a theorem of the extension
of T2 introducing fτ :

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(τ))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fτ (x1, . . . , xn) = τ))
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Moreover fτ is classical, since it is defined in terms of a classical func-
tion, i.e., fτ ′ . So the standardization axiom for τ is a theorem of this
extension of T2. 2

Definition. Let T be an r-complete theory and D an interpreter ad-
missible definitional axiom over T . The r-complete extension of T by
D, denoted by TD, is the theory formed as follows: (1) Extend T by
D, (2) take the standardization completion of the resulting theory, (3)
take the inductive completion of the resulting theory, and finally (4)
take the transfer completion of the resulting theory. 2

When a definitional axiom D is introduced into the ACL2(r) theory
T , the ACL2(r) theory of the session is extended to T ′, the complete
extension of T by D. As in [13], T ′ is a subtheory of the (standardiza-
tion, inductive, and transfer) completion of TD. Moreover, it is clear
that the ACL2(r) event of defthm-std is justified in T ′, since T ′ is
complete with respect to transfer. Similarly, the classical and non-
classical induction principles of ACL2(r) follow from the fact that T ′

is complete with respect to induction. In section 5, we explore the
justification for defun-std, and in section 7 we do so for defchoose.

4.3. Measure Admissibility

In the previous sections we defined interpreter admissibility and showed
how functions that are defined explicitly with formulas satisfying in-
terpreter admissibility can be added to an r-complete ACL2(r) session
resulting in an r-complete conservative extension. But ACL2(r) does
not check that function definitions are interpreter admissible. Instead
it uses the notion of measure admissibility first introduced in Nqthm
to determine if a function definition is acceptable. The main goal of
this section is to show that any definition that is measure admissible
is also interpreter admissible. Before presenting the main result, we
need to establish some basic properties of interpreter admissibility. The
argument presented in this section was first developed in [13] in the
context of ACL2. In this section we adapt the argument of [13] to
allow for non-classical functions.

Lemma (Interpreter Monotonicity). Let D be a definitional axiom
over a theory T , and let u be a term in the language of T ∪ {D}. Let d
and d′ be variables not occurring in u. Then the following is a theorem
of T :

standard(d) ∧ natp(d) ∧ natp(d′) ∧ d ≤ d′ ∧ ud,b 6= NIL⇒
ud,b = ud′,b ∧ ud′,b = cons(car(ud,b), NIL)

acl2r-theory.tex; 14/07/2006; 13:39; p.16



17

Proof. Assume without loss of generality that the variables d and d′

do not occur in D. It suffices to show that the following is a theorem
of T :

standard(d) ∧ natp(d) ∧ natp(d′) ∧ d ≤ d′ ∧ ud,b 6= NIL⇒
ud′,b = cons(car(ud,b), NIL)

Moreover, we can restrict our attention to terms u that are right-hand
sides of equations in D — the complete theorem follows from this by
structural induction.

We will prove a slight generalization of this. Let Ad,d′ be the uni-
versal closure of the following conjuction of formulas as u ranges over
subterms of D and b ranges over {0, 1}:∧

u,b

natp(d) ∧ natp(d′) ∧ d ≤ d′ ∧ ud,b 6= NIL⇒

ud′,b = cons(car(ud,b), NIL)

Note that since D is finite, Ad,d′ is well defined.
Let y1, . . . , yn be all the variables occurring in D. We now prove that

(∀y1, . . . , yn)(∀d′)(standard(d)∧natp(d) ⇒ Ad,d′) is a theorem of T . We
prove this using induction on d. Note: the hypothesis that d is standard
is required precisely so we can use induction in this step. Recall that
induction on non-classical formulas (such as a formula involving D) can
only be used to justify the theorem for standard values.

It suffices to show that the following is true in T :

((∀e < d)(∀y1, . . . , yn)(∀d′)(
Ae,e′ ⇒ (d ≤ d′ ∧ ud,b 6= NIL⇒ ud′,b = cons(car(ud,b), NIL)

)
where e ranges over the naturals.

To prove this, we use induction on the subterms u of D. Assuming
the appropriate hypotheses, we will show ud′,b = cons(car(ud,b), NIL)
by considering each of the possibilities for u.

When u is a constant or variable, ud′,b and ud,b are both equal to
cons(u,NIL), so the conclusion follows trivially.

Otherwise, if u is not an if-term it takes the form u = f(t1, . . . , tn).
Since ud,b 6= NIL, we can immediately conclude that (ti)d,b 6= NIL for
each of the ti. Moreover, since each of the ti is a subterm of D, we can
conclude from Ad,d′ in the hypothesis (ti)d′,0 = cons(car((ti)d,0), NIL).
If f 6∈ F , then we have

ud′,b = cons(f(car((t1)d′,0), . . . , car((tn)d′,0)), NIL)
= cons(f(car((t1)d,0), . . . , car((tn)d,0)), NIL)
= ud,b
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When f ∈ F we proceed differently. From the definition of ud,b, we
have that ud′,b = f ′(d′, car((t1)d′,0), . . . , car((tn)d′,0)), so we need to
show the following:

f ′(d′, car((t1)d′,0), . . . , car((tn)d′,0)) =
f ′(d, car((t1)d,0), . . . , car((tn)d,0))

We will show something stronger, namely that for arbitrary x1, . . . , xn

such that f ′(d′, x1, . . . , xn) 6= NIL,

f ′(d′, x1, . . . , xn) = cons(car(f ′(d, x1, . . . , xn)), NIL).

Let f(x1, . . . , xn) = body be the equation in F that defines f . Since
d′ ≥ d and f(x1, . . . , xn)d,b 6= NIL, we know that d′ ≥ d > 0, so
f ′(d, x1, . . . , xn) = bodyd−1,1 and f ′(d′, x1, . . . , xn) = bodyd′−1,1, neither
of which is NIL. Observe that body is one of the subterms of right-
hand side equations of D, so from the induction hypothesis we have
that Ad−1,d′−1 is true. Therefore,

f ′(d′, x1, . . . , xn) = bodyd′−1,1

= cons(car(bodyd−1,1), NIL)

= cons(car(f ′(d, x1, . . . , xn)x1, . . . , xn)), NIL)

It then follows that ud′,b = ud,b in this case as well.
The casse when u = if u0 then u1 else u2 is the only one remaining

for consideration. If b = 0, then this case is identical to the case when
u = f(t1, . . . , tn) and f 6= F . If b = 1, then this case is similar to the
previous one, except that only one of u1 or u2 needs to be considered.
We leave that consideration to the reader. 2

Corollary (Classical Interpreter Monotonicity). Let D be a clas-
sical definitional axiom over a theory T , and let u be a classical term
in the language of T ∪ {D}. Let d and d′ be variables not occurring in
u. Then the following is a theorem of T :

d ≤ d′ ∧ ud,b 6= NIL⇒ ud,b = ud′,b ∧ ud′,b = cons(car(ud,b), NIL)

Proof. By transfer from the Interpreter Monotonicity Lemma. 2

Lemma (Interpreter Eliminability). Let u be a term in the lan-
guage of T ∪ {D}. Then the following is a theorem of TD:

standard(d) ∧ ud,b 6= NIL⇒ ud,b = cons(u,NIL)

Proof. We will prove this using induction on the structure of u.
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If u is a variable or constant, the result is immediate.
If u is an if, it is handled similarly to the following case, and we omit

the details.
If u = f(u1, . . . , un), then we can conclude for each ui that (ui)d,b 6=

NIL, so by the induction hypothesis (ui)d,b = cons(ui, NIL). If f 6∈ F ,
then

ud,b = cons(f(car((u1)d,0), . . . , car((un)d,0)), NIL)
= cons(f(u1, . . . , un), NIL)
= cons(u,NIL)

If f ∈ F , ud,b = f ′(d, u1, . . . , un). Since d is standard and ud,b 6= NIL,
it follows that f(u1, . . . , un) = car(f ′(e, u1, . . . , un)) where e is the least
standard such that f ′(e, u1, . . . , un) 6= NIL. Necessarily, e ≤ d, so using
the Interpreter Monotonicity Lemma we can conclude that

ud,b = ue,b

= f ′(e, u1, . . . , un)
= cons(f(u1, . . . , un), NIL)
= cons(u,NIL)

Above we used implicitly the lemma that f ′(e, u1, . . . , un) is either NIL
or of the form cons(X,NIL) for some X. 2

Lemma (Classical Interpreter Eliminability). LetD be a classical
definitional axiom and u be a classical term in the language of T ∪{D}.
Then the following is a theorem of TD:

ud,b 6= NIL⇒ ud,b = cons(u,NIL)

Proof. By transfer from the Interpreter Eliminability Lemma. 2

Lemma (Divergence Infectiousness). Let u and d be terms. Then
the following is a theorem of TD: if d is standard, then ud,0 = NIL if
and only if for some subterm f(t1, . . . , tn) of u where f ∈ F ,

f ′(d, t1, . . . , tn) = NIL.

Proof. By induction on the structure of the term u, using the Inter-
preter Eliminability Lemma. 2

Lemma (Classical Divergence Infectiousness). Let D be a classi-
cal definitional axiom and u and d be classical terms in the language of
T ∪{D}. Then the following is a theorem of TD: ud,0 = NIL if and only
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if for some subterm f(t1, . . . , tn) of u where f ∈ F , f ′(d, t1, . . . , tn) =
NIL.

Proof. By transfer from the Divergence Infectiousness Lemma. 2

Lemma (Interpreter Correctness). Suppose that D is interpreter
admissible over the theory T . Then the axioms D are derivable from
TD.

Proof. Let f(x1, . . . , xn) = u be an arbitrary equation of D. Since D is
interpreter admissible, for all possible values of the xi there is a d such
that f ′(d, x1, . . . , xn) 6= NIL, and moreover d is standard when D is a
non-classical definition. We may assume d is the least such d. Thus,

f(x1, . . . , xn) = car(f ′(d, x1, . . . , xn))
= car(ud−1,1)
= u

where the last equality follows from the appropriate Interpreter Elim-
inability Lemma. But this means that f(x1, . . . , xn) = u is derivable
from TD, and since f(x1, . . . , xn) = u is an arbitrary equation of D we
are finished. 2

We are now ready to show that measure admissibility implies in-
terpreter admissibility. Be begin with a formal definition of measure
admissibility.

Definition. Let D be a definitional axiom over a theory T . A measure
for D associates with each conjunct f(x1, . . . , xn) = u of D a function
mf (x1, . . . , xn) that is first-order definable in T . Moreover, when D
is non-classical the mf must return standard values always. That is,
(∀x1, . . . , xn)standard(mf (x1, . . . , xn)) is a theorem of T . 2

Definition. A term t rules an occurrence of a term s in a term b if and
only if b is of the form if b0 then b1 else b2 and one of the following is
true:

− the occurrence of s is in b1 and either t is equal to b0 or t rules s
in b1

− the occurrence of s is in b2 and either t is equal to ¬b0 or t rules s
in b2.

2

Definition. Let D be a definitional axiom with measure m over a
theory T . The measure theorem for D via m, denoted m(D), is the
conjunction of all the terms

t1 ∧ . . . ∧ tk ⇒ mg(u1, . . . , ul) ≺ mf (x1, . . . , xn)
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where f(x1, . . . , xn) = u is an equation of D, g(u1, . . . , ul) occurs in
u, g is also defined in D, and the ti are all the terms that rule the
occurrence of g(u1, . . . , gl) in u. 2

Definition. A definitional axiom D over a theory T is measure admis-
sible over T if there is some measure m for D over T such that m(D)
is a theorem of T . 2

We are now ready to prove that measure admissible definitions are
also interpreter admissible. The following lemma is key.

Lemma (Measure Admissibility). Let u be a term of T ∪ {D}.
Then the following is a theorem of T . Suppose that for every subterm
f(t1, . . . , tn) of u where f ∈ F

G⇒ (∃d)(standard(d) ∧ f ′(d, t1, . . . , tn) 6= NIL)

where G is the conjunction of all the terms that rule the occurrence of
f(t1, . . . , tn) in u. Then,

(∃d)(standard(d) ∧ ud,1 6= NIL)

Proof. We prove this theorem in TD. Since TD is a conservative ex-
tension of T , this suffices to prove the theorem in T . We proceed by
induction on the structure of u.

If u is of the form if u0 then u1 else u2, and the occurrence of
f(t1, . . . , tn) is in either u1 or u2, we proceed as follows. Assume without
loss of generality that the occurrence is in u1. Since no terms rule u0

or any subterm of u0, it follows from the Divergence Infectiousness
Lemma that there is a standard d0 such that (u0)d0,0 6= NIL, and by
the Monotonicity Lemma, (u0)d,0 6= NIL for any standard d ≥ d0. For
any such standard d ≥ d0, (u0)d,0 = cons(u0, NIL) by the Interpreter
Eliminability Lemma, so ud,1 = (u1)d,1. Applying the inductive hypoth-
esis to u1, we find a standard d1 such that (u1)d1,1 6= NIL. Letting d
be the maximum of d0 and d1, we find a standard value of d such that
ud,1 6= NIL as desired.

If u has any other form, then none of its subterms have any terms
ruling them in u. So the conclusion follows trivially from the Divergence
Infectiousness Lemma. 2

Corollary (Classical Measure Admissibility). Let D be a classical
definitional axiom and u be a term of T ∪ {D}. Then the following is
a theory of T . Suppose that for every subterm f(t1, . . . , tn) of u where
f ∈ F , the following is true:

G⇒ (∃d)(f ′(d, t1, . . . , tn) 6= NIL)
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where G is the conjunction of all the terms that rule the occurrence of
f(t1, . . . , tn) in u. Then,

(∃d)(ud,1 6= NIL)

Proof. By transfer from the Measure Admissibility Lemma. 2

Now we can present the main result of this section.

Theorem (Interpreter Admissibility). Let D be a measure admis-
sible definitional axiom over the theory T . Then D is also interpreter
admissible over T .

Proof. Since D is measure admissible, there is a measure m for D over
T such that the measure theorem m(D) is a theorem of T . Suppose
that D is not interpreter admissible over T .

If D is not classical, the measure function mf for each f defined
by D always returns standard values. So it follows from the inductive
completeness of T and the (assumed) failure of interpreter admissibility
that there is an equation f(x1, . . . , xn) = u of D such that

¬(∃d)(standard(d) ∧ f ′(d, x1, . . . , xn) 6= NIL)

even though for all g(y1, . . . , ym) defined by D the following is true

mg(y1, . . . , ym) ≺ mf (x1, . . . , xn) ⇒
(∃d)(standard(d) ∧ g′(d, y1, . . . , ym) 6= NIL)

But in this case, the measure theorem and the Measure Admissibility
Lemma can be used to conclude that there is some standard d such that
ud,1 6= NIL. But then, f ′(d + 1, x1, . . . , xn) = ud,1 by definition. This
means that there is a standard d such that f ′(d, x1, . . . , xn) 6= NIL,
resulting in a contradiction.

The case when D is classical is completely analogous. 2

5. Implicit Definitions with defun-std

We now turn our attention to defun-std, which allows the introduction
of a classical symbol from a non-classical body. Before such a definition
is accepted, ACL2(r) checks that the body produces standard outputs
when it is given standard inputs. This is meant to ensure the existence
of the classical function introduced by this event.

Definition. A standardizing definitional axiom D from a non-classical
term over a theory T is an equation of the following form

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ f(x1, . . . , xn) = term)
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where the classical function symbol f is not in the language of T , term
is a possibly non-classical term in the language of T such that term is
provably (in T ) standard whenever all the xi are standard, the variables
xi are distinct, and these are the only variables free in term. 2

Consider an r-complete theory T and the following classical defini-
tional axiom D from a non-classical term over T :

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ f(x1, . . . , xn) = term)

We will now show how to construct a theory T ′ that is an r-complete,
conservative extension of T such that D is a theorem of T ′. Since T is
r-complete, the following is a theorem of T .

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(term))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fterm(x1, . . . , xn) = term))

Note that x1, . . . , xn are precisely the free variables of term. Moreover,
notice that the hypothesis in this theorem can be discharged from the
restrictions imposed on term, namely that it return standard values for
standard values of its parameters. Now consider the following equation:

f(x1, . . . , xn) = fterm(x1, . . . , xn)

Since fterm is a classical function in the language of T , this equation
actually comprises a classical definitional axiom D′ over T . Therefore,
the theory T can be extended conservatively into an r-complete theory
T ′ such that D′ is a theorem of T ′. But then D is necessarily a theorem
of T ′.

We prefer to introduce the function f using an axiom over the visible
language of T 4. So consider again the following definitional axiom

(∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ f(x1, . . . , xn) = term)

We can safely assume that term is a term over the visible language of
T . Otherwise, term must use a function symbol fτ . We can remove fτ

simply by using defun to introduce the new (visible) function f ′ such
that f ′ is equal to fτ . Let T ′′ be the completion with respect to transfer
of the extension of T by this visible definitional axiom. We claim that

4 This is what is actually done in the implementation of ACL2(r). The non-visible
function symbols are never used directly in the implementation.
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this theory is precisely the theory T ′ defined above. The reason is that
since fτ and f are classical, we can use the transfer axiom to prove that
f is equal to fτ from the definitional axiom given above. Hence T ′′ is
also complete with respect to induction and standardization.

6. Constrained Definitions with encapsulate

In this section, we consider how ACL2(r) works with encapsulate
events and subsequent functional instantiations.

The story of encapsulate itself is a simple one. Essentially, an
encapsulate event lets the user introduce as an axiom a theorem about
a given function without introducing a definitional axiom for the func-
tion. However, the user must demonstrate that at least one function
satisfies the proposed axiom by defining a “witness” function that does
so. A careful argument given in [13] shows that this can be done con-
servatively5. The gist of this argument is that the theory introduced by
an encapsulate event is a subtheory of the one that would result if the
functions introduced by that encapsulate were simply replaced by their
witnesses. Since we already know that explicitly defining a function
results in a conservative extension, the (weaker) theory resulting from
an encapsulate event is necessarily conservative. Note that this weaker
theory is still r-complete.

The difficulty, however, lies with the correctness of functional instan-
tiation, a derived inference rule in ACL2(r). Functional instantiation
makes use of functional substitution, defined below. Give a theorem φ
of T and a functional substitution that maps some function symbols
in φ to other function symbols preserving constraints on the replaced
function symbols, functional instantiation allows us to conclude that
φ′, the result of mapping the function symbols in φ by the functional
substitution, is also a theorem of T .

Definition. Let T be a theory. A simple functional substitution is a
function over the function symbols of (the language of) T that pre-
serves arity and classicalness. That is, it maps classical function sym-
bols to classical function symbols, non-classical function symbols to
non-classical function symbols, unary function symbols to unary func-
tion symbols, binary function symbols to binary function symbols, etc.
Moreover, a simple functional substitution is required to map each

5 Despite the apparent simplicity of functional instantiation, its soundness as
an inference rule is quite difficult to show, especially in conjunction with ACL2’s
other structuring mechanisms. Some soundness bugs in the treatment of functional
instantiation in early versions of ACL2 motivated the development of [13].
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function in the Ground Zero theory of ACL2(r) to itself. A simple func-
tional substitution that maps each non-visible symbol of (the language
of) T to itself and each visible symbol of T to a (possibly different)
visible symbol of T is called a visible simple functional substitution.
If X is a formula of T and fs is a simple functional substitution, the
formulaX\fs is the formula that results by substituting each functional
instance in X with the function to which fs maps it. 2

To see the validity of functional instantiation as a proof rule, we can
proceed as follows. Suppose that φ is a theorem of some r-complete
theory T in ACL2(r), and let fs be a functional substitution over this
theory. We know there is a proof of φ in T . Suppose that A\fs is a
theorem of T for each axiom A used in this proof of φ. Then it follows
that φ\fs is a theorem of T .

The trick is to show that A\fs is a theorem of T for every axiom A
used in the proof. The reason this is difficult is that the axioms of T
include not just definitional axioms, but also induction, transfer, and
standardization axioms. The ACL2(r) implementation explicitly checks
that A\fs is true of the definitional axioms, but it does not check any of
the other proposed axioms. We will show that these are in fact axioms
as well.

To make this notion explicit, [13] introduces the notion of a labeled
formula. For our purposes, we can think informally of the labeled for-
mulas of a theory T as the set of axioms directly introduced by the
user during the course of an ACL2(r) session that defined T . This
includes the axioms that define or constrain new function symbols,
but it excludes all the induction, transfer, and standardization axioms
added automatically by ACL2(r) on the user’s behalf. Observe that all
labeled formulas are in the visible language of T . With this notion we
are ready to prove the validity of simple functional instantiation.

The following technical lemma is proved in [13].

Lemma. Suppose that φ is a theorem of a given first-order theory T
and that fs is a simple functional substitution whose domain is disjoint
from the set of function symbols of T . Then φ\fs is a theorem of T . 2

This lemma makes a deceptively simple claim: If a theorem involves
function symbols that are not mentioned in the axioms of the theory
in which it is proved, then the meaning of those function symbols is
irrelevant, so the functions they represent can be replaced with different
functions. We use this lemma to prove the following theorem.

Theorem (Simple Functional Instantiation). Let T be a first-
order theory that is r-complete, let fs be a visible simple functional
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substitution over the language of T , and let φ be a theorem of T such
that φ mentions only visible function symbols. Moreover, suppose that
A\fs is a theorem of T for each labeled formula A in T . Then φ\fs is
a theorem of T .

Proof. Since φ is a theorem of T , there is some proof of φ in T . Fix
one such proof. Let P be the conjunction of the axioms used in this
proof of φ. Then P ⇒ φ is a theorem of a subtheory of T that does not
contain any axioms about the function symbols in φ, e.g., the Ground
Zero theory GZ.

We construct a simple functional substitution fs′ that is an exten-
sion of fs as follows. Consider all standardization axioms A used in the
fixed proof of T . Let τ1, . . . , τm be the terms standardized by these
axioms, such that τj is not less than τi according to the partial ordering
implied by standardization when i < j. Then let fs0 = fs, and define
fsi as the extension of fsi−1 that maps fτi to fτi\fsi−1

. The functional
substitution fs′ is equal to fsm, i.e., the final extension. Since φ uses
only visible symbols, notice that φ\fs′ = φ\fs.

The preceding lemma assures us that (P ⇒ φ)\fs′ is also a theorem
of this subtheory. But that means that (P\fs′ ⇒ φ\fs′) is a theorem
of this subtheory and hence also of T . We will complete the proof
by showing that P\fs′ is a theorem of T , and hence φ\fs′ (which is
syntactically equal to φ\fs) is also a theorem of T .

Consider each conjunct A of P , i.e., each axiom used in the fixed
proof of φ. If A is a labeled formula of T , then by hypothesis A\fs is a
theorem of T . Since labeled formulas are in the visible language of T ,
it follows that A\fs′ is equal to A\fs and we’re done.

If A is either an induction or a transfer axiom, then A\fs′ is also
an induction or transfer axiom. The reason is that A\fs′ preserves
the structure of A, changing only the function symbols. Since fs′ also
preserves classicalness, the formula A\fs′ will be of the right type (e.g.,
classical or non-classical induction axiom as appropriate). And since T
is r-complete, it follows that A\fs′ is a theorem of T .

Finally, suppose A is a standardization axiom. Then A has the form

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(τ))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fτ (x1, . . . , xn) = τ))
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where τ is a term with free variables x1, . . .xn and fτ is classical. So
A\fs′ has the following form

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ standard(τ\fs′))) ⇒

((∀x1 . . . xn)((
n∧

i=1

standard(xi)) ⇒ fτ (x1, . . . , xn)\fs′ = τ\fs′))

There must be an i such that τ is equal to τi, one of the formulas
used in the construction of fs′. Then fτ (x1, . . . , xn)\fs′ is equal to
fτi\fsi−1

(x1, . . . , xn). Because the τi are ordered according to the im-
plied ordering imposed by standardization, τi can not contain any of the
fτj for j ≥ i. What this means is that fτi\fsi−1

(x1, . . . , xn) is equal to
fτi\fs′(x1, . . . , xn). Therefore, A\fs′ has the form of a standardization
axiom, and since T is r-complete A\fs′ is a theorem of T . 2

ACL2(r) allows more general functional instantiations than are jus-
tified by the Simple Functional Instantiation Theorem. In particular,
ACL2(r) allows the substitution of an n-ary functional variable f with
a term of the form (lambda (x1, . . . , xn) body) where body may have
free variables (other than the xi). [13] shows how the Simple Functional
Instantiation Theorem can be extended to justify these more general
functional instantiations. The argument is essentially this. First, replace
any free variables in the body with new, arbitrary, zero-arity functions
(i.e., constants), and call the result body’. Then we can apply the Sim-
ple Functional Instantiation Theorem to body’. Since no assumptions
are made on the new zero-arity functions (i.e., constants) introduced,
they can be replaced with universally quantified variables in the final
theorem.

The only complication is that we must ensure that classicalness is
preserved when the new function symbols (corresponding to the free
variables in body) are introduced. When the theorem we are proving via
functional instantiation is classical, we can proceed as follows. When we
replace the free variables in body with new function symbols, we replace
them with classical function symbols. Observe that in any given model,
a zero-arity classical function symbol must correspond to a standard
constant. So when we generalize these zero-arity functions (constants)
with universally quantified variables in the final theorem, we are forced
to assume that these variables are standard. But since the theorem is
classical, we can use transfer to remove this assumption.

When we are proving a non-classical theorem and the constrained
functions we are instantiating are also non-classical, we can proceed in
a straightforward manner. Simply replacing the free variables in body
with unconstrained zero-arity functions (hence possibly non-standard
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constants) allows us to invoke the Simple Functional Instantiation The-
orem directly. There is no need to worry about the classicalness of the
zero-arity functions, since the proof of the original theorem already uses
them in a non-classical context.

On the other hand, when the theorem we are proving is non-classical
and the function we are instantiating is classical, we must disallow free
variables in body. To see this, consider an arbitrary classical function
f(x). Since f is classical, it follows that

standard(x) ⇒ standard(f(x))

If we were to substitute λ(x)(x + y) into this theorem, we would con-
clude that

standard(x) ⇒ standard(x+ y)

But this is false, e.g., when x = 0 and y is an arbitrary non-standard
number6.

7. Skolem Definitions with defchoose

The final method of introducing new function symbols into ACL2(r) is
defchoose. Let φ be a formula with free variables v, x1, x2, . . . , xn,
and no other free variables. Let f be a new function symbol of arity n.
The Skolem axiom introducing f from φ with respect to v is

φ⇒ let v = f(x1, x2, . . . , xk) in φ

What this axiom states is that the function f can “choose” an appro-
priate v for a given x1, x2, . . . , xk, provided such a choice is at all
possible.

The event defchoose allows the user of ACL2(r) to introduce the
new function f from an arbitrary formula φ with free variables v, x1,
x2, . . . , xk as above. This presents two theoretical questions: (a) if
you introduce the new symbol f into the r-complete theory T , why is
the extended theory T ′ also r-complete? and (b) is the new symbol f
classical? In this section we will address these issues.

Consider the extension of an r-complete theory T by a Skolem axiom
introducing f from some formula φ; call the resulting theory T ′. We
assume here that the only variables free in φ are v, x1, x2, . . . , xn, and
that f is an n-ary function symbol so that the Skolem axiom is given
by

φ⇒ let v = f(x1, x2, . . . , xk) in φ

6 This argument identified a bug in an earlier implementation of ACL2(r).
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As we have seen in previous sections, T ′ will be a conservative, r-
complete extension of T provided we can find an explicit definition
of f in the language of T . The problem is that for a given set of xi

there may be more than one v that satisfies φ, so the value of f is not
made explicit by this axiom.

One way to make the value chosen by f explicit is to introduce a
well-ordering of the objects in the universe. With such a well-ordering,
f can simply choose the smallest v that satisfies φ. The following lemma
shows that we can introduce such a well-ordering to the initial ACL2(r)
ground theory.

Lemma (Well-Ordering). It is consistent to extend the ACL2(r)
Ground Zero Theory with a new predicate that well-orders the universe.

Discussion. Forcing is a logical technique that is used often to show
that adding a particular axiom or function symbol to a theory is consis-
tent. In fact, [13] uses model-theoretic forcing to show the consistency of
defchoose in ACL2. The forcing argument originally given in [13], since
corrected and extended in [11], can be modified to justify defchoose in
ACL2(r), essentially by building an appropriate well-ordering on the
fly. However, to do so requires that we reason about both external and
internal sets. This is impossible to do in Internal Set Theory, which only
knows about internal sets, so it is necessary to carry out the forcing
argument in a larger set theory, such as Hrbaček Set Theory [7].

We prefer to give a more traditional (among non-standard analysts)
argument proposed by Kaufmann [9]. This argument uses only the
model-theoretic constructions that are typically used to justify non-
standard analysis in the first place. What we will do is show how to
transform a model of ACL2 into a model that includes non-standard
analysis and a well ordering of the elements.

Proof (Well-Ordering Lemma). Consider a model of the Ground
Zero Theory of ACL2 that includes the irrationals and complex num-
bers, and that satisfies the Axiom of Choice. [10] describes a construc-
tive construction of such a model, without the irrational numbers, and
that construction can be modified trivially to add the irrationals. Assign
a name to each function on the universe of this model, so the language
of the model is uncountable. Call the resulting model MS. Typical
model-theoretic arguments7 show that this model can be extended to
a non-standard model MNS such that all first-order sentences that are
true in MS also hold in MNS (a so-called elementary extension). MNS
contains the function standard in a natural way: The standard elements

7 A common approach is to take ultraproducts of the initial model.
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are those in the universe of MS8. Since MNS satisfies the Axiom of
Choice, its elements can be well-ordered. Let WO be a well-ordering
relation in MNS.

Remark: Nelson’s construction in the proof of the conservativity
of IST over ZFC [16] uses the same model-theoretic arguments that
show the existence of MNS. In fact, MNS is a model of Internal Set
Theory; that is, MNS satisfies the axioms of IST. Consider the familiar
properties of IST. Transfer holds in MNS directly by construction. Since
MNS is an elementary extension of MS, any first-order property that
is true in MS (and hence true of all standard elements of MNS) is also
true in MNS. Standardization holds because all functions in the original
model MS are named. Take any function f in MNS that maps standard
elements to standard elements. Its restriction to the standard elements
of MNS is a function fst from the standard elements of MNS to the
standard elements of MNS, and since the standard elements of MNS
correspond to the elements of MS, there is a corresponding function
f̂ in MS. This function in MS is converted to a classical function ∗f̂
in MNS by the process of constructing MNS. This function ∗f̂ is pre-
cisely the standardization of f . Finally, non-standard induction holds
in MNS because MS is a standard model: Since the interpretation of
≺ in MS really is well-founded, induction holds on MS, and hence on
the standard elements in MNS. And classical induction follows simply
from non-standard induction and transfer.

Therefore, MNS is a model of ACL2(r)—i.e., a model of ACL2 that
also satisfies the axioms of IST—that contains a well-ordering relation
WO. 2

We have just shown that it is consistent to add a well-ordering to a
model of ACL2(r), so we assume that WO is such an ordering in the
Ground Zero Theory of ACL2(r). Note that we do not assume in the
Ground Zero Theory that we have a name for every possible function
symbol—in fact, we assume only countable many function symbols in
this theory. Also note that users never see this well-ordering explicitly;
it is only used implicitly to define the functions using defchoose. As
with encapsulate, the explicit definition of the function is not kept.
Rather, ACL2(r) retains the Skolem Axiom introducing f from the
formula φ.

We can now address the second question concerning defchoose: Are
the new function symbols classical or not? The answer is that when the
formula φ is classical, the function f that is introduced by a defchoose
is also classical. Otherwise, the function is non-classical.

8 More precisely, the universe of MNS contains an embedding of the universe of
MS, and the elements in this embedding are the standard elements of MNS.
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Lemma (Non-classsical Skolemization). Let T be an ACL2(r) the-
ory. Let φ be a (possibly non-classical) formula with free variables v,
x1, x2, . . . , xn, and no other free variables. Let f be a new non-classical
function symbol of arity n. The r-closure of the extension of T by the
Skolem axiom introducing f from φ with respect to v is a conservative
extension of T .

Proof. It is sufficient to give an explicit definition for f . We can do so
with the well-ordering relation WO. That is, let f(x1, . . . , xn) be the
WO-minimal x such that φ(x, x1, . . . , xn) holds. If there is no x such
that φ(x, x1, . . . , xn) holds, then let f(x1, . . . , xn) be nil. It is clear
from the definition that the function f defined in this way satisfies the
Skolem axiom introducing f from φ with respect to v. 2

When φ is classical, we can use non-classical Skolemization and the
standardization principle to find a classical function f that satisfies the
Skolem axiom introducing f from φ. This is important, because it shows
that ACL2(r)’s defchoose behaves analogously to ACL2’s defchoose for
the important case that φ is a classical formula; i.e., for all uses of
defchoose in an ordinary ACL2 theory.

Lemma (Classsical Skolemization). Let T be a theory of ACL2(r).
Let φ be a classical formula with free variables v, x1, x2, . . . , xn, and no
other free variables. Let f be a new classical function symbol of arity
n. The r-closure of the extension of T by the Skolem axiom introducing
f from φ with respect to v is a conservative extension of T .

Proof. It is sufficient to give an explicit definition for f . We do so
as follows. First, let ψ be the formula φ ∧ standard(v). Using the
Non-classical Skolemization Lemma, we know there is an r-complete
conservative extension of T with the (new) non-classical symbol g of
arity n such that the Skolem axiom introducing g from φ with respect
to v holds. We can now define f as the standardization of g.

To complete the proof, we need only show that the function f sat-
isfies the Skolem axiom introducing f from φ with respect to v. Since
φ is classical and f is classical (because it was defined explicitly using
standardization), we need only consider standard values of the free
variables in the Skolem axiom. Suppose v1, . . . , vn are all standard. If
there is no standard v such that φ(v, v1, . . . , vn) holds, then by the
transfer principle there is no v such that φ(v, v1, . . . , vn) holds—in
which case the Skolem axiom trivially holds. Otherwise, there is such a
standard v. But then, we have that φ(v, v1, . . . , vn)∧standard(v) holds.
Therefore, ψ(v, v1, . . . , vn) is satisfied. By the Skolem axiom introducing
g from ψ, we know that φ(g(v1, . . . , vn), v1, . . . , vn) holds. And since f is
identical to g for standard arguments, φ(f(v1, . . . , vn), v1, . . . , vn) also
holds. Since the choice of v1, . . . , vn was arbitrary, we have just shown
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that the Skolem axiom introducing f holds for all standard values of
its free variables. Applying the transfer principle completes the proof.
2

8. Concluding Remarks

The results in this paper show that the principles of definitional ex-
tension in ACL2(r) are sound, in fact conservative. Together with the
exposition in [13] this gives a clear explanation of what it means to
say that a formula is a theorem of a sequence of ACL2(r) events: The
formula is a theorem if it is first-order derivable from (a) the Ground
Zero theory of ACL2(r), (b) the union of all the definitional events in
the ACL2(r) sequence that define a function used in the theorem, and
(c) the induction, transfer, and standardization axioms of the language
on the ACL2(r) sequence. This serves to put ACL2(r) in a firm logical
foundation.

This paper describes a stronger version of ACL2(r) than the one
described in [5], justifying enhancements to ACL2(r) that will make it
more useful. In fact, deficiencies in ACL2(r) that we encountered while
working on Taylor’s Theorem [6] led to the research described in this
paper.

These enhancements include the following:

− The previous version of ACL2(r) contained standard-numberp,
a function with intended semantics of “standard and numeric.”
There was no way to refer to standard atoms, lists, etc. The new
version of ACL2(r) introduced the function standard which can
be applied meaningfully to all arguments. E.g., ACL2(r) now has
support for standard lists. Moreover, ACL2(r) has been enhanced
so that it recognizes that classical functions produce standard re-
sults for standard arguments. Previously, the user had to prove
such theorems directly, sometimes requiring considerable effort.

− ACL2(r) supports the introduction of recursive functions with non-
classical bodies; earlier versions of ACL2(r) only permitted clas-
sical recursive functions. This restores the beautiful symmetry
between induction and recursion that is a hallmark of the Boyer-
Moore Theorem Prover and ACL2. Notice in particular that the
restriction on such recursive functions—that the measures give
standard results for any arguments—mimics the restriction of the
non-standard principle of induction—that induction can only be
used to establish the truth of a formula for standard arguments.
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This also has a practical consequence to ACL2(r). The logic of
ACL2 has very limited support for quantifiers. As a result, ACL2
users often use recursive definitions to model bounded quantifiers.
For example, it is a theorem of ACL2 that if all elements of a list
are rational, the sum of the elements of this list is also rational.
Rather than using a quantifier to write the hypothesis of this the-
orem, an ACL2 user would phrase this theorem by defining the
function rational-listp that is true of all lists whose elements
are rationals:

(defun rational-listp (l)
(if (null l)

t
(and (rationalp (car l))

(rational-listp (cdr l)))))

Using rational-listp, the desired theorem can be proved as
follows:

(defthm rational-listp-sum-is-rational
(implies (rational-listp l)

(rationalp (sumlist l))))

This rephrasing of formulas involving quantifiers into recursive
predicates is second nature to users of ACL2. But this technique
did not work well in the previous version of ACL2(r), which proved
frustrating to ACL2(r) users.

To see the problem, consider a similar theorem of ACL2(r): If a list
has standard elements and the list is of standard length, the sum of
the elements of the list also standard. While true, this theorem was
inexpressible in the prior version of ACL2(r), because the function
standard-listp requires the use of recursion with a non-classical
body. In the current (under development) version of ACL2(r), this
function can be defined as follows:

(defthm standard-listp (l)
(if (null l)

t
(if (not (standardp (length l)))

nil
(and (standardp (car l))

(standard-listp (cdr l))))))
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The definition of this function is similar in structure to that of
rational-listp. However, the extra condition on the length of
the input list is required to guarantee that the measure function
(e.g., the length of the input argument if that is standard, zero
otherwise) always returns a standard value, as required by the
theory developed in section 4.3.

− ACL2(r) supports the introduction of non-classical constrained
functions with encapsulate. Previous versions of ACL2(r) allowed
the user to define only classical functions with encapsulate. The
formal description of encapsulate also illustrated a soundness bug
(since fixed) in the implementation of encapsulate in earlier ver-
sions of ACL2(r).

− ACL2(r) now supports the introduction of non-classical functions
with defchoose.

We are currently busy completing the enhancements to ACL2(r) out-
lined above. We expect these enhancements to be ready for distribution
with the next general release of ACL2.
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