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Abstract. Randles-Ershler admittance model is extensively used in the modeling of batteries, fuel cells,
sensors etc. It is also used in understanding response of the fundamental systems with coupled processes
like charge transfer, diffusion, electric double layer charging and uncompensated solution resistance. We
generalize phenomenological theory for the Randles-Ershler admittance at the electrode with double layer
capacitance and charge transfer heterogeneity, viz., non-uniform double layer capacitance and charge transfer
resistance (cd and RCT ). Electrode heterogeneity is modeled through distribution functions of RCT and cd ,
viz., log-normal distribution function. High frequency region captures influence of electric double layer while
intermediate frequency region captures influence from the charge transfer resistance of heterogeneous electrode.
A heterogeneous electrode with mean charge transfer resistance RCT shows faster charge transfer kinetics over
a electrode with uniform charge transfer resistance (RCT ). It is also observed that a heterogeneous electrode
having high mean with large variance in the RCT and cd can behave same as an electrode having low mean
with small variance in the RCT and cd . The origin of coupling of uncompensated solution resistance (between
working and reference electrode) with the charge transfer kinetics is explained. Finally, our model provides a
simple route to understand the effect of spatial heterogeneity.

Keywords. Randles-Ershler admittance; electrode surface with random charge transfer resistance; ohmic
contribution; electric double layer; distribution function for heterogeneity.

1. Introduction

Electrochemical impedance spectroscopy (EIS) is a
powerful technique for investigating electrochemical
systems and processes. Multiple parameters can be
determined from a single experiment. EIS can be used
to characterize bulk and interfacial properties of the
system. It is a high precision measurement technique
which does not substantially remove or disturb the sys-
tem from its operating condition. In real electrochemical
systems, impedance spectra are usually more compli-
cated. Randles and Ershler equivalent model1,2 is very
often used to model the interfacial phenomena and used
to characterize EIS of lithium ion batteries,3,4 sensors,5,6

ion-selective systems7,8 and to investigate the stability
of films.9 It includes ohmic resistance of the electrolyte
solution, Warburg impedance (resulting from the diffu-
sion of ions from the bulk electrolyte to the electrode

*For correspondence

interface), double layer capacitance and electron trans-
fer resistance (that exists if a redox probe is present in
the electrolyte solution).

Electrode surface irregularities play significant role
in its electrochemical responses. There are several
factors which cause these irregularities, like surface
roughness corresponding to the geometrical irregular-
ities, chemical heterogeneities (include differences in
the constituent materials, chemical imperfections and
surface-bound impurities and coatings), atomic-scale
inhomogeneities, basal-edge plane heterogeneities, etc.
Solid electrodes are not smooth, they exhibit complex
surface morphology with the varying degree of irregu-
larities ranging from sub-nanometer to the micrometer
length scales. In order to capture the complexity aris-
ing from irregular interfaces (i.e., rough, porous, and
partially active interfaces) one often uses fractal mod-
els10,11 and it is the most efficient way to understand
the effects of electrode disorder on the electrochemi-
cal response.12–14 Most of the rough surfaces can be
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approximately mapped into finite self-affine fractals
(which exhibit scale invariance over a limited range of
the length scales).15,16

Along with the electrode roughness, electrochemical
properties are also attributed to various heterogeneities;
geometric heterogeneity such as roughness or distribu-
tion of the pore size and crystallographic disorder (due
to anisotropic surface atomic structure). Heterogeneous
nanostructured electrode offers high electrochemical
energy storage.17 The effect of atomic scale hetero-
geneity is studied on the cyclic voltammetry and time
scales are discussed up to which it play significant
role in the electrochemical response.18–20 Impedance
technique is also used to study heterogeneity effects,
comparisons are often drawn between the basal and
edge plane efficiency.21,22 Electrochemical properties
over the edge and basal planes are studied, e.g., in
single-crystal platinum electrodes in contact with ionic
liquids,23 on the pyrolytic graphite electrodes24–26 or
over the graphene sheets.27 It has been seen that edge
planes are more electrochemically active than the basal
planes.23–27 The oxygen reduction reaction (ORR) is
used in the studies of many electrochemical applica-
tions including hydrogen-oxygen fuel cells, biosensors
and metal-air batteries. It is found that ORR is promi-
nent on edge as compared to the basal plane on graphite
electrode.20,28,29 Heterogeneity effects are seen in CPE
of impedance at the rough capacitive electrodes,30,31

in kinetics over the modified electrodes, monolayers
over the electrodes, etc.32,33 Contribution of the surface
distributions are also studied using finite element simu-
lations.34

More than a decade has been spent by Kant and
coworkers to understand the impedance behavior at the
rough electrodes in presence of various electrochemi-
cal processes. Effect of morphological length scales are
discussed on the impedance at a finite fractal electrode
for a diffusion controlled system.35–37 This work has
been further extended for the diffusion and homoge-
neous kinetics coupled with a fast heterogeneous charge
transfer reaction38 at the realistic fractal electrodes.
Influence of quasi-reversible charge transfer,39 uncom-
pensated solution resistance40 and diffusion limited
adsorption coupled to the reversible charge transfer41

are also encapsulated to study impedance on the rough
and finite fractal electrodes. Randles-Ershler admittance
is generalized for the arbitrary topography electrode and
is applied to the finite fractal electrodes.42 Recently,
we have shown that the work function of a metal
is dependent on the roughness of surface43 whereas
work function dependence on the crystallographic phase
exposed at the surface is well established.44 The rough-
ness and exposure of various crystallographic phases

at the electrode surface are random in nature. Hence,
the work function of such electrode surfaces are also
random in nature. This is also seen in the scanning tun-
neling microscopy and Kelvin probe force microscopy
images of most metal surfaces that they show random
distribution of the local work function.45,46

Surface heterogeneity and roughness, both signifi-
cantly control the EIS behavior. Heterogeneity at the
disk electrode geometry is widely studied and it is
found that ohmic resistance distributions causes the
frequency dispersion of impedance measurements.47–49

For the disk electrode, Brug et al., developed a model
to study the effects of electrode heterogeneity in the
double layer capacitance and sluggish charge transfer
processes, and showed that the constant phase element
(CPE) influences frequency dispersion.50 However this
model for impedance distribution for CPE with slow
charge transfer is good enough when heterogeneity
effects are observed in the compact layer and diffusion is
unimportant. Recently, Kant et al., extended Brug et al.,
results in presence of diffuse electric double layer relax-
ation with CPE and sluggish charge transfer,51 and also
for the ionic liquids52 in presence of roughness.53 The
objective of this work is to study the influence of elec-
trode heterogeneity on the charge transfer kinetics and
capacitance through their statistical overall impedance
response.

Figure 1 shows the schematic representation of an
electrochemical system with charge transfer and capac-
itance spatial heterogeneities. Heterogeneous working
electrode (WE) with non-uniform charge transfer (site
specific) resistance (R(i)

CT ) and electric double layer
capacitance (c(i)

d ) are shown as patches of different
colors. For this kind of complex electrochemical sys-
tem with the multiple interfacial processes, a theory is
developed in the next section along with the physical
interpretations of various controlling parameters of the
interfacial processes. Formulation section is followed by
the results and discussions where spatial heterogeneity
effects are explained with the help of various impedance
plots: Nyquist and Bode’s plots. Finally, work is sum-
marized and conclusions are listed.

2. Formulation

The conventional Randles-Ershler equivalent circuit
area specific impedance is defined as1,2,54

zRE(ω) = Rs +
(

jω cd + 1

RCT + zW (ω)

)−1

(1)

where cd is the area specific electric double layer (EDL)
capacitance and zW (ω) = (

�D
√

jω/D
)−1

is the area
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Figure 1. Schematic representation of heterogeneous working electrode (WE)
with non-uniform charge transfer (site specific) resistance (R(i)

CT ) and double layer

capacitance (c(i)
d ), and ohmic losses between working (WE) and reference (RE) elec-

trode, R�, which influences electrode kinetics. The characteristic electric double
layer relaxation time for a patch is R� c(i)

d .

specific Warburg impedance. � = n2 F2/RT (1/C0
O +

1/C0
R) is the volume specific diffusion capacitance, n

is the number of electrons transferred, F is the Faraday
constant, R is the gas constant, T is the absolute temper-
ature and D is the diffusion coefficient of electroactive
species; C0

O and C0
R are the bulk concentrations of the

oxidized and reduced species, respectively. RCT is the
area specific charge transfer resistance while Rs is the
area specific solution resistance. In equation 1, RCT is
assumed to be uniform at the electrode surface.

Randles-Ershler equivalent circuit model is exten-
sively used but it works when there are no dynamic
interplay of various effects, viz., surface heterogene-
ity, diffusion, charge transfer, solution resistance and
electric double layer charging. But, in the presence
of coupling of various phenomena, equivalent circuit
model gives erroneous values of various parameters,
such as diffusion coefficient, charge transfer resis-
tance, electrolyte resistance, etc. To overcome these
limitations of the equivalent circuit analysis, classical
Randles-Ershler admittance equation at the smooth and
rough surface is developed.42 It has dependency on the
quasi-reversible charge transfer and solution resistance
between the working (WE) and reference (RE) elec-
trode, complex diffusion length and capacitance of the
EDL, which are generally present in the broad spectrum
impedance experimental data.

Schematic representation of problem of the charge
transfer and uncompensated solution resistance, R�,
(between WE and RE electrode) with the electric dou-
ble layer charging at the heterogeneous is shown in

Figure 1. The mass transfer diffusion equation is given
as: ∂δCα(�r ,t)

∂t
= Dα �2 δCα(�r , t), where �r is a three-

dimensional vector (x, y, z), α is O or R and it represents
the oxidized or reduced species and Dα is the diffusion
coefficient (for simplicity we assume in our calcula-
tions; DO = DR = D). δCα(�r , t) = Cα(�r , t) − C0

α,
is difference between surface and bulk concentration
of the electroactive species. At an initial time t = 0,
change in concentration of the diffusing species is
δCα(�r , t = 0) = 0 and in bulk (far from the elec-
trode), change in concentration of diffusing species is
δCα(�r||, z → ∞, t) = 0 where �r|| is a two-dimensional
vector (x, y). Now, the linearized Butler-Volmer equa-
tion along with the capacitive and ohmic contribution
can be used to formulate the electrode-electrolyte inter-
face constraint. For the quasi-reversible system in the
presence of electric double layer (EDL) capacitance,
current at the electrode is determined by the capaci-
tive current of EDL, mass and charge transfer kinetics.
The linearized Butler-Volmer equation for small overpo-
tential with EDL capacitive charging in the moderately
supported system at the electrode surface, viz. z = 0
plane42,55,56 is (see appendix A for derivation details)

i(�r||, t)

i0
= δCO(�r||, t)

C0
O

− δCR(�r||, t)

C0
R

+ n f
(
η(t)

−R� i(�r||, t)
) − cd

i0

dη

dt
(2)

where i(�r||, t) is the local surface profile dependent
total current density at the interface and is defined as
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i(�r||, t) = i f (�r||, t)−cd dη(t)/dt , i f (�r||, t) is the faradaic
component of the current density, i0 is the exchange cur-
rent density and is related to RCT , i0 = RT/nF RCT ,
η(t) is the applied potential and cd is the area specific
EDL capacitance. f = F/RT . We wish to determine
Randles-Ershler admittance at heterogeneous surface
which satisfy various boundary constraints, using flux-
balance condition, δCO(�r||, t) + δCO(�r||, t) = 0,57 and
assuming same diffusion coefficient for the oxidized and
reduced species (DO = DR = D).

The operative potential at the interface (as shown in
the boundary condition, equation 2) is η(t)−R� i(�r||, t),
where i(�r||, t) is local interfacial current density. So,
R� i(�r||, t) is local potential drop between the WE
and RE, where R� is the area specific uncompen-
sated solution resistance. The current density, i(�r||, t),
arises due to two interfacial phenomena, viz., dou-
ble layer (non faradaic) charging and faradaic charge
transfer current. The multiplicative nature of R� and
i(�r||, t) as well as RCT and i(�r||, t) (in equation 2),
causes coupling between ohmic (R�) and charge trans-
fer (RCT ) resistances. So, the emergence of coupling
between a bulk property (R�) and an interfacial prop-
erty (RCT ) is through the common interfacial current
density (i(�r||, t)). Mathematical origin of this coupling
for the linearized surface boundary condition is shown
in appendix A. It also shows the additive nature of RCT

and R�.
Equation 2 can be represented in terms of a phe-

nomenological length scale (LC�, arising from the
charge transfer resistance and ohmic resistance between
the WE and RE) and double layer relaxation time scale
(τdl). The simplified expression for boundary constraint
at the electrode surface is expressed as

LC� ∂nδCO(�r||) − δCO(�r||)
∣∣

z=0
= (1 + jω τdl)

(
� η0

nF

)
(3)

where τdl = cd R�. RCT , R� and RC� in combina-
tion with diffusion coefficient introduces three char-
acteristic phenomenological length scales, LCT , L�

and LC�, respectively. LCT and L� are the diffusion-
kinetics and diffusion-resistance phenomenological
lengths, respectively. The composite phenomenological
diffusion-kinetics-ohmic length (LC�) is defined as
LC� = LCT + L�

LCT = � D RCT

L� = � D R� (4)

Surprisingly, composite phenomenological length LC�

in equation 3 brings coupling of R� and RCT . LC� is the
diffusion equilibration layer thickness that arises due
to the finite charge kinetics and pseudo-kinetics (due

to ohmic contribution in the potential drop at the WE).
Hence, the magnitude of LC� will determines the nature
of a interfacial kinetics.

If there is fast charge transfer taking place in a fully
supported medium, then charge transfer resistance RCT

or correspondingly LCT is negligible and the interfacial
process is expected to be diffusion controlled. But sys-
tem with uncompensated resistance, solid electrolyte or
low conductivity electrolyte, will show pseudo-kinetic
controlled behavior as they will have non-vanishing
LC�.

For the heterogeneous surface, we can individu-
ally solve the Butler-Volmer equation35,39,42 for various
patches of the charge transfer resistance (R(i)

CT ) and
double layer capacitance (c(i)

d ) and overall admittance
response of the heterogeneous electrode is the ensem-
ble average of admittances at all R(i)

CT and c(i)
d . Classical

smooth surface Randles-Ershler admittance42 (can be
seen as admittance over homogeneous charge transfer
and double layer capacitance patch), YR(ω) is obtained
as

YR(ω) =
(

A0

y−1
W (ω) + RC�

)
(1 + jωR� cd) (5)

where yW (ω) (=�D
√

jω/D ) is the area specific War-
burg admittance. RC� is defined as RCT + R�. R� arises
due to separation between the WE and RE (Figure 1). For
a conducting electrolyte, smaller is the distance between
WE and RE electrodes, smaller is the value of R�.

In equation 5, RCT and cd are usually assumed to be
site independent charge transfer resistance and double
layer capacitance, they remain same at the homogeneous
electrode surface. Hence, charge transfer resistance and
double layer capacitance which are site dependent can
be treated as varying charge transfer resistance (R(i)

CT )
and electric double layer capacitance (c(i)

d ) over various
zones of the electrode surface as shown in the Figure 1. It
is considered that each patch is large enough so that the
patches can be treated as an ensemble of the electrodes
with a given R (i)

CT and c (i)
d . Therefore, the whole electrode

admittance is considered as an ensemble average of the
admittance over various charge transfer resistance and
electric double layer capacitance zones. For the fluctua-
tions in the charge transfer resistance and electric double
layer capacitance of a heterogeneous surface electrode,
RCT can be replaced with RCT + δRCT while cd can
be replaced with cd + δcd in equation 5. RCT and cd

are the mean value or ensemble average of the charge
transfer resistance and electric double layer capacitance,
respectively. While δRCT and δcd are the deviations of
the charge transfer resistance and electric double layer
capacitance, respectively, from their mean value at a
given site. At the lowest level of approximation, δRCT
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and δcd can be ignored, and RCT can be replaced by
RCT while cd can be replaced by cd (in the equation 5),
which can be looked upon as a mean field approxima-
tion. Thus, admittance can be written in terms of a mean
field Randles-Ershler admittance (Y 0

R(ω)) as

Y 0
R(ω) = A0

y−1
W (ω) + RC�

(1 + jω R� cd) (6)

where RC� = RCT + R�. Mean field Randles-Ershler
admittance (Y 0

R(ω)) at the heterogeneous electrode is
similar to classical Randles-Ershler admittance (YR(ω),
equation 5) at the homogeneous electrode. Under the
condition of lowest approximation, heterogeneous sur-
face behaves like a pseudo-homogeneous surface.

Next step is to account fluctuations in mean field
approach for the Randles-Ershler admittance response.
This can be done when fluctuations in RCT and cd

are small. For small fluctuations in the charge transfer
resistance and electric double layer capacitance over a
heterogeneous surface, Randles-Ershler admittance can
be approximated as (see appendix B for details)

YR(ω) = Y 0
R(ω)

[
1 + δR2

CT(
y−1

W (ω) + RC�

)2

− jω R�δRCT δcd(
y−1

W (ω) + RC�

)(
1 + jω cd R�

)]
(7)

YR(ω) is the ensemble averaged Randles-Ershler admit-
tance over all the possible fluctuations in charge transfer
resistance over the heterogeneous electrode. δR2

CT is the
ensemble average of fluctuations in charge transfer resis-
tance. δRCT δcd is the correlated mean of fluctuations
in charge transfer resistance and double layer capaci-
tance. When fluctuations in charge transfer resistance
and electric double layer capacitance are uncorrelated,
i.e., δRCT δcd and δR2

CT → 0, above equation gives
similar result as the classical (equation 5) and mean
field (equation 6) Randles-Ershler admittance response.
Equation 7 can be simplified for the frequency regime
where double layer can be ignored as

YR(ω) ≈ Y 0
R(ω)

[
1 +

(
yW (ω)

1 + yW (ω)RC�

)2

δR2
CT

]
(8)

The characteristic frequency below which electrode
will behave as the homogeneous surface electrode is
obtained as:

ωho ∼ 1/
(
5 �2 D δR2

CT

)
(9)

It can be seen that at the low frequency, ω < ωho, het-
erogeneous Randles-Ershler admittance will be same as
the homogeneous Randles-Ershler admittance.

For the high frequency limit (ω → ∞), admittance
is controlled by electric double layer capacitance and
charge transfer resistance, equation 7 can be approxi-
mated as,

YR(ω) ≈ Y 0
R(ω)

(
1 + δR2

CT

RC�

2 − δRCT δcd

cd R�

)
(10)

Equation 10 implies that the characteristic frequency
above which the impedance will behave as of homoge-
neous surface electrode but with constant deviation.

For arbitrary fluctuations which could be large, per-
turbation theory will break down, hence, it needs to be
replaced by the theory with whole distribution function
for random charge transfer resistance and electric dou-
ble layer capacitance. To obtain average response of
such an electrode, equation 5 is averaged over charge
transfer resistance and electric double layer capaci-
tance distribution functions. As mentioned earlier, the
surface distribution of charge transfer resistance and
electric double layer capacitance arises due to distri-
bution of work function over the surface. Work function
at the electrode surface are random in nature and can
be described in the terms of their distribution func-
tion. It is fair to assume that most surfaces will show
normal distribution of the work function. Charge trans-
fer kinetics is dependent on the work function of the
metal and it has been shown that the logarithmic of
exchange current density is proportional to the work
function.58 Hence, surfaces with normal distribution of
the work function will have log-normal distribution of
the exchange current density or charge transfer resis-
tance. Log-normal distribution function has additional
advantage as it does not allow negative values of RCT

and cd . 59–61 Also, due to distribution in the work func-
tion, electric double layer capacitance will have different
values at different patches of the heterogeneous surface.
Hence, the heterogeneous electrode with large charge
transfer resistance and electric double layer capacitance
fluctuations can be represented through the log-normal
distribution function. The probability density function
(PDF) of log-normal distribution has the form

p(x) = 1

xσ
√

2π
exp

(
− 1

2σ 2

(
ln x − μ

)2
)

(11)

where μ and σ are the location parameter of the mean
and the scale parameter, respectively. For the log-normal
distribution in charge transfer resistance, mean (RCT )
is defined as exp[μ + σ 2/2] and variance (σ 2

CT ) as
(exp[σ 2] − 1)exp[2μ + σ 2]. The ratio of σCT /RCT can
be looked upon as the measure of relative spatial hetero-
geneity in the charge transfer resistance, γct . Similarly
for the log-normal distribution in the electric double
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layer capacitance (with μd and σ as location param-
eter and the scale parameter, respectively), mean (cd)
and variance (σ 2

d ) can be defined as exp[μd + σ 2/2]
and (exp[σ 2] − 1)exp[2μd + σ 2], respectively. Relative
spatial heterogeneity in the electric double layer capac-
itance (γc) in given as the ratio of σd/cd .

Different patches of charge transfer resistance act as
ensemble of the electrodes, hence classical Randles-
Ershler admittance is averaged over these patches along
with their weights from their log-normal distribution.
Thus, averaged classical Randles-Ershler admittance
equation with the spatial heterogeneity can be written
as,

YR(ω) =
∫ ∞

0

∫ ∞

0

A0

y−1
W (ω) + RC�

(
1 + jωR� cd

)
p
(
RCT

)
p
(
cd

)
d RCT dcd (12)

where RC� is RCT + R�. p
(
RCT

)
and p

(
cd

)
are the

probability distribution of charge transfer resistance and
double layer capacitance, respectively. Under the limit
of small spatial heterogeneity, perturbation result in the
equation 7 and equation 12 will give similar response.
For a system with the small current or ohmic resistance,
equations 5, 6 and 12 emphasize that the RCT and R�

are additive in nature, which was shown rigorously in
the earlier works.40,42,55,56

3. Results and Discussion

Here, we analyze the theoretical results developed for
the heterogeneous Randles-Ershler admittance equation
but without the surface roughness (equation 12) and
compare them with the results of homogeneous elec-
trode (equation 5).

Figure 2 shows the effects of spatial heterogeneity
in the charge transfer resistance (RCT ) and the electric
double layer capacitance (cd). Differences in the elec-
trochemical process and their impedance responses are
contrasted through three types of graphs: (a) impedance
phase vs logarithmic of the frequency (Bode’s phase
plot), (b) double logarithmic plot of the magnitude of
impedance vs logarithmic frequency (Bode’s magni-
tude ploy) and (c) the Nyquist plot (complex-plane
impedance diagram). In the Bode’s phase plots, phase
of the impedance ( = tan−1 (−Z ′′/Z ′)) is plotted
with the logarithmic of the frequency (ω) while in the
Bode’s magnitude plots, logarithmic of magnitude of
the impedance (|Z |) is plotted with the logarithmic of
the frequency (ω). In the Nyquist plots, real part of the
impedance (Z ′) is plotted on the x-axis while negative
of the imaginary part of the impedance (−Z ′′) is plotted

(a)

(b)

(c)

Figure 2. Effect of heterogeneity in
charge transfer resistance and elec-
tric double layer capacitance is studied
using Randles-Ershler impedance on (a)
Bode phase angle plot, (b) Bode mag-
nitude plot and (c) Nyquist plot. The
dashed line represent classical electrode
Randles-Ershler impedance at homoge-
neous electrode while solid line repre-
sent Randles-Ershler impedance at het-
erogeneous electrode. These plots are
generated using RCT = 100 � cm2 (for
μ = 3.9, σ = 1.2 and σCT = 179 � cm2),
R� = 20 � cm2, cd = 8 μF /cm2 (for μd
= -12.5, σ = 1.2 and σd = 14.4 μF /cm2),
A0 = 1 cm2, D = 7 ×10−7 cm2/s, C0

O =
C0

R = 5 mM, n = 1 and T = 298 K .
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(a) (b)

(d)(c)

Figure 3. Effect of RCT at a surface with fixed electric double layer capacitance (cd ) heterogeneity Ran-
dles-Ershler impedance on (a) Bode phase angle plot, (b) Bode magnitude plot, (c) Nyquist plot and (d)
probability distribution function (PDF). These plots are generated using R� = 10 � cm2, cd = 8 μF /cm2

(for μd = -12.4, σ = 1.2 and σd = 14.4 μF /cm2), A0 = 1 cm2, D = 7 ×10−7 cm2/s, C0
O = C0

R = 5 mM, n
= 1 and T = 298 K . The dashed and solid represent Randles-Ershler impedance response at homogeneous
and heterogeneous electrodes, respectively. RCT varies as 40 � cm2 (for μ = 3.0, σ = 1.2 and σCT = 71.8
� cm2), 100 � cm2 (for μ = 3.9, σ = 1.2 and σCT = 179.5 � cm2) and 160 � cm2 (for μ = 4.4, σ = 1.2 and
σCT = 287.1 � cm2) in classical Randles-Ershler impedance equation with heterogeneity for black, red and
blue colored lines, respectively.

on the y-axis. Black dashed line represents the classical
Randles-Ershler impedance (equation 5) without hetero-
geneity while black solid line shows the Randles-Ershler
impedance (equation 12) curves accounting for the elec-
trode charge transfer heterogeneity. Figure 2(a) shows
the phase vs logarithmic of the frequency. Here, low
frequency regime is the diffusion controlled as phase
(ω) → 45◦. Minimum in phase is characteristic of
RCT and R�. On approaching high frequency regime,
phase again lifts up due to the charge reorganization,

this time due to interaction between the charge transfer
and double layer, and phase approaches 90◦. Figure 2(b)
is the Bode magnitude plot. This magnitude plot is
divided into three characteristic frequency regimes:
(a) pure Warburg regime, with slope 1/2, (b) charge
transfer and ohmic loss (resistance between the WE
and RE (R�)) controlled regime with slope less than
1/2, and (c) capacitive controlled regime with slope
greater than 1/2 and close to 1. When heterogeneity
is introduced, it shows its effect in the intermedi-
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(a) (b)

(d)(c)

Figure 4. Effect of cd at a surface with fixed electric double layer capacitance (RCT ) heterogeneity Ran-
dles-Ershler impedance on (a) Bode phase angle plot, (b) Bode magnitude plot, (c) Nyquist plot and (d)
probability distribution function (PDF). These plots are generated using R� = 10 � cm2, RCT = 40 � cm2

(for μ = 3.0, σ = 1.2 and σCT = 71.8 � cm2), A0 = 1 cm2, D = 7 ×10−7 cm2/s, C0
O = C0

R = 5 mM, n
= 1 and T = 298 K . The dashed and solid represent Randles-Ershler impedance response at homogeneous
and heterogeneous electrodes, respectively. cd varies as 8 μF /cm2 (for μd = -12.5, σ = 1.2 and σd = 14.4
μF /cm2), 18 μF /cm2 (for μd = -11.6, σ = 1.2 and σd = 32.3 μF /cm2) and 28 μF /cm2 (for μd = -11.2, σ =
1.2 and σd = 50.2 μF /cm2) in classical Randles-Ershler impedance equation with heterogeneity for black,
red and blue colored lines, respectively.

ate regime where impedance response of the classical
Randles-Ershler impedance with spatial heterogeneity
is lower in magnitude than the classical Randles-Ershler
impedance without heterogeneity. Heterogeneity in RCT

and cd is evident in the intermediate and high frequency
regime. Figure 2(c) shows the effect of heterogeneity
in the Nyquist diagram. The impedance curve shows an
“inverted hockey stick” shaped response in the Nyquist
plot where semicircle in the impedance plot corresponds

to the kinetics controlled (charge transfer) and uncom-
pensated solution resistance between the WE and RE
(R�) controlled regime. The raising arm of the curve
corresponds to the mass transfer (diffusion) controlled
regime. Semicircle in the Nyquist plot is not only char-
acteristic of the kinetics but it can also be seen in absence
of electroactive species in the electrolyte. In this case,
semicircle arises due to the presence of R� and sys-
tem shows pseudo-quasi-reversibility. This effect cannot
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be predicted with the equivalent circuit model (equa-
tion 1), as equivalent circuit model considers semicircle
solely depends upon the charge transfer resistance.
When heterogeneity effects are accounted, size of semi-
circle decreases and knee position in the impedance
Nyquist plot shifts to the lower frequency and diffu-
sion controlled regime starts appearing at the shorter
frequency.

Figure 3 shows the effect of mean charge transfer
resistance (RCT ). Solid colored lines represent heteroge-
neous electrode impedance response while dashed lines
represent the corresponding homogeneous electrode
impedance response at RCT (calculated using μ and
σ ). In this figure, σ is kept constant and μ is increased
(from black to blue). RCT and σCT are increased simul-
taneously which is seen in the Figure 3. With increase
in μ (RCT increases as σ is constant), electrochemical
process becomes more sluggish and shifts towards the
lower frequency. In Figure 3(a), increase in μ deviates
phase from diffusion type behavior. Peak at the high fre-
quency increases with increase of μ which pulls process
towards more capacitive behavior. At the intermedi-
ate regime, minimum shifts towards lower frequency
and broadens with increase of μ, implying that the
electrochemical process becomes more sluggish. Sim-
ilar observation can be made from the Figure 3(b). At
intermediate regime, with increase of μ, slope of mag-
nitude of impedance decreases and stretches impedance
response over broader frequency range. In Figure 3(c),
size of the semicircle increases and diffusion controlled
regime gets delayed with an increase of heterogeneity
however heterogeneous surface shows fast charge trans-
fer kinetics as compared to the homogeneous surface for
the same mean charge transfer resistance. Figure 3(d)
shows the normalized probability distribution function
(PDF) of a log-normal distribution vs logarithmic of the
heterogeneous charge transfer resistance (scaled with 1
� cm2).

Similarly, Figure 4 shows the effect of mean elec-
tric double layer capacitance (cd). σ is kept constant
for charge transfer resistance and electric double layer
capacitance heterogeneity and μd is increased (from
black to blue) to increase cd . Unlike RCT , effect of
cd are observed in the high frequency regime (Fig-
ure 4(a), (b) and (c)). Effect of distribution of double
layer capacitance are seen in the high frequency regime.
Various PDF curves of the log-normal distribution of
double layer capacitance vs its logarithmic (scaled with
1 μF/cm2) are shown in the Figure 4(d).

When heterogeneity is increased, i.e., variance in
RCT or cd is increased (keeping magnitude of σ same
for both and increasing μ or μd), minimum and peak
positions shifts towards the higher frequency and phase

log(ω/s-1)

(a)

(c)

(b)

Figure 5. Effect of R� at a surface
with fixed heterogeneity using Ran-
dles-Ershler impedance on (a) Bode
phase angle plot, (b) Bode magnitude
plot and (c) Nyquist plot. These plots
are generated using RCT = 100 � cm2

(for μ = 3.9, σ = 1.2 and σCT = 179.5
� cm2), cd = 8 μF /cm2 (for μd =
-12.4, σ = 1.2 and σd = 14.4 μF /cm2),
A0 = 1 cm2, D = 7 ×10−7 cm2/s,
C0

O = C0
R = 5 mM, n = 1 and T =

298 K . The dashed and solid represent
Randles-Ershler impedance response at
homogeneous and heterogeneous elec-
trodes, respectively. R� varies as 10,
20 and 30 �/cm2 in classical Ran-
dles-Ershler impedance equation with
heterogeneity for black, red and blue
colored lines, respectively.
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(a) (b)

(d)(c)

Figure 6. (a) Bode phase angle plot, (b) Bode magnitude plot, (c) Nyquist plot and (d) probability distri-
bution function (PDF) of charge transfer resistance. Blue lines are generated using RCT = 300 � cm2, (for μ
= 5.1, σ = 1.1 and σCT = 459.4 � cm2) and cd = 5 μF /cm2 (for μd = -12.8, σ = 1.2 and σd = 7.7 μF /cm2).
Red lines are generated using RCT = 450 � cm2 (for μ = 5.3, σ = 1.3 and σCT = 905.1 � cm2) and cd = 5
μF /cm2 (for μd = -13.0, σ = 1.3 and σd = 10.1 μF /cm2). Other parameters used to generated lines are R� =
10 � cm2, A0 = 1 cm2, D = 7 ×10−7 cm2/s, C0

O = C0
R = 5 mM, n = 1 and T = 298 K . The dashed and solid

represent Randles-Ershler impedance response at homogeneous and heterogeneous electrodes, respectively.

goes towards Warburg phase. With increase in γct , num-
ber of low as well as high charge transfer resistance
sites increases. Hence, the charge transfer process will
prefer low resistance sites and kinetics will become
faster. Thus, the presence of heterogeneity introduces
a new mean for charge transfer resistance which is

mean inverse of charge transfer resistance (R−1
CT ). This

average arises out of spatial heterogeneity and intro-
duces two types of characteristic frequencies: 1) due
to coupling of charge transfer and diffusion process,

ω∗
ho = D(

�D
[

1
/

R−1
CT +R�

])2 and 2) due to coupling between

double layer capacitance and charge transfer resistance,
ω∗

hi = 1

cd

(
1
/

R−1
CT +R�

) . Peak position of phase is seen at

ω∗
hi while minimum position of phase is obtained as the

geometric average ofω∗
ho andω∗

hi , at theωm = √
ω∗

hi ω
∗
ho .

For the case of homogeneous RCT electrode, 1
/

R−1
CT =

RCT .
Further, we studied the effect of R� keeping spatial

heterogeneity and other parameters constant, shown in
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Figure 7. Effect of charge transfer and electric double layer
capacitance heterogeneity on real (dashed lines) and imag-
inary (solid lines) components of impedance are studied.
Black and red lines represent Randles-Ershler impedance
response at homogeneous and heterogeneous electrodes. Blue
line represent the Randles-Ershler impedance at finite fractal
electrode (generated using equation 37 of ref.42). These plots
are generated using RCT = 814.3 � cm2 (for μ = 5.98, σ =
1.2 and σCT = 1461.6 � cm2) and cd = 10 μF /cm2 (for μd =
-12.2, σ = 1.2 and σd = 17.9 μF /cm2) R� = 10 � cm2, A0 =
1 cm2, D = 7 ×10−7 cm2/s, C0

O = C0
R = 5 mM, n = 1, T = 298

K , DH (fractal dimension) = 2.4, � (finest size of roughness)
= 40 nm, lτ (topothesy length) = 0.75 μm and L (sample size)
= 10 μm.

the Figure 5. R� depends on the nature of electrolyte
and distance between the WE and RE. Usually, it is
believed that RCT only contributes to the semicircle of
the Nyquist plot. Here, we studied the effect of R� on
the charge transfer kinetics. It is seen that R� induces
pseudo-kinetics and is analogous to the RCT behav-
ior. Figure 5(a) shows the effect of R� on the Bode’s
phase. Increase in R� shifts diffusion controlled regime
further towards low frequency. Figure 5(b) shows that
intermediate regime of the Bode’s magnitude plot is R�

dependent. Increase in R� increases the semicircle size
and delays the diffusion regime further, as it can be seen
in the Figure 5(c).

In Figure 6(a), (b) and (c), impedance is studied over
two different heterogeneous surfaces (Figure 6(d)) using
various types of impedance plots. Figure 6(d) shows the
probability distribution function (PDF) of a log-normal
distribution vs logarithmic of heterogeneous charge
transfer resistance. Solid curves represents impedance
response at the heterogeneous surface (equation 12)
while corresponding dashed lines are generated using
mean RCT at the homogeneous surface (equation 5).

Red and blue curve are representing two different het-
erogeneous surfaces but their impedance response are
very similar (Figure 6(a), (b) and (c)). Figure 6(a) peak
and minimum of phase decreases and increases with
increase of the spatial heterogeneity, respectively, as
charge transfer prefers low resistance sites. In the pres-
ence of heterogeneity, charge transfer dominantly takes
place from the low resistance sites over the electrode
and hence, overall process becomes faster. Therefore,
phase becomes more diffusion controlled. This further
gets verified from the intermediate regime of the Fig-
ure 6(b). Slope of the intermediate regime becomes
higher with increase in the spatial heterogeneity and
process becomes more diffusion controlled and moves
towards the high frequency. Similar effects are seen in
Figure 6(a) shows the Nyquist plots for the impedance
response in the absence (inset plot) and presence of the
spatial heterogeneity. It can be seen from this figure that
if heterogeneity is not accounted then it will lead to
the erroneous result with apparent charge transfer resis-
tance. Size of the semicircle gets smaller with increase
in the heterogeneity.

To study the contrast between heterogeneous and
homogeneous Randles-Ershler impedance, logarithmic
of real and imaginary impedance response vs. logarith-
mic of frequency are studied in the Figure 7. Dashed and
solid lines represent the real and imaginary impedance
response. Black and red lines represent impedance
response of the homogeneous and heterogeneous elec-
trode’s Randles-Ershler impedance responses. Blue
lines represent Randles-Ershler impedance response
at the finite-fractal rough electrode at the homoge-
neous electrode42 (see equation 37 in ref.42). A peak
is observed in imaginary part of the classical Randles-
Ershler impedance and finite-fractal Randles-Ershler
impedance response without heterogeneity. Peak is fol-
lowed by minimum at the lower frequency. When
heterogeneity is also accounted in the classical Randles-
Ershler impedance, minimum position shifts to the lower
characteristic frequency, ωho. Due to charge transfer
resistance heterogeneity over the electrode, number of
low as well as high charge transfer resistance sites
increases. Therefore, preferential charge transfer pro-
cess takes place through the low charge transfer resis-
tance sites. In Figure 7, shift in the minimum position
of imaginary component of impedance response can be
taken as the indication of presence of spatial heterogene-
ity in the electrochemical system. It is clear from this fig-
ure that the heterogeneity shifts minimum position to the
higher frequency while roughness only shift the magni-
tude but frequency is not changed. Heterogeneity effects
are also seen in real part of classical Randles-Ershler
impedance response. Heterogeneity narrow down the
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charge transfer controlled regime (intermediate regime)
and make diffusion process shift towards the higher fre-
quency.

4. Conclusion

Theory for charge transfer resistance and double layer
capacitance heterogeneity effect on the impedance
response is developed for the Randles-Ershler model
at the heterogeneous electrode. Random charge transfer
and double layer capacitance heterogeneity is modeled
through a distribution function of charge transfer resis-
tance (RCT ) and double layer capacitance (cd) over the
surface. Systems with narrow range of fluctuations in
RCT and cd are expressed through the second order per-
turbation result for admittance in terms of the mean
and variance of RCT and cd . While log-normal distri-
bution function is used to mimic the realistic systems
(having broad distribution in RCT and cd). Our theory
also includes effects of solution resistance arising due
to ohmic contribution between the working (WE) and
reference (RE) electrode (R�), it influences the effec-
tive kinetics of charge transfer. The various conclusions
drawn from complex plane plots of the mean impedance
are:

• Our results show, electrode with the charge trans-
fer heterogeneity (mean charge transfer resistance
(RCT )) results in the faster charge transfer kinetics
as compared to the charge transfer kinetics over a
homogeneous electrode with RCT equal to RCT . The
reason for this anomaly is the distribution of RCT

which causes presence of sites with resistance lower
than RCT . Therefore, dominantly charge transfer
occurs through low RCT sites. Hence, heterogeneous
electrode shows faster charge transfer as compared
to the homogeneous electrode.

• Another anomalous observation is that the heteroge-
neous electrode with high mean and variance in RCT

and cd can give similar impedance response as of the
electrode with low mean and variance in RCT and cd .
This happens due to availability of large number of
low charge transfer resistance sites.

• The characteristic low frequency limit beyond which
heterogeneity effects are seen is ωho ∼ 1/(
5 �2 D δR2

CT

)
.

• It is conjunctured that the electrode kinetics of the
heterogeneous system is controlled by harmonic
mean, viz. inverse of charge transfer resistance
(R−1

CT ), instead of arithmetic mean charge transfer
resistance RCT . For a heterogeneous electrode both
harmonic and arithmetic mean are related through

inequality, 1
/

R−1
CT < RCT . The characteristic fre-

quency where the influence of heterogeneity is

maximum is ωm =
√

1/
(
cd �2 D(R−1

CT + R�)3
)
.

• Heterogeneity causes peak shift to the higher fre-
quency in imaginary impedance response. Hence,
the extent of shift in the peak position can be taken as
extent of the spatial heterogeneity. Another surface
disorder which influences impedance is roughness
but it causes shifts in the magnitude of imaginary
component while peak position remains unaffected.

• In our theory, it is shown rigorously that R� gets
coupled to the RCT via interfacial current density
(through ohmic loss potential) and hence, influ-
ences effective kinetic parameters of charge transfer.
This leads to the scaling of Nyquist impedance
semicircles with the higher apparent charge trans-
fer resistance, viz. RCT + R�. Traditionally, origin
of R� is looked upon as the experimental artefacts in
the impedance spectra. But our theory shows, appar-
ent charge transfer resistance obtained from the size
of semicircle is combined effect of charge trans-
fer kinetics and uncompensated solution resistance
between WE and RE.

• From our theory, low frequency real-axis intercept of
impedance semicircles (or cell resistance) is R� +
RCT .

Finally, random electrode surface heterogeneity is ubiq-
uitous electrode feature therefore these effects are
present in most data and also cause of variations in
repeated electrochemical measurement. Experimental
validity of our methodology can be based on the local
electrochemical impedance spectroscopy (LEIS)63–66

for systems like glassy carbon electrode67 and iron oxide
electrode.68 LEIS can be used for mapping electrode’s
impedance distribution which will be useful for under-
standing the influence of distributed EDL capacitance
and charge transfer resistance.
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Appendix

A. Derivation of surface boundary constraint

The local current density due to diffusional current at an
arbitrary position on the electrode surface (x, y, z = 0),
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is given by

i f (�r||, t) = nF DO∂zδCO(�r||, t) (A.1)

where DO is diffusion coefficient of the oxidized species
and ∂z = ∂/∂z.

Surface boundary condition is derived using the
Butler-Volmer equation:

i f (�r||, t)

i0
= CO(�r||, t)

C0
O

eαn f η(t)

−CR(�r||, t)

C0
R

e−(1−α)n f η(t) (A.2)

where i f (�r||, t) is the faradaic current density. For the
moderately supporting systems and correcting for dou-
ble layer, above equation can be rewritten as

i(�r||, t)

i0
= CO(�r||, t)

C0
O

eαn f (η(t)−i(�r||,t) R�)

−CR(�r||, t)

C0
R

e−(1−α)n f (η(t)−i(�r||,t) R�)

−cd

i0

dη

dt
(A.3)

where i(�r||, t) = i f (�r||, t) − cd
dη(t)

dt
is the combination

of both faradaic and non-faradaic component of cur-
rent density.62 Replacing Cm(�r||, t) by δCm(�r||, t) + C0

m ,
where m = O or R

i(�r||, t)

i0
= δCO(�r||, t)

C0
O

eαn f (η(t)−i(�r||,t) R�)

+eαn f (η(t)−i(�r||,t) R�)

−δCR(�r||, t)

C0
R

e−(1−α)n f (η(t)−i(�r||,t) R�)

−e−(1−α)n f (η(t)−i(�r||,t) R�) − cd

i0

dη

dt
(A.4)

For the small external perturbation potential and there-
fore, small output current density, we can linearize the
Butler-Volmer equation,

i(�r||, t)

i0
= δCO(�r||, t)

C0
O

(
1 + αn f η(t) − αn f i(�r||, t) R�

)
+ (

1 + αn f η(t) − αn f i(�r||, t) R�

)
−δCR(�r||, t)

C0
R

(1 − n f η(t) + αn f η(t)

+n f i(�r||, t) R� − αn f i(�r||, t) R�

)
− (

1 − n f η(t) + αn f η(t) + n f i(�r||, t) R�

−αn f i(�r||, t) R�

) − cd

i0

dη

dt
(A.5)

Neglecting higher order terms,

i(�r||, t)

i0
= δCO(�r||, t)

C0
O

− δCR(�r||, t)

C0
R

+ n f η(t)

−n f i(�r||, t) R� − cd

i0

dη

dt
(A.6)

Using the flux-balance condition and assuming that
the ions have same diffusion coefficient (DO = DR =
D), we have concentration constrains on the oxidized
and reduced species as57 δCO(�r||, t) + δCR(�r||, t) = 0.
It is assumed that the concentration δCO(�r||, t) has
oscillatory time dependence e jωtδCO(�r||) (behaves like
the applied potential). For a small sinusoidal applied
interfacial potential η(t) = η0 exp( jωt), using i0 =
RT/(nF RCT ) and i f (�r||, t) from equation A.1 in the
equation A.6,

nF DO∂zδCO(�r||)e jωt − jωcdη0e jωt

RT/(nF RCT )

= δCO(�r||)e jωt

C0
O

+ δCO(�r||)e jωt

C0
R

+n f
[
η0e jωt − R�(n f D∂zδCO(�r||, t)

−cdη0 jωe jωt)
]

−n f cd RCT jωη0e jωt (A.7)

On rearranging the terms, we get

n2 F2

RT
D(RCT + R�)∂zδCO(�r||)

= δCO(�r||)
(

1

C0
O

+ 1

C0
R

)
+n f η0e jωt (1 + jωcd (R� + RCT ))

−n f cd RCT jωη0e jωt (A.8)

RCT + R� can be written as RC� and n2 F2/RT (1/C0
O +

1/C0
R) as �, hence the above equation can be rewritten

as

LC� ∂zδCO(�r||) − δCO(�r||)
∣∣

z=0
= (1 + jω τdl)

(
� η0

nF

)
(A.9)

where double layer relaxation time is τdl = R�cd . LC�

is phenomenological kinetics-ohmic length is defined as

LC� = LCT + L�

LCT = � D RCT

L� = � D R� (A.10)



1290 Shweta Dhillon and Rama Kant

B. Small RCT and cd fluctuation approximation

Replacing local RCT in equation 5 by RCT + δRCT and
cd by cd + δcd , it becomes

YR(ω) =
(

A0

yW (ω)−1 + RCT + δRCT + R�

)
(

1 + jωR�(cd + δcd)
)

(B.1)

above equation can be written as,

YR(ω) = A0

y−1
W (ω) + RC� + δRCT(
1 + cd jωR� + jωδcd R�

)
(B.2)

where RC� = RCT + R�. On rearranging the terms, we
get

YR(ω) =
A0

(
1 + jω cd RC�

)
(

y−1
W (ω) + RC�

)(
1 + δRCT

y−1
W (ω)+RC�

)
(

1 + jωδcd R�

1 + jω cd R�

)
(B.3)

On expanding and ensemble averaging admittance
responses over surface heterogeneity, fluctuations in
charge transfer resistance and electric double layer
capacitance (are dependent on each other) at the elec-
trode surface, the classical Randles-Ershler admittance
for small heterogeneity can be written as

YR(ω) = Y 0
R(ω)

[
1 + δR2

CT(
y−1

W (ω) + RC�

)2

−
(

jωR�δRCT δcd(
y−1

W (ω) + RC�

)(
1 + jω cd R�

))]
(B.4)
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