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Recent empirical studies have demonstrated long-memory in the signs of orders to buy or sell in financial
markets [J.-P. Bouchaud, Y. Gefen, M. Potters, and M. Wyart, Quant. Finance 4, 176 (2004); F. Lillo and J. D.
Farmer Dyn. Syst. Appl. 8, 3 (2004)]. We show how this can be caused by delays in market clearing. Under
the common practice of order splitting, large orders are broken up into pieces and executed incrementally. If
the size of such large orders is power-law distributed, this gives rise to power-law decaying autocorrelations in
the signs of executed orders. More specifically, we show that if the cumulative distribution of large orders of
volume v is proportional to v™* and the size of executed orders is constant, the autocorrelation of order signs
as a function of the lag 7 is asymptotically proportional to (@1 This is a long-memory process when «
< 2. With a few caveats, this gives a good match to the data. A version of the model also shows long-memory
fluctuations in order execution rates, which may be relevant for explaining the long memory of price diffusion

rates.
DOI: 10.1103/PhysRevE.71.066122

I. INTRODUCTION

A random process is said to have long memory if it has an
autocorrelation function that is not integrable. This happens,
for example, when the autocorrelation function decays as-
ymptotically as a power law of the form 777 with y<<1. This
is important because it implies that values from the distant
past can have a significant effect on the present, that the
stochastic process lacks a typical time scale, and implies
anomalous diffusion in a stochastic process whose incre-
ments have long memory. Examples of long-memory pro-
cesses and anomalous diffusion have been observed in many
physical, biological, and economic systems ranging from tur-
bulence [1] to chaotic dynamics due to flights and trapping
[2], dynamics of aggregates of amphiphilic molecules [12],
and DNA sequences [3,4]. In finance the volatility, roughly
defined as the diffusion rate of price fluctuations, is known to
be a long-memory process [5,6]. In this paper we analyze a
mechanism for creating a long-memory process, based on
converting a static power-law distribution into a random pro-
cess with a power-law autocorrelation function. Other ex-
amples of stochastic processes relating power laws to long
memory have been given by Mandelbrot [7] (analyzed by
Taqqu and Levy [8]), and in the context of DNA sequences
by Buldyrev et al. [9].

Recently a new long-memory property of the order flow
in a financial market was independently observed by
Bouchaud et al. in the Paris Stock Exchange [10] and Lillo
and Farmer in the London Stock Exchange (LSE) [11].
These studies have shown that there is a remarkable persis-
tence in buying vs selling. Labeling the signs of trading or-
ders as £1 according to whether they are to buy or to sell, the
autocorrelation of observed order signs is strongly positive,
asymptotically decaying roughly as a power law 777, where
y=~0.6. Such positive autocorrelations can be measured at
statistically significant levels over time lags as long as two
weeks.

For example, in Fig. 1 we show the empirical autocorre-
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lation function of the time series of signs of orders that result
in immediate trades for the stock Shell. The autocorrelation
function is well described by a power law decay over almost
three decades and a least squares fit to this gives y=0.53.
The fact that y<<1 implies that this is a long-memory pro-
cess, i.e., its autocorrelation function decays so slowly that it
is not integrable. This is important because it implies that
values from the distant past have a significant effect on the
present. A diffusion process built from long-memory incre-
ments has a variance o’ that grows in time as o2(7) ~ 727,
where is called the Hurst exponent. For 0<y<1, H=1
—vy/2. For a normal diffusion process H=1/2, but when H
>1/2 the variance grows faster than 72, which is called
anomalous diffusion. Another important consequence is that
statistical averages converge slowly, e.g., the mean of a
quantity that displays anomalous diffusion converges as
T-U-M) where T is the sample size. The signs of orders in the
LSE have been shown to pass tests for long-memory with a
high degree of statistical significance [11].

From an economic point of view this is important because
of its implications for market efficiency. All other things be-

autocorrelation
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FIG. 1. Autocorrelation function of the time series of signs of
orders that result in immediate trades for the stock Shell traded at
the London Stock Exchange in the period May 2000-December
2002, a total of 5.8 X 10° events.
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ing equal, since buy orders tend to drive the price up and sell
orders tend to drive them down, this would imply that it was
possible to make profits using a simple linear model to pre-
dict future price moments. In order to prevent this the market
has to make substantial compensating adjustments
[10,11,13]. The difficulty of making such adjustments per-
fectly may have important implications about the origin of
long memory in the volatility of prices.

In this paper we hypothesize that the cause of the long-
memory of order flow is a delay in market clearing. To make
this clearer, imagine that a large investor such as Warren
Buffet decides to buy ten million shares of a company. It is
unrealistic for him to simply state his demand to the world
and let the market do its job. There are unlikely to be suffi-
cient sellers present, and even if there were, revealing a large
order tends to push the price up. Instead he keeps his inten-
tions as secret as possible and trades the order incrementally
over an extended period of time, possibly through interme-
diaries. In a study of this phenomenon, about a third of the
dollar value of such institutional trades took more than a
week to complete [14,15]. This conflicts with standard neo-
classical economic models, which assume market clearing,
i.e., that the price always adjusts so that supply and demand
are evenly matched. The fact that large orders are kept secret
and executed incrementally implies that at any given time
there may be a substantial imbalance of buyers and sellers,
which can be interpreted as a failure of market clearing. Sup-
ply and demand do not match, and the market fails to clear.
Effective market clearing is delayed, by variable amounts
that depend on fluctuations in the size and signs of unre-
vealed orders.

We propose a simple model to explain the long memory
of order flow based on delays in market clearing. We postu-
late that unrevealed hidden orders are distributed according
to a power law. These are broken up into pieces, which we
call revealed orders, that are submitted at a steady rate. We
show that this leads to long memory in order flow, yielding a
model consistent with empirical observations. The main re-
sult is an analytic computation relating the exponent of the
power law of the volume distribution of hidden orders to the
rate of decay of the long-memory process characterizing re-
vealed orders.

The paper is organized as follows. In Sec. II we define the
two models that we study here, which we call the fixed N
model and the N model. In Sec. III we analytically compute
the autocorrelation function of revealed orders for the fixed
N model in terms of the parameters, and test it against simu-
lation results. Section IV discusses the properties of the A
model, showing that it displays interesting temporal fluctua-
tions. Section V compares the predictions to empirical evi-
dence and discusses the assumptions of the model in the
context of real markets. In Sec. VI we discuss the possible
broader implications.

II. DESCRIPTION OF MODELS

We develop a model with two variations, which we call
the N model and the fixed N model. We first describe the A\
model, which is more realistic, but for which we have only
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simulation results. We then describe the fixed N model,
which is less realistic, but has the important advantage of
being simpler, allowing us to obtain analytic results. Because
of the simple nature of these results, they apply equally well
to the X model.

We first describe the N model. Let N(¢) be the number of
hidden orders at time r=1,2,...,7T. At each time ¢ generate a
new hidden order with probability 0<<\ <1 if N(¢)>0, or
probability one if N(#)=0. Assign each new hidden order a
random sign s; and an initial size v;(t")=LAv, where t" is the
time when the hidden order is created, and L=1,2,..., is
drawn from a Pareto distribution P(L)=aL (**") with «
>0. The random variables L and s; are ID." At each time
step ¢ an existing hidden order i is chosen at random with
uniform probability, and a volume Av of that order is re-
moved, so that v,(t+1)=v,(r)—Av. This generates a revealed
order of volume Av and sign x,=s;. A hidden order i is re-
moved if v,(r+1)=0. Thus, the number of hidden orders N(z)
fluctuates in time, depending on fluctuations in arrival and
removal.

The fixed N model is the same, except that the number of
hidden orders N is kept fixed. Thus, if a hidden order is
removed it is immediately replaced by a new one with a
random sign and a new size.

The main result of this paper is the calculation of the
autocorrelation function of revealed order signs x; for the
fixed N model. We show in the next section that the tail of
the autocorrelation function asymptotically scales as 7@~V
While varying N affects the shape of the autocorrelation
function for small 7, providing « is held fixed, it does not
affect its asymptotic scaling. Even though N(¢) varies in the
\ model, the asymptotic behavior is independent of N(r), and
so the asymptotic behavior of the autocorrelation function is
the same. This is particularly convenient because it allows us
to make a prediction in terms of observable quantities (see
Sec. V).

III. ANALYTIC COMPUTATION FOR FIXED N MODEL

Because the hidden order arrival process is IID, it is pos-
sible to compute the autocorrelation of the fixed N model
analytically. The basic idea of the computation is to under-
stand the behavior of the autocorrelation conditioned on L,

'In the language of extreme value theory [16], the Pareto distri-
bution is just one example of a power law. A distribution f(x) is a
power law with tail exponent « if there exists a slowly varying
function g(x) such that lim,_..f(x)g(x)=Kx™% where K and « are
positive constants. A function g(x) is a slowly varying function if
for any >0 lim,_,,.g(#x)/g(x)=1. A common example of a slowly
varying function is Inx, so in this sense the function x™“Inx is a
power law. Thus, the term “power law” refers not to a specific
distribution, but to an equivalence class of distributions with the
same asymptotic scaling properties. It is clear from the calculations
leading up to our main result (17) that it is not necessary to assume
that the distribution of volumes is strictly Pareto distributed; any
power law distribution p(L) with a given tail exponent « will give
the same asymptotic scaling for the autocorrelation function of re-
vealed orders.
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the initial length of the hidden order in units of the revealed
order size Av, and then combine the results for different
values of L.

We first begin by giving a simple intuitive argument for
the asymptotic scaling. The probability at any instant of time
that a revealed order comes from a hidden order of length L
is Q(L)o<Lp(L). This revealed order contributes to inducing
a positive autocorrelation at lag 7 only if the revealed order 7
steps ahead comes from the same hidden order. In other
words, in order to contribute to the autocorrelation function
at lag 7, a hidden order must be of length L> AT, where A is
a constant. Summing over all hidden orders gives an auto-
correlation p(7)~ [ O(L)~ 7@ which is the main result
of Eq. (17). In the remainder of this section, we present a
more detailed calculation, which also allows us to compute
the correct prefactor.

A. Autocorrelation in probabilistic terms

Under the convention that the signs of the revealed orders
are x,==+1, because of the symmetry between buying and
selling E[x,]=0 and E[xf]= 1, where E denotes the expecta-
tion. Therefore the autocorrelation is simply p(7)=E[xx,, .
We can rewrite this as

E[)C,XH_T] = 2 Q(L)E[x,.X,+T|L], (1)
L=1

where E[xx,,.|L] is conditioned on the hidden order that
generated x, having length L. Q(L) is the probability that a
revealed order drawn at random comes from a hidden order
of length L. Let ¢(7|L) be the probability that revealed or-
ders at times ¢ and time 7+ 7 came from the same hidden
order, given that it has original length L. Because E[xx,, ]
=0 if x, and x,., came from different hidden orders, and
E[xx,,.]=1 if they came from the same hidden order, the
conditional expectation can be rewritten

E[xpx,,|L]=q(7|L), (2)

which implies

p(1) =2 O(L)g(7IL). 3)
L=1

To compute Q, we note that the number of revealed orders
coming from hidden orders of length L is proportional to
Lp(L), where p(L) is the probability that a hidden order has
length L. To compute Q(L) we must properly normalize this
by summing over L,

o)=L )
> Lp(L)
L=1
This gives
(1=~ L(AL)p(L). (5)
Li=1

where L is the average value of L.
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The conditional probability g(7|L) can be written

w(L,7)p, (6)

where w(L, 7) is the probability that a given hidden order is
still active after time 7, and p is the probability that it will be
selected for execution assuming it is still active. By assump-
tion p=1/N.

Computing w(L,7) is more complicated: Let s be the
number of revealed orders drawn from a given hidden order
during the 7—1 timesteps between time ¢ and time #+ 7, and
let P,_;(s<k) be the probability that s is less than a given
value k. Thus, for a hidden order that has length [ at time ¢,
the probability that it still exists at time 7+ 7 is P,_;(s<I).
For a hidden order with original length L, [ is uniformly
distributed with probability 1/L over the values 1,...,L.
Thus we can express w(L,7) as a sum of probabilities, one
for each possible value of [.

1
(L7 = T [Pry(s SL=D) 4 Pry(s <L=2)+ -

+P(s<1] (7)

The probabilities P,_,(s<k) can be expressed as sums of
binomial probabilities, corresponding to the possible se-
quences with which a given hidden order generates k—1 re-
vealed orders:

k-1 ~1
Po(s<k)=2 (Th )p’“(l -p)T' . (8)
h=0

Therefore,

L-2 j

A =L3S (T;ll)ph(l—p)T‘l‘h. 9)

L2 o

B. de Moivre-Laplace approximation

The autocorrelation can now be computed using Eq. (5).
However, since the sums of binomial coefficients are difficult
to manage we will make use of the de Moivre—Laplace ap-
proximation [17]. For npg>1 one can approximate

n _ 1 (k—np)*
< )pkq” k / exp(— . (10)
k V2mnpq 2npq

As a consequence the sum of consecutive terms of a bino-
mial distribution can be approximated as

k
22 (n )pkqn_k 1 [erf( ky—np + 1/2)

ek K 2 \2npq
ki—np—1/2
_eﬁ(%)}’ (11)
V2npq

where erf is the error function.
By converting the sum to an integral, and letting s=7—1,
Eq. (9) becomes
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q(s +1|L) = E[ (

—-sp+ 1/2)

V2sp(1-p)

( —sp—1/2 )]
V2sp(1 = p)
P L_2+1/2[ (x—sp+1/2)
~— — erf] ——
2LJyp V2sp(1 = p)

erf( —sp- 172 )]d (12)
- T X.
\2sp(1 -p)

For the approximation of the sum by the integral we use
Zf’zaf(i) forin >f(x)dx. Performing the last integral gives

a+1/
(sp)*

(s+1|L)~2p—L[—exp< 2sp(1—p)> (\, p(1-p)
(L_l_sp>2))
X(exp(— 2sp(1 —=p)

+( 1)erf< L=sp )
sp— =%
v V2sp(1 - p)

172+ sp
i 2)erf( V2sp(1 —p))
L+sp
+(l+sp- L)erf(—\/m>} (13)

The sum over L in Eq. (5) can be approximated by the
integral

p(r) = J ﬂL)” WL, (14)
1

+1/2

Finally, we need to translate the domain of validity of the
de Moivre-Laplace approximation into more relevant terms.
The condition npg>1 in Eq. (9) becomes (7—1)p(1-p)
> 1. This leads to the condition

2

> —1=N, (15)

i.e., the approximation is valid as long as the lag is much
greater than the number of hidden orders. Since the number
of hidden orders is fixed, the approximation is always valid
for sufficiently large 7.

We have tested these calculations for the simple case in
which all hidden orders have the same size L, i.e., p(L)
=8(L-L,), where & is the Dirac delta function. This implies
p(1)=q(7|Ly), so that Eq. (13) gives a closed form expres-
sion for the autocorrelation function. As expected, the ap-
proximation always agrees very well for large values of 7.
The agreement is also good for small values of 7 when N is
small and L is sufficiently large.

C. Pareto distribution

We now consider the more realistic case that the hidden
order size L has a Pareto distribution

PHYSICAL REVIEW E 71, 066122 (2005)

time lag

FIG. 2. (Color online.) Autocorrelation of the fixed N model
with @=1.5, for N=1 (green circles), N=5 (red squares), and N
=50 (blue diamonds), based on a simulation with 7=10°. This is
compared to the asymptotic predictions of Eq. (17), shown as
dashed black lines.

p(L) = (16)

La+l ’

where a>1 is the tail exponent. In this case the integral of
Eq. (14) cannot be performed analytically. We can, however,
give an analytical asymptotic expansion of the integral (14).
The calculations detailed in the Appendix make use of the
saddle point approximation. The result is that the leading
term of the asymptotic expansion of p(7) is given by the
terms depending on erf functions in Eq. (13), and the auto-
correlation function decays asymptotically as

a2

p(7) ~ (el (17)

This result indicates that the autocorrelation function decays
as a power law with exponent y=a—1. The number of hid-
den orders affects the prefactor, but does not affect the scal-
ing exponent. Interestingly, when =2 the prefactor is inde-
pendent of N. When a<<2 it is a decreasing function of N,
and when a>2 it is an increasing function of N. The value
a=2 separates the regime where the size of hidden orders
has infinite variance from the regime where the variance is
finite.”

Figure 2 compares the autocorrelation function predicted
by Eq. (17) to a simulation for a=1.5, N=1, N=5, and N
=50. For large values of 7 the match is excellent, both in
terms of the slope and the size of the prefactor. For N=1 the
prediction matches the simulation across the entire range of
7. As expected, when N increases the prediction deviates at
small 7, but still matches for large 7. We have also checked
the consequences of varying « and find that the prefactor
behaves as predicted by Eq. (17).

Note that Buldyrev ef al. [9] found a similar formula in the con-
text of structure in DNA sequences.
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Note that we used 7=10° samples to simulate the model
and compare to theory. This is because for @=1.5 this is a
strongly long-memory process, and the convergence is ex-
tremely slow. This will become an issue later on when we
test the model against real data—even for very large sample
sizes the error bars remain quite large.

IV. LIQUIDITY FLUCTUATIONS OF THE A MODEL

We now return to discuss the A model. As a reminder, this
differs from the fixed N model analyzed so far in that the
number of buffers N(z) is not fixed. Instead, new buffers are
added with probability X when N(7)>0, and probability 1
otherwise. For the mean of N(f) to remain bounded it is
necessary that the rate of creation of new orders equal the
rate at which they are removed. This implies the model has a
critical threshold where E[N(r)]—o. This can be simply
computed as follows: Let n(r) be the total number of future
revealed orders stored in all hidden orders at time ¢, i.e.,
n(t):E?i(lt)v,«(t)/Av. The average rate of change of n(r) is

E[n(t+1)-n(®)]=Rx()L-1.

The first term represents addition of a new hidden order, and
the second term the removal of a revealed order at every time
step. The creation rate R(n(r))=N when n(f)>0 and
R(n(t))=1 otherwise. The average length of a new hidden

order is L, which under the Pareto assumption is L
=37 L(L)=a/(1-a). In the limit where E[n(r)] is large it is
a good approximation to say that n(¢) is never zero, so that
R(n(1))=\. Setting E[n(t+1)-n()]=0 implies the critical
value A, is

A=1/L=(a-1)a=yla. (18)

For the last equality we have made use of the fact that y does
not depend on N in Eq. (17), which indicates that y=a—1
applies equally well to the N model as long as A<\, (we
have verified this in simulations). We also confirm the depen-
dence of the critical behavior on « in Fig. 3.

One of the interesting features of the A model is that it
generates long-memory fluctuations in the number of active
hidden orders. This is caused by positive feedback between
the number of orders and the accumulation rate. This is be-
cause the average rate at which hidden orders are executed is
1/N(r). Thus when N(¢) is larger than average, the rate at
which active hidden orders are removed is lower than aver-
age, which tends to cause N() to increase above its average
value. Such an increase is triggered by random fluctuations
in which one or more particularly large orders are created;
when these orders are finally removed, N(z) decreases. N(z)
thus makes large and persistent fluctuations. The autocorre-
lation function has an asymptotic power law decay of the
form py(7) ~ 77 as shown in Fig. 4. From simulations, we
find that y=a—1.

For this model fluctuations in the number of hidden orders
correspond to fluctuations in the time to execute an order. In
economics this is one aspect of what is called liquidity,
which is a general term referring to the ease of execution of
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FIG. 3. (Color online.) The average number of hidden orders as
a function of the creation parameter \ for @=1.3 (red downward
pointing triangles), a=1.5 (black circles), and @=1.7 (green upward
pointing triangles). The dashed lines are the corresponding pre-
dicted critical values A.=(a—1)/a.

an order. One of the interesting properties of prices of eco-
nomic time series is that they display what is commonly
called clustered volatility, i.e., the diffusion rate of price
changes is strongly autocorrelated in time, and in fact is a
long-memory process [5,6]. It has recently been shown that
this is related to fluctuations in liquidity, in this case defined
as the price response to an order of a given size [18]. The
fact that this kind of model predicts long-memory fluctua-
tions in another aspect of liquidity (the time to execute an
order) may be related to the explanation of clustered volatil-

ity.
V. TESTING THE PREDICTIONS

Unfortunately, data comparing hidden orders and revealed
orders are not widely available, which complicates the prob-

13

T T T TN T T R TTTIT T T T T TTTT T T T T
5 Y

ACF

lambda=0.33
o—= Jambiia=0,3
s lambda=0.25
v lumbdu=0.2

0.1

1 0 100 1000 10000
lag

FIG. 4. (Color online.) Autocorrelation function of the number
of active hidden orders in the A model for four different values of \,
as shown in the inset. The dashed black lines have slope a—1.
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lem of testing this model. The only data set we know of that
includes the kind of data that is needed for a proper test was
used by Chan and Lakonishok [14,15] to study the execution
of customer orders at large brokerage firms. Unfortunately,
they did not fit functional forms to the size distributions or
test for long memory, and we have not been able to obtain
their data. Their study does make it clear that order splitting
is very common, and suggests that the time scale on which
order splitting occurs is sufficiently long to match the auto-
correlations in order flow.

We compare the predictions of the model to the data in
two different ways. The first is based on computation of the
scaling exponents, described in Sec. V B, and the second is
based on the properties of run length, described in Sec. V C.
Before presenting the first test, we must first review the mar-
ket structure.

A. Market structure and order distributions

Although we have no transaction data with direct infor-
mation about hidden orders, we can perform an indirect test
of the scaling relations predicted by the model which takes
advantage of the market structure used in the New York
Stock Exchange and the London Stock Exchange. They both
employ two parallel markets which provide alternative meth-
ods of trading, called the on-book or “downstairs” market,
and the off-book or “upstairs” market. In the LSE orders in
the on-book market are placed publicly but anonymously and
execution is completely automated. The off-book market, in
contrast, operates through a bilateral exchange mechanism,
via telephone calls or direct contact of the trading parties.
The anonymous nature of the on-book market facilitates or-
der splitting, and it is clear that it is a common practice. This
is also supported by the fact that in our data set it is possible
to track the on-book orders for individual trading institutions,
and the long-memory property of order flow is evident even
for single institutions [11]. In contrast, off-book trading is
based on personal relationships and order splitting is be-
lieved to be less frequent. This is because a series of orders
of the same sign tend to gradually change the price in a
direction that is unfavorable to the other party [14,15].

Thus one might make the hypothesis that in the off-book
market people just submit their orders rather than hiding
them, while in the on-book market they hide their true orders
and execute them through a series of revealed orders. While
there is some truth in this hypothesis, it is not strictly true.
When we examine sequences of off-book trades for indi-
vidual institutions, we often see long runs of trades of the
same sign, suggesting that order splitting is also fairly com-
mon in the off-book market. Even though order splitting is
not common when trading with the same party, it is still
possible to split a large order and trade it in the off-book
market with many different parties. Thus the transactions in
the off-book market have already undergone some order
splitting, and it is not clear how well the distribution of trans-
actions corresponds to that for hidden orders.

Despite the caveats mentioned above, we will press for-
ward with the hypothesis that off-book trades can be used as
a proxy for hidden orders, and see how the predictions of our
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FIG. 5. Volume distributions of off-book trades (circles), on-
book trades (diamonds), and the aggregate of both (squares). In (a)
we show this for a collection of 20 different stocks, normalizing the
volume of each by the mean volume before combining, whereas (b)
shows unnormalized values (in shares) for the stock Astrazeneca.
The number of trades in each case is 11X 10° (aggregate on book),
5.7X 10° aggregate off book, 8.0X 10° (AZN on book), and 2.8
X 10° (AZN off book). The dashed black lines have the slope found
by the Hill estimator (and are shown for the largest one percent of
the data).

model match the empirical observations of order splitting. To
this end we select 20 highly capitalized stocks traded at the
London Stock Exchange in the period May 2000-December
2002. The stocks we analyzed are Astrazeneca (AZN), Bae
Systems (BA), Baa (BAA), BHP Billiton (BLT), Boots
Group (BOOT), British Sky Broadcasting Group (BSY),
Diageo (DGE), Gus (GUS), Hilton Group (HG), Lloyds Tsb
Group (LLOY), Prudential (PRU), Pearson (PSON), Rio
Tinto (RIO), Rentokil Initial (RTO), Reuters Group (RTR),
Sainsbury (SBRY), Shell Transport & Trading Co. (SHEL),
Tesco (TSCO), Vodafone Group (VOD), and WPP Group
(WPP). The number of trades for the combined group of
stocks is 16.7 X 10°; of these 11 X 10° are on-book trades and
5.7 X 10° are off-book trades.

In Fig. 5 we show the empirical probability distributions
for the volume of trades in both the off-book and on-book
markets in the London Stock Exchange. We show this for an
aggregate of 20 heavily traded stocks and for the single stock
Astrazeneca, which is typical of the stocks in the sample.
This makes it clear that the tails die out more slowly in the
off-book market. The largest trade sizes in the off-book mar-
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FIG. 6. Scaling exponents « for the twenty stocks we study
here, based on the hypothesis that the largest one percent of the
trades V are described by the relation P(V>x)~x~%. The stocks are
arranged along the x axis in alphabetical order. The circles refer to
off-book trades, the diamonds to on-book and the squares to the
aggregate of both. For comparison we draw a dashed line for a
=1.5.

ket are more than a factor of 10 larger than those in the
on-book market; for Astrazeneca, for example, the largest
orders are roughly four million shares in the off-book market
vs 200 thousand in the on-book market. Alternatively, to
measure the decay of the tails more quantitatively, we as-
sume the asymptotic relation for volume V is P(V>x)
~x~% and estimate « using a Hill estimator applied to the
largest one percent of the data [19]. For the aggregate data
set this gives a=1.59 for the off-book data, «=2.90 for the
on-book data, and a=1.64 for the combined data.® Similar
values are computed for individual stocks, as shown in Fig.
6. The average values are a=1.74+0.23 for off-book, «
=4.2+1.5 for on-book, and a=1.36+0.10 overall. These re-
sults are consistent with the hypothesis that order splitting is
more common in the on-book market than it is in the off-
book market. However, they also suggest that the separation
between the styles of trading in these two markets is not
absolute. They both show an approximate power-law decay
in their tails, although this decay is much steeper for the
on-book market.

Finally Fig. 6 shows that the exponent for the volume
distribution of the aggregate of the on- and off-book trades is
systematically smaller than the exponent for either of them
by themselves. This is caused by the aggregation of two
distributions: Mixing distributions with different scaling
properties tends to fatten the tails. It indicates that one should
be very careful in aggregating distributions.”*

3The results for the combined data set are in rough agreement with
those first reported for the NYSE and NASDAQ by Gopikrishnan et
al. [20] and for the LSE and Paris by Gabaix et al. [21].

*When power-law distributions are combined the one with the
lowest tail exponent determines the tail exponent of the aggregate.
For a finite sample, however, there are often slow convergence ef-
fects as a function of sample size that can alter this conclusion.
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FIG. 7. The scaling exponents « for the twenty stocks we study
here [with the hypothesis P(V>x)~x~%], plotted against the expo-
nent 7y of the autocorrelation function [under the hypothesis p(7)
~ 777]. The error bars shown are the 95% confidence intervals of
the Hill estimator, under the assumptions of IID errors and perfect
Pareto scaling across the entire range of V. Both assumptions are
highly optimistic.

B. Predicted vs actual values of y

Taking the off-book market as a crude proxy for hidden
orders, we test the model by comparing y=a—1 as predicted
by Eq. (16) to the value of y measured directly from the
order signs. The scaling exponent vy is measured by comput-
ing the Hurst exponent of the series of market order signs for
each stock using the DFA method [4], and making use of the
relation y=2(1-H). (This is much more accurate than com-
puting the autocorrelation function directly). We compare the
predicted and actual values in Fig. 7. The average value of
the scaling exponent of the autocorrelation function is 7y
=0.57£0.05. This can be compared either to y=0.74+0.23
based on the average value of a, or to ¥=0.59 based on the
«a for the aggregate distribution. In either case the agreement
is well within the error bars. (The error bars, which are based
on the standard error of the mean of the 20 stock sample, are
highly optimistic due to correlations within the sample and
possibly also due to skewness and systematic bias of the Hill
estimates.)

As a stronger test, one might hope that variations in mea-
sured values of a might predict variations in measured val-
ues of . The model fails this test. Performing a regression of
predicted vs actual values gives a statistically insignificant,
slightly negative slope. There are several possible explana-
tions for this: First, as we have already discussed, the off-
book data may be a poor proxy for hidden orders. Second,
the sample errors are very large, particularly for measuring
a. The errors bars we have shown for « in Fig. 7 are the 95%
confidence intervals of the Hill estimator under the assump-
tion that the data are IID and that the top one percent of the
values have converged to a perfect Pareto distribution. This
is clearly far too optimistic. This can be seen by breaking the
data into subsamples; the variation from year to year is much
larger than the error bars given by the Hill estimator. Even
though our samples are large, the errors are still large be-
cause both volume and order signs are long-memory pro-
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FIG. 8. (Color online.) (a) Autocorrelation function of the mar-
ket order sign for the stock Astrazeneca (black line) compared with
the autocorrelation function of a numerical simulation of the fixed
N model (red filled circles, parameters N=24 and a=1.63) and of
the N model (empty blue circles, parameters a=1.63 and A=0.38
which implies an average value of N=21.1). (b) Probability distri-
bution of the run length for real data and simulations of the model.
The symbols and parameters are the same as in panel (a).
cesses [11,22], and averages generally converge as 7-('=%),
where H=0.75 in both cases. In addition, the measured val-
ues of a have larger errors than those of y due to a strong
tendency of the volume to trend upward, an effect that is not
easily removed by simple normalization. Gabaix et al. have
conjectured that the exponent « for the volume distribution
has a universal value a=3/2; if true, this would imply that
deviations from that value are purely statistical fluctuations.
Finally, it is of course possible that our model is wrong, due
to violations of the assumptions of the model. We list some
of the possible problems in Sec. V D.

C. Run length

Another test for comparing the models to data concerns
the distribution of run lengths. A run is a series of revealed
orders that are all of the same sign. In Fig. 8 we compare the
run length distribution of the real order flow with a simula-
tion of both the fixed N model and the X model. In panel (a)
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we show the autocorrelation function of the sign of market
orders for the stock Astrazeneca (AZN) and compare it with
the autocorrelation of a simulation of the two models. The
parameters are N=24 and a=1.63 for the fixed N model and
N=21.1, @=1.63, and A=0.38 for the A model. These param-
eters were chosen to give a best fit to the autocorrelation
function of the real data. Both models are able to capture the
asymptotic behavior of the autocorrelation function, but the
fixed N model clearly underestimates the autocorrelation
function for small lags. We can get a more detailed test by
comparing the run length distribution of the models and the
data, as shown in panel (b) of Fig. 8. The figure shows that
the N model is able to describe the run length distribution,
whereas the fixed N model underestimate the run length
probability for long runs. The N model appears to be a better
candidate for describing real order flow.

D. Review of assumptions

Below we give a brief discussion of the assumptions of
the model, as well as the circumstances under which this
might alter the basic conclusions of the model.

Distribution of hidden orders. This has already been dis-
cussed in some detail above. Here we want to add that we
have not addressed the possible cause of the power law dis-
tribution of hidden orders. One possibility (originally sug-
gested by Levy and Solomon and developed by Gabaix et al.
[23-25]) is that the hidden order size distribution is in some
way related to the power law distribution of the size of hold-
ings of the largest market participants.

IID hidden order arrival. Strong autocorrelations in hid-
den order size or hidden order signs could affect v, particu-
larly if these were strong enough to be long memory.

Distribution of revealed orders. In reality, revealed orders
do not have constant size. If their distribution is sufficiently
thin tailed we think the model should still be valid. Power-
law tails, however, might affect .

Aggregation of orders. In reality, there is a limited number
of brokerage firms, and when they receive hidden orders
with opposite signs within a sufficiently short period of time,
they may cross such orders internally before they execute the
remainder externally. This will reduce the amount of unex-
ecuted volume and improve market clearing. In our model it
has the potential to change the effective value of N. How-
ever, because of the independence of the asymptotic scaling
behavior on N, we do not think this will affect .

Feedback between order execution and order generation.
In our model we do not worry about whether revealed orders
are actually executed. In reality many revealed orders may
never be executed. In this case there may be feedback ef-
fects, i.e., if an order is not executed the hidden order size is
not decreased, and consequently may result in the generation
of additional revealed orders when the agent tries again. We
cannot say with certainty that such effects are not important.
However, one piece of relevant evidence is that within sta-
tistical error the same scaling is observed for market orders,
limit orders, and cancellations [11]. Since market orders are
by definition executed immediately, this suggests that such
feedback effects are of minor importance.
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VI. DISCUSSION

We have presented and solved a rather idealized model of
the long-memory of order flow which was designed to yield
tractable results. As detailed in the preceding section, many
of its assumptions are not strictly true. At the very least,
though, it illustrates how two apparently disparate phenom-
ena may be linked together, and makes quantitative predic-
tions about their relationship. Because we lack the proper
data to test the model, we have used an imperfect proxy to
test the model. The model passes this test. However, it would
be nice to do a more definitive test, based on a data set that
more closely characterizes the dichotomy between hidden
and revealed orders. Even if the model is not strictly true, the
model could potentially be extended to include more realistic
assumptions, such as a nontrivial distribution of revealed or-
der sizes.

The long-memory of order signs is interesting for its own
sake, but it may also have more profound effects on other
aspects of the market. The persistent autocorrelation function
associated with a long-memory process implies a high de-
gree of predictability by just constructing a simple linear
time series model (see Refs. [10,11]). Since buy orders tend
to generate a positive price response, and sell orders tend to
generate a negative price response, all other things being
equal this would translate into easily exploitable predictable
movements in prices. In order to prevent this from happen-
ing, other features of the market have to adjust to compen-
sate. Such features include the size of buy vs sell orders, the
volume of unexecuted orders at the best prices, and many
other aspects of the market [10,11,13]. Market participants
do not behave out of philanthropic motives; presumably
these effects all come about due to the application of profit-
making strategies. It is not at all obvious what these strate-
gies are, and how they combine to eliminate this inefficiency.
The market response to the long-memory of order flow is an
interesting example of a self-organized collective phenom-
enon. It may be one of the causes of other important proper-
ties of prices, such as the long-memory in their diffusion
rate. We have demonstrated that the N model, which allows
fluctuations in the number of hidden orders, automatically
generates fluctuations in liquidity. This is known to affect
price diffusion rates [18]. The independence on the number
of hidden orders, which was not obvious to us before doing
the calculation, is a convenient property of our result that
makes it possible to test the model based on information that
can be feasibly gathered. This is thus a falsifiable model.
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APPENDIX

In this appendix we evaluate the asymptotic behavior of
the autocorrelation p(7) of Eq. (14) when the hidden order
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size L has a Pareto distribution of Eq. (16). We split the
integral of Eq. (14) in three parts and we set b=p(1-p).
The first contribution is

* 2 — -1)?
—J e \/j\’bsexp(— M)dL. (A1)
3 2LLY YT 2bs

This can be calculated explicitly. It is

2 — - 1)
- i_ —\bs exp(— (ps_)) , (A2)
oL VT 2bs
which asymptotically goes as
= ps
- \r’sexp<— ) (A3)
2(1-p)
This decay is very fast due to the exponential term.
The second contribution is
(L-1-sp)*
2 — (7 P\ ops
a
b2 \/j \bs f - dL.  (A4)
2L ' 32 L

This integral cannot be computed analytically. In order to get
its asymptotic behavior for large s (i.e., large 7) we make use
of the saddle point approximation [26]. To have an idea of
the approximation let us consider the case in which one has
to calculate the asymptotic behavior of an integral of the type

b
f dx MW
a

for large values of N. If there exists a point x in (a,b) which
is a minimum for f(x), then we can expand f(x) around x,,
yielding

(AS)

PAUUES exp[N(f(xo) + %f"(xo)(x - x0)2>] . (A6)

and we can compute the Gaussian integral

b
f dx VW = 4| f,z(:;)exp[Nf(xo)].

The method can be applied also when the integral is not of
the form (AS5), given that the integrand can be written as
exp(f(x,N)). In our case the integral in Eq. (A4) can be
rewritten as

Y 2
f exp<_ [M+ (a+ l)lnx])dL. (A8)
312 2bs

(A7)

By applying the saddle point approximation one easily gets
for the integral the approximation

/ 1
\2hs exp(—) (sp)~(a+D), (A9)
4bs

and by putting also the prefactor we get for the second con-
tribution
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(a—l)p(l—p)exp( 1 )<sp>-a~}a. (A10)

4bs
Thus the second contribution gives a power law behavior but
with an exponent « rather than a—1.
The third contribution is the one depending on the three
erf functions

pa [ 12+ sp
— (sp— 1)erf( ) (L- 2)erf< )
2L73n2 \, \r%

1-L+
+(1 +sp—L)erf(—sp)dL. (A11)
v

2bsp

After some algebraic manipulations we can rewrite this term
as

p(a—l)( a 2)[ f(l—ps>+ f<1/2+sp):|
— | ——=2|| erf| —— | +erf| —F—
2a \a-1 \2bs \2bs
p(af 1) —ps L—l—ps) 1

2 3 V2bs® \2bs )L
(A12)

(L 1- ps)erf(

where erf(x,,x,)=erf(x,)—erf(x;) [27], and we have used the

fact that L=a/(a—1). The term in square brackets has
asymptotic behavior

= %)
exp| - —
IM(L _ 2) %(epﬂb _ ep/h)—Zb
2a a-1 T ps ’

(A13)

and it is dominated by the exponential. The result is obtained
by using the asymptotic expansion of the erf function.
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Finally asymptotic behavior of the integral in Eq. (A12),
ie.,

L-1-ps\ 1
I—f (L—l—ps)erf( £ _ps> —dL
\'st \V2bs )L

(A14)

It is convenient to perform first an integration by parts ob-
taining

1( L 1 +ps l—psL—l—ps *
I= — + erf >
L 1_a a \'st st 32
f* 1( L 1+ps> 2
- — +
s L\ 1 -« o \W\%

L—x—ps)?
o),
2bs

Xexp(— (A15)

The finite term decays exponentially to zero because of the
properties of the error function. The asymptotic behavior of
the two integrals can be computed with the saddle point
method in the same way as Eq. (A4). Both decay asymptoti-
cally as s7%*! and the final result is

placl), 1L L L 1

2 apa—Z sa—l apa—Z Tnz—l ’

which coincides with Eq. (17).
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