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We summarize the theoretical framework and some of the computational methods currently used
for the calculation of the optical properties of surfaces within the ‘‘ab initio” scheme. Applications
and examples are given for calculations including self-energy, excitonic, and local-field effects, with
an emphasis on convergence problems and on the approximations related to the pseudopotential
approach.

1. Introduction

When studying the optical properties of surfaces one is faced with two major difficul-
ties. First of all, one must deal with the fact that real surfaces are per se complex physi-
cal systems: in general, the ground state geometry (atomic positions) is unknown, and,
unlike in bulk crystals, can involve many degrees of freedom. Secondly, one must ade-
quately describe the interaction of the surface with the light. On one level, this problem
has been solved: all the details of the interaction can in theory be encompassed in a
dielectric tensor formalism (see, for example, [1]). However, relating this formalism to
the quantum mechanical response of the surface involves another level of complexity,
due to the fact that optical properties always involve excited states of the system. In-
deed, a thorough computational description of this process remains very difficult to
achieve even for the simplest, elemental bulk semiconductors. For these reasons, calcu-
lations are usually performed at different levels of sophistication, involving various sim-
plifications and approximations, according to the accuracy required and the numerical
heaviness of the calculations themselves. In the following, we will focus on the latter
point, and in particular discuss state-of-the-art ab-initio techniques which enable the
inclusion of self-energy, excitonic, and local-field effects in the optical response func-
tion. We will also illustrate some problems arising from the use of (norm-conserving)
pseudopotentials, i.e. the effect of nonlocality therein, and the role of the ‘‘core” region
in the calculation of dipole transition matrix elements. Parameterized methods, such as
the semi-empirical tight-binding scheme, will not be considered here. To illustrate the
successes and limitations of the methods and approximations used, we present some
examples related to Ge and GaAs surfaces.
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2. Theoretical Framework

Ab-initio calculations of optical properties are most conveniently performed according
to the independent quasiparticle (IQP) picture, or equivalently, at the RPA (random-
phase-approximation) level. In this scheme, the imaginary part of the dielectric function
(or in realistic surface calculations, the half-slab polarizability) is computed by simply
summing over independent contributions coming from the valence–conduction band
pairs at the different k points of the Brillouin zone. Given the quasiparticle energies
Ek; n and wavefunctions fn, the standard expression for the half-slab polarizability
ahs
ii ðwÞ, written in terms of the momentum matrix elements representing vertical transi-

tion probabilities between valence and conduction states, is given as

ahs
ii ðwÞ ¼ pe2

mw2Ad

P
k; v; c

jhfvj pi jfcij
2 dðEk; c � Ek; v � �hwÞ ; ð1Þ

where i denotes the direction of the incident light polarization in the surface plane, d is
the slab thickness, p is the momentum, A is the area of the surface unit cell and m the
electronic mass. Expression (1) can be derived from a polarization function PIQP de-
fined as G0G0, the product of two one-particle Green’s functions, and thus is consistent
with the IQP approximation. The dynamical polarizability ahs

ii ðwÞ may be formally re-
lated to experimentally observed quantities, such as the normal incidence reflectance R,
or the Reflectance Anisotropy Spectra (RAS), defined by ðRx � RyÞ=R. Use is then
made of the relation [1]

Ri � R0

R0
¼ 4w

c
Im

4pdahs
ii ðwÞ

EbulkðwÞ � 1
; ð2Þ

where R0 is the Fresnel reflectivity, and Ebulk the (complex) bulk dielectric function. The
critical quantities here are the excited state energies Ek; n and wavefunctions fn, which
are usually taken from the ground-state calculation of the system within the Density
Functional Theory (DFT). The DFT results – i.e., the one-particle (Kohn-Sham) eigen-
values and eigenfunctions – can in fact be used as a starting point for the excited-state
calculations. Moreover, within DFT efficient algorithms such as the Car-Parrinello meth-
od [2] can be used to search for the equilibrium geometry of relaxed or reconstructed
surfaces, possibly also in the presence of adsorbates. However, it is well known that
Kohn-Sham (KS) eigenvalues appear in the DFT only as Lagrange multipliers to ensure
the ortho-normality of the wavefunctions in the minimization of the energy functional:
they (in contrast to Hartree-Fock) cannot be directly identified with electron addition
or removal energies, since DFT does not possess an equivalent of Koopman’s theorem.
Instead, the electronic band structure should be obtained rigorously within many-body
perturbation theory, where excitation energies are given by the poles of the Green’s
functions. When only one-particle excitations are required, such as those involved in
photoemission (PE) or inverse photoemission (IPE) experiments, one-particle Green’s
functions need to be used. They can be obtained through the electron self-energy S,
usually approximated according to the so-called GW approach. The GW approach is
based on an expansion of S in terms of the dynamically screened Coulomb interaction
W, and was derived by Hedin in 1965 [3]. In optical absorption processes, however, it is
necessary to go beyond this one-quasiparticle level. In fact, the energy of the absorbed
photon can differ from the bare (algebraic) sum of the hole and electron energies: it is
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often necessary to take into account the electron–hole interaction. The latter can pro-
duce not only absorption below the gap, due to bound exciton states, but also can
induce appreciable distortions on the line shape above the continuous absorption edge.
The calculation of excitonic effects from first-principles through the solution of the
Bethe-Salpeter equation (BSE) for the two-particle Green’s function is only a recent
achievement [4], and until now, has been seldom applied to real surfaces.

2.1 Self-energy effects

To understand how one- and two-particle Green’s functions can be computed starting
from a ground-state DFT calculation (usually performed within the Local Density Ap-
proximation (LDA) or the Generalized Gradient Approximation (GGA)) one has to
consider the relation between Kohn-Sham eigenvalues, the poles of the one-particle
Green’s function G, and the experimental band energies, i.e., those measured in photo-
emission (PE) or inverse photoemission (IPE). The latter should be compared with the
poles of the one-particle G, that can be formally expanded as [5]

Gðr; r0;wÞ ¼
P
l

ylðr;wÞ y*
lðr0;wÞ

w � ElðwÞ ; ð3Þ

with yl r;wð Þ solutions of

½� 1
2 r2 þ Vext þ VHartree� ylðr;wÞ þ

Ð
dr0 Sðr; r0;wÞ ylðr0;wÞ ¼ ElðwÞ ylðr;wÞ :

ð4Þ

G is hence determined by the non-local, non-hermitian and frequency dependent self-
energy operator S, and its poles can be well approximated by the quasi-particle (QP)
energies EQP

l solution of EQP
l ¼ El wð Þjw¼EQP

l
. Equation (4) is formally similar to the

Kohn-Sham equations which are solved in the determination of the ground-state prop-
erties, where the local end energy independent exchange-correlation potential Vxc rð Þ
has been substituted by S. Hence, KS eigenvalues can be considered as a zeroth-order
approximation to the true QP energies, if the exchange-correlation (xc) potential of the
DFT is interpreted as an approximation to the true self-energy operator S. This sug-
gests the possibility of a first-order, perturbative solution of Eq. (4) with respect to
S � VLDA

xc

� �
, where VLDA

xc is the xc potential of the LDA. The diagonal matrix elements
of S � VLDA

xc

� �
then give the QP energies as

ELDA
nk þ hfLDA

nk j SðEQP
nk Þ � VLDA

xc jfLDA
nk i � EQP

nk ¼ 0 : ð5Þ

Due to the frequency dependence of hS wð Þi, the determination of the QP energies EQP
nk

starting from the DFT-LDA values ELDA
nk requires either a linearization of the energy-

dependence of S, or the use of an iterative procedure [6]. The resulting corrections to
the KS eigenvalues are called self-energy corrections to the Kohn-Sham eigenvalues,
and must in principle be obtained for every state and every k point needed. The quasi-
particle also acquires a width, given by the imaginary part of SðEQP

nk Þ, that increases
going towards higher binding energies. This width determines the lifetime of the related
excited state (QP lifetime). The application of this method to semiconductors, insula-
tors, surfaces and atomic clusters generally yields energy levels in good agreement with
experiments [7]. The gaps between filled and empty states, underestimated within DFT,
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often increase by an almost constant
amount, suggesting the use of a scissors op-
erator: this consists of a rigid upward shift
of the LDA conduction bands, in order to
mimic the effects of ðS � VLDA

xc Þ, thereby
avoiding the explicit calculation of self-en-
ergy corrections over many k points and
bands. This approach has been widely and

successfully used for many bulk semiconductors. However, in the case of surfaces the
validity of the scissors operator can be questioned, since self-energy corrections can be
different for surface and bulk states, which experience a different screening. For exam-
ple, a situation of this kind has been found in GW calculations for the valence bands of
GaAs(110) [8]. In that specific case, a simplification was possible based on the finding
of an almost linear relation between self-energy corrections and surface localization of
the states. This allows for the restriction of the calculation of the true GW corrections
to a small set of bands and k points. The resulting shifts can then be extrapolated to a
larger set of states (all the LDA bands and k points), based only on the knowledge of
their surface localization. The resulting RAS spectrum from Ref. [8] is reproduced in
Fig. 1. Disappointingly, the comparison with the experimental data shows only a quali-
tative agreement.

In fact, this is a quite typical situation: calculations including self-energy effects in the
band structure energies usually agree well with photoemission and inverse photoemis-
sion data, but when the theoretical optical spectra are compared with measured data,
the agreement is often unsatisfactory. This is mainly due to the neglection of excitonic
effects, as mentioned above.

2.2 Excitonic and local-field effects

Even for bulk semiconductors, a quantitative agreement between theory and experi-
ment for optical absorption spectra can only be achieved by including electron–hole
interaction effects in the calculation. The most striking and clear example is given by
bulk silicon (Fig. 2), where excitons have been shown to induce a strong enhancement
of the E1 peak [4, 10]. Furthermore, the e–h interaction may also induce a redshift of
the spectral peaks, which partially cancels the blueshift arising from the self-energy
corrections. The RPA spectrum calculated with the LDA energy bands is redshifted,
with respect to the experimental results [11], by about 0.5 eV. This is due to the usual
underestimation of the transitions energies, typical of DFT calculations. The RPA spec-
trum obtained with the GW energy bands becomes blueshifted with respect to the ex-
perimental data, and the sizeable discrepancies in the lineshape, already present in the
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Fig. 1. Reflectance anisotropy spectrum of
GaAs(110) computed at the LDA level (top) and
including GW self-energy corrections to the KS
eigenvalues (middle), from [8]. Bottom: experi-
mental data from [9]



LDA spectrum, remain uncorrected (especially
at the E1 peak). Finally, when including GW
energies and excitonic effects, a quantitative
agreement with the experimental spectrum is
found. In particular, the inclusion of excitonic
effects enhances the E1 peak by almost 100%.
The local-field effects can in principle be in-
cluded straightforwardly by adopting the cor-
rect definition of the macroscopic dielectric
function EM, i.e. by taking the inverse of the

average of the inverse dielectric function (and similarly for the macroscopic half-slab
polarizability). The latter can be obtained either by inverting the full E matrix, or by
computing directly E�1 as 1 þ vc, where v is the Coulomb potential and c is obtained
from PIQP with a Dyson-like equation

c ¼ PIQP þ PIQPvc : ð6Þ

However, it is also possible to obtain the macroscopic dielectric function EM (including
LFE) directly from a polarization function �PP such that EM ¼ 1 � v �PP. In this way, �PP must
obey an expression similar to Eq. (6), but where v is substituted by �vv, the Coulomb
potential without its long-range (G ¼ 0) Fourier component [12]. This formulation is
useful because it allows one to put LFE and e–h interaction effects on the same foot-
ing, and to obtain them both within a single calculation. In fact, it is precisely by sub-
stituting PIQP ¼ G0G0 with a more general P that one can include the excitonic effects
in the calculation of E. The expression for this more general P can be derived from
Hedin’s equations [3]:

Sð12Þ ¼ i
Ð
Gð13Þ Gð324ÞWð41Þ dð34Þ ; ð7Þ

Wð12Þ ¼ vð12Þ þ
Ð
vð13Þ Pð34ÞWð42Þ dð34Þ ; ð8Þ

Pð12Þ ¼ � i
Ð
Gð13ÞGð41Þ Gð342Þ dð34Þ ; ð9Þ

Gð123Þ ¼ dð12Þ dð13Þ þ
ð

dSð12Þ
dGð45Þ Gð46ÞGð75Þ Gð673Þ dð4567Þ ð10Þ

by considering in Eq. (9) a vertex function G different from unity and by multiplying
Eq. (10) with G0G0 on the left. In this way, one can define a polarizability P which
contains at the same time both the LFE and the e–h interaction. The equation for P is
still Dyson-like, and reads

P ¼ G0G0 þG0G0KP : ð11Þ

Equation (11) is known as the Bethe-Salpeter equation (BSE). Its kernel K contains
two terms: the first is �vv, which yields the LFE; the second term is dS=dG, which in the
GW approximation for S, and neglecting dW=dG, turns out to be the screened Cou-
lomb interaction W. The ‘‘price” to be paid from the numerical point of view is repre-
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Fig. 2. Silicon absorption spectrum. Big dots: experi-
ment [11]; dash-dotted curve: LDA with LFE; small
dots: GW result; full line: including excitonic effects



sented by the necessity of diagonalizing an ðNkNvNc NkNvNcÞ matrix, where Nk, Nv,
and Nc, are the number of k points, valence bands, and conduction bands, respectively.
In particular for large systems, characterized by many electron–hole pair interactions,
iterative schemes based on the reformulation of the eigenvalue problem as an initial-
value problem may help to overcome the computational difficulties [13].

2.3 Illustrative examples

The methods described above for the calculation of the macroscopic dielectric function
including excitonic and local-field effects, implemented in the ab-initio plane-wave
scheme, have led to a quantitative description of the absorption spectra of many sys-
tems. The first applications were to small clusters [14] and to bulk semiconductors; in
the last two years, however, applications to real surfaces started to appear [13, 15, 16].
The case of Ge(111)(2  1) is particularly interesting, since it is a surface which can
exist in two different isomeric forms: one is the standard Pandey reconstruction, with
buckled chains on the topmost layer; the other is an equivalent Pandey reconstruction,
but where the chains undergo a negative buckling [16]. DFT-LDA ground-state calcula-
tions for the two isomers have shown them to be almost degenerate in energy. Hence,
the uncertainties of the calculations (mainly due to the approximated form of the ex-
change-correlation potential), make it impossible, based only on total energy results, to
predict the most stable form. Excited state calculations, instead, allow us to make a
clearer distinction between the positively and negatively buckled surfaces. In fact, the
main surface peak in the Reflectance Difference Spectra (RDS) is due to transitions
involving essentially a single pair of flat surface bands, localized on the topmost layer.
This peak appears to be redshifted by about 0.2 eV in the case of the negatively
buckled chains, with respect to the standard Pandey geometry. The important point is
that for a comparison of the calculated spectra with the experiments to be useful, i.e. to
discriminate between the two isomers, it is necessary to know the absolute energy posi-
tion of the theoretical peaks. This is possible if both self-energy corrections and exci-
tonic effects are taken into account explicitly, avoiding a ‘‘scissors operator” method.
The results (Fig. 3) strongly suggest the negatively buckled isomer as the dominant

reconstruction of the measured sample. The exis-
tence of boundaries between positively and nega-
tively buckled domains has also been proven ex-
perimentally by STM experiments [17]. A recent
work has confirmed the prevalence of negatively
buckled chains [18]. However, Si(111)(2  1) and
Ge(111)(2  1) are quite unique cases, since only
one pair of flat bands contribute to the surface
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Fig. 3. Differential reflectivity spectrum of the
Ge(111)(2 1) surface, from [16]. Dashed curve: GW
calculation; full line: including excitonic effects; dots: ex-
perimental data from [19]



optical peak. This allows one to reach the numerical convergence with a small number
of k points. The computations get extremely expensive if both bulk and surface states
at many k points need to be considered. In this case the the solution of the BSE re-
quires approximations for the screening together with iterative schemes even for rela-
tively simple surfaces such as Si(110):H [13]. For the large majority of real, recon-
structed surfaces, possibly even with defects, full ab-initio self-energy + exciton
calculations are still beyond computational reach. In those cases, it is hence necessary
to stop the calculations at a lower level of sophistication. One possibility is the combi-
nation of DFT-LDA calculations with either a simple approximative approach to a full
GW calculation [20] or the adoption of the scissors operator formalism. The latter ap-
proach is often completely sufficient in providing useful physical information, even if
the exact amount of the required shift is sometimes lacking a rigorous theoretical deri-
vation. The shift is in fact meant to mimic both the effects of self-energy and excitonic
effects on the peak positions. It can, e.g., be taken from GW + exciton calculations for
the bulk. However, it can as well be determined empirically, by a best fit to the experi-
mentally measured surface optical spectra. The DFT-LDA + scissor approach has been
successfully used in many cases, as, e.g., in the study of the optical properties of the
(100) surfaces of Si [21, 22] and SiC [23]. We report here, as a novel example, results
obtained for the GaAs(100) z(4  2) surface (Fig. 4). Even if the agreement with the
experiment remains qualitative, all the major spectral structures seem to be reproduced
by the calculations.

2.4 Numerical convergence

The Brillouin zone integration is by far the most difficult convergence issue one has to
tackle when calculating surface optical properties. Convergence tests for the RA of
InP(110) have been performed [25] using several meshes of k points and different inte-
gration schemes. In Ref. [26] the RA of GaAs(110) has been calculated within the
Tight Binding approach with 256, 1024 and 4096 special k points in the irreducible part
of the surface BZ; the curves corresponding to the first two cases are clearly distinct
from each other. The calculation with 4096 k points, instead, is almost coincident with
that with 1024 k points. This means that 1024 k points are needed to achieve full quan-
titative convergence of the GaAs(110) RA. In the case of bulk Si and GaAs it turns
out that, if a small broadening (less than 50 meV) is used, then thousands of k points
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Fig. 4. RAS for the GaAs(100) z(4 2)
reconstructed surface. Dashed line: the-
oretical results computed within DFT-
LDA + rigid shift towards the higher
energies; full line: experimental results
[24]. The shift included in the theoreti-
cal spectrum is 0.4 eV, and is meant to
account for both self-energy and exci-
tonic effects



(in the whole BZ) are needed to achieve full
convergence of the spectrum. We found,
however, that the use of random points, or
at least a grid shifted off the high symmetry
directions, is efficient in avoiding the overes-
timation of the spectral structures when only
relatively few k points are used. Other con-

vergence parameters are the number of atomic layers included in the slab used to simu-
late the surface, the amount of empty space separating the repeated slabs, and finally
the kinetic energy cutoff in the plane-waves expansion of the one-particle states. All
those parameters are usually easier to converge than the Brillouin zone sampling. Nor-
mally, a slab containing 10 to 20 atomic layers and with an inter-slab separation equiva-
lent to about five layers is sufficient to obtain theoretical spectra which are converged
within a few percent.

2.5 Influence of pseudopotential

Further technical problems arise in the calculation of optical properties due to the non-
locality of the (pseudo)potential (PP) used to generate the one-particle states. In this
case the expression for the polarizability (Eq. (1)) is not strictly correct. Fortunately,
the problem can be quite easily overcome by substituting the momentum operator with
the velocity operator, which corresponds to considering the commutator of the non-
local potential with the position operator. This point is not irrelevant: the fact that its
effects on the optical properties of simple semiconductors such as Si and GaAs are
small (and thus generally ignored in the calculation of their surface properties) cannot
be generalized. As a counter-example, we show in Fig. 5 calculations for bulk copper,
which has an extremely non-local pseudopotential. Using Eq. (1), one gets a completely
wrong spectrum, with all the transitions below 4 eV almost totally suppressed. A
further problem is represented by the contributions of the core region itself, where the
pseudo-wavefunction is by definition different from the true all-electron wavefunction.
Although it is difficult to draw any general conclusion about the size of these contribu-
tions to the optical matrix elements, in the case of bulk copper they turned out to be
negligible, once the PP nonlocality has been correctly included in the calculation [28].

3. Summary and Conclusions

In conclusion, state-of-the-art ab-initio calculations of the optical properties of surfaces
are rapidly evolving towards the same level of accuracy as already reached for bulk
calculations, where it is nowadays possible to account for self-energy, excitonic and lo-
cal-field effects, thus obtaining a quantitative description of the experimental absorption
spectra. However, the use of the highest level of sophistication is only justified if one
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Fig. 5. Imaginary part of the macroscopic dielectric
function of bulk copper with the use of the mo-
mentum operator (dashed line) or the velocity op-
erator (full line) in Eq. (1). Squares represent the
experimental data from [27]



can work at full numerical convergence. Particularly, in the case of optical spectra the
convergence with respect to the Brillouin zone sampling is the most critical one. Conver-
gence with respect to the slab thickness and to the number of plane waves is, on the
other hand, easier to achieve. When the full convergence of the complete calculations
cannot be reached, due to the limitations in computer power, simplified approaches may
be extremely helpful. This holds in particular if one is mainly interested in qualitative
features. A good compromise is often represented by LDA calculations + scissors opera-
tor, where both self-energy and excitonic effects are roughly taken into account by a rigid
shift of the LDA spectrum. As a possible future alternative, Time-Dependent Density
Functional (TDDFT) calculations should be mentioned. The TDDFT approach is promis-
ing since it is numerically much less demanding than the BSE approach. Unfortunately,
the simple (static) LDA kernel, when used within TDDFT, fails to describe correctly the
excitonic effects in solids. A better approximation for the TDDFT kernel is needed.
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