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Structural equation model (SEM) trees, a combination of SEMs and decision trees, have been proposed
as a data-analytic tool for theory-guided exploration of empirical data. With respect to a hypothesized
model of multivariate outcomes, such trees recursively find subgroups with similar patterns of observed
data. SEM trees allow for the automatic selection of variables that predict differences across individuals
in specific theoretical models, for instance, differences in latent factor profiles or developmental
trajectories. However, SEM trees are unstable when small variations in the data can result in different
trees. As a remedy, SEM forests, which are ensembles of SEM trees based on resamplings of the original
dataset, provide increased stability. Because large forests are less suitable for visual inspection and
interpretation, aggregate measures provide researchers with hints on how to improve their models: (a)
variable importance is based on random permutations of the out-of-bag (OOB) samples of the individual
trees and quantifies, for each variable, the average reduction of uncertainty about the model-predicted
distribution; and (b) case proximity enables researchers to perform clustering and outlier detection. We
provide an overview of SEM forests and illustrate their utility in the context of cross-sectional factor
models of intelligence and episodic memory. We discuss benefits and limitations, and provide advice on

how and when to use SEM trees and forests in future research.
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The privileged unit of analysis in psychology is the individual
(Nesselroade, Gerstorf, Hardy, & Ram, 2007). Nevertheless, many
data-analytic approaches coarsely aggregate data and tacitly as-
sume group-average models to hold and to be interpreted in lieu of
more fine-grained and, ultimately, person-specific models. For
example, when a group of persons show an average increase of
performance in a learning task, this does not mean that all persons
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follow a pattern of change similar to this average. In fact, none of
the persons may be well represented by the average trend. In a
similar vein, Tucker (1966) argued that the consideration of dif-
ferences instead of averages will allow us to gain more information
about the nature of basic functions underlying behavior. Ever
since, researchers have been questioning coarse aggregation of
data across persons (e.g., Lamiell, 1981; Nesselroade & Molenaar,
1999) as the estimates of averaged effects may not be representa-
tive of any single individual. In fact, strong inference about intra-
individual variation from interindividual variation is only possible
under the ergodic assumption (Molenaar, 2004), which assumes
that the group model represents each individual’s dynamics (ho-
mogeneity) and that those dynamics have constant characteristics
in time (stationarity). In the same vein, Simpson (1951) pointed
out that a statistical relationship observed in a population could be
reversed within subgroups that form the population. For instance,
“It may be universally true that drinking coffee increases one’s
level of neuroticism; then it may still be the case that people who
drink more coffee are less neurotic” (Borsboom, Kievit, Cervone,
& Hood, 2009, p. 72). Simpson’s paradox may arise whenever
inferences are drawn across different explanatory levels, for ex-
ample, from populations to the individual, or from cross-sectional
data to intraindividual change over time (see Kievit, Frankenhuis,
Waldorp, & Borsboom, 2013, for further illustrations). Hence,
there still is a need for focusing on individuals or subgroups of
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individuals to more accurately model individual process idiosyn-
crasies and similarities across persons. Particularly, in light of
large-scale empirical data sets, aggregation is more likely to lead
to models with low informative value about individual underlying
processes as it is often difficult to expand prior hypotheses to
account for the large number of potential explanatory variables.

Researchers with an awareness of the aforementioned problem
face two challenges: they need to (a) determine whether there is a
substantially relevant amount of heterogeneity that needs to be
accounted for, and (b) account for this variability in their
hypothesis-driven model. Researchers can turn to a variety of
approaches to account for heterogeneity in their sample. A prin-
cipled approach is to explicitly account for subgroups in the data.
One can consider two distinct venues to approach the issue of
heterogeneity in such multiple group models: Either heterogeneity
(i.e., group membership) is assumed to be latent or assumed to be
observed. If group membership is latent, researchers can rely on
latent class cluster analysis (spanning latent profile analysis, latent
class analysis, finite mixture models; see Vermunt & Magidson,
2002) which has the goal of finding similar data patterns when
group membership is unobserved and probabilistic. That is, ob-
served data are assumed to be drawn from a mixture of underlying
probability distributions. On the other hand, if group membership
is observed through a measured variable, then it can be included in
the resulting model. Probably the most frequent type of analysis
asks whether observed group membership predicts mean differ-
ences in a continuous outcome and comes in many flavors, such as
the ¢ test, paired ¢ test, or the analysis of variance in its many
variants. A multivariate extension encompassing these techniques
as special cases are structural equation models (SEM). Multiple
group SEM allow the specification of a latent variable model with
differences in parameters (but also constraints if dictated by the-
oretical considerations) across groups. This allows for testing
factor structures, growth curves, and other types of SEMs across
groups, and ultimately provides a framework for directly testing
the homogeneity assumption for the observed subgroups. But these
approaches are faced with new challenges when confronted with
large-scale empirical data. We believe that researchers typically
venture out with a good theory to start with. Such a theory
formalized as a statistical model typically applies to only a subset
of observed variables. However, it may be unclear how much
heterogeneity in a large sample could be further explained. In
large-scale data sets, multiple questionnaires with even more
items, genetic data, and biomarkers may form large sets of cova-
riates with the potential to explain heterogeneity. How can a
researcher decide between those variables? Which of these cova-
riates need to be accounted for to reduce heterogeneity and im-
prove predictive performance of a model? If a mixture model
yields a statistically plausible result of dozens of subgroups, then
what do these subgroups mean for the empirical questions of the
researcher? How are they discernible? Which variables distinguish
among them? SEM trees, a multivariate instance of decision trees,
provide a formal venue to approach these questions.

Decision trees (also known as recursive partitioning methods)
became prominent through the seminal work of Sonquist and
Morgan (1964); Breiman, Friedman, Olshen, and Stone (1984) and
Quinlan (1986), who extended the statistical paradigm to include
general classification and regression problems (for an extensive
overview, see McArdle, 2013; Strobl, Malley, & Tutz, 2009). They

provide a data-analytic method to find subgroups in a sample with
similar response patterns when group membership is observed by
a subset of potential predictor variables and their interactions. This
feature gave name to one of the earlier representatives of this
group of methods, automatic interaction detection. Decision trees
can be seen as a nonparametric approach to selection among a set
of potential predictors to best predict univariate or multivariate
outcomes. Modern decision tree approaches come in many flavors
but they all share a common algorithmic theme: They partition the
sample at hand into subsets that differ in their observed data
patterns across groups but are similar within groups. Only parti-
tions of the sample are considered that are described by a set of
potential predictor variables. For example, if gender and age are
included as potential predictors, partitions based on these variables
will be considered. Once the best partition is found, the data set is
permanently split into independent partitions and the algorithm
proceeds recursively in each of the resulting partitions, that is, it
finds the next best partition in each subset. A tree structure
obtained from a dataset with age and gender as potential predictors
may thus describe partitions based on either or a combination of
both variables, or none at all. The result of a decision tree analysis
can be visualized in a hierarchical binary tree structure. A binary
tree is made of nodes, where each node has either no successors (or
children) and is called a leaf or has exactly two successors and is
called an inner node. The first node of the tree, which has no
parent, is called the root. In a tree, each inner node corresponds to
a decision, that is, to a variable and a decision rule about this
variable that determines what subsets will be associated with its
children. Each leaf node is describing an outcome, typically as a
prediction about the outcome. To determine which node a person
belongs to, one simply follows the path from a root node down to
aleaf as it is determined by comparing the person’s predictors with
the decision nodes encountered.

In psychological research, SEMs are general modeling tech-
niques that encompass a variety of models for testing hypotheses
in cross-sectional and longitudinal studies including both observed
and latent variables. In particular, latent variable SEMs allow
modeling measurement errors, thereby offering greater validity
and generalizability of research designs than methods purely based
on observed variables (Little, Lindenberger, & Nesselroade, 1999;
McArdle & Nesselroade, 2014). One special appeal of this method
is the correspondence of the underlying linear equations to a
graphical representation (see von Oertzen, Brandmaier, & Tsang,
2015). Conventionally, SEM is used as a confirmatory technique.
Brandmaier, von Oertzen, McArdle, and Lindenberger (2013b)
introduced SEM trees as a technique that combines the benefits of
both SEMs and decision trees into a single method of data analysis.
The method allows for theory-guided exploration of models, with
structural equation modeling providing a formal framework for
implementing a prior theory and the decision tree approach en-
abling an exploratory analysis and refinement of the initial theory.
The goal of decision tree methods is essentially to discover how
potential predictor variables are linked to an outcome. Trees start
off by undertaking an exhaustive search among the set of potential
predictors to find a predictor that best describes a partition of the
sample into groups with similar patterns of the outcome. Once a
partition is found, this search is recursively continued in the
resulting partitions. Different evaluation functions for assessing
the necessity of a further split have been proposed. For classifica-
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tion of univariate outcomes, typically, GINI impurity (Breiman et
al., 1984) or information gain (Quinlan, 1986, 1993) were pro-
posed, but others are possible. SEM trees extend conventional
decision trees to model-based trees that feature a parametrical
model of the outcomes in each leaf instead of a prediction about a
univariate outcome. Regression trees, in which each leaf model
contains a regression model, are a special case of SEM trees
because regression is a special case of SEM. SEM trees allow a
wider variety of linear models with both observed and latent
variables in leafs of the tree. Whereas conventional decision trees
provide a nonparametric model of the outcomes, SEM trees fuse
the nonparametric nature of decision trees with parametric SEMs
as outcomes. The logic behind SEM trees is simple. Given a
hypothesized SEM, the sample is recursively split to find sub
groups that maximally differ with respect to the parameters of the
original SEM. Typically, the hypothesized SEM is the same for
each leaf, and each leaf represents a sample best described with a
set of parameter estimates for the hypothesized model (but see
Brandmaier, von Oertzen, McArdle, & Lindenberger, 2013a, for
hybrid SEM trees that even allow different models across leafs).
Similar to a mixture model analysis, SEM trees assume that the
observed data is not homogeneous (that is, drawn from a single
underlying probability distribution) but heterogeneous (drawn
from multiple underlying probability distributions). When analyz-
ing data with SEM trees, we assume that an initially hypothesized
model is the correct model for the population but that the popu-
lation is made of subpopulations, which differ in the parameters of
the generating model. Thus, the population can be said to be
heterogeneous with respect to the original SEM. In contrast to
latent mixture models and related approaches, SEM trees not only
retrieve a clustering structure of cases, but also predictors of the
structure.

SEM trees use the likelihood ratio as criterion to evaluate the
necessity of a split (Brandmaier, von Oertzen, McArdle, & Lin-
denberger, 2013b). Whenever we evaluate a particular split of the
sample into multiple groups, the resulting multiple-group model
(postsplit model) is nested in the original (presplit) model. If we
introduced equality constraints for corresponding parameters
across groups in the postsplit model, we would obtain the presplit
model. This property makes the presplit model and the postsplit
model nested and the likelihood ratio test applicable. Because the
search across multiple potential predictors gives rise to a multiple
testing problem, one cannot simply rely on the maximally selected
p value but needs to adjust for multiple testing (e.g., by a simple
Bonferroni correction). It can be obtained that the likelihood ratio
is equivalent to scaled information gain (Brandmaier et al., 2013a)
and has, as such, both statistical and information-theoretic appeal.
By default, the postsplit model is obtained by simply freeing all
parameters of the original SEM across groups, that is, any differ-
ences in freely estimated regressions, means, variances, and cova-
riances of the hypothesized SEM contribute to the decision
whether a partition of the sample is to be made or not. As
mentioned previously, it is possible to restrict the likelihood ratio
criterion to only test selected differences with respect to selected
parameters that are of particular interest to the researcher. The
purpose of such designs is twofold, first, allowing for more fo-
cused hypotheses, and second, strengthening the likelihood ratio
test at each node by restricting the degrees of freedom for each
partition tested.

A SEM tree describes an exhaustive partition of the original
sample into multiple groups (each described by one of the leafs),
and is ultimately a multiple group model. The important difference
between multiple group models and model trees is the fact that in
SEM trees group membership is not prespecified but chosen in a
data-driven manner to recursively optimize the log-likelihood cri-
terion.

The SEM tree approach allows for the detection of subgroup
heterogeneity using measured variables. In principal, the method
can uncover variables and their interactions that predict differences
in multivariate observed data patterns according to a specified
model. For example, if a theory-driven model presumes linear
change in a cognitive score, trees may find a hierarchy of sub-
groups with different change trends due to training dosage.

Conceptualizing different change profiles is a crucial ontologic
and diagnostic activity in psychological research. For example,
Muthén (2004) explored subgroups of longitudinal trajectories in
high school mathematics achievement, or Josefsson, de Luna,
Pudas, Nilsson, and Nyberg (2012) identified differential trajecto-
ries of episodic memory development. SEM trees and forests allow
for the detection of covariate-specific subgroups, for example, in
regression models, factor analytic models (Joreskog, 1969), au-
toregressive models (Joreskog, 1970), latent growth curve models
(McArdle & Epstein, 1987), latent change score models (McArdle,
2009; McArdle & Hamagami, 2001), or latent differential equa-
tions (Boker, Neale, & Rausch, 2004). However, a concern of trees
is their potential instability (e.g., Berk, 2006; Hastie, Tibshirani, &
Friedman, 2001). In each inner node of a tree, both the associated
predictor variable and its split point are chosen to be locally
optimal and, thus, can easily be influenced by small perturbations
of the sample at hand. A slightly different choice of a split point
may lead to a different choice of the subsequent split in the
children of a node; in this way, small perturbations are typically
magnified down the tree. Instability is usually observed when
predictors are highly correlated or variables are equally informa-
tive about different subpopulations.

In machine learning, ensemble methods were proposed to im-
prove the robustness and accuracy of individual models. An en-
semble refers to a set of predictive models that are, typically, each
based on a random sample of the original data set. Ensemble
methods are metalearning algorithms specifying (a) the sampling
scheme for generating the data sets for the individual models, and
(b) a combination scheme for aggregating the predictions of the
individual models into a final prediction. Currently, the most
widely known ensemble method for decision trees is random
forest. The rationale of random forests is to rely on a variety of
trees each based on a random sample of the original data to
account for the potential instability of each individual tree. First,
bootstrap aggregating (bagging) has been proposed as a means to
create forests of decision trees. Bagging generates random samples
of the original data by sampling cases uniformly and with replace-
ment (bootstrapping). Bagged forests make predictions by aggre-
gating predictions of the individual trees (Breiman, 1996), that is,
by predicting a continuous outcome as the average over the indi-
vidual trees’ predictions, or by predicting a dichotomous outcome
with the majority vote over the individual tree’s predictions. As an
extension to bagging, Breiman (2001a) suggested to randomly
draw both cases and predictors for each tree in a random forest.
The former disadvantage of trees, their susceptibility to random
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fluctuations in the sample, becomes an advantage in an ensemble
of trees. Increasing diversity can allow an ensemble to represent a
better approximation to the potentially complex true partition of
the sample. If cases and predictors are randomly sampled, then the
diversity of the resulting trees is increased. Formal results show
that increased diversity is beneficial for the performance of en-
semble methods (Biihlmann & Yu, 2002). In an empirical com-
parison of various classification methods over 176 data sets, ran-
dom forests outperformed other classification approaches
including generalized linear models and support vector machines
(Fernandez-Delgado, Cernadas, Barro, & Amorim, 2014).

In this article, we extend SEM trees to SEM forests following
the seminal work on random forests by Breiman (2001a). We
present the procedure for growing a forest of SEM trees and
describe two aggregate measures that allow researchers to obtain
useful information about heterogeneity in their datasets: (a) vari-
able importance, which quantifies the extent to which variables
predict differences with respect to the initial SEM, and (b) case
proximity, which enables researchers to perform case-based clus-
tering based on a measure of similarity in predictor space. The
benefit of forests is to provide more robust and effective measures
of yet unmodeled' information that may help to explain observed
heterogeneity. Below, we will present two applications to illustrate
the approach, (a) a factor model of intelligence, and (b) a factor
model of episodic memory. The first data set may not be seen as
particular “big” but was chosen to complement our earlier tree
analyses (Brandmaier et al., 2013b) and to highlight the added
benefits of forest analyses. The second analysis is included to
provide a data set that may be considered closer to a big data type
of application.

The SEM forest program is freely available to researchers. We
have implemented SEM forests within the semtree package
(Brandmaier, 2015; see also Brandmaier et al., 2013b) for the
statistical programming language R (R Core Team, 2013) includ-
ing computation and plotting facilities for variable importance and
case-based proximity. Researchers with access to computing net-
works have the possibility to profit from parallel growing of trees
within a forest.

Method

SEM forests extend single SEM trees to ensembles of SEM trees,
just as random forests extend decision trees to ensembles of decision
trees. SEM trees are hierarchical structures of decision rules that
describe differences between recursive partitions of a sample with
respect to a SEM. More explicitly, SEM trees extend univariate
decision trees to decision trees modeling multivariate outcomes.

A single SEM tree, potentially one of many? in a SEM forest, is
created as follows (see Brandmaier et al., 2013b for a detailed
description of nonrandom SEM trees):

Let M be a hypothesized SEM and let D be a data set containing
variables in M and further variables as potential predictors of
differences of observations in D with respect to the model M.

1. Among all potential predictors in D, randomly sample a
subset of ¢ candidate predictors.

2. Choose variable v among all candidate predictors that is
most informative about heterogeneity with respect to M,
that is, choose the variable that finds the largest differ-

ence between the resulting partitions of the sample. This
is formalized as choosing the variable maximizing a
likelihood ratio criterion.

3. Stop searching for further splits if a stopping criterion is
reached. Stopping criteria may include (a) a minimum num-
ber of cases is reached in the current partition such that
fitting a SEM is unreasonable; (b) a user-specified maxi-
mum height of the tree is reached, or (c) a statistical criterion
is reached, for instance, none of the potential predictors has
a significant p value when assessing the splits.

4. Else, permanently partition the dataset according to the split
point of v with the largest likelihood ratio, create two new
nodes of the tree, and restart this algorithm with each of the
resulting partitions as D.

The SEM forest algorithm is as follows:

Let ¢ be the number of trees in a forest, also called the forest size
or ensemble size. For i = 1, . . ., t, create data set D¥“" by
randomly sampling cases (sampling is done by bootstrapping or
preferably subsampling; Strobl, Boulesteix, Zeileis, & Hothorn,
2007). Assemble the remaining cases for each i in the out-of-bag
sample D?. Then grow a tree for each resampled dataset D™,

Only a subset of all potential predictors, which we refer to as
candidate predictors, is tested at each node in a random forest. The size
of the set of candidate predictors, ¢, at each node is typically heuristically
chosen as either 1, 2, ¢ = [logy(c) + 1],¢ = Vm,orc = m3 (e.g.,
Breiman & Cutler, 2014; Verikas, Gelzinis, & Bacauskiene, 2011)
with m being the total number of potential predictors. Note that if
¢ equals m, then the random forest algorithm reduces to bootstrap
aggregating (also referred to as bagging) of trees since only cases
but not variables are subsampled. The predictive accuracy® of
forests is generally higher with lower correlations among trees
(Breiman, 2001a). A smaller ¢ increases the variability between
trees, and reduces the chance of suppression, that is, the chance
that predictor influences remain undetected through the effect of
variables with a stronger influence. On the other hand, a very small
¢ reduces the chance to generate enough trees containing true
important predictors and to detect higher-order interactions (Diaz-
Uriarte & De Andres, 2006). The parameter ¢ is a so-called
hyperparameter® that can either be set manually or be automati-
cally tuned, for example, by employing a hold-out data set or
cross-validation; however, it seems a less critical hyperparameter
than in many other analysis approaches (Strobl et al., 2009). An
empirical test of ¢’s criticality is the parallel construction of
multiple SEM forests with slight variations in ¢ and possibly the
forest size t. If results of aggregate statistics as described below
change considerably, hyperparameters need to be adapted.

Random sampling is typically either performed by bootstrap-
ping or by subsampling (see Strobl et al., 2007). In a bootstrap

! Unmodeled in the sense that this information is not part of the initial
theory-driven SEM.

2 Details about the number of trees will be discussed later.

3 Explained variance is a measure of relative gains in predictive accu-
racy.

4 Hyperparameters are parameters that are not adjusted by the model
fitting procedure but instead either set manually or adjusted by an external
criterion.
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sample, a new sample is obtained by drawing cases with replace-
ment with the same sample size of the original data set. A sub-
sampled data set is obtained by drawing a smaller data set than the
original data set without replacement. In both instances, undrawn
cases remain and form the out-of-bag sample that proves useful as
a validation sample for hypotheses that were created with the
former random sample. Because randomness is an essential part of
the method, it is necessary to manually control and store the seed
of the computer’s random number generator to make analyses
reproducible.

Partitioning of ordinal, continuous, and categorical variables is
performed by internally dichotomizing each variable type (Brand-
maier et al., 2013b). This approach is known as an exhaustive split
search (Quinlan, 1993). Exhaustive split search simplifies the
resulting tree as it enforces binary trees as outcome, that is, trees
that branch at each node into either none or two children. Further-
more, this approach allows for testing effects of potential predic-
tors on the SEM independent of any monotonic transformation,
such as, normalization, logarithmic transformation, or polynomial
transformation. Still, the dichotomization of categorical variables
is exponential in the number of categories and prohibitive already
for small numbers of categories. For example, a variable with 12
categories requires performing more than 4,000 model estimations
in each node of the tree. To alleviate this problem, only a random
sample of dichotomized candidate splits is examined (Breiman,
2001a). We adopted this procedure such that, when log,(n) < k for
a variable with k categories and n remaining cases, only log (n)
split candidates from a random uniform distribution are chosen.
Asymptotically, the search for the optimal split in categorical
variables is then in the order of magnitude of the search in
continuous variables.

Variable Importance

Measures of variable importance quantify the impact a variable
has on the overall prediction of a response, which in SEM forests
typically takes the form of a multivariate means and covariance
structure. For instance, counting the frequency with which a vari-
able was selected in a forest is a naive implementation of variable
importance. However, this does not necessarily reflect the impact
a variable has in the prediction of a model-based response. Instead,
recent variable importance measures are based on permutation
accuracy importance. The intuition being if an important predictor
is randomly permuted, and, thus, its functional relation with the
model-predicted distribution is broken, then a considerable de-
crease of the model’s goodness-of-fit for the scrambled data is
expected. In other words, permuting the variable is seen as a proxy
for removing the effect of that variable. By averaging the decrease
in fitness across all trees of the forest on the out-of-bag (OOB)
samples, an estimate of importance is obtained for each variable.
For classification trees, the Gini criterion is often employed as an
optimization criterion (Loh & Shih, 1997). In SEM forests, Gini
importance is replaced with log-likelihood importance, and, thus,
the decrease of log-likelihood is averaged over the forest to obtain
variable importance estimates. As described above, randomly sam-
pling from both cases and predictors in the process of growing
trees allows potentially influential variables to play out their ef-
fects in different, randomly sampled interactions without con-
stantly being outrivaled by stronger competitors. The computation

BRANDMAIER, PRINDLE, McARDLE, AND LINDENBERGER

of variable importance in SEM forests follows from variable
importance computation in conventional random forests (Breiman,
2001a):

For each potential predictor c,

1. Calculate the log-likelihood of the OOB sample for each
tree, LL(D?98 | T).

2. Obtain a scrambled OOB sample D~I-OOB by randomly
permuting the column of D?? corresponding to c.

3. Calculate the likelihood of the scrambled OOB samples,
LL(D{°" | T).

4. Obtain the estimate of variable importance by averag-
ing over the log-likelihood-ratios,

b = T4 LLDO | T) — LL(DY® | T).

The above algorithm yields variable importance as an average
absolute increase in model misfit due to randomization of each
variable. We recommend reporting importance as increase in
model misfit relative to baseline fit because it is independent of the
sample size. Alternatively, Breiman and Cutler (2014) calculate
standardized importance scores (z-scores) from the raw impor-

tance scores {j; as V; = %\/; with o, being the standard deviation

across each of the ;. This approach allows for a significance test
of variable importance but is overpowered, if not meaningless, due
to the typically large number of trees in a forest (Strobl & Zeileis,
2008). Hapfelmeier and Ulm (2013) reviewed different approaches
to variable selection based on variable importance. They calculate
p values for each variable derived from an empirical null distri-
bution in a permutation test framework. When mixed variable
types are contained in a dataset, the use of an unbiased variable
selection criterion is recommended when SEM forests are esti-
mated. Otherwise importance analyses were biased, typically in
favor of variables with larger number of categories; under the null
hypothesis, continuous variables were typically selected over or-
dinal variables, and among ordinal variables, those with more
categories were selected over those with fewer. SEM trees offer
unbiased variable selection methods (Brandmaier et al., 2013b)
and, thus, remove this bias.

Proximity Measures

Proximity measures quantify the pairwise similarities of cases in
a sample and, thus, provide a measure of the internal structure of
the data. The calculation of proximity follows the ideas of Breiman
and Cutler (2014). Clustering is a technique to find hidden struc-
ture in data. Clustering based on a proximity matrix can be used to
uncover heterogeneity in the dataset, detect outliers, find proto-
types, or impute missing values. The intuition behind case-based
proximity is that similar cases should end up in the same leafs of
trees across the forest. Vice versa, each pair of cases in a terminal
node shares similar values of the variables along the path back to
the root node. Because the variables were chosen to locally max-
imize the information about the model predictions, the similarity
measures take into account the differential weighting of impor-
tance for the prediction as it is encoded in the forest. The proximity
matrix is symmetric, and has rows and columns each correspond-
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ing to one case of the original data. To compute the proximity
matrix, we count the relative frequency of each pair of cases
appearing in the same terminal nodes across the forest and store
this result in the corresponding entry of the proximity matrix. This
notion of proximity in covariate space is then based on the rele-
vance of variables to explain differences in the model-predicted
distribution. Particularly, variables that are less important contrib-
ute less to the proximity. By construction, the proximity matrix is
symmetric and bounded by 1. For large data sets, the proximity
matrix is too large to be useful for inspection because the con-
tained information grows quadratically with the number of cases.
Beyond clustering, projections of the proximities on coordinates in
a lower number of dimensions, for example, via multidimensional
scaling (MDS), can shed light on the case-by-case similarity in a
dataset. Given a dissimilarity matrix, MDS arranges objects in a
low-dimensional space such that the projected proximities have
maximal fidelity to the original proximities. This is usually
achieved by a principal components analysis of the dissimilarity
matrix. The resulting components are then referred to as principal
coordinates and the coordinate system is defined by principal axes.
Then, the cases can be visually represented by plotting their
principal coordinates. Because MDS requires a dissimilarity ma-
trix, the proximity matrix, P, needs to be transformed into a
dissimilarity matrix, D, before MDS can be applied:
D=1-P

A heuristic measure of “outlyingness” or “novelty” for classi-
fication was proposed by Breiman and Cutler (2014) as the recip-
rocal of the sum of squared proximities between a case and all
other cases conditional on the same class. In settings with multi-
variate continuous responses, no class information is available and
the novelty is calculated as unconditional average: Let P be the
proximity matrix derived as described above. The novelty of an
observation i is its average dissimilarity to all other cases:

N
d; =N\, PXi,))
7

Breiman and Cutler (2014) suggested normalizing this score
using robust statistics for location (median; MED) and dispersion
(median of absolute deviation; MAD):

MED = median;(d;)
MAD = median;(|d; — MED|)

d; — MED
MAD

Intuitively, novelty of a case is large when its proximity to all
other cases is on average small. In other words, the less often a
case is consistently allocated to similar cases in the same leaf node
across the forest, the greater its novelty value.

Proximity and importance complement each other. Variable
importance is a nonparametric estimator of the information a
variable can convey about the model-predicted distribution in the
interaction with other potential predictors. The aggregation of
importances across the trees hides the partitional information of
single trees. Case-based proximity recovers parts of this informa-
tion by defining a similarity between cases that is implicitly
weighted by the importance of their variables in the forest. In
addition to the predictive ranking of variable importance, proxim-

(’?i:

ity may provide structural insights into potential extreme groups
and outliers.

Application

To illustrate the utility of SEM forests, we present analyses of
two empirical data sets, of which one was investigated with SEM
trees before (Brandmaier et al., 2013b). In Appendix A, we pro-
vide a worked R example to demonstrate how SEM Forests can be
practically used.

Factor Analysis of the Wechsler Adult
Intelligence—Revised

We investigated variable importance for a cross-sectional factor
model of verbal cognitive ability and showed how model modifi-
cation based on importance may be performed. The underlying
research question is concerned with exploring how we can better
explain individual differences in verbal ability in a cross-sectional
sample. This sample of the Wechsler Adult Intelligence—Revised
(WAIS-R) was previously analyzed by others (e.g., Horn &
McArdle, 1992; McArdle & Hamagami, 1992; McArdle &
Prescott, 1992). The sample was collected during 1976 and 1980
by the Psychological Corporation and includes the scores of N =
1,880 individuals (age from 16 to 74 years) on a total of 11
WAIS-R subscales. A rich set of demographic variables is avail-
able for this dataset, which we selected as potential predictors,
including age group (in nine ordinal categories, hence eight im-
plied dichotomous variables), geographical information about the
place of residence (four nominal categories, hence seven implied
variables), urban/rural place of residence (dichotomous), born in
the U.S. (dichotomous), marital status (again four nominal cate-
gories, hence seven variables), race (three nominal categories),
Hispanic heritage (dichotomous), handedness (dichotomous), ed-
ucation (six ordinal categories, hence five variables), occupation
(six nominal categories, hence 31 variables), sex (dichotomous)
and birth order (nine ordinal categories, hence eight variables).

Following Brandmaier et al. (2013b), we set up a single-factor
model that hypothesizes one latent factor F for verbal cognitive
ability, Y = AF + €, with A = (1, \,, A5, \,), Y being the vector
of indicator scores, and € the vector of residuals (€, €,, €5, €,). The
four indicator variables for verbal performance were information,
comprehension, similarities, and vocabulary. In addition to fixing
the loading of information, the expectation of this variable was
constrained to 0, allowing the mean and variance of the factor to
be estimated.

We randomly split the sample (N = 1,880) in two halves of
equal size, a training set and a hold-out set, to allow confirmation
of a forest-based exploration. The forest analysis was performed
on the training set only. The resulting variable importance served
as basis of a modification of the original SEM, which was in turn
evaluated on the hold-out set.

A forest analysis with 1,000 trees (see Figure 1), subsampling of
cases across the tree, and m = [log, (12)] = 4 (the dataset contains
12 potential predictors, so we randomly sample four split candi-
dates at each node) yields “education” as the most important
variable, with an average absolute increase of —2LL of 363.22,
which corresponds to an average decrease in loglikelihood of
about 12.5%. To reiterate, this is the drop in likelihood averaged
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Figure 1. Left: A bar chart of variable importance for the WAIS-R factor model, quantified as average increase
in model misfit due to randomization. Right: Convergence behavior of the absolute importance (y-axis) over the
number of trees (x-axis). See the online article for the color version of this figure.

over the forest when the variable “education” is randomly per-
muted. Second and third runner-up are “age” with only a fifth of
the effect of “education” and “occupation” with 13.7%, respec-
tively. Based on this result, we propose a modification of the
model to include the effect of the most important predictor, “ed-
ucation,” on the factor structure. Because “education” was coded
as an ordinal variable,” we created a single tree with only a single
split at the root node to determine the maximally informative split
into two groups. The resulting tree partitioned the sample into
participants who graduated from high school (12+ years) or not
(0—11 years) as the most informative split (x> = 372.16, df = 12,
p < .001). We hypothesize education to predict differences in
mean verbal performance and, thus, created a variation of the
previous factor model including high school graduation as an
exogenous predictor of the latent verbal ability. If the null hypoth-
esis were true that education were uncorrelated with our model
variables, this model should have reasonable fitness when the
influence of graduation was restricted to zero. The model fit
including the zero constraint was unacceptable (RMSEA = 0.24,
CFI = 0.89, SRMR = 0.25). When freeing the regression of verbal
ability on graduation, model fit was fine (RMSEA = 0.069, CFI =
0.99, SRMR = 0.01). We formally tested the inclusion of the
regression with a likelihood ratio test and could significantly reject
the removal of the regression path (x> = 317.6, df = 1, p < 0.001).

This model modification serves as an example of how a SEM
forest can inform the amelioration of a theory-driven, explanatory
model. Note that the strength of variable importance is the quan-
tification of the overall predictive effect in the interaction with all
other predictors whereas our proposed modification was limited to
the inclusion of a single variable. For an example of a model
modification using the continuous variable “age,” see McArdle
(1994) or interactions of “education” and “age,” see McArdle and
Prescott (1992). Previous studies have also shown the verbal 1Q

construct to be related to education, age, and sex differences
(Kaufman, Reynolds, & McLean, 1989; Reynolds, Chastain, Kauf-
man, & McLean, 1987).

The single SEM tree reported by Brandmaier et al. (2013b)
provided one way to look at potential predictors and their interac-
tion but was already at the verge of interpretability due to its large
number of splits. The authors concluded that the variable “educa-
tion” was the most important since the first two splits in a single-
tree analysis contained this variable; these splits separated the
extreme groups with very high and very low education from the
midfield that was further partitioned by the tree. Further partitions
in the single-tree analysis were made with respect to the variable
“occupation.” A more rigorous SEM forest analysis supported the
observed importances in the single-tree solution but added a robust
quantification of their relative strength.

As further means of exploring structure in the data set, we
calculated proximity between each pair of the 940 training cases
and projected each case onto the first two principal coordinates of
their dissimilarity matrix (Gower, 1966), that is, a two-dimensional
representation that minimizes loss of information. As a result, we
obtain a two-cluster structure that reflects the most important
variables from the preceding analysis (see Figure 2). The cluster
structure along the vertical principal axis clearly shows two sets of
three clusters discriminating education (as shown by the symbols
encoding level of education). The horizontal principal axis differ-
entiates between people in and out of the workforce. Within each
cluster a third principal axis encodes age as shown by the color-
coding of the symbols. We followed up on this result by applying

> Years of education were coded: 1 < 0-7 years; 2 < 8 years; 3 <
9-11 years; 4 < 12 years; 5 <— 13-15 years; 6 < 16+ years.
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Figure 2. Proximity of participants with respect to the WAIS-R verbal
factor model. The plot shows participants on the First two principal
coordinates of the proximity matrix. The color gradient represents age from
16 (red) to 74 (blue). Levels of education are coded as follows: 0—8 years
(square), 9—11 years (circle), 12 or more years (triangle). The dashed line
separates people with respect to their employment status; cases on the left
are unemployed, cases on the right are in the labor force. See the online
article for the color version of this figure.

a k-medoids® clustering algorithm to the proximity matrix. The
number of clusters was chosen in a data-driven way by choosing k
to maximize silhouette width (Rousseeuw, 1987), a measure of
clustering consistency, which relates the average distance of each
case to members of its cluster to the average distance of each case
to all members of the next closest cluster. From these two clusters,
we calculated the means of each predictor and of the modeled
variables on a z-scale. The result is shown in Figure 3. The plot can
serve as a means to inspect the homogeneity of the predictor
structure across participants. As can be seen from the average
deviation of the modeled variables, one homogeneous cluster that
was identified here (shown in blue color) comprises mostly unem-
ployed (99.7% of the cluster) older (m = 54 years) women (73%
of the cluster) whereas the other larger cluster representing the
remaining sample does not conspicuously deviate from the whole
sample average. The choice to interpret two clusters was based on
a data-driven, exploratory step and may be repeated with larger
number of clusters for further exploration.

Exploring Predictors of Differences in a Factor of
Episodic Memory

As a further practical example of how trees and forests can be
used to explore heterogeneity in empirical data, we analyzed data
from the Berlin Aging Study II (BASE-II; Bertram et al., 2014).
Here, the exploratory analysis focused on the question of how
much a set of diverse predictors spanning psychosocial, demo-
graphic, and health-related indicators may, potentially in their
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Figure 3. Group-wise predictor means on a z-scale for two groups
derived by k-medoids clustering of the proximity matrix. Categorical
variables marital status and geographic region (direction) are represented in
dummy coding. See the online article for the color version of this figure.

interaction, help to predict individual differences in episodic mem-
ory. BASE-II is an interdisciplinary study investigating physical,
cognitive, and social conditions associated with successful aging.
The analysis was based on the complete sample of 2,463 partici-
pants, of which about one quarter were between 20- and 35-years-
old and three quarters were between 60- and 80-years-old. We
analyzed cross-sectional data from the first available assessment,
which had started in 2009. We created a single factor representing
episodic memory. The construct was indicated by four items: (a)
the verbal learning and memory test assessing auditory verbal
learning. The sum of items recalled over five trials constituted the
item score; (b) the face profession task assessing associative bind-
ing on the basis of recognition of incidentally encoded face-
profession pairs. Corrected hit rates for rearranged face-profession
pairs were used as indicator; (c) the object location memory task
assessing object-location memory with 12 colored photographs
arranged on a 6 X 6 grid. The sum of correct placements was used
as the observed score; and (d) the scene encoding task assessing
the ability of incidental scene encoding. A delayed recognition
hit-rate was used as manifest variable. A more detailed description
of these tasks was given by Diizel et al. (2016). The overall model
had a good fit (CFI = 0.997; RMSEA = 0.032; pgassea = 0.797).
From the available covariates, we ad hoc selected a subset repre-
senting diverse indicators spanning psychosocial, demographic,
and health-related indicators in an ad hoc manner. Among these,
we chose to include age group (young/old), sex, years of educa-
tion, marital status, and number of children; self-reports on sleep
quality (day and night), smoking, healthy eating, the frequency of

¢ Medoids are similar to centroids (or geometric centers), only that they
always are members of the data set whereas centroids may lie between
members.
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social contacts (each with partner, relatives, friends, acquain-
tances, and neighbors), frequency of communication via telephone
(each with partner, relatives, friends, acquaintances, and neigh-
bors), the number of close friends, assessment of the current
financial situation, time pressure, life satisfaction, optimism, goal
engagement, and control beliefs (internal/external/other). Health-
related indicators included occurrence of diseases (diabetes,
asthma, coronary diseases, cancer, stroke, migraine, hypertension,
depression, dementia, joint diseases, backpain, and sleeping dis-
orders), and reports of sports activity and physical limitations in
day-to-day work; we included positive and negative affect from
the PANAS (Watson, Clark, & Tellegen, 1988), the big five
personality traits (Lang, John, Liidtke, Schupp, & Wagner, 2011),
and the TICS (Schulz & Schlotz, 1999) for stress. From the
subjective health questionnaire of the German Socioeconomic
Panel (see Bockenhoff et al., 2013), we added self-rated overall
wellbeing and health satisfaction, and further items of self-rated
satisfaction with sleep, work, health, household tasks, and house-
hold income. All items were rated on 11-point Likert scales. We
added three questionnaire items of loneliness (missing company of
others, feeling left out, and feeling isolated). Lastly, we added
dichotomous indicators of life events including severe injury or
disease of self, severe injury or disease of the partner, death of a
family member, divorce, severe conflict, financial burden, respon-
sibility for a person in need of care, and relocation. This led to a
data set with 73 potential predictors to explain heterogeneity with
respect to a latent factor of episodic working memory.

With the single-factor model as outcome, a SEM forest was
grown. We set m = [logy(73)] = 7 (the dataset contains 73
potential predictors, so we randomly sample seven split candidates
at each node), a forest size of 2,000, and computed variable
importance. Results are plotted in Figure 4. Unsurprisingly, age
was by far the most influential effect on the episodic memory
factor. This is in line with the life span perspective on the profound
and continuous changes in EM in the sense of a decrease starting
in middle adulthood with accelerating decline in very old age (cf.
Shing et al., 2010; Singer, Verhaeghen, Ghisletta, Lindenberger, &
Baltes, 2003). The second most influential variable—with an es-
timated effect of a tenth of the aging effect—were work satisfac-
tion, which may be seen as proxy for both general wellbeing and
stress, and stress was found to negatively impact memory perfor-
mance (VonDras, Powless, Olson, Wheeler, & Snudden, 2005;
Wolf, 2009). The appearance of relocation on a similar rank is
surprising at first; one may hypothesize that relocation also is a
major stressor in life. Alternatively, relocation may indicate that
individuals are no longer able to live independently due to increas-
ing frailty. Following up, we find hypertension. Hypertension is
associated with impairments in cognitive functions in older adults
(Bender, Daugherty, & Raz, 2013; Raz, Rodrigue, & Acker, 2003).
A potential pathway links hypertension as an important cause of
cerebrovascular disease (CVD) associated with mild cognitive
impairment, defined as episodic memory impairment beyond the
degree as seen in healthy aging (Nordahl et al., 2005). Hyperten-
sion and diabetes, both among the top predictors found by the
forest, are primary risk factors for CVD, which stresses the im-
portance to further research this proposed pathway. Physical lim-
itations in day-to-day work is likely predictive in its role as proxy
for overall health of an individual. Further predictors were educa-
tion, the occurrence of joint diseases, then a indicators describing
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Figure 4. Top 10 variable importance estimates for an episodic memory
factor in the BASE-II study plotted on a log-scale. From most important to
least important: Age group (young/old), work satisfaction (11-point scale),
relocation (yes/no), hypertension (yes/no), physical limitations in day-to-
day work, education (in years), diabetes (yes/no), arthrosis (yes/no), being
in a relationship (yes/no), back pain (yes/no).

the personal family situation (being in a partnership), and back
pain as a further disease-related predictor (with only a fortieth of
the importance of age group). For sake of brevity, we omit the
exact ordering of the remaining predictors. In summary, we con-
clude the forests successfully retrieved predictors previously found
to be associated with impaired memory functioning or verbal
intelligence.

Discussion

SEM forests constitute a hybrid of two modeling cultures (see
Breiman, 2001b; Shmueli, 2010, for perspectives on the differ-
ences): (a) structural equation modeling, which is a theory-driven,
explanatory modeling approach that yields interpretable models
with known statistical properties; and (b) random forest, which is
a data-driven, predictive modeling technique allowing the retrieval
of important subsets from large numbers of predictors with poten-
tially complex interactions. Despite the fact that predictive mod-
eling techniques are largely ignored for scientific inquiries, both
explanatory and predictive modeling are useful for generating and
testing theories (Shmueli, 2010). Predictive modeling comple-
ments explanatory modeling on multiple dimensions. As demon-
strated in the SEM forest approach, predictive modeling can sug-
gest improvements to explanatory models. In this way, predictive
modeling helps to generate new hypotheses, particularly in large
and complex data sets in which it is difficult to hypothesize (or
difficult to winnow in on which variables to focus in on). Further-
more, predictive modeling approaches can be employed as a base-
line of predictive accuracy that may serve as a benchmark for
purely explanatory models: If predictive modeling is more accu-
rate than some explanatory model, the explanatory model is likely
to have room for improvement.
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Benefits and Limitations

A key feature of both SEMs and simple decision trees is their
readability and interpretability. In trees, feature interactions and
resulting partitions can be easily visualized. In SEMs, the hypoth-
esized structure of causes and effects between variables can be
represented graphically (e.g., see von Oertzen et al., 2015). In
contrast, as Breiman (2001a) states, forests are “impenetrable as
far as simple interpretation of its mechanisms go” (p. 23). The
straightforward interpretation of a single tree is lost in the forest.
Particularly, forests do not provide a straightforward hierarchical
clustering of the participants into homogeneous subgroups. How-
ever, the variable importance estimate yields a structured approach
to aggregate information about previously unmodeled variables
across the trees. In the endeavor to explain phenomena, the ques-
tion often arises which variables should be controlled for, respec-
tively, what variables can provide predictive information; and how
strong is their influence on the model of interest. SEM forests
provide a starting point for researchers to address these questions
in a rigorous and robust manner.

Variable importance and proximity measures provide a way to
efficiently search empirical data for sources of variability. Our
empirical results are supported by the interactions of demographic
characteristics as found by traditional analysis techniques for the
WAIS-R verbal factor, but they also go beyond the recovery of
known associations. Whereas in SEM trees variables compete with
one another for model impact, SEM forests assess competing
variables’ importances by the controlled utilization of randomness
and, thus, provide an unbiased estimate of marginal importance for
model fitness.

Still, SEM forests impose high computational burdens, and a
forest analysis may thus be time demanding. For large sets of
predictor variables, the number of model optimization runs in a
SEM tree depends linearly on the number of potential split points
and linearly on the number of observations (Brandmaier et al.,
2013Db). In trees, all predictors are tested at each level, whereas, in
forests, random sampling of the predictors will drastically decrease
the number of tests and, thus, decrease the number of potential
split points, leading to a reduced asymptotic time complexity.
Under certain circumstances, typically when a large number of
predictors are chosen, a forest analysis can even be faster than a
single tree analysis. Still, forests are typically created with hun-
dreds to thousands of members, which in our experience prohibits
computation on desktop machines for most models. However,
models featuring a small covariance matrix of size 4 X 4 and an
ensemble with 1,000 members may be generated in less than 1 hr
on a standard desktop computer. The ideal size of a forest depends
on the number of predictors, their interactions, the heterogeneity of
the data, and the complexity of the model. Currently, good guide-
lines for forest size are still missing and, when computational
resources are sparse, researchers are advised to iteratively increase
forest size until forest results empirically stabilize. Note that for-
ests need not be regrown but can be grown by simply adding more
trees.

Choosing the hyperparameters (i.e., parameters of the sampling
procedure) remains a crucial decision when estimating variable
importance using SEM forests. Typically, this entails selecting the
resampling procedure (bootstrapping or subsampling), selecting
the number of variables that are sampled at each level, and the

number of trees in the forest. Currently, we heuristically rely on
evidence from the research on (conditional) random forests. Fur-
ther simulation work is needed to outline optimal hyperparameters
for creating SEM forests. Currently, we set the number of trees to
2,000 and empirically examine whether variable importance con-
verges as the number of trees increases to decide whether a larger
forest is needed. We heuristically set the number of candidate
predictors to the logarithm of the total number of predictors and
use subsampling as resampling scheme. As noted earlier, the
choice of hyperparameters may influence the results of a forest.
For example, when choosing the number of candidate variables,
there is a trade-off between diversity and stability: A low number
of candidate variables leads to more diverse trees at the cost of
important predictors having a lower chance to enter any single tree.
Other parameters that directly influence the likelihood ratio test,
which ultimately underlies the variable selection mechanism, such
as missingness or group imbalance in categorical variables, may
bias variable selection and affect the power to detect important
variables. Similarly, the measure of proximity is influenced not
only by the choice of hyperparameters but also by the number of
variables and their relative importance. Future work needs to
address these questions from theoretical and empirical perspec-
tives across many types of SEMs ranging from cross-sectional
factor models to coupled latent differential equations.

As a tool for improving a theory-driven SEM, variable impor-
tance grants no free lunch. It is commonly accepted that theory
construction and refinement benefit from measures that specify the
relationship of relevant predictors to outcome variables (e.g., in the
sense of regression), the relationship among relevant predictors
(e.g., in the sense of moderation), or both. Variable importance
falls short of either mark but offers two other benefits in turn. First,
variable importance integrates the predictiveness of a given vari-
able into a single score, and it does so in a way that includes all of
its interactions with other predictors across all trees of the forest.
It should be noted that alternative ways to derive such measures
are available. For instance, Strobl, Boulesteix, Kneib, Augustin,
and Zeileis (2008) discussed conditional instead of marginal vari-
able importance, and Hapfelmeier, Hothorn, Ulm, and Strobl
(2014) introduced an alternative variable importance scheme that
replaces OOB scrambling by randomly distributing cases to each
node while holding the ratio of cases over child nodes constant. In
the presence of missing values of variables, this scheme was found
to be superior over standard variable importance. The second
benefit of variable importance is related to the first: Variable
importance expresses the expected decrease in uncertainty for the
entire outcome model instead of being restricted to a specific
variable or relation in that model. Taken together, then, variable
importance conveys useful summary information about predictor
variables in relation to an outcome model. Nevertheless, it is
difficult to indicate how exactly this information should be used to
guide theory development. How can we best translate the results of
a forest analysis, and the summary information conveyed by vari-
able importance, into an improved parametric model, and ulti-
mately build a better scientific theory? In our view, forests, and the
measures derived from them, indicate whether there is any predic-
tive potential in a set of variables not yet integrated into a hypoth-
esized SEM. In case these variables have not yet been considered
in the theory that led to the specification of the statistical model,
their discovery may lead researchers to reconsider and augment
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their theory. In this endeavor, variable importance provides re-
searchers with hints at which variables to select. How to structur-
ally integrate these variables into the original SEM remains an
open question. We hope that this article along with the freely
provided SEM tree and forest software spawns future research to
address this question in greater detail and in large data sets that
contain formerly hidden and theoretically relevant predictive in-
formation.

SEM forests provide a structured approach to quantify variable
importance in SEMs and support researchers in hypothesis gener-
ation and testing. As an extension of SEM trees, forests combine
aspects of data-driven and theory-guided analysis in a single
framework of theory-guided exploration (for an alternative, model-
free approach, see Miller, Lubke, McArtor, & Bergeman, 2016).
The cautionary note of Brandmaier et al. (2013b) that was ex-
pressed in the context of SEM trees, is just as valid for forests:
Exploratory methods do not provide a shortcut from data to the-
ories, nor from data to knowledge. Researchers are still required to
think about their observations, remind themselves of the assump-
tions of their models, of the intricacies of the data sampling
process, and the focus of their field; then, backed by this knowl-
edge, make reasonable and responsible decisions about their anal-
yses. Last but not least, a data-driven model must be evaluated on
an independent dataset before its tenability can be claimed. If
confirmatory analyses are planned, researchers are advised to
conduct them before proceeding to exploratory approaches
(McArdle, 2013; Tukey, 1962).

When to Grow More Than One Tree

When should we use trees and forests at all? When analyzing
large data sets, scientists often would like to know which subset of
variables has an influence on the phenomenon of interest (be this
a univariate outcome, a correlation, a hypothesized causal relation,
or any other relationship between or properties of variables) and,
thus, carries the potential to explain the phenomenon. This explor-
atory approach is legitimate if the original hypotheses guiding the
study turn out to be untenable, if the data set includes variables
beyond the scope of extant theories, or whenever prediction does
not only serve to validate a theory but actually is a goal in itself
(e.g., in clinical decision making). The utility of complementing
theory testing with tree-type exploration increases further when the
number of predictors is large relative to the number of cases, and
when effects of predictors on outcomes are interactive and non-
linear. If these conditions are met, the question remains when we
should be content with a single tree and when we should grow
more than one tree. We believe that in most cases both should be
done as complementary analyses. First, a single tree may be grown
to show a partitional structure of the sample inducing groups with
different observed data patterns. The decision nodes of the tree
may inform researchers about variables that describe differences
and that may be better accounted for in future models. The parti-
tional structure itself may be informative about the kind of differ-
ences between subgroups, for example, different factor profiles in
factor analysis, or different growth curves in longitudinal data.
However, it must be stressed that the resulting partition may
neither be true nor be the best possible. It merely is one way of
partitioning the sample that is optimal according to the chosen tree
induction algorithm. Thus, it seems reasonable to turn to SEM

forests in a subsequent analysis step. The forest analysis induces
random variation to the empirical sample to obtain better estimates
of variables’ importance for predicting differences in observed
data patterns. This comes at the cost of losing a straightforward
way to recover a concrete partition from a forest.

Conclusion

In psychological research, the number of cases is often small
compared with the number of variables measured but there are
increasing number of studies that generate large data sets, for
example, by using affordable and easily accessible online surveys,
fused data sets from multisite studies, or data with a high density
of measured variables. The latter is especially true for studies
involving neuroimaging techniques or genetic associations. Like-
wise, purely behavioral data sets can benefit from exploratory
analyses with trees and forests (e.g., if they comprise a large array
of scales from various questionnaires). Tree and forest analyses
may inform researchers about variables that provide additional
information about the phenomenon or process they are hypothe-
sizing about. Recent tree-based analyses of psychological data sets
were conducted with longitudinally modeled child development
(Brandmaier et al., 2013b), adult development (Brandmaier et al.,
2013a), and late-life terminal decline (Ghisletta, 2013) of cognitive
functioning across age, or perceptions of stress (Scott, Whitehead,
Bergernan, & Pitzer, 2013). We share the hope of Strobl, Malley,
and Tutz (2009) that trees will become a standard tool of analysis
in psychological research and other empirical fields. The flexibility
of structural equation modeling to account for many research
designs and the flexibility of trees and forests to account for the
diversity of predictors encountered in many settings makes the
method suitable as a generic tool of exploration after a first step of
purely theory-driven modeling. SEM trees and forests will enable
researchers to make more efficient use of their empirical data.
Lastly, trees may be one more step toward bringing individual
differences back into the focus of psychological research.
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Appendix A

Descriptive Statistics of Simulated Data for a Factor Model Forest

Variable x1 x2 x3 covl cov2 cov3 cov4d covs covh
N 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00 500.00
Mean 1.05 1.03 1.08 .50 51 .52 49 48 51
SD 2.76 2.62 2.71 .50 .50 .50 .50 .50 .50
x1 1.00 .87 .87 74 72 —-.22 —-.22 .02 .07
x2 .87 1.00 .87 74 73 -.23 -.17 .02 .08
x3 .87 .87 1.00 74 73 —.20 —.20 —.02 12
covl 74 74 74 1.00 76 .02 .01 —.01 .04
cov2 72 73 73 .76 1.00 .02 .00 .02 .08
cov3 —-.22 -.23 -.20 .02 .02 1.00 .19 -.03 .00
cov4 —-.22 —.17 -.20 .01 .00 .19 1.00 —.04 .02
covs .02 .02 -.02 —.01 .02 -.03 —.04 1.00 .01
covb .07 .08 12 .04 .08 .00 .02 .01 1.00

Note. Observed variables in the factor model are x1, x2, and x3. Predictors are covl to cov6.

Appendix B
Example of a Factor Model Forest
To generate a SEM forest and visualize the results only a few steps are needed. In general, an OpenMx model, a dataset with variables

observed in the model and covariates included, and a set of control parameters are the only requirements. We will provide steps for fitting
an OpenMx model with data, creating a forest, and plotting variance importance.

and is not to be disseminated broadly.

The OpenMx Model

gical Association or one of its allied publishers.

SEM trees require model specification in OpenMx (Boker et al., 2011), a package for the statistical programming language R (R Core
Team, 2013). OpenMx allows path and matrix specification of models. In the following, we present a path specification of a factor model
with three observed variables (x1-x3) that are assumed to measure a single construct. The observed variables are indicated by a single
latent factor, with all shared variance contained at the latent level, and unique variation residing in the residuals for each indicator. The
following code will create a factor SEM, fit the dataset to the model, and provide model parameters and fit indices to the console.

(Appendices continue)
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data(factorData)
factorModel <- mxModel (
“Factor Model”,
type=“RAM”, mxData(factorData,type=“raw”),
manifestVars = c(“x1”,“x2”,“x3”),
latentVars = “f”,
mxPath (from=“f”,to=c (“x1”,“x2”,“x3”),
free=c (FALSE,TRUE, TRUE) ,
value=c(1,1,1), arrows=1l, label=c(“11”,“12”,“13”)),
mxPath (from=“one”,to=c (“f”), free=c (TRUE),
value=c(1.0), arrows=1, label=c(“mu_£f”)),
mxPath(from=“f”,to=c(“f”), free=c(TRUE),
value=c(1.0), arrows=2, label=c(“var_f”)),
mxPath (from=“x1",to=c(“x1”), free=c(TRUE),
value=c(1.0), arrows=2, label=c(“e”)),
mxPath (from=“x2",to=c(“x2”), free=c(TRUE),
value=c(1.0), arrows=2, label=c(“e”)),
mxPath(from=“x3",to=c(“x3”), free=c(TRUE),
value=c(1.0), arrows=2, label=c(“e”))
) # close model
summary (factorFit <- mxRun(factorModel))

Starting estimation with the full dataset using mxRun () will indicate errors in model syntax, or potential model estimation issues, prior
to forest creation with the command semforest (). The following example uses a simulated dataset as presented in Appendix A. Three
indicators are shown together with six covariates. Two covariates have high intercorrelations, two variables have moderate intercorrelation,
and two variables are uncorrelated random noise. Each covariate is coded as two categories (0/1), with standard normal effects of covl
and cov?2 distributed as N'(2.0, 0.3) and cov3 and cov4 distributed as N'(1.0, 0.5) on the latent level factor score. The intention of this data
structure is to show the utility of the SEM forest method when compared with a simple SEM tree analysis. When unmodeled covariates
have overlapping information to different degrees, their impact within the model may be lost.

and is not to be disseminated broadly.

gical Association or one of its allied publishers.

Creating a Control Object

Users have control over parameters determining the growth process of a forest. The parameters may be changed depending on the model,
the number of covariates, and the research hypotheses to be tested. The forest control options contain:

* num.trees - how many trees to create in the SEM Forest process.

e sampling - method for selecting cases in each SEM Tree.

e control - a SEM Tree control object as described in Brandmaier, von Oertzen, McArdle, & Lindenberger (2013b).
e mtry - number of covariates to test at each node for splitting algorithm.

A control object with default settings is done with the following line:

factorControls <- gsemforest.control()

# Change the Default settings in semforest.control() and semtree.control()
factorControlsSnum.trees <- 1000

factorControlsSsemtree.controlSmethod <- “naive”

This document is copyrighted by the American Psycholo,
This article is intended solely for the personal use of the individual user

Control objects will shape the forest (and individual trees) to fall within parameters established by the researcher. Please note the
defaults are supplied not as suggested starting points, but in order to prevent computational overloads for novice users.
SEM Tree Interpretation

A SEM tree is fit to the factor model structure with the simulated dataset. Using the control object from the above step, we run the
semtree () function:

factorTree <- semtree(model=factorModel, data=factorData, semforest.control=
factorControlsSsemtree.control)

(Appendices continue)
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The individual tree is the standard “naive” splitting process, where all split points have the same potential influence independent of
which covariate they indicate. Plotting a tree output is relatively straightforward, with multiple tree complications encountered in a random
forest analysis.

plot(factorTree)

The output of this plot is shown in Figure B1. Of note is the structure of the splits found for subsetting the data at each node. Covl
is selected initially (but was equally as influential as cov2 in the simulation design), while cov3 and cov2 were selected for secondary splits
(with the impact of cov4 equal to cov3).

Creating a Forest

The semforest command uses the elements described above to compile SEM trees following random forest logic. The most basic tree
can be run by the following command line:

factorForest <- semforest(model=factorModel, data=factorData, Semforest.

control=factorControls)

Alternatively, single trees can be extracted from a forest as follows:

tree4? <- factorForestSforest[[42]] # Retrieve the 42nd tree from the
forest
N= 500 LR=459.7(ddf=5)
covl>=0.5
N= 248 LR=51.8(ddf=5) N= 252 LR=77.7(ddf=5)
cov3 >= 0.5 cov2 >= 0.5
12=0.713
13=0.99
e=0912
N= 122 LR=11.3(ddf=5) N= 126 LR=28.2(ddf=5) var_f=1.198 N= 224 LR=43.7(ddf=5)
covd >=0.5 cov4d >=0.5 mu_f=0.743 cov3 >=0.5
N=28
12 =1.025 12 =0.901 12=0.95 12 =0.908 12 =0.964 12 =0.952
13=1.17 13 =0.987 13=1.039 I3 =0.891 13 =0.988 13 =1.005
e=1.01 e =0.905 e =0.768 e =1.002 e=1.114 e =0.894
var_f=1.185 var_f=1.474 var_f=1.684 var_f=1.819 var_f = 1.606 var_f=1.437
mu_f =0.013 mu_f =-0.816 mu_f=-0.818 mu_f=-2.29 mu_f=4.023 mu_f=2.803
N=77 N=45 N= 50 N=76 N= 105 N= 119
Figure BI. Tree output for simulated data with six covariates. Covariates 1 and 2 had the highest impact,

Covariates 3 and 4 had low impacts, and Covariates 5 and 6 represent random noise variables.

(Appendices continue)
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The semforest() arguments are in the following order: SEM OpenMx model, dataset (with model variables and covariates: covl-cov6),
and researcher specified control object. This step may take some time to complete. On machines with more than one core available (and
in cases where grid computing is available), users may want to use parallel processing to speed up computation of n trees. The R package
“snowfall” is required and may be implemented in the following way:

require (snowfall)
sfInit(parallel=TRUE, cpus=2)
sfClusterEval (require (“OpenMx”))
sfClusterEval (require(“semtree”))

The above code will initialize a cluster of two CPUs in parallel and load the required packages remotely. The command semforest ()
will detect this environment automatically to distribute jobs over the available CPUs.

Visualizing a Semforest Object

Once a semforest has been computed, a couple of tools are available to researchers to print and visualize results. Variable Importance
is a graphical display of the impact of each potential splitting covariate for subsetting the overall model into a two group nested model.
The impact of each covariate is graphed as bar plots or as average model improvement traced over iterations.

forestVarimp <- varimp(factorForest, parallel=FALSE)
plot(forestVarimp) # Average improvement bar plot

The plot shown in Figure B2 is the output of this variable importance plot function. The x-axis shows the average model improvement
(A — 2LL) between the overall model and the two group model based on subsetting the data by splitting on a covariate. The top are the
variables that improve model fit the most and the bottom variables improve the model the least. Negative values indicate that the splits
provide no information about splitting the sample. This figure shows concisely that covl and cov2 have about equal importance for the
forest analysis, cov3 and cov4 are also about equal in their influence, and cov5 and cov6 both have no influence on the forest model. This
outcome is at odds with the tree shown in Figure B1, because covl and cov2 are shown to be equally important, where a single tree
indicates that covl is the most important and cov2 only influences the right branch.

cov1
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=
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covb [
[ T T T 1

0 100 200 300 400

Figure B2. Variable importance plot for the simulated data fit to a factor model. Covl and cov2 have about
equal importance for the forest analysis, cov3 and cov4 are also about equal in their influence, and cov5 and cov6
both have no influence on the forest model.
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