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Abstract
Most engineering domains abound with models derived from first principles that have beenproven to be effective for
decades. These models are not only a valuable source of knowledge, but they also form the basis of simulations. The recent
trend of digitization has complemented these models with data in all forms and variants, such as process monitoring time
series, measured material characteristics, and stored production parameters. Theory-inspired machine learning combines
the available models and data, reaping the benefits of established knowledge and the capabilities of modern, data-driven
approaches. Compared to purely physics- or purely data-driven models, the models resulting from theory-inspired machine
learning are often more accurate and less complex, extrapolate better, or allow faster model training or inference. In this
short survey, we introduce and discuss several prominent approaches to theory-inspired machine learning and show how
they were applied in the fields of welding, joining, additive manufacturing, and metal forming.

Keywords Theory-inspired machine learning · Theory-guided data science · Machine learning · Artificial intelligence ·
Welding · Joining · Additive manufacturing · Metal forming · Structural mechanics

1 Introduction

While early approaches to artificial intelligence (AI) were
mostly rule-based and thus relied exclusively on expert
knowledge, digitization and the advent of deep learning
have triggered an era of purely data-driven modeling
where the domain experts’ knowledge appears to have
lost its importance. Recently—since purely data-driven
modeling is approaching its limits in some application
domains—researchers have started to turn back to AI’s
roots to combine existing expert knowledge and data in
new and promising ways. The scientific communities have
realized that not only classical theory-driven models or
simulations need to be augmented with available data from
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measurements and digitization campaigns, but that also AI
algorithms need to be adapted to incorporate knowledge
from the respective application domains.

In this short survey, which expands on the Portevin
Lecture given by the corresponding author at the 2021
International Conference of the International Institute of
Welding (IIW), we will introduce and discuss different
approaches of how such domain knowledge can be included
in data-driven AI or machine learning models (Section 3).
We will subsume these approaches under the umbrella
of theory-inspired machine learning, contrasting it from
machine learning, which predominantly refers to the
process of obtaining models exclusively from data. Before
presenting these approaches, we will highlight the main
features, advantages, and limitations of purely theory-driven
and purely data-driven models, respectively, and show that
combining these two paradigms has the potential to improve
the trade-offs between accuracy, computational complexity,
and data requirements of the respective models (Section 2).

There exist several surveys covering theory-inspired
machine learning, both general [1, 2] and domain-specific.
Examples of the latter include surveys in turbulence mod-
eling [3], computational fluid dynamics [4], civil engineer-
ing [5], chemical engineering [6], earth observation [7],
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chemical, petroleum, and energy systems [8], material sci-
ence [9], and heat transfer modeling [10]. We take inspi-
ration from these surveys and structure our manuscript
similarly as [1, 7, 9]. Specifically, we categorize approaches
to theory-inspired machine learning based on how theory
and data interact (e.g., theory selects model class, the-
ory regularizes learning), rather than based on how theory-
and data-driven models are connected (parallel, in series,
subsystems, etc.).

The selection of presented approaches cannot be
exhaustive and thus remains at least partially subjective.
For one, we focus only on ways how existing theory can
be utilized to improve data-driven models, namely via data
preprocessing or feature engineering (Section 3.1), model
selection (Section 3.2) and regularization (Section 3.3). We
thus neglect information flowing in the opposite direction,
i.e., we do not consider how theory-driven models can
benefit from the increasing amounts of available data. As
such, we do not cover data-driven parameterization of
theory-driven models or defect modeling, in which data-
driven models are used to compensate for overly coarse
theoretical approximations. Further, we omit discussions
about substituting only parts of a theory-driven model by
a data-driven one. Rather, we consider these data-driven
submodels as special cases of surrogate models, which
we treat in Section 4. There is also a growing body of
literature on the topic of hybrid or grey-box models, which
contain theory- and data-driven components, the former
often implemented via numerical solvers. While we do
not discuss approaches that rely on numerical solvers as
critical components, we argue that theory-inspired machine
learning is a way of obtaining such hybrid models, for
example, by utilizing a known functional relationship to
preprocess the data prior to data-driven modeling. Finally,
we briefly discuss settings in which prior knowledge is
incomplete and may only encompass knowledge of cause-
effect relationships (Section 5). Such settings recently
received a lot of attention in the field of machine learning,
and we believe that they can be put to good use in many
application domains.

Our manuscript does not claim to be a complete
treatment of the emerging topic of theory-inspired machine
learning and hybrid modeling. Rather, it is intended as
an introduction from which the interested reader can
move forward. To assist the reader in this endeavor,
the manuscript builds on several examples for theory-
inspired machine learning from the fields of welding
and joining, additive manufacturing, and metal forming.
This simultaneously illustrates the presented approaches
with practical applications and suggests how the existing
literature can be categorized based on the concepts
introduced in this survey.

2 Theory- vs. data-drivenmodeling

To discuss the fundamental differences between theory-
and data-driven modeling, let us consider a simple
physical phenomenon that we wish to study. The theory-
driven model for this physical phenomenon may be the
differential equation as depicted in Fig. 1. This differential
equation is characterized by the nonlinear operator F and
parameterized by a set of parameters, which we collect in
the vector θ . We further assume that a forcing function
u(t) influences the phenomenon. We are interested in the
trajectory of a quantity x describing this phenomenon. In
other words, we are interested in solving the differential
equation

dx(t)

dt
= F(x(t); θ) + u(t) (1)

for a known initial condition x(0) and for all t in a given
time period T , the computational domain.

The theory-driven nature of this model is characterized
by the fact that it is deduced by a theoretical understanding
of the phenomenon under investigation, i.e., F is derived
from existing (physical) theories. It is an inherently causal
model, in the sense that the forcing function causes
changes in the quantity of interest and not vice-versa.
However, not for every phenomenon the existing theory
is sufficiently evolved, and even if it is, modeling all
aspects of a phenomenon in their full details may be
impractical or exhibit prohibitive computational complexity.
Thus, often the true operator F is replaced by an
approximation, highlighting the fundamental trade-off
between accuracy and model complexity. Finally, in many
cases the parameterization θ of the model is not deducible
from existing theories.

At the other end of the spectrum are data-driven models
(Fig. 2). Assuming that we wish to study the same physical
phenomenon of interest, suppose that we have access to
a large dataset D of observations. Specifically, suppose
we have observed the same phenomenon for (potentially)
different parameters θ , different forcing functions u(t),
and different initial conditions x(0), yielding different

Fig. 1 A simple differential equation representing a theory-driven
model
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Fig. 2 A purely data-driven
model relies on a set of training
data and does not regard the
data-generating process or its
physical reality

trajectories x(t) on (potentially) different computational
domains T . I.e., we have access to a dataset1

D = {(θi, x
(i)(0), u(i)(t), x(i)(t)), t ∈ Ti}i=1,...,N (2)

where i indexes the separate observations. Data-driven
modeling now aims at learning a mapping between the
elements influencing a quantity of interest (which are called
features in machine learning) and the quantity of interest
(which is called the target). In other words, we are interested
in finding and/or parameterizing a function f such that

x̂(t) = f (x(0), u(T ), θ) (3)

is close to x(t) in some well-defined sense, where x(t) is
obtained by solving (1) and where u(T ) denotes the entire
trajectory of the forcing function. In data-driven modeling,
this task is often solved by minimizing a distance function
between x(t) and x̂(t) over the parameters ψ of the function
f , where the distance is computed on the available (training)
dataset D:

min
ψ

N∑

i=1

d
(
x(i)(Ti ), f (x(i)(0), u(i)(Ti ), θi; ψ)

)
(4)

In (4), f is taken from a specific model class F . For
example, if f is a linear model, then ψ are its coefficients;
if f is a neural network model, then ψ are its architectural
parameters, weight matrices, and bias terms. Whether one
refers to the process of determining model class F and
parameters ψ as machine learning, curve fitting, or system
identification is immaterial, in all cases we refer to the
resulting model as data-driven due to its dependence on D.

The very nature of these data-driven models is that they
model associative relationships rather than causative ones.
Essentially, it is equally possible to parameterize a function
f̃ that maps the trajectory x(t) and the parameter vector θ

1Note that we require that all tuples (θi , x
(i)(0), u(i)(t), x(i)(t)) in

D are distinct. However, we do not require that all elements of the
tuple are distinct. For example, the dataset may comprise only a single
parameterization θi = θ , but different initial conditions x(i)(0) and
forcing functions u(i)(t).

to the forcing function u(t)—although the accuracy of the
solution to this inverse problem may be much smaller than
for the forward problem, especially if the inverse problem
does not allow a functional description. Furthermore,
while theory-driven modeling is very structured, data-
driven modeling is often a trial-and-error process, requiring
testing several model classes or parameterizations in an
iterative and exploratory manner. Furthermore, some model
classes (such as neural networks) require large datasets
D to effectively learn their parameters ψ and, once
learned, are considered black boxes lacking interpretability.
Finally, data-driven models lack guarantees for physical
consistency: If we select a parameterization θ far from
the range covered in the dataset D, then the solution
x̂(t) provided by the data-driven model may not only be
inaccurate, but even unphysical in the sense of violating
fundamental physical laws. While the fact that data-driven
models rarely extrapolate well outside of the range of
training data is known as lack of generalization in the
machine learning community, this shortcoming becomes
much more severe when applying data-driven models in
domains governed by physical laws.

These drawbacks of purely theory-driven and purely
data-driven models call for action. Theory-inspired machine
learning, hybrid or grey-box modeling, and theory-guided
data science are umbrella terms for a variety of approaches
to combine the benefits of theory- and data-driven
modeling, mitigating their respective shortcomings. Data
can be used to parameterize theory-driven models, to
improve their accuracy by modeling their deficiencies, or to
replace (parts of) theory-driven models for computational
speedup. Insights from theory can help in selecting the
model class for the data-driven model f or in preprocessing
the data such that the parameters of f can be learned
from less data. Finally, incorporating theory into data-
driven models may guarantee (or at least improve)
physical consistency and add inherent interpretability. Thus,
combining the powers of theory- and data-driven models
has the potential to achieve better trade-offs in terms
of accuracy, computational complexity, the amounts of
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required data, physical consistency, and interpretability,
cf. [10, Fig. 3].

3 Approaches for theory-inspired
machine learning

In the following sections, we will discuss several
approaches to theory-inspired machine learning, i.e., to how
domain knowledge can be used to improve data-driven
models. For elaborations on how theory-driven models can
benefit from data, we refer the reader to other surveys on
this topic [1–8, 10].

3.1 Theory-inspired feature engineering

As mentioned in Section 2, data-driven models are obtained
by minimizing a certain optimization objective, evaluated
on a dataset D, over the parameters ψ of a function f that
should eventually model the relationship of interest, cf. (3).
If we have prior knowledge about general properties of this
relationship, we can utilize this knowledge to prepare the
data such that the data-driven model can be learned more
effectively (Fig. 3). For example, suppose that x(t) depends
in a highly nonlinear fashion on θ , while the dependence on
u(t) and x(0) is much simpler. Now suppose further that we
have knowledge about the nonlinear behaviour on θ . Then,
rather than directly minimizing (4), one may turn to finding
the parameters ψ of a function f by modelling

x̂(t) = f (x(0), u(T ), g(θ)) (5)

where the function g is chosen based on our knowledge
about the nonlinear behavior. Capturing this nonlinear
behaviour upfront allows us to choose a less complex model
class (see also Section 3.2 below) and simultaneously eases
the task of data-driven modeling.

Preprocessing data to simplify data-driven modeling is
often referred to as feature engineering. While feature
engineering also makes use of unsupervised techniques

such as dimensionality reduction or clustering, theory-
inspired feature engineering utilizes domain knowledge
to preprocess data. Both unsupervised and theory-inspired
approaches to feature engineering are standard in traditional
machine learning. However, the successes of deep learning
rely to some extent on the capabilities of neural networks
to learn their own features, allowing them to be applied
without any pre- or postprocessing. While still successful,
the resulting data-driven model is usually more complex
than necessary and less interpretable than desired. To
give a concrete example, the authors of [11] investigated
the problem of clustering patterns in electronic end-
of-line tests in the semiconductor industry. Patterns in
these tests allow the engineer to detect deviations in
the manufacturing process and to react accordingly. A
convolutional variational auto-encoder (e.g., [12]) was
designed to automatically extract features useful for
subsequent pattern classification. Despite its satisfactory
performance, the model remained a black box. Interpreting
the tests as images, however, allowed the authors of [11]
to utilize an interpretable set of features capturing well
the structures that constitute the observed test patterns.
After linear dimensionality reduction, the resulting features
allowed a clustering performance comparable to that
obtained from the convolutional variational auto-encoder,
but with much lower complexity and much higher
interpretability. As a second example, the authors of [13]
aimed for a surrogate model (see Section 4) for the energy
of carbon crystal structures. While the energy landscape
is highly complex, the authors achieved excellent results
by performing nonlinear regression based on physically
meaningful features extracted from the crystal structures,
such as average bond lengths, angular and radial density
distributions, and the average number of nearest neighbors.

Theory-inspired features can also improve the general-
ization performance of machine learning models. For exam-
ple, there is a class of neural networks that can be
used to solve systems of partial differential equations on
regular meshes (e.g., by approximating derivatives with

Fig. 3 Theory-inspired feature
engineering. Theoretical insights
into both the phenomenon under
study and the selected class for
the data-driven model and its
learning algorithm can help
preprocess the data accordingly
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predefined, non-trainable convolutional filters). The authors
of [14] used an elliptic transform as theory-inspired feature
engineering, so that these methods can be applied to also
to irregular domains. As a second example, the authors
of [15] explored generalizable surrogate models for the
structural analysis of 3D trusses (structures of connected
triangles as in bridges). By using features that encode
different geometries, the resulting models generalized better
across geometries and outperformed neural network models
trained on individual geometries.

Theory-inspired feature engineering has also been
employed quite naturally in the fields of welding and
manufacturing, e.g., for weld quality assessment. Instead of
directly using acoustic emission measurement data for the
machine learning model input, the authors of [16] proposed
a physics-based step to produce meaningful features such
as absolute signal energy or the centroid frequency of the
signal. In [17], the authors suggest to detect abnormal heat
using a heat transfer model, the parameters of which are
fitted to the data and subsequently used for outlier detection
(e.g., via isolation forests). This method, combining off-
the-shelf outlier detection with theory-inspired features,
has the potential to reduce testing time by 43%. Theory-
inspired features were also utilized in modeling a steel-sheet
galvanizing production line [18]. These features included
anode voltage (resistance), calculated using Kirchhoff’s
laws by summing resistances over the dynamic system
which includes anode voltage, electrolyte, steel voltage,
and other factors. Using these theory-inspired features in
training data-driven machine learning models improved
the predictions on the test set. Similarly, the authors
of [19] used theory-inspired features for the design of
new alloys and showed that transforming data through
prior physico-chemical knowledge can create more accurate
machine learning models for prediction of transformation
temperatures. The improvement was explained by the
introduction of mathematical nonlinearities given by, e.g.,

material growth kinetics models which give information on
material behavior even in temperature ranges not available
in the raw data.

Interesting use cases for theory-inspired feature engineer-
ing can also be found in the domain of additive manufac-
turing (AM). An example is [20], where neural networks
are utilized to predict grain structure in deposition processes
during AM. Instead of using complex numerical models,
the authors trained neural networks to link the thermal data
obtained from finite volume simulations (such as tempera-
ture gradient and the cooling rate at the liquids temperature)
to micro-structure characteristics. In another research paper
in AM [21], the authors utilized theory-informed features to
predict porosity in selective laser melting. The raw features,
being machine and laser settings, are converted to physically
meaningful features such as laser energy density in a point
of the material powder bed, radiation pressure, and power
intensity. The engineered features are used in several nonlin-
ear regression models (support vector regression, Gaussian
processes, etc.). A further use case in laser-assisted AM is
the prediction of balling defects in [22]. The authors con-
structed theory-inspired features using 3D, transient, heat
transfer, and fluid flow models. The inputs to these theory-
driven models are process parameters and material prop-
erties, while the outputs are 3D temperature and velocity
fields. From these outputs, physically meaningful features
are computed (e.g., volumetric energy density or surface
tension forces), which were subsequently used in a genetic
algorithm to understand the relationship to balling defects.

3.2 Theory-inspiredmodel selection

Another avenue to incorporate prior theoretical knowledge
in a data-driven model is via an informed selection of the
model class F (Fig. 4). For example, knowing that the
relationship we want to learn is approximately linear or
piece-wise constant would suggest to select f from the

Fig. 4 Theory-inspired model
selection. Prior knowledge can
help selecting the model class F
for the data-driven model. This
may reduce the required amount
of data
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class of linear or decision tree models, respectively. If the
relationship is known to be neither linear nor piece-wise
constant, then one may resort to nonlinear regression models
such as polynomial regression, symbolic regression, or
support vector machines, where the prior knowledge about
the problem at hand can help selecting the polynomial order,
candidate functions for symbolic regression, or appropriate
kernel functions.

Theoretical insights about the nature of the data and
the problem have further been shown useful for choosing
the architecture of neural networks: convolutional neural
networks [23] were shown to perform superior on images
and industrial time series, recurrent neural networks [24]
achieve impressive results for speech signals, and attention
mechanisms [25] are now state-of-the-art in natural
language processing. Most recently, neural architectures
have been developed that are inspired by decision trees
and that achieve state-of-the-art performance for tabular
data, e.g., [26]. These types of architectural choices are
connected with the way how the candidate function f

is parameterized (e.g., the class of convolutional neural
networks parameterizes f via subsequent convolutions
and nonlinear activation functions), and thus influence
the inductive bias of the model. An appropriately chosen
inductive bias helps the optimization algorithm to select
a desirable set of locally optimal function parameters ψ

more reliably than if the function would be parameterized
differently. A concrete example are prior dictionaries [27]
in the context of physics-informed neural networks (see
Section 3.3), which are analytical or learned functions
interacting with the main network and thus enforce
optimization constraints (for example, boundary or initial
conditions of a system of differential equations).

Prior knowledge can help in selecting the neural
architecture also in a more narrow sense, such as choosing
kernel sizes and stride parameters for convolutional neural
networks or the number of layers and their respective
widths for fully connected neural networks. This has been
done, for example in the design of a neural classifier
for engine knock [28]. There, the authors adjusted the
kernel size in the underlying network’s initial convolutional
layer according to the wavelength of expected vibrations,
thus leveraging existing engineering knowledge about the
frequency-dependent nature of engine knock. Subsequent
Fourier analyses of the trained kernel showed that it indeed
amplifies the mentioned target frequencies in the input
signal, leading to higher detection accuracy when compared
to other parameterized models. The authors of [29] designed
a convolutional neural network for fault detection in rotating
machines, where the kernels in the initial layers were
hand-crafted based on prior knowledge about the fault
modes, outperforming classical, uninformed convolutional
neural networks. A similar approach was used to predict

the quality of products produced with electrochemical
micro-machining [30]. The authors employed a fully
connected neural network and assumed that the first layer
automatically constructs physically meaningful features
(such as current density, void fraction) from the input
(voltage, pulse time, etc.). To guide the training process
towards this feat, network edges that are inconsistent
with the corresponding features were eliminated from the
network’s first layer, yielding improved performance in
all experiments when compared to an exclusively data-
driven approach. In other efforts to incorporate theoretical
knowledge in machine learning, physics-based constraints
have been incorporated in individual layers of Long Short-
Term Memory networks [31] to improve generalizability of
the presented reduced-order model for fluid flows.

Leveraging special knowledge of welding defects,
machine learning methods have also been enhanced in
more detailed ways, such as changing the nature of one
network layer depending on the training example [32]. Here,
a customized pooling function is designed, processing the
input image in a distinct way. For weld quality assessment,
the authors of [16] utilized their understanding of the
welding process to select a sequence model approach, which
treats recorded time steps as distinct training examples,
while in [33] the underlying task was distributed to multiple
submodels dedicated to different subtasks. In the former
case, the approach proved to be more stable than more
commonly employed methods, while in the latter case
the thus selected architecture is characterized by increased
interpretability and trust.

3.3 Model regularization via theory

Once a model class F has been selected, training the
model can further benefit from existing domain knowledge.
Consider the setting in Fig. 5, where a machine learning,
system identification, or curve fitting algorithm is used to
find a candidate function f that represents the existing
dataset D .

Very often, the problem of finding the most suitable
candidate function f (e.g., of finding the most suitable
parameters ψ) within the selected model class is a non-
convex optimization problem. Furthermore, especially in
the field of deep learning, this problem is often underde-
termined, i.e., there are multiple candidate functions f in
the model class that fit the data perfectly. In these cases
it is necessary to regularize the algorithm towards prior-
itizing certain candidate functions over others. Classical
approaches in machine learning penalize the �2 or �1 norms
of the model parameters, leading to ridge and LASSO
regression [34, Sec. 3.1.4] in linear models or weight decay
regularization in neural networks [34, Sec. 5.5], respec-
tively. Loosely speaking, these classical approaches prefer
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Fig. 5 Model regularization via
theory. Domain knowledge can
be incorporated into a data-
driven model via regularizing the
training process. This prioritizes
models that are consistent with
domain knowledge, or penalizes
those that are in conflict with it

simple models over complicated ones, thus formalizing
Occam’s razor. Regularization can furthermore be seen as
a “soft” version of constraining the hypothesis space pro-
vided by the model class, which we have discussed in
Section 3.2.

Domain knowledge can successfully be used for regu-
larization. By appropriately setting the regularization terms,
candidate functions f can be prioritized or penalized that
are consistent or in conflict with existing theory. For exam-
ple, in the field of fluid dynamics, we may not only aim
at minimizing some �-norm between the ground truth flow
field x(t) and its estimate x̂(t), but we may also regular-
ize f such that the vorticity fields of x(t) and x̂(t) are
similar or that (for incompressible fluids) the divergence of
x̂(t) is minimized [35]. While these regularizers rely on the
availability of ground truth, one can also design regulariz-
ers that are based solely on properties of f as suggested
by domain knowledge (in the form of algebraic or dif-
ferential equations). For example, in the domain of lake
temperature modeling, neural networks were regularized
such that the relationship between water density and depth is
monotonic, cf. [36, eq. (3.14)]. Such a physics-guided neu-
ral networks was also used in [37] to quantify microcrack
defects, regularizing the network via approximate mecha-
nistic models. Regularization can also be used to penalize
symbolic regression models that violate monotonicity or
boundedness constraints [38].

As mentioned in Section 2, the incorporation of domain
knowledge has the potential to improve the trade-off
between the need of training data and the capability to
achieve good generalization performance. Taken to the
extreme, proper regularization can obviate the need for
(labeled) training data altogether: One example is the work
of [39], where a neural network is trained to regress
the height of a falling object from a series of images.
Rather than providing object heights as ground truth labels,
training is based only on time-stamped images and the prior
knowledge that the height trajectory of falling objects is
parabola. Regularizing training based on this knowledge is
here sufficient to allow the neural network to extract the

information of interest (i.e., the object’s height) from data
that depend on this quantity (i.e., the images). Another class
of models, physics-informed neural networks (PINNs),
are regularized via a known system of partial differential
equations (PDEs) and can dispense with training data
altogether [40]. These PINNs have the capability of solving
systems of PDEs. In the setting of Fig. 1 without the forcing
function u(t), PINNs take the time instances t within the
computational domain T of interest as input and respond
with an estimate x̂(t) of the solution of the differential
equation. In their original formulation, PINNs are trained
by minimizing two kinds of losses: A loss component that
accounts for the initial condition x(0) (and, potentially,
boundary conditions) which is provided to the PINN as
training data, and a loss component that penalizes candidate
solutions violating the differential equation dx(t)/dt =
F(x(t); θ). PINNs have also been proposed for inverse
problems, where the parameterization θ is learned from the
PDE and its solution x(t) [41].

While PINNs are versatile, there have been numerous
reports in research showing that standard PINN architec-
tures are often hard to train. Their success and accuracy
is problem-specific and typically cannot be determined
a-priori. One major failure mode of PINNs is their multi-
objective nature, relying on data- and physics-based loss
components: During model training several loss compo-
nents, encoding initial and/or boundary conditions and (sets
of) PDEs, compete against each other to meet to overall
objective. Failing at minimizing a single objective leaves
the overall objective not being fulfilled entirely. As a result,
large discrepancies between learned and observed solutions
are recorded. Whether an optimization algorithm can find
a candidate solution x̂(t) for which all loss components
are low is strongly determined by the innate shape of the
Pareto front in the multi-objective optimization. System
parameters, such as the PDE’s parameterization or the com-
putational domain, have a strong impact on the shape of the
Pareto front [42]. Scalability is another issue in the use of
PINNs. As the system dimension or complexity increases,
PINNs tend to be even more difficult to train.
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Proper non-dimensionalization of the system under study
appears to facilitate optimization. Additionally, several
loss weighting techniques have been proposed that deal
with the problem at hand. Loss components are either
weighted manually or in an adaptive manner based on the
history of recorded gradients [43–45]. As mentioned in
Section 3.2, another approach are prior dictionaries [27],
which implement hard constraints for the boundary
conditions and, thus, reduce the number of objectives in
the multi-objective optimization. Further modifications of
PINNs include X-PINNs [46], which try to break down
the system complexity to multiple, smaller and simpler
problems, which are solved separately by multiple PINN
instances. While X-PINNs show improved accuracy for
certain applications, the implementation comes with the cost
of computational complexity.

Despite these problems, PINNs and their variants
have successfully be used in fluid mechanics [44, 47],
aerodynamics [48, 49], (nano-)optics [50, 51], and medical
science [41, 52], to name a few. Furthermore, PINNs
have been applied in solid mechanics including additive
manufacturing [21, 53], elastodynamics [54–56], and
thermal engineering [57]. As concrete example for the latter,
PINNs where used in [58] to reduce the need for large
datasets when predicting the temperature and melt pool
dynamics during metal AM using deep learning methods. In
this work, domain knowledge from first physical principles
is exploited to physics-inform the learning process, resulting
in accurately predicted dynamics with only a moderate
amount of labeled data.

4 Data-drivenmodels replacing costly
simulations: (reduced-order) surrogate
models

In many scientific disciplines, full-order simulations have
prohibitive computational complexity. Examples include
computational fluid dynamics as well as multi-physics
problems, that often require high-resolution finite ele-
ment analyses. In these cases, it may be necessary to
replace the full-order model simulation by less expen-
sive computations. A classical example is model order
reduction, where the full-order model is replaced by a
model with a smaller state space, e.g., using proper orthog-
onal decomposition (POD); the smaller model remains
being solved by classical solver schemes. While also this
approach can benefit from using machine learning (e.g.,
several POD bases can be learned by applying clustering
techniques, thus achieving more accurate fits for indi-
vidual parameter ranges [59]), in this section our focus
is on replacing numerical solvers entirely by a learned
model (Fig. 6).

Specifically, let us assume that we have access to a
dataset D of previous simulations of the full-order model
as in (2). With this dataset, it is possible to train a data-
driven model that encapsulates the relationship between
the respective input parameters (x(0), θ , and u(t)) and the
solution x(t), i.e., the data-driven model is a function f that
satisfies

x̂(t) = f (x(i)(0), u(i)(Ti ), θi) ≈ x(i)(t) (6)

Fig. 6 Surrogate modeling. In
settings where the full-order
simulation of a physical
phenomenon is computationally
too complex, it may be possible
to replace this simulation by a
data-driven model that is trained
on data from the full-order
simulation. If just an aggregate
statistic (denoted as X in the
figure) is of interest, a
reduced-order surrogate model
suffices
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for all t ∈ Ti and i = 1, . . . , N . If the dataset is sufficiently
large and diverse (e.g., the parameters θi cover a large area
of the parameter space), then we may assume that x̂(t) is a
good approximation of the true solution x(t) also for other
parameters, initial conditions, and forcing functions. Then,
the function f is a surrogate for the full-order simulation.
(In this sense, the PINNs discussed in Section 3.3 can
be seen also as surrogate models.) Thus, while surrogate
modeling requires a one-time investment in the sense of
constructing a dataset D based on full-order simulations,
this investment pays off once the model is trained, allowing
to substitute the full-order model at least approximately and
within well-defined parameter ranges.

The problem of surrogate modeling simplifies if, instead
of the entire solution x(t), only some aggregate statistic
is of interest. For example, we may be interested in the
solution x(T ) at a given time T , or at the average of x(t)

over a designated time period; if x(t) is a field, we may
further be interested in values at specific positions, etc. In
this case, data-driven modeling simplifies as the target to
be learned has a lower dimensionality. We call this latter
scenario reduced-order surrogate modeling.

There is a huge body of literature regarding surrogate and
reduced-order surrogate modeling, covering various fields
of science and using various types of surrogate models.
For example, graph neural networks, trained on mesh-based
simulations, were used for surrogate modeling in aerody-
namics, structural mechanics, and fabric [60]. Tree-based
models trained on finite element method (FEM) simula-
tions were used to estimate the biomechanical behavior of
breast tissue under compression [61] and the mechanical
properties of carbon fiber reinforced plastics [62]. Kernel
ridge regression was used to approximate the energy poten-
tial of carbon crystal structures to sidestep computationally
costly density functional theory computations [13]. Fully
connected neural networks, or multi-layer perceptrons, were
used as surrogate models for 3D trusses [15], the mechanical
behavior of livers [63], for forming load prediction of AZ13
material [64], the grain structure of additively manufactured
material [20], and the velocity field and location of neutral
point of cold flat rolling [65]. In [66], the authors predict
damage development in forged brake discs reinforced with
Al-SiC particles from damage maps using neural networks
and Gaussian processes. For three-dimensional turbulent
flow inside a lid-driven cavity, neural and random forest-
based surrogate models were trained on simulation data to
predict local errors as a function of coarse-grid local flow
features [67].

For rapid estimation of forming and cutting forces in hot
upsetting and extrusion with given process parameters, the
authors of [68] utilized neural network-based surrogates.
To obtain training data, they executed FEM simulations
modelling the process of hot upsetting and extrusion of

a CK-45 steel axi-symmetric specimen, respectively, to
obtain forming forces. The reduced-order surrogates rapidly
computed the process load from the coefficient of friction,
temperature, velocity, and height-to-diameter ratio for hot
upsetting and from die angle, punch velocity, coefficient
of friction, and temperature of billet for hot extrusion,
respectively and were shown to interpolate well between
training parameters. To estimate the forging load in hot
upsetting and hot extrusion processes, the authors of [69]
used gene expression programming and neural networks.
Using FEM simulation data from [68], they showed that
the upsetting process was well-approximated by the gene
expression programming approach, while for extrusion the
neural surrogate model was superior. This connects back
to our discussion in Section 2, where we mentioned that
data-driven modeling is often an iterative procedure relying
trial-and-error, and that it is not always clear which model
class will perform best for a given problem setting. From
this perspective, comparative studies and similar guidelines
provide useful information to the practitioner. An example
for such a comparative study in the field of structural
analysis can be found in [70], where the authors compared
the performance of several neural and classical surrogate
models.

Surrogate and reduced-order surrogate models lend
themselves to being used for process or design optimization.
For example, surrogate models were used in multi-
objective optimization to design the shape of textured
surfaces with non-Newtonian viscometrics functions [71],
and Gaussian processes were used for hydropower Kaplan
turbine design [72]. The authors of [73] used two single-
layer fully connected neural networks for optimizing the
forging process for steel discs (the number of neurons
in the hidden layer were selected using a cascade
learning procedure [74]). The authors proposed a reduced-
order surrogate model mapping from workpiece initial
temperature, die temperature, and friction value to flank
wear and temperature. The resulting model replaced FEM
simulations during sequential approximate optimization. To
get appropriate training data, the FEM simulations were
executed for points in the feature space deemed important,
indicating that domain knowledge can also enter in the
selection of training data (see also [13]).

5 Incomplete prior knowledge: causal
machine learning

Triggered by multiple advances in the field [75], the topic of
causality has generated a lot of interest recently, especially
in the machine learning community. Causal models can be
seen as being located in between purely theory-driven and
purely data-driven models [76], with their exact position
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within this spectrum determined by the availability of
domain knowledge.

At one end of the spectrum, the physical phenomenon
under study is well understood, e.g., its description may
be given in the form of a system of differential equa-
tions (e.g., (1), see Section 2). Structural Causal Models
(SCM, [77]) are built around these equations, but also inte-
grate (unknown) noise factors, allow for explicit modelling
of interventions, and distinguish between observable and/or
controllable variables. From this perspective, SCMs can be
seen to extend the capabilities of the theory-driven model
introduced in (1). For example, while our phenomenon
under study certainly has an initial condition x(0), we may
only be able to determine it with some measurement noise.
Similarly, while we may want to influence the phenomenon
via a controlled forcing function u(t), we may only be
able to set its values to within a limited precision. All
these aspects can be included in SCMs. Indeed, it has been
shown that ordinary differential equations can be expressed
as SCMs under some (stability) assumptions, as illustrated
in [78] for damped harmonic oscillators.

Closer to the other end of the spectrum are models where
the available domain knowledge only accounts for the pres-
ence (or absence) of individual causal relationships. This
type of domain knowledge is often represented via causal
graphs [79], where nodes in the graph represent variables
and directed edges indicate a direct causal relationship. To
give an example, the theory-driven model (1) implies that
the trajectory of the quantity of interest x(T ) is causally
affected by the forcing function u(T ) and the initial con-
dition x(0), leading to the causal graph depicted in Fig. 7.
While the available information in this case is far less than
for SCMs, the utility of such models has been shown in a
number of applications.

For example, even in the simple setting of a single (unob-
served) common cause and two (observed) independent
effects, unlabelled data can be used to remove systematic

Fig. 7 In settings with incomplete prior knowledge, at least partial
knowledge about the cause-effect relationships may be available in the
form of a causal graph. In the context of (1), this causal graph indicates
that the trajectory x(T ) depends on the initial condition x(0) and the
trajectory of the forcing function u(T ). Boxes indicate quantities that
are observable, while the circle indicates that (in this example), the
initial condition cannot be observed directly

noise from observations and hence improve the prediction
performance. This has been shown exemplary for the detec-
tion of exoplanets based on satellite data [80], a task that
is traditionally tackled either via theory-driven approaches
in combination with simple machine learning methods
(cf. Section 3.1), or limited preprocessing and complex
machine learning methods (e.g., deep learning) [81].

The direction of causal relationships has been shown
to be helpful in assessing the utility of unlabelled data
for semi-supervised classification scenarios. Of particular
interest is here the anti-causal case where the cause
is predicted from the effect, cf. [82, Sec. 3]. Here,
the distribution of the cause can be estimated better
from unlabelled data if the cause-effect relationship is
known [83].

Another advantage of causal models is their ability
to make machine learning models robust against changes
in the distribution of data, e.g., caused by varying but
unknown parameters θ of the phenomenon under study. As
we have discussed in Section 2, purely data-driven models
do not generalize or extrapolate well outside of the range
of training data. Intuitively, knowledge about the causal
relationships underlying the data generation process could
be used for regularization, such that the resulting model
is consistent with these relationships. Indeed, it has been
shown in a use case on gene expressions that varying
environments and their distribution shifts are even beneficial
for obtaining models [84] that generalize better.

Finally, in settings where not even knowledge about
cause-effect relationships is available, causal discovery
(such as structure learning or cause-effect discovery) can
be applied. Successful applications range from economy-
related scenarios [85] to indoor localization [86].

6 Discussion and conclusion

Tribal knowledge in machine learning suggests that the
success of a data-driven modeling problem depends on (at
least) the following ingredients:

• Data (i.e., amount, quality, etc.),
• Modeling assumptions (i.e., what mathematical

assumptions do we make about the underlying
relationship that we aim to learn),

• Implementation choices (i.e., how do we implement the
model numerically; e.g., architectural choices for neural
networks),

• Objective function (i.e., based on what quantities do we
decide whether learning was successful), and

• Optimization algorithm (i.e., how do we determine from
data the parameters of the implemented model such that
the objective function is optimized).
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Theory and domain knowledge can influence the selection
of any of these ingredients, and in this small survey we
presented several approaches how this influence can be
exerted: Theory can assist selecting or even engineering
appropriate features for the subsequent machine learning
algorithm (data and modeling assumptions), it can help
selecting the model class (modeling assumptions and
implementation choices), or regularize model training
to ensure consistency with established theory (objective
function). Further, we have shown that theory-driven models
are often used to generate training data for data-driven
modeling, and that the resulting data-driven models can
successfully step in for the often computationally costly
theory-driven models.

Of course, the distinction between the presented
approaches can sometimes be difficult. For example, struc-
tural causal models as discussed in Section 5 can be seen
as a generalized framework to incorporate data into fully
developed theory-driven models, while causal graphs can
be used for theory-inspired model selection or regulariza-
tion. As another example, consider [29], which proposed
hand-crafting the initial layers of a convolutional neural net-
work based on prior knowledge about the failure modes
of rotating machinery. On the one hand, this can be seen
as theory-inspired model selection. On the other hand,
since the first layers are thus not learnable, these hand-
crafted convolutional kernels can be interpreted as gener-
ating theory-inspired features for the subsequent network
layers. This resonates with the fact that also the ingredients
of a machine learning algorithm are strongly dependent on
each other, and that in some cases modeling choice, objec-
tive function, and optimization algorithm turn out to be the
different sides of the same coin, cf. [87].

Further, note that the presented approaches are not
mutually exclusive. Different approaches can indeed be
combined, e.g., theory can assist both model selection and
feature engineering (e.g., [16]) or surrogate models can be
designed based on theory-inspired features [13, 20]. PINNs
can be seen as surrogate models that are trained exclusively
using theory-inspired regularization, and if initial and
boundary conditions are implemented via prior dictionaries,
the PINN architecture is furthermore selected by theory.
Indeed, theory and domain knowledge can influence the
selection of any of the ingredients mentioned above, and one
can expect that the performance of the resulting models will
be the better the more ingredients are theory-inspired. We
are thus convinced to see theory-inspired machine learning
and hybrid modeling on the rise, heading towards an all-
encompassing synergy between knowledge and data.
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Stefanie Lindstaedt1,3 · Bernhard C. Geiger1,4

Johannes G. Hoffer
jhoffer@know-center.at

Andreas B. Ofner
aofner@know-center.at

Franz M. Rohrhofer
frohrhofer@know-center.at

Mario Lovrić
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