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A theoretical framework is developed within which it is possible to predict the dynamic elastic 

displacement field (acoustic emission) for a phase transformation in which there is a change of both crystal 

structure (elastic constants) and shape (density). An integral equation is presented for the acoustic emission 

displacement field due to formation of inhomogeneous inclusions. This integral equation is solved by . 

expressing the source in multipolar form and using the Eshelby equivalent inclusion method to estimate the 

dynamic multipolar coefficients. Expressions for the source of elastic radiation are explicitly calculated for 

small isotropic spherical and ellipsoidal inclusions embedded in an isotropic matrix. These expressions are 

used for qualitative interpretation of recent experiments on martensitic transformations in steels and for 

identifying the information that may be deduced about transformation dynamics from quantitative 

measurements of acoustic emission. 
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1. Introduction 

Acoustic emission (AE) is the term used for the elastic waves generated by abrupt localized 

changes of stress in a solid [1]1. The waves propagate from the source of stress change to cause 

transient (nano-millisecond) surface displacements of a sample. These transient displacements may 

be detected with ultasonic transducers and are known as acoustic emission. Acoustic emission is 

then a method for observing rapid dynamic material processes with elastic waves. The slower, 

quasi-static changes of stress are not usually considered sources of acoustic emission even though 

their surface displacements are incorporated (as a limiting case) in theoretical formulations of 

acoustic emission [2]. These static displacements, normally measured with extensometers, are the 

basis of routine mechanical property measurements. 

Acoustic emission has begun to be extensively explored as a tool for the investigation of the 

micro mechanisms of deformation and fracture during mechanical testing [3]. It has also found 

increasing application as a nondestructive evaluation (NDE) technique for detecting and locating 

flaws in mechanical structures that are subjected to stress and the premature failure of which 

would have catastrophic consequences [4]. More recently, it is being considered a candidate 

technique for in-situ monitoring of materials processing because acoustic emission signals are 

emitted through some of the mechanisms by which a material responds to process variables [5]. 

These mechanisms may include both benign processes (e.g., phase transformations) and malevolent 

processes (e.g., cracking). 
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It has been speculated that the measurement of acoustic emission from benign mechanisms 

during materials processing could provide much needed in situ information about materials 

processing. There is current interest in using this information in tandem with recently developed 

process models to develop improved feedback-controlled systems for materials processing. (The 

malevolent mechanisms of acoustic emission, e.g., cracking, have already received and continue to 

attract attention as potential quality control indicators [6]). 

As an example of the possible use of AE for phase transformation monitoring, consider some 

system where above a temperature Tl phase A is the stable phase and below Tl phase B is stable. 

Then, for T < Tl material composed of the A-phase may lower its free energy by undergoing a 

phase change to B. Usually, the new phase has a different crystal structure so that there are 

changes of elastic modulus and density as well as a shape change associated with the 

rearrangement of atoms in the transforming volume. These changes may generate acoustic 

emission or internal stresses which give rise to local plastic flow and subsequent acoustic emission. 

If a transducer is used to detect the acoustic emission from such phase transformations, useful 

information may be obtained about the temperature, pressure, etc. at which the phase change 

occurred [7]. Furthermore, the dynamics and crystallography of the phase change are also 

contained-;. convolved with the sample and instrumentation impulse response .-in the signal. The 

use of appropriate analysis methods may enable the measurement of hitherto unobserved aspects 

of phase changes. Such measurements would, because of the passive nature of this monitoring 

technique, emanate from phase changes unmodified by our attempts to observe them. 

The majority of phase transformations occurs at a rate controlled by diffusion. This, 

unfortunately, is sufficiently slow (compared with the time for elastic waves emitted by the 

transformation to communicate with the sample boundaries) that no detectable 
acoustic emission is observed. Thus, diffusion-controlled phase changes, while often 

resulting in significant stress changes, cause mainly quasi-static surface displacement and no direct 

acoustic emission (as is usually the case with bainite and pearlite formation during cooling of low 

alloy steels [8]). In these cases acoustic emission is not a viable candidate for microstructure 

control during processing. 

There is, however, an important class of phase transformations for which atomic diffusion is 

not rate controlling. These include the martensitic transformations in which the change of crystal 

structure is accommodated by a so-called "diffusionless" shear transformation. Diffusion, if it 

occurs, is over a very short range; of the order of the lattice parameter. The velocity at which the 

transformation may propagate varies enormously from one alloy to the next, but in some systems 

velocities of --1000 ms-1 have been reported [9]. This implies that the formation of a typical 30 JLm 

length of martensite in some alloys is formed in as little as 30 ns. In this time, elastic waves only 

propagate --0.1 mm and transient sample displacements are observed [8,10] as the sample returns 

to mechanical equilibrium. 

Despite the reporting by several workers [8,10] of intense acoustic emission during some 

martensitic transformations, effects of micro mechanism (transformation velocity, volume, etc.) 

upon acoustic emission have not been studied. Even during the simpler processes of deformation 

twinning, there have only been a few tentative correlations made between micro mechanism and 

acoustic emission signal [11,12]. A part of the problem has been the absence of a rigorous theory 

relating the properties of the dynamic elastic wavefield (acoustic emission radiation) to the 

dynamics and crystallography of atomic motions during phase transformation or twin growth. It is 

our purpose here to begin to apply recently developed elastodynamic techniques to the prediction 

of acoustic emission signals from phase changes and twinning. 

2. Theoretical Framework 

Consider an idealized transformation to consist of a small region of phase A (with density p 
and elastic moduli C) undergoing a change of crystal structure to form a region of phase B with a 

density p + Ap and elastic moduli C + AC. We assume that if the region B could be cut out of the 
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matrix, its shape would be determined by a linear transformation 13* applied to the original region 

of phase A. In elastodynamics, a transformation involving both a change of moduli and shape is 

referred to as an inhomogeneous inclusion. The calculation of the dynamic elastic wavefield for 

the inhomogeneity problem is complicated by: 

• Coupling of the wavefields from density and modulus changes. 

• Internal reflection and mode conversion of elastic waves at the inhomogeneity boundary. 

• Doppler effects for high transformation velocity (~20% speed of sound). 

We find the acoustic emission from inhomogeneous inclusions by recourse to certain simplifying 

assumptions. We make the assumption that the inhomogeneity is small in comparison with the 

wavelengths of interest. 
2 

Thus, reverberations within the inhomogeneity are at frequencies above 

those of interest. It is also assumed that the linear velocity at which the transformation progresses 

through the austenite is ;520% of the shear wave speed so that a sub-sonic approach may be used. 
Complications, such as transformation stress induced plastic deformation, twinning of martensite, 

autocatalytic phenomena, and polycrystalline anisotropy of the matrix are, for the present, put 

aside. 

The theoretical framework we use is based upon the equivalent inclusion problem studied by 

Eshelby [13] and applied first to acoustic emission by Simmons and Clough [14] .. As our starting 

point we use eq (A32) from ref. [14] to express the farfield elastic displacement field for an 

ellipsoidal inhomogeneity undergoing a self-similar (constant aspect ratio) change of shape. The 

ellipsoid volume is Vn(t) where n(r) denotes the region transformed (n has the value one inside 

the inhomogeneity and zero elsewhere), as shown in figure 1. 

Matrix (2, c 

Boundary at t > t1 

~I--- Surface Qs """'.",.--- ........... 
/ .... 

I ' 
\, ;" ~\-----I-- Boundary at to < t < t1 

.... -----' 

Figure 1-An ellipsoidal inhomogeneity undergoing a self-similar change of shape. 

An elegant and simple way to consider the phase transformation problem is to generalize the 

stress and strain tensors to contain both space and time coordinates. We thus have four 

dimensional stress and strain tensors: 

2 We believe this to be reasonable. For example, if a region 10 J.Lm in dimension transforms, its fundamental resonance 

frequency will be - 300 MHz. The upper frequency of acoustic emission measurement is normally ;510 MHz. 
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where Vi is the velocity in direction Xi and PVi is dynamic momentum. A hat (") above a 

subscript indicates the subscript runs from 1 to 4 where 4 represents the time dimension. 

The four dimensional stiffness is denoted in the matrix by: 

for i,j, k, I = 1, 2, and 3 

and 

For the inhomogeneity it is denoted by: 

for i,j, k, I = 1, 2, and 3 

and 

We use the fact that the difference in moduli (AC) between the inhomogeneity and 
surrounding matrix is constant over !l(t) to write eq (A32) in the form: 

Term 1 

Term 2 

+ f f Gmi,]{r,r',t-T)(C+AC)i]k1 f3t1 (f,T)!l(f',T)df'dT Term 3 

-f f Gmi,],(f,r',t-T)ACi]k1 f3Zi (f',T)dr'dT Term 4 (1) 

where: 

um(f,t) is the displacement at r as a function of time in direction Xm (valid both inside and outside 

the inhomogeneity). Gmi (f,r',t) is the dynamic elastic Green's tensor representing the displacement 

at r in direction Xm as a function of time (t) due to the application of a force impulse in direction Xi 

at (f' ,0). The subscript, j, denotes partial differentiation with respect to the Xj coordinate. 

/30 is the pre-existing elastic distortion and f3* the stress-free strain for the 

transformation; in the phase change problem, the term f3~ (the "plastic velocity" component 

which contributes to shape change emission but not that due to momentum) is taken to be zero. 

The new elastic distortion is {30 + {3T_{3* where {3T is the total distortion (elastic and plastic). 

In eq (1), the acoustic emission is given by the change of stress: 

Au (f,t) = (C+AC)@o +pT_~*)_C po 

= rC+AC)(pT_P*)+AC f30 for !l(f,t) = 1 

~c(/3T_ P*) for !l(f,t)=O (2) 

It can be seen in eq (1) that the acoustic emission arises from changes associated with the stress-
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It can be seen in eq (1) that the acoustic emission arises from changes associated with the stress

free strain (term 3), and the interaction of the change in modulus with the pre-existing strain (term 

4). These sources act upon the modulus changes (static and dynamic) to create further changes 

(terms 1 and 2). It should be clear that eq (1) is very general and describes both the acoustic 

emission of the phase transformation and the scattering of elastic waves (jie now time varying) 

from inhomogeneities. 
A difficulty with eq (1) is that the Green's tensor depends upon r-'1'. Thus, a different Green's 

tensor must be used between each source point and the receiver. To overcome this problem we 

approximate the solution to eq (1)-for inhomogeneous transformations of fixed magnitude in the 

presence of a relatively constant applied stress-by the use of multipolar expansions. These 

simplify the dependence of the Green's tensor on r-'1'. If the source is small in size (;:520% of the 

shortest wavelength of interest) there is only a small error associated with using a multipolar 

expansion obtained by representing the Green's tensor in a Taylor's series about r~, the centroid 

position. In this exposition we retain only the first term in the expansion, but higher order terms 

can easily be incorporated. Equation (1) then becomes: 

umIJ,t) = - llCijk/ !'o'G mi.j'IJ,1;,t-T) [ fa U ~I' IJ', T)d l' jdT 

+ IIp J,:' G mI,j'IJ,1;,t-T) [f a uMIJ', T)d l' jdT 

+ i:' G m'] ·IJ,i';,t -T) [ (C + II C) ijk/ Sa 13:'1 IJ', T)d l' -ll CI]k 1 L 13k! IJ', T)d l' j dT (3) 

In terms of the Heaviside Green's tensor GH (displacement at r,t due to a stepfunction in force 

at '1',0) we can express eq (3) as: 

(4) 

Equations (3) and (4) have the physical interpretation that the acoustic emISSIon at r,t is 

obtained from a dynamic multipolar source (in our truncated expansion considered dipolar) at the 

inhomogeneous inclusion. When an inhomogeneity is present, the magnitude of the source has a 

"feedback" component on the right hand side of the equation. It is this feedback component that 

complicates the inhomogeneity problem. 

The solution to this integral equation is still not possible unless recourse is made to a final 

simplifying approximation. The one commonly used in scattering problems, the Born 

approximation, consists of replacing u on the right hand side of eq (1) or eq (4) with the values of 

u obtained from eq (1) without terms 1 and 2 (the homogeneous problem). We feel this weak 

scattering approximation is less appropriate here because of the large differences in modulus that 

may occur between the inhomogeneity and matrix. 
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Once it is recognized that the source appears to be a force multi pole located at the centroid of 

the inclusion, we can use information about the static case and the assumption of ellipsoidal shape, 

which has not yet been needed to approximate the value of the source strength. To understand 

how we apply such a quasi-static approximation, consider a point outside but near the ellipsoid O. 

Suppose we were to stop the growth of the inhomogeneity at some time t*. Then, after a short 

time, the longitudinal and transverse wavefronts generated by the dipole before t* would pass 

through the point and from then on the point would only experience the static displacement 

associated with the presence of a static multipolar force combination.3 Thus, the mUltipolar density 
~ ~ 

M(t,t*) describing the dynamic motion must be consistent with that of the static case, Moo(t*), i.e.: 

~ ~ 

Lim M(t,t*) = Moo(t*) 

t~tl 

where it is assumed that tl is ~sufficiently ~reater than t* that the process "comes to rest." The 

physical distinction between M(t,t*) and Moo(t*) arises from the feedback effects of the growth 

dynamics and multiple reflections within the ellipsoid. We shall ignore these dynamic feedback 

effects and correct only for those feedback effects produced by the static component of the dipole 
field.4 

To obtain the static correction, i.e. the value of Moo(t*), we know that P* has a fixed value 

throughout O(t). We assume fio to be fixed and constant in the region of O(t) and recall 'that 

Qoo(f ,rb) = Lim (jH(f,rb,t). Then, we replace (;H by GOO in eq (4) and integrate the source terms 
t~oo 

with respect to time to give: 

(5) 

The solution to this problem is well known from the equivalent inclusion method of Eshelby 
~ ~ 

[13]. In fact, for an ellipsoidal region, Uk,l is constant over the ellipsoidal region if /3* and /30 are 

also constant (it is also true that it is a polynomial in r', if the strains are polynomials in 1'). The 

effective dipole density associated with the inclusion can then be easily derived. 

Using a six-dimensional vector terminology (such as the Voight convention) where vectors 

are symmetric 3 X 3 matrices, one can easily show that (now replacing t* by t): 

(6a) 

and 

(6b) 

3 If the body in which this occurs has external boundaries (either free surfaces or regions of different p) then wavefronts 

are reflected from the boundaries and will pass through both our chosen point and the surface of the ellipsoid. We ignore 

the effect of these reflected wavefronts on the acoustic emission from the inhomogeneity. 

4 In ref. [14] a slight extension of this assumption, called the retarded density approximation was developed. In that 

assumption, the expanding ellipsoid was broken into two regions, an inner region, in which the full static feedback 

correction is applied, and the outer "shell" region of the ellipsoid, in which no feedback correction is applied. 

5 We have already assumed /3k4=O. The only term that might then contribute to Aa'i4 would arise from the 

term ApJ nUk4(J'T)t!f' which occurs in eq (3). Here, we have ignored this term, which arises from momentum effects 

associated to density changes in the inclusion. An alternate approach, analogous to the Born approximation, would be to 

modify the value of U as calculated from eq (6) by including its own "homogeneous" dynamic density contribution. 
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where 

-tl 

f GmiJ(f,rb,t-T)Auij{T)dT -
to 

f tl G~iJ(f,rb,t-T)Airij{T)dT 
to 

Dijkl = a
1
aS:

3 f [Gik(~)~j ~/+Gjk (~)~i ~/][a~~~r3/2ds 

I~I =1 

For an elastically isotropic spherical inclusion [15]: 

and for the disc shaped anisotropic inhomogeneity with disc unit normal v [16]: 

For an isotropic matrix, eq (7f) becomes: 

so that, for instance, if Vi = 8 i3 

Dijkl == 
8i38j38k3813 

A+2fL 

and [I+AC Drl arises from the inverse of the Voight matrix: 

A+2fL 0 8C1133 0 0 0 

1 0 A+2fL 8C2233 0 0 0 

A+2fL 
0 0 A+2fL+AC3333 0 0 0 

0 0 8Cl233 A+2fL 0 0 

0 0 8Cl333 0 A+2fL 0 

0 0 8C2333 0 0 A+2~ 
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3. Discussion 

The theoretical framework outlined above has several consequences for those interested in 

studying the dynamics of twinning and martensitic phase changes. The above model shows that 

the acoustic emission signal contains information about six properties of a martensitic 

transformation (or twin): 

1. Volume of region transformed (of martensitic lath) 

2. Dilatational strain 

3. Shear/rotational strain 

4. Habit plane 

5. Internal stress magnitude (through its interaction with ~C) 

6. Duration of the reaction 

In fact, from eq (6) 

Ignoring directionality and concentrating upon the magnitude of the stress components of a 

dipolar source, we see that acoustic emission is proportional to the volume of material that 

transforms and is linearly related to the transformation strain and pre-existing (residual) stress. If 

~C is sufficiently small we can ignore the terms in ~C leaving the simple relation for acoustic 

emission in a homogeneous medium: 

(9) 

Returning to the example in the introduction, we can now enumerate some potential 

applications for acoustic emission during the phase transformation: 1) If the transformation is 

accompanied by cracking one should find it possible to distinguish ~(F signatures of cracking from 

those of the transformation itself. 2) It should also be possible for one to distinguish between 

different morphologies of martensitic (lath, plate or needle) based upon their different Vn 

distributions. 3) If one monitors a local area in the material one could observe the evolution of 

residual stress. 4) Under "ideal measurement conditions" one can directly deduce the shape 

change tensor and habit plane dynamically and perhaps gain a deeper understanding of 

autocatalytic phenomena in which secondary martenstic transformations (with possibly different 

habit planes) are stimulated by the first transformation. 

Equation (9) can be used to deduce the smallest volume of martensitically transformed 

material detectable by acoustic emission. It is kno.wn that the smallest displacements detectable by 

an acoustic emission transducer is ,...10-14 m. This corresponds to a dipole of 3 X 10-8 Nm strength 

with 30 ns risetime buried 25 mm below the receiver [2]. Using values of 200 GNm-2 and 0.2 for C 

and /3* gives a minimum detectable volume of 1 }.Lm
3
• 

We can use the above results to comment on the work of Speich and Schwoeble [8] who 

monitored the acoustic emission of SAE 4300 series steels with systematically varied carbon 

content during transformation to martensite, as shown in figure 2. They demonstrated that 

acoustic emission was able to accurately determine the martensitic start (Ms) temperature of the 

steel. In addition, their data shows a distinct correlation between carbon concentration and 

acoustic emission per unit volume of sample for which they did not account. 

From eq (6) we can speculate that the cause of the correlation could be due either to the 

increase of transformation strain (/3*) or an increase of individual martensitic nucleations 

associated with a change of martensite morphology with increasing carbon content. This may be 

further compounded by a consistent change of bulk residual stress with increasing carbon content 

or a change in reaction time whose accompanying frequency shift could affect instrument 
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Figure 2-Acoustic emission per unit volume as a function of temperature measured during the cooling of low alloy steels of 

variable carbon content [8]. 

sensitivity. Change in lath morphology producing more (but smaller) emissions with increasing 

carbon content seems the most likely, but detailed metallographic studies are required. 

4. Summary 

An elastodynamic formulism has been used to obtain a solution for the acoustic emission from 

dynamic phase transformations where there is a change in the new phase (inclusion) of both shape 

and elastic constants. Explicit solutions for small ellipsoidal inclusions with anisotropic elastic 

constants are given for an isotropic matrix. This framework is used to explain how acoustic 
emission could be used for monitoring martensitic phase changes. 

We thank J. W. Cahn and J. W. Christian for valuable discussions. 
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