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Theory of activated-rate processes under shear with application

to shear-induced aggregation of colloids

Alessio Zaccone,* Hua Wu, Daniele Gentili, and Massimo Morbidelli
Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
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Using an approximation scheme within the convective diffusion �two-body Smoluchowski� equation frame-

work, we unveil the shear-driven aggregation mechanism at the origin of structure formation in sheared

colloidal systems. The theory, verified against numerics and experiments, explains the induction time followed

by explosive �irreversible� rise of viscosity observed in charge-stabilized colloidal and protein systems under

steady shear. The Arrhenius-type equation with shear derived here, extending Kramers’ theory in the presence

of shear, clearly demonstrates the important role of shear drive in activated-rate processes as they are encoun-

tered in soft condensed matter.

DOI: 10.1103/PhysRevE.80.051404 PACS number�s�: 82.70.�y, 64.70.pv, 83.10.�y, 87.15.N�

I. INTRODUCTION

Complex and biological fluids display intriguing rheologi-

cal properties, depending on the nature and interactions of

their microscopic constituents �colloidal and noncolloidal

particles such as cells, biological and synthetic macromol-

ecules, inorganic particulates, nanoparticles, etc.� �1�. Under

steady shear, thixotropy �where viscosity decreases with

time� and its opposite, rheopexy or antithixotropy �where vis-

cosity increases with time�, are ubiquitous and call for a

deeper understanding of the interplay between structure-

breaking and structure-building processes from which they

originate �2,3�. In particular, rheopexy as due to aggregation

under shear is observed in many biological fluids such as

protein solutions �e.g., the synovial fluid which lubricates

mammalian freely moving joints� and blood plasmas �4,5�.
Rheopexy, under certain conditions, may end into a liquid-

solid �jamming� transition which attracts considerable atten-

tion for the fabrication of new materials with unusual prop-

erties. It has been shown, for instance, that rheopexy

accompanies the formation of spider silk within the spider’s

spinneret, where high shear rates induce the formation of

large aggregates that jam into a light material with formi-

dable mechanical response �5,6�. Nevertheless, the current

understanding is qualitative and largely built upon empirical

evidence. It is not clear why, under most conditions, viscos-

ity increases sharply after an induction period �during which

it is equal to the zero-time viscosity�, reminiscent of an ex-

plosive behavior �2,5,7�. The induction period, typically ob-

served in systems with a repulsive barrier �e.g., charge sta-

bilization�, is highly suggestive of an activation mechanism

for irreversible aggregation driven by shear, as was recently

speculated in �7�. However, due to the nontrivial interplay

between shear, direct �interparticle� interactions, and Brown-

ian motion, no clear understanding of such phenomena is

currently at hand. We thus propose a theory based on the

convective diffusion equation or two-body Smoluschowski

equation with shear. The results unveil the nature of shear-

driven activation which triggers self-accelerating �irrevers-

ible� aggregation kinetics once that an activated �cluster� size

is reached. Our theory, whose qualitative and quantitative

predictions are verified against both experiments and numer-

ics, explains the main features observed in the steady-shear

rheology of interacting colloids, by means of an Arrhenius-

type rate equation accounting for shear-driven activation.

II. DERIVATION

A. Two-body Smoluchowski equation with shear

Let us consider a dispersion of diffusing particles interact-

ing with a certain interaction potential. The �number-

�concentration field will be called c�r�. The associated nor-

malized probability density function g�r�� c̃�r� for finding a

second particle at distance r from a reference one is then

normalized such that c�r�=c0c̃�r�, where c0 is the bulk con-

centration. The evolution equation thus reads

�c/�t = div�D � c − �DKc� , �1�

where D is the mutual diffusion coefficient of the particles

�D=2D0G�r�, D0 being the diffusion coefficient of an iso-

lated particle and G�r� being the hydrodynamic function for

viscous retardation�, �=1 /kBT is the Boltzmann factor, and

K is the arbitrary external force. According to this equation,

the associated stationary current is given by

J = ��DK − D��c . �2�

Hence, when steady state is reached, �c�r� /�t=0 and

div��DK − D��c = 0. �3�

If the dispersing medium is subjected to an externally ap-

plied flow, the arbitrary external force field for our problem

may be decomposed into two terms, a nonconservative one

accounting for the drift caused by the flow velocity v�r�
= �vr ,v� ,v�� and the term accounting for the conservative

force field due to the two-body direct interaction between

particles −�U�r�. Introducing the hydrodynamic drag b

=3��a, one obtains
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K�r� = − �U�r� + bv�r� , �4�

where � is the viscosity of the solvent and a is the particle

radius. Hence, the following two-particle Smoluchowski

equation with shear can be written as

div��D�− �U + bv� − D��c = 0 �5�

with the associated current given by

J = ��D�− �U + bv� − D��c . �6�

We can now define the collision frequency or collision rate

across a spherical surface of radius r, concentric with the

stationary particle, as

G =� J · ndS=� �D � c + �D��U − bv�c� · n̂dS

= 4�r2D�� �	c


�r
+ �

�U

�r
	c
�� + 4�r2b	vr

+
c
 ,

�7�

where dS=r2 sin �d�d� denotes the element of �spherical�
collision surface, while 	¯ 
 denotes the isotropic average,

�4��−10
2�d�0

�sin �d�. Recall that G, by definition, is the

inward flux of particles through the spherical surface �8,9�.
Therefore, integration runs exclusively over those orienta-

tions �or, equivalently, those pairs of angles �, �� such that

v · n̂=−vr, which define the upstream region. Hence we will

use vr
+�r� to denote the positive part of the radial component

of the fluid velocity, vr�r�. Thus

vr
+�r� = max„vr�r�,0… = �vr�r� if vr�r� � 0

0 else.
� �8�

The approximation that the flow velocity and the concentra-

tion profile around the stationary particle are weakly corre-

lated in space, is expressed through

	„vr
+�r� − 	vr

+�r�
…„c�r� − 	c�r�
…
 � 0, �9�

thus leaving 	vr
+�r�c�r�
�	vr

+�r�
	c�r�
. This approximation

is expected to do a reasonably good job as long as the

Brownian motion is effective in randomizing the particle

concentration, i.e., when Brownian motion is not over-

whelmed by convection.

Equation �7�, under this approximation, simplifies to

G = 4�r2D� �

�r
+ �

�U

�r
+ b	vr

+
�	c
 . �10�

Clearly, the collision rate given by Eq. �10� corresponds to

the collision rate that we would have if the actual flow field

v�r� was replaced by an effective flow field for aggregation

where only the radial component, given by 	vr
+�r�
, is non-

zero. The effective flow field will be denoted as veff�r�
= �vr,eff�r� ,0 ,0� with vr,eff�r��	vr

+�r�
. Therefore, a system

where the collision rate �hence the colloidal aggregative sta-

bility� is identical to the one of the real systems may be

described, under the approximation �Eq. �9��, by the follow-

ing effective two-particle Smoluchowski equation for the

orientation-averaged concentration field 	c
,

div��D��U + bvr,eff� + D��	c
 = 0, �11�

which, for isotropic potential, can be written as an ordinary

differential equation,

1

r2

d

dr
�r2D��

dU

dr
+ bvr,eff�	c
 + Dr2

d	c


dr
� = 0. �12�

B. Far-field boundary condition with linear flow fields:

Boundary-layer analysis

The boundary conditions for the irreversible aggregation

problem are as follows. First, the reaction kinetics by which

the particle irreversibly sticks to the reference one is taken to

be infinitely fast at r=2a, which corresponds to the familiar

absorbing boundary condition 	c
=0 at r=2a �8�. Second,

the bulk concentration �c /c0=1� must be recovered at a cer-

tain distance from the reference particle. This condition is

often implemented at large distance, namely, at r→	, which

is always possible for velocity fields which decay to zero at

infinity. Classic examples are the problems of convective dif-

fusion of a solute to a free-falling particle or convective dif-

fusion to a rotating disk �cf. Chap. 2 in �8��. However, it is

well known that in the case of linear velocity fields, appli-

cation of the second �far-field� boundary condition, c /c0=1

at r→	, is more complicated due to a singularity at the

domain boundary induced by v=� ·r, where � is the velocity

gradient tensor. In this case, the Smoluchowski equation be-

comes

div��− �D
�U

�r
+ � · r� − D��c = 0. �13�

As first diagnosed by Dhont �10� who used Eq. �13� to study

the structural distortion of sheared nonaggregating suspen-

sions �11�, the � ·r term, being linear in r, overwhelms the

other terms at sufficiently large separations even for very

small shear rates. It was shown that in the case of hard

spheres the extent of separation 
 where this occurs de-

creases with the Peclet number as 
 /a�Pe−1/2 �10�. In other

terms, 
 defines a boundary-layer width beyond which con-

vection represents by far the controlling phenomenon �8,10�.
To overcome the difficulty of having a singular term at the

domain boundary which makes it impossible to enforce the

far-field boundary condition, specific considerations are re-

quired. For example, when the final goal is to determine the

structure factor of a suspension, it is convenient to Fourier

transform the radial domain or equivalently to move to a

reciprocal domain q=2 /r �see, e.g., �12��. Alternatively,

within numerical studies in real space, the far-field boundary

condition is usually applied at finite separations after self-

consistently identifying the location beyond which the con-

centration profile flattens out as a consequence of convection

becoming predominant �13,14�.
At this point, it is useful to consider the boundary-layer

structure of the Smoluchowski equation and of the formally

identical convective diffusion equation. In fact, as is well

known within the theory of convective diffusion �8�, due to

the boundary-layer behavior of Eq. �13�, the convective flux

dominates at sufficiently large interparticle separations
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�which has been verified numerically in �13�� since the other

terms in the bracket in Eq. �13� become negligible in com-

parison with � ·r. That region of space is thus described by

div�vc� = 0, �14�

which admits the solution c=const �8�. For colloidal particles

in a linear flow field, Eq. �14� has been solved under account

of hydrodynamic interactions by Batchelor and Green �15�
who derived the following solution in terms of the pair-

correlation function:

g�r� =
1

1 − A
exp�

r

	

dr
3�B − A�

r�1 − A�
, �15�

where the hydrodynamic functions A�r� and B�r� describe

the nonlinear disturbance to the relative velocity due to the

particle motion. Beyond a few particle radii distance both

A�r� and B�r� decay to zero, and we have g�r�=1 thus im-

plying c=const=c0. Hence, the mere effect of convection in

a linear flow field in the absence of any perturbation �as

could arise from diffusive motion or hydrodynamic interac-

tions� is to flatten out the concentration profile. Therefore, if

it is true that convection prevails at separations larger than

the boundary-layer width, it must follow that assuming ho-

mogeneity, c=const=c0, at separations larger than the

boundary layer is justified. In this work we thus propose

using r=
+2a �instead of r→	� in the far-field boundary

condition. In the language of matched asymptotic expan-

sions, this corresponds to exactly determining the solution

within the boundary layer and matching it to the leading

order in Pe−1 expansion in the outer layer. �Note however

that the problem of Eq. �13� in real space is substantially

more complicated than standard singularly perturbed equa-

tions due to the aforementioned singular behavior of � ·r at

the domain boundary, in addition to the standard singular

behavior for large values of the Peclet number, as first noted

by Dhont �10�.� Hence, the collision kinetics being uniquely

determined by the inner solution, the only approximation in-

volved is on the location of the far-field boundary condition,

which we estimate in the following as a function of Peclet

number and interaction parameters. The good accuracy of the

estimate is subsequently verified by quantitative comparison

with numerics.

The width of the boundary-layer 
 where the major

change in the concentration profile occurs, and within which

diffusion, convection, and direct interactions are all impor-

tant, can be uniquely determined from dimensional consider-

ations. The governing parameters upon which 
 depends are

�, a, �̇, and D0, where � denotes the range of interaction.

Thus the dimensionless boundary-layer width 
 /a is express-

ible as a dimensionless combination of the governing param-

eters �Rayleigh�,


/a � �lam�̇nD0
p. �16�

From the boundary-layer behavior of the Smoluchowski

equation for hard spheres, it is known that 
 /a�Pe−1/2 �10�,
which identifies n=−1 /2 and p=1 /2. Hence considering that

���= �a�=L and ��̇�−1/2�D0�1/2=L, it obviously follows

l + m + 1 = 0. �17�

Application of the  theorem of dimensional analysis pre-

scribes that 
 /a has to be expressed in terms of two indepen-

dent dimensionless groups, � /a and �̇a2
/D0, as 


=a��� /a , �̇a2
/D0�, because a and �̇ are parameters with in-

dependent dimension �16�. This fixes the m value,

m = − 3/2. �18�

It is therefore concluded that the dimensionless boundary-

layer width 
 /a is approximately given by


/a � ���/a�/Pe. �19�

When Eq. �19� is compared to the case of hard spheres,


 /a�Pe−1/2, the effect of the colloidal interactions on the

boundary-layer width enters through the interaction range

�, which for the screened-Coulomb repulsion is given by

�=�−1, where �−1 is the Debye length.

C. Approximate solution for the aggregation rate

Based on the above boundary value problem analysis, let

us rewrite the effective two-body Smoluchowski equation in

shear �Eq. �12�� in dimensionless form �17�,

0 =
1

Pe

1

�x + 2�2

d

dx
�x + 2�2

dC

dx

+
1

Pe

1

�x + 2�2

d

dx
��x + 2�2

dŨ�x�

dx
C�

+
1

�x + 2�2

d

dx
��x + 2�2

ṽr,effC� , �20�

with the boundary conditions

C = 0 at x = 0,

C = 1 at x = 
/a , �21�

where, for simplicity of notation, we have set 	c̃�r�
�C�x�
since the latter is a function only of the dimensionless sepa-

ration x= �r /a�−2. The tilde indicates nondimensionalized

quantities. The Peclet number is given by Pe= �̇a2
/D

=3���̇a3
/kBT. Equation �20� is formally identical to a sta-

tionary one-dimensional Fokker-Planck equation in spherical

geometry with time independent drift and diffusion coeffi-

cients �18�. The concentration profile in dimensional form

after application of the second boundary condition to Eq.

�20� reads

	c
 = �exp�

/a

x

dx�− �dU/dx − Peṽr,eff��
� �c0 +

G

8�aD0

�

/a

x
dx

G�x��x + 2�2

�exp�

/a

x

dx��dU/dx + Peṽr,eff�� . �22�

The flux G is determined from the absorbing boundary con-

dition at contact as
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G =
8�D0ac0

2�
0


/a
dx

G�x��x + 2�2
exp�


/a

x

dx��dU/dx + Peṽr,eff�

.

�23�

Using 
 /a=��� /a� /Pe, Eq. �23� can be integrated with stan-

dard numericals and can find direct application to systems

under shear and straining flows, provided that an appropriate

form of the velocity field is given. Note that the effect of

hydrodynamic viscous dissipation is accounted for through

the function G�x�. For an axisymmetric extensional flow, the

radial component of the velocity field is given by �13,15�

vr =
1

2 �̇a�x + 2��1 − AE�x���3 cos2 � − 1� , �24�

where AE�x� is the corresponding function accounting for the

effect of hydrodynamic retardation. Based on how the res-

caled effective velocity has been defined, we thus obtain

ṽr,eff�x� � 	ṽr
+�r�
 = − �1/3�3��x + 2��1 − AE�x�� . �25�

Similarly, in the case of pure laminar shear we have

ṽr,eff�x� � 	ṽr
+�r�
 = − �1/3���x + 2��1 − AS�x�� , �26�

where AS�x� is the hydrodynamic retardation function for

simple shear.

Hence, within this formulation it has been possible to ac-

count for hydrodynamic interactions �in the two-body limit�
resulting from viscous dissipation, through G�x�, and from

hydrodynamic disturbance �retardation� induced by the sec-

ond particle, through A�x�.

D. Irreversible aggregation kinetics and colloidal stability

with shear

Since we have retained all terms in the governing equa-

tion �and built the solution exactly in the inner layer�, Eq.

�23� is valid for arbitrary thickness of the boundary layer 
.

In particular we observe that in the limit Pe→0, Eq. �23�
reduces to the well-known Fuchs’ formula for the aggrega-

tion rate constant �collision rate� in the presence of direct

interaction forces but in the absence of flow, which reads �9�

G =
8�D0ac0

2�
0

	

dx
e�U�x�

G�x��x + 2�2

. �27�

Comparing Eqs. �23� and �27� leads to the definition of a

generalized stability coefficient which is valid for arbitrary

Pe numbers and interaction potentials,

WG = 2�
0

���/a�/Pe dx

G�x��x + 2�2
exp�

���/a�/Pe

x

dx��dU/dx

+ Peṽr,eff� . �28�

This, at Pe=0, reduces to the stagnant colloidal stability co-

efficient first derived by Fuchs in 1934 �cf. �9��,

W = 2�
0

	

dx
e�U�x�

G�x��x + 2�2
. �29�

Thus, the combined effect of fluid motion �convection� and

direct interactions can either diminish or augment the coagu-

lation rate with respect to the case of noninteracting Brown-

ian particles in a stagnant fluid by a factor equal to WG.

E. Initial kinetics of irreversible aggregation

In deriving Eq. �23� for the collision rate against a station-

ary particle we did not account for the diffusive motion of

the latter. Accounting for that leads to a factor two times the

macroscopic number concentration of particles in the system,

c. Hence, the kinetic equation for the rate of change of the

concentration of particles reads

dc

dt
= −

16�D0a

WG

c2, �30�

where WG is the generalized stability coefficient given by Eq.

�28�. Integrating Eq. �30� yields the law of variation with

time of the particle concentration

c�t� =
c0

1 + t/tc

, �31�

where

tc = �16�D0ac0/WG�−1 �32�

is the characteristic time of aggregation. Its reciprocal value

defines the kinetic constant for the aggregation of primary

particles

k1,1 = 16�D0ac0/WG. �33�

Since WG, which is given by Eq. �28�, brings about a com-

plex dependence upon the particle size when Pe�0, it can be

anticipated that the evolution of the aggregation process will

substantially differ from the purely Brownian case in a stag-

nant medium, with important consequences for the dynamics

of new-phase formation in sheared colloids.

F. Comparison with numerical results from the literature

Let us compare the theoretical predictions from Eq. �23�
with numerical results where the full convective diffusion

equation �Eq. �3�� was solved numerically by means of a

finite difference method �Fig. 1�. The colloidal system is

composed of colloidal particles with a=100 nm, with inter-

actions via standard Derjaguin-Landau-Verwey-Overbeek

�DLVO� potential, and convection is induced by laminar axi-

symmetric extensional flow �13�. The numerically obtained

values of c�r� were then used to determine the aggregation

rate constant from numerical evaluation of

G =� J · n̂dS=� �D � c + �D��U − bv�c� · n̂dS , �34�

where the collision surface is taken as the spherical surface

of radius 2a.
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The comparison is shown in Fig. 1 for three different

values of ionic strength and a fixed surface potential equal to

−14.7 mV. The direct potential U for the same conditions of

the numerical simulations, as well as the hydrodynamic func-

tions A�x� and G�x�, has been consistently calculated accord-

ing to Melis et al. �13�. As shown in the figure, the theory is

able to quantitatively reproduce the numerical data for all

conditions. In particular, it is seen that the inflection point

which marks the transition from a purely Brownian-like re-

gime at Pe�1 to a shear-dominated regime at Pe�10 is

very well captured by the theory. Some underestimation

arises in the regime of high Peclet numbers Pe�50, which

tends to become more important upon further increasing Pe.

Such underestimation is related to the approximation

	(vr
+�r�− 	vr

+�r�
)(c�r�− 	c�r�
)
�0 made in the derivation of

Eq. �23�. Clearly, the spatial correlation between the flow

velocity and the concentration field around the stationary

particle would become non-negligible at high Peclet num-

bers. In this regime, in fact, the randomizing effect of

Brownian motion is progressively lost, whereas the angular

regions �relative orientations between particles� where the

flow velocity is higher and inwardly directed tend to coincide

with the regions where the probability of finding incoming

particles is higher.

G. Potential barrier crossing as an activated-rate process

enhanced by shear

Let us consider the case of a high potential barrier in the

interaction between particles �as in the case of charge-

stabilized colloids at low ionic strength, as predicted by

DLVO theory�. Further, we will neglect the effect of the

hydrodynamic retardation on the velocity field, A�x�=0 in

Eqs. �25� and �26�, so that the effective velocity reads ṽr,eff

=−��x+2�, where � is a numerical coefficient which de-

pends on the type of flow �e.g., �=1 /3� for simple shear�.
Then, the integrand in the second integral in the denominator

of Eq. �23� reduces to

�
���/a�/Pe

x

dx��dU/dx + Peṽr,eff�

� �U − �U�x=���/a�/Pe −
�

2
Pe�x + 2�2 +

�

2
� . �35�

When Pe is not too high, U �x=���/a�/Pe�0. Thus the denomi-

nator on the right-hand side of Eq. �23� becomes

2�
0

���/a�/Pe dx

G�x + 2�2
exp�

���/a�/Pe

x

dx��dU/dx + Peṽr,eff�

� 2e��/2−�U�x=��/Pe�
0

���/a�/Pe dx

G�x + 2�2

�exp��U − �Pe�x + 2�2
/2� . �36�

Since U goes through an interaction-potential maximum

�barrier� in x� �0,��� /a� /Pe�, so does the function �U

−�Pe�x+2�2
/2. The argument of the exponential can thus be

expanded near the maximum up to second order,

�U − �Pe�x + 2�2
/2 � �Um − �Pe�xm + 2�2

/2

+ �Um� − �Pe��x − xm�2, �37�

where the subscript m indicates quantities evaluated at the

potential maximum. We can thus evaluate the remaining in-

tegral

�
0

���/a�/Pe dx

G�x��x + 2�2
exp���Um� − �Pe��x − xm�2� �38�

by the steepest descent �Laplace� method to finally obtain

WG �� 2�

�Pe − �Um�

2e��/2−�U�x=���/a�/Pe

�xm + 2�2G�xm�
e�Um−�Pe�xm + 2�2

/2.

�39�

More precise approximations can be obtained by considering

higher order terms in the expansion Eq. �37� �18�. From Eq.

�39�, in view of being xm+2�2, the effect of the Peclet

number and potential barrier on the two-body aggregation

rate constant, k1,1, is given by

k1,1 � ��Pe − �Um� e−�Um+2�Pe

=�3����̇a3 − Um�

kBT
e−�Um−6����̇a3�/kBT. �40�

It is interesting to observe that Eq. �40� appears to be in

Arrhenius form, with the pre-exponential or frequency factor
��3����̇a3−Um� � /kBT, and the activation energy Um

−6����̇a3. Note that due to Um being the potential maxi-

mum, Um� �0. In both parameters the shear rate �̇ plays a

prominent role. Increasing �̇ leads to increasing the collision

rate, through the prefactor, and at the same time to decreas-

ing the activation energy �thus increasing the fraction of suc-

cessful collisions�. Of course, for substantially large �̇ val-

ues, �̇ has a dominant effect on the aggregation rate due to

the exponential form. Further, a critical value of the shear

rate can be defined, which corresponds to vanishing activa-

tion energy,
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FIG. 1. �Color online� Comparison between calculations based

on the proposed theory �Eq. �23�� and the numerical simulations of

the full convective diffusion equation �Eq. �3�� reported in �13� for

three different ionic strength conditions. The colloid surface poten-

tial is fixed and equals −14.7 mV.
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�̇� = Um/6���a3. �41�

When �̇� �̇�, the interaction barrier plays the dominant role,

and k1,1 increases as Um decreases. When �̇� �̇�, on the

other hand, the shear-induced aggregation takes over the

dominant role, and k1,1 increases as �̇ increases. Thus, this

critical shear rate marks the transition from a slow aggrega-

tion regime with an activation delay due to nonzero potential

barrier to a fast aggregation regime, with no activation bar-

rier. In fact, if �̇� is also such that the pre-exponential factor

is of order unity, then the resulting kinetics will be of the

same order of purely Brownian diffusion-limited aggregation

in a stagnant fluid at �̇� �̇�. Any further increase of the shear

rate above �̇� will then produce higher coagulation rates.

The k1,1 value given by Eq. �40� defines a characteristic

aggregation time,

tc �
1

k1,1

�
1

��3����̇a3 − Um� �/kBT
e�Um−6����̇a3�/kBT.

�42�

An exponential dependence on �̇ for the aggregation time

has been recently observed for the shear-induced aggregation

of charged non-Brownian suspensions in simple shear �7�.
Interestingly, the same exponential decrease with the shear

rate ��exp�−��̇�, with � as a fitting constant� of the nucle-

ation time has been recently observed within numerical

simulations of shear-induced nucleation of semicrystalline

polymers �19�.

H. Shear-driven self-accelerating aggregation kinetics

The aggregation time and the rate constant in the presence

of shear display a very strong dependence on the particle

size, as is evident from Eqs. �40� and �42�. For instance, in

the case where the potential is fixed, the dependence on the

colloid radius reads

tc �
1

�3����̇a3
/kBT

e−6����̇a3
/kBT. �43�

For example, with �=0.001 Pa s, �=1 /3�, and �̇
=500 s−1, the expression in Eq. �43� amounts to 2.26 if a

=100 nm and to 0.14 if a=200 nm. Thus, doubling the col-

loid radius leads to a reduction of the characteristic time for

binary aggregation by one order of magnitude.

This effect becomes of great importance when one con-

siders the long time evolution of the coagulation process. Let

us consider, e.g., a system of Brownian drops. The evolution

equation for classes characterized by their size i �where i

=1,2 ,3 , . . . ,	� is given by �20�

dck

dt
=

1

2
�

i+j=k

ki,jcic j − ck�
j=1

	

k j,kc j . �44�

Based on the above considerations, the rate constants will be

of order

ki,j ��3����̇�ai + a j�aia j − Um�

kBT
e�−Um+6���̇�ai+aj�aiaj�/kBT,

�45�

where the mutual diffusivity of two drops of sizes i and j is

defined as Di,j =kBT�1 /ai+1 /a j� /6��, leading to Pei,j

=3���̇�ai+a j�aia j /kBT. In comparison with the diffusion-

limited case in stagnant fluids, where the kinetics slows

down as the particles size grows by coalescence �the size

dependence of the kinetics is dictated by diffusion�, we can

see from Eq. �45� that under shear, on the other hand, larger

drops coalesce much faster, thus leading to a self-

accelerating kinetics. In particular, at fixed �̇, an activated

size, a�= �Um /6����̇�1/3, can be defined which corresponds

to a vanishing activation barrier. This may help explain the

explosive rise of viscosity in non-Brownian suspensions, re-

ported in �7�, as well as in Brownian suspensions, as will be

shown in Sec. III, as due to self-accelerating kinetics setting

in when the linear size of the growing mesoscopic structures

�clusters, with noncoalescing colloids� reaches the activated

value a�. The extremely rapid growth of viscosity is indeed

tightly connected with the rapid growth in size which causes

an increase in the volume occupied by the clusters. Associ-

ated with the increase in the effective volume fraction of

clusters is the increase in �many-body� hydrodynamic inter-

actions which are in turn responsible for the increase in the

suspension viscosity.

III. IMPLICATIONS FOR THE TIME EVOLUTION

OF VISCOSITY (RHEOPEXY) IN CHARGE-STABILIZED

SUSPENSIONS UNDER STEADY SHEAR

A. Experimental

An exponential dependence of the characteristic aggrega-

tion time upon the applied shear rate has been observed in

the shear-induced aggregation of charged suspensions �7�.
Equation �42� may provide the theoretical justification to

those evidences. However, the system in �7� was constituted

of non-Brownian particles, hence may not be the ideal

ground for a stringent test of our theory. Therefore, we car-

ried out experiments in our laboratory on a system of charge-

stabilized Brownian �polymer� particles in water, where the

interplay between Brownian motion and shear is significant.

The colloidal system used to perform these experiments is

a surfactant-free colloidal dispersion in water, constituted by

styrene-acrylate copolymer particles supplied by BASF AG

�Ludwigshafen, Germany� and produced by emulsion poly-

merization. The particles are nearly monodisperse and the

mean radius, a=60�1 nm, was characterized by both dy-

namic light scattering �using a Nano-ZS in Phase Analysis

Light Scattering mode, Malvern, UK� and small-angle light

scattering �using a Mastersizer 2000 instrument, Malvern,

UK�. In order to avoid contamination, we performed a thor-

ough cleaning of the suspensions by mixing with ion-

exchange resins. To check that the suspensions were free of

impurities after the cleaning procedure, we measured the sur-

face tension by means of the Wilhelmy plate method with a

DCAT-21 tensiometer �Dataphysics, Germany� and only sus-
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pensions exhibiting surface tension �71.7 mN /m have been

subsequently employed in the experiments. For the shearing

experiments, a small amount of electrolyte �NaCl� was added

to make up the ionic background. In fact, with de-ionized

suspensions, the time at which viscosity rises would be very

long ��101 h�. This can seriously affect the system and the

reproducibility of the experiments due to solvent evapora-

tion. However, the final NaCl concentration in the sample

�17 mM� is well below the critical coagulation concentration

�50 mM�. The stability of each suspension after adding the

NaCl solution was checked by measuring the structure factor

under dilute conditions in order to make sure that the final

suspension was still perfectly stable at the starting time of

shearing and no aggregates were present when shearing was

switched on in the rheometer. The latter is indeed a crucial

point to ensure reproducibility.

To induce the shear flow under shear-rate control and to

simultaneously measure the viscosity of the flowing suspen-

sion, we used a strain-controlled advanced rheometric expan-

sion system rheometer �Rheometric Scientific�. The gap be-

tween the outer cylinder and the inner one is 1 mm and the

length of the latter is 34 mm. The outer cylinder is tempera-

ture controlled at T=298�0.1 K and, in order to prevent

evaporation, a solvent trap has been fixed on the outer rotat-

ing cylinder. For all the experiments we used de-ionized wa-

ter �milli-Q, millipore� and the mixing of the latex suspen-

sions with NaCl solutions was done in such a way to avoid

heterogeneities in the concentration field which would cause

the aggregation kinetics to speed up in locally more concen-

trated zones. It is worth noting that the sampling of all the

mixtures NaCl-solution or latex was done carefully with a

top-cut pipette in order to avoid any local shearing during the

sampling that could induce aggregation. After the shearing

experiment was started, the remaining amount of �stagnant�
suspension was analyzed to check the colloidal stability as a

function of time under stagnant conditions. Furthermore, in

order to ensure reproducibility, each time the shearing was

switched on exactly 7 min from the time of mixing between

latex and background NaCl solution.

B. Results and discussion

Experimental curves of viscosity as a function of time for

a colloid volume fraction �=0.21 are shown in Fig. 2 for

shear rates in the Peclet range 0.49�Pe�0.84. Similar

curves have been obtained at volume fractions �=0.19 and

�=0.23. For each curve in Fig. 2 a characteristic aggregation

time can be extracted from the intersection of the asymp-

totes, as was proposed in �7�. Also in the present case, the

aggregation time is an exponentially decreasing function of

�̇: tc�exp�−��̇�, with �=0.0008 at �=0.19, �=0.0012 at �
=0.21, and �=0.0018 at �=0.23. Using Eq. �42� with �
=1 /3� we obtain tc�exp�−0.0005�̇�. The more accurate re-

sult based on the numerical integration of Eq. �28�, which

accounts for hydrodynamic interactions in the dilute �two-

body� limit, yields tc�exp�−0.0006�̇�, thus not far from the

approximate result from Eq. �42�, where hydrodynamic in-

teractions are neglected. A smaller � from the theory is ex-

pected since it does not account for hydrodynamic many-

body interactions which cause � to increase with increasing

colloid volume fraction �7�. A more specific study focused on

the effect of many-body hydrodynamic interactions on the

aggregation kinetics in shear will appear elsewhere.

IV. CONCLUSION

Starting from the two-body Smoluchowski equation for

interacting Brownian particles under shear, we derived an

approximate theory for the irreversible aggregation kinetics

of colloids in linear flows. The predictions, with no fitting

parameter, are in good agreement with numerical data, up to

Peclet �102. With interaction barrier �as for, e.g., DLVO-

interacting systems�, a rate equation for the kinetic constant

of aggregation has been derived which appears to be in

Arrhenius form and consists of a frequency factor ���̇−1/2�
multiplying an exponential, e−�Um−6����̇a

3�/kBT, giving the

probability �efficiency� of sticking upon collision. The shear

rate �̇ is effective in diminishing the activation barrier Um,

and the aggregation kinetics rises by orders of magnitude just

above an activated value of �̇ which causes the barrier to

vanish. Our theory, extending activated-rate theory of

Brownian particles �21� to activated barrier crossing driven

by shear, explains the induction period followed by self-

accelerating aggregation kinetics and explosive rise of sus-

pension viscosity observed in many sheared complex and

biological fluids �2,7�, including protein solutions �4,5�. This

paves the way for a microscopic, possibly quantitative, un-

derstanding of shear-induced structure-formation processes

�3� and phase transitions �e.g., gelation �22�� in soft matter

systems.
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FIG. 2. �Color online� Viscosity as a function of time under

steady shear for charge-stabilized polystyrene colloids ��=0.21� for

different shear-rate values, �̇ �see legend�. The NaCl concentration

is 17 mM for all cases. The characteristic time of aggregation can

be estimated as shown in �7�.
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