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We discuss how surface roughness influences the adhesion between elastic solids. We introduce a

Tabor number which depends on the length scale or magnification, and which gives information

about the nature of the adhesion at different length scales. We consider two limiting cases rele-

vant for (a) elastically hard solids with weak (or long ranged) adhesive interaction (DMT-limit) and

(b) elastically soft solids with strong (or short ranged) adhesive interaction (JKR-limit). For the

former cases we study the nature of the adhesion using different adhesive force laws (F ∼ u−n,

n = 1.5–4, where u is the wall-wall separation). In general, adhesion may switch from DMT-like at

short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predic-

tions to results of exact numerical simulations and find good agreement between theory and simula-

tion results. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4895789]

I. INTRODUCTION

Surface roughness has a huge influence on the adhesion

and friction between macroscopic solid objects.1–6 Most in-

teractions are short ranged and become unimportant when the

separation between solid surfaces exceeds a few atomic dis-

tances, i.e., at separations of order nm. This is trivially true

for chemical bonds (covalent or metallic bonds) but also holds

for the more long-ranged van der Waals interaction. One im-

portant exception is charged bodies. For uncharged solids, if

the surface roughness amplitude is much larger than the de-

cay length of the wall-wall interaction potential and if the

solids are elastically stiff enough, no macroscopic adhesion

will prevail, as is the case in most practical cases. Only for

very smooth surfaces, or elastically very soft solids (which

can deform and make almost perfect contact at the contacting

interface without storing up a large elastic energy) adhesion

can be observed for macroscopic solids.7

In this paper we will discuss how surface roughness influ-

ences adhesion between macroscopic solids. We consider two

limiting cases, which are valid for elastically hard and weakly

interacting solids (Deryagin, Muller, and Toporov, DMT-

limit)8 and for elastically soft or strongly interacting solids

(Johnson, Kendall, and Roberts, JKR-limit).9 This problem

has been studied before but usually using the Greenwood-

Williamson (GW)10, 11 type of asperity models (see, e.g.,

Refs. 7 and 12), whereas our treatment is based on the Pers-

son contact mechanics theory. The latter theory is (approx-

imately) valid even close to complete contact (which often

prevails when adhesion is important).13, 14

For surfaces with roughness on many length scales (as

is always the case in reality) the GW-type of asperity con-

tact models, even when one includes the long-range elastic

lateral coupling between the asperities, are not valid. First,

one cannot approximate all the asperities as spherical (or el-

lipsoidal) cups with the same radius of curvature as done in

the GW theory. Also, in many adhesion problems the con-

tact is almost complete, and for this limit the GW theory fails

qualitatively.

Asperity models can only be used as long as the contact

area is small compared to the nominal contact area, and even

in this limit these models have severe problems for surfaces

with roughness on many length scales.15–17

Recently, several numerical simulation studies of ad-

hesion between randomly rough surfaces have been pub-

lished. Pastewka and Robbins18 studied the adhesion between

rough surfaces in the DMT-limit, and presented a criterion for

macroscopic adhesion. They emphasized the role of the range

of the adhesive interaction, which we also find is important in

the DMT-limit and when the surface roughness amplitude is

small (see below). Medina and Dini19 studied the adhesion

between an elastic sphere with smooth surface and a rigid

randomly rough substrate surface. They observed strong con-

tact hysteresis in the JKR-limit (relative smooth surfaces) and

very small contact hysteresis in the DMT-limit which prevails

for small roughness. Analytical theories of contact mechan-

ics have been compared to Molecular Dynamics calculations

for an elastic ball in contact with two-dimensional (2D) ran-

domly rough surfaces in Ref. 20. Numerically exact studies

for adhesion between 1D surface roughness was presented in

Ref. 21. Experimental adhesion data for rough surfaces

have been compared to analytical theory predictions in

Refs. 22–24.

In this paper we present a more general study for the ad-

hesive contact between solids with nominal flat but randomly

rough surfaces, for a large range of system parameters. Ex-

act simulation results are compared to theory predictions in

both the JKR and DMT limits, but with the main focus on the

DMT limit. We also introduce a scale-dependent Tabor num-

ber which gives information about the condition for the valid-

ity of the DMT and JKR limits. For macroscopic solids one

expect in many cases that the JKR limit is accurate for the

contact mechanics at long length scales, but the DMT-limit

0021-9606/2014/141(12)/124701/14/$30.00 © 2014 AIP Publishing LLC141, 124701-1
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may still prevail at short length scales (for small asperity-

contact regions).

Many practical or natural adhesive systems involve ef-

fects which usually are not considered in adhesion models,

and which we will not address in this paper. In particu-

lar, biological applications typically involve complex struc-

tured surfaces (e.g., hierarchical fiber-and-plate structures)

with anisotropic elastic properties, which are elastically soft

on all relevant length scales.25–28 Instead of directly relying

on molecular bonding over atomic dimension, many biologi-

cal systems adhere mainly via capillary bridges.29–31 We will

also not discuss either the adhesion between charged objects,

which must be treated by special methods which takes into ac-

count the long-range nature of the Coulomb interaction.32–35

In this paper we first briefly review (Sec. II) two limiting

models of adhesion for smooth surfaces. In Sec. III we show

how the same limiting cases can be studied analytically for

randomly rough surfaces using the Persson contact mechanics

model. Numerical results obtained using the analytical theory

are presented in Sec. IV, and compared to simulation results

in Sec. V. Section VI contains a discussion and Sec. VII con-

tains the summary and conclusion.

II. ADHESION OF BALL ON FLAT (REVIEW)

Analytical studies of adhesion have been presented for

smooth surfaces for bodies of simple geometrical shape, the

most important case being the contact between spherical bod-

ies. For a sphere in contact with a flat surface two limit-

ing cases are of particular importance, usually referred to as

the DMT theory8 and the JKR theory,9 see Fig. 1. Analyti-

cal results for intermediate-range adhesion were presented by

Maugis36, 37 and the ball-flat adhesion problem has also been

studied in detail using numerical methods.38, 39 A particularly

detailed simulation study was recently published by Müser

who also included negative work of adhesion (repulsive wall-

wall interaction).40

(a) 

elastic ball

(b)  

dT

DMT-limit JKR-limit

FN
FN

FIG. 1. (a) In the DMT theory the elastic deformation field is calculated with

the adhesion included only as an additional load Fad acting on the sphere.

Thus the contact area is determined by Hertz theory with the external load

FN + Fad. The adhesive load Fad is obtained by integrating the adhesive

stress over the ball non-contact area. (b) In the JKR theory the adhesion force

is assumed to have infinitesimal spatial extent, and is included only in the

contact area as an interfacial binding energy Ead = �γA. The shape of the

elastic body is obtained by minimizing the total energy −Ead + Uel, where

Uel is the elastic deformation energy.

Consider an elastic ball (e.g., a rubber ball) with the ra-

dius R, Young’s elastic modulus E (and Poisson ratio ν), in

adhesive contact with a flat rigid substrate. Let �γ = γ 1

+ γ 2 − γ 12 be the Dupré’s work of adhesion and let dc be the

spatial extent of the wall-wall interaction potential (typically

of order atomic distance). The DMT theory is valid when ad-

hesive stress σ ad ≈ �γ /dc is much smaller than the stress in

the contact region, which is of order

σc ≈

(

�γE2

R

)1/3

.

In the opposite limit the JKR theory is valid. In the DMT

theory the elastic deformation field is calculated with the ad-

hesion included only as an additional load Fad acting on the

sphere. Thus the contact area is determined by Hertz theory

with the external load F0 = FN + Fad, where FN is the ac-

tual load on the ball (see Fig. 1). The adhesion load Fad is

obtained by integrating the adhesion stress over the ball non-

contact area.

The JKR theory neglects the extent of the interaction po-

tential and assumes interaction between the solids only in the

contact area. The deformation field in the JKR theory is ob-

tained by minimizing the total energy given by the sum of

the (repulsive) elastic deformation energy and the (attractive)

binding energy Ead = �γ A, where A is the contact area. In

this theory the contribution to binding energy from the non-

contact region is neglected.

Since σ ad ≈ �γ /dc we can define the Tabor number:

μT =
σad

σc

=

(

R�γ 2

E2
r d

3
c

)1/3

=
dT

dc

,

where

dT =

(

R�γ 2

E2
r

)1/3

,

where Er = E/(1 − ν2) is the effective elastic modulus. The

DMT and JKR limits correspond to μT ≪ 1 and μT ≫ 1, or,

equivalently, dT ≪ dc and dT ≫ dc, respectively. In the JKR-

limit the Tabor length dT can be considered as the height of the

neck which is formed at the contact line (see Fig. 1(b)). This

neck height must be much larger than the length dc, which

characterizes the spatial extent of the wall-wall interaction, in

order for the JKR-limit to prevail.

At vanishing external load, FN = 0, the JKR theory pre-

dicts the contact area:

AJKR = π

(

9πR2�γ

2Er

)2/3

.

This contact area is a factor 32/3 ≈ 2.1 larger than obtained

from the DMT theory. In the JKR theory the force necessary

to remove the ball from the flat (the pull-off force) is given by

Fc =
3π

2
�γR (1)

which is a factor of 3/4 times smaller than predicted by

the DMT theory. Also the pull-off processes differ: in the

JKR theory an elastic instability occurs where the contact

area abruptly decreases, while in the DMT theory the con-

tact area decreases continuously, until the ball just touches

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

134.94.122.242 On: Mon, 29 Jun 2015 08:17:33



124701-3 B. N. J. Persson and M. Scaraggi J. Chem. Phys. 141, 124701 (2014)

the substrate in a single point, at which point the pull-force is

maximal.

For the sphere-flat case the pull-off force in the DMT-

limit is independent of the range of the wall-wall interaction

potential. However, this is not the case for other geometries

where in fact the contact mechanics depends remarkably sen-

sitively on the interaction range. As a result the interaction

between rough surfaces in the DMT-limit will depend on the

force law as we will demonstrate below for power law inter-

action pad ∼ u−n.

In an exact treatment, as a function of the external load

FN, the total energy Etot = −Ead + Uel must have a minimum

at FN = 0. This is the case in the JKR theory but in gen-

eral not for the DMT theory. Instead, the DMT theory is only

valid for very stiff solids and in this limiting case the total en-

ergy minimum condition is almost satisfied. Nevertheless, one

cannot expect dEtot/dFN(FN = 0) = 0 to be exactly obeyed in

any (approximate) theory which does not minimize the total

energy.

The results above assume perfectly smooth surfaces. The

JKR (and DMT) theory results can, however, be applied also

to surfaces with roughness assuming that the wavelength λ of

the most longest (relevant) surface roughness component is

much smaller than the diameter of the contact region. In that

case one only needs to replace the work of adhesion �γ for

flat surfaces with an effective work of adhesion γ eff obtained

for the rough surfaces. We will now describe how one can

calculate γ eff.

III. THEORY: BASIC EQUATIONS

We now show how surface roughness can be taken into

account in adhesive contact mechanics. We consider two lim-

iting cases similar to the JKR and DMT theories for adhe-

sion of a ball on a flat. The theory presented below is not

based on the standard Greenwood-Williamson10, 11 picture in-

volving contact between asperities, but on the Persson contact

mechanics theory.

A. JKR-limit (review)

In the JKR-limit the spatial extent of the wall-wall inter-

action potential is neglected so the interaction is fully char-

acterized by the work of adhesion �γ . The contact between

randomly rough surfaces in this limit was studied in Ref. 41

and here we only review the most important results.

In order for two elastic solids with rough surfaces to make

adhesive contact it is necessary to deform the surfaces elasti-

cally, otherwise they would only make contact in three points

and the adhesion would vanish, at least if the spatial extend

of the adhesion force is neglected. Deforming the surfaces to

increase the contact area A results in some interfacial bonding

−�γ A (where �γ = γ 1 + γ 2 − γ 12 is the change in the in-

terfacial energy per unit area upon contact), but it costs elastic

deformation energy Uel, which reduces the effective binding.

That is, during the removal of the block from the substrate

the elastic compression energy stored at the interface is given

back and helps to break the adhesive bonds in the area of real

contact. Most macroscopic solids do not adhere with any mea-

surable force, which implies that the total interfacial energy

−�γ A + Uel vanishes, or nearly vanishes, in most cases.

The contact mechanics theory of Persson6, 41–47 can be

used to calculate (approximately) the stress distribution at the

interface, the area of real contact, and the interfacial sepa-

ration between the solid walls.42, 43 In this theory the inter-

face is studied at different magnifications ζ = L/λ, where

L is the linear size of the system and λ the resolution. We

define the wavevectors q = 2π /λ and q0 = 2π /L so that

ζ = q/q0. The theory focuses on the probability distribution

P(σ , ζ ) of stresses σ acting at the interface when the system is

studied at the magnification ζ . In Ref. 42 an approximate dif-

fusion equation of motion was derived for P(σ , ζ ) . To solve

this equation one needs boundary conditions. If we assume

that, when studying the system at the lowest magnification ζ

= 1 (where no surface roughness can be observed, i.e., the

surfaces appear perfectly smooth), the stress at the interface

is constant and equal to pN = FN/A0, where FN is the load and

A0 the nominal contact area, then P(σ , 1) = δ(σ − pN). In ad-

dition to this “initial condition” we need two boundary con-

ditions along the σ -axis. Since there can be no infinitely large

stress at the interface we require P(σ , ζ ) → 0 as σ → ∞. For

adhesive contact, which interests us here, tensile stress occurs

at the interface close to the boundary lines of the contact re-

gions. In this case we have the boundary condition P[−σ a(ζ ),

ζ ] = 0, where σ a > 0 is the largest (locally averaged at mag-

nification ζ ) tensile stress possible. Hence, the detachment

stress σ a(ζ ) depends on the magnification and can be related

to the effective interfacial energy (per unit area) γ eff(ζ ) using

the theory of cracks.6 The effective interfacial binding energy

γeff(ζ )A(ζ ) = �γA(ζ1)η − Uel(ζ ),

where A(ζ ) denotes the (projected) contact area at the magni-

fication ζ , and A(ζ 1)η is the real contact area, which is larger

than the projected contact area A(ζ 1), i.e., η ≥ 1 (e.g., if the

rigid solid is rough and the elastic solid has a flat surface η

> 1, see Ref. 41 for an expression for η). Uel(ζ ) is the elastic

energy stored at the interface due to the elastic deformation of

the solids on length scale shorter than λ = L/ζ , necessary in

order to bring the solids into adhesive contact.

The area of apparent contact (projected on the xy-plane)

at the magnification ζ , A(ζ ), normalized by the nominal con-

tact area A0, can be obtained from

A(ζ )

A0

=

∫ ∞

−σ
a
(ζ )

dσ P (σ, ζ )

Finally, we note that the effective interfacial energy to be

used in the JKR expression for the pull-off force (1) is the

macroscopic effective interfacial energy corresponding to the

magnification ζ = 1 (here we assume that the reference length

L is of order the diameter of the JKR contact region). Thus in

the numerical results presented in Sec. IV we only study the

area of contact A(ζ 1) and the macroscopic interfacial energy

γ eff = γ eff(1), which satisfies

γeffA0 = �γA(ζ1)η − Uel(1).
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B. DMT-limit

The DMT-limit depends on the interaction potential be-

tween the solid walls. In this section we show how this limit-

ing case can be studied using the Persson contact mechanics

theory.

Let pN = FN/A0 be the applied pressure (which can be

both positive and negative). In the DMT-limit one assumes

that the elastic deformation of the solids is the same as in the

absence of an adhesive interaction, except that the external

load FN is replaced with an effective load. The latter contains

the contribution to the normal force from the adhesive force

acting in the non-contact interfacial surface area: F0 = FN

+ Fad. If we divide this equation by the nominal contact area

A0 we get

p0 = pN + pad.

The adhesive pressure

pad =
1

A0

∫

n.c.

d2x pa[u(x)], (2)

where pa(u) is the interaction force per unit area when two flat

surfaces are separated by the distance u. In (2) the integral is

over the non-contact (n.c.) area. In this study we assume that

there is a force per unit area (pressure) between the surfaces

given by (u ≥ 0 , see, e.g., Fig. 2):

pa = B

[(

dc

u + dc

)n

− α

(

dc

u + dc

)m]

, (3)

where the cut-off dc is a typical bond length and α a number,

which we take to be either 0 or 1. The interaction potential

between solid surfaces can have different form depending on

the nature of the interaction (e.g., Coulomb interaction be-

tween charged walls, van der Waals interaction or chemical

interaction), so we consider a rather general case which al-

low us to vary the extent of the attractive and repulsive part

of the potential. van der Waals interaction correspond to n

= 3 and is used in most of the calculations. Coulomb interac-

tion between uniformly charged surfaces would correspond to

n = 0. Chemical bonding is short-ranged and would qualita-

tively correspond to a large n (n > 3) but in this case an expo-

nential interaction, ∼exp(−z/a), between the walls would be

separation u (nm)

p
a
 (

G
P

a
)

Δγ = 0.2 J/m
2

dc = 1 nm

 0  0.5  1  1.5  2  2.5  3
-0.4

-0.3

-0.2

-0.1

 0

 0.1

α = 0

α = 1

FIG. 2. The adhesive pressure for n = 3 and m = 9 and α = 1 (red line)

and α = 0 (blue line). In the calculation we assumed �γ = 0.2 J/m2 and

dc = 1 nm.

more realistic. The parameter B is determined by the work of

adhesion (per unit surface area):
∫ ∞

0

du pad(u) = Bdc

(m − 1) − (n − 1)α

(m − 1)(n − 1)
= �γ,

so that

B =
�γ

dc

(m − 1)(n − 1)

(m − 1) − α(n − 1)
.

If P(u) denotes the distribution of interfacial separations then

we can also write (2) as

pad =

∫ ∞

0+

du pa(u)P (u).

In Ref. 45 we have derived an expression for P(u) using the

Persson contact mechanics theory. In the numerical results

presented below we have used the expression for P(u) given

by Eq. (17) in Ref. 45 (see also in the following).

The effective interfacial energy can in the DMT-limit be

calculated using

γeff =

∫ ∞

0+

du φ(u)P (u) + �γ
A

A0

−
Uel

A0

,

where A = Ar is the (repulsive) contact area and where φ(u) is

the interaction potential per unit surface area for flat surfaces

separated by the distance u and given by

φ(u) =

∫ ∞

u

du pa(u).

Thus in the present case

φ(u) =
Bdc

n − 1

(

dc

u + dc

)n−1

−
Bdcα

m − 1

(

dc

u + dc

)m−1

.

For u = 0 an infinite hard wall occurs and we define the (re-

pulsive) contact area Ar when the surface separation u = 0. In

the calculations below we use n = 3 and m = 9 and α = 0

(Sec. IV) and α = 1 (Sec. V). The interaction pressure for

these two cases are shown in Fig. 2.

The probability distribution of interfacial separations

P(u) can be calculated as follows: We define u1(ζ ) to be

the (average) height separating the surfaces which appear to

come into contact when the magnification decreases from ζ to

ζ − �ζ , where �ζ is a small (infinitesimal) change in the

magnification. u1(ζ ) is a monotonically decreasing function

of ζ , and can be calculated from the average interfacial sepa-

ration ū(ζ ) and the contact area A(ζ ) using (see Ref. 44)

u1(ζ ) = ū(ζ ) + ū′(ζ )A(ζ )/A′(ζ ).

The equation for the average interfacial separation ū(ζ ) is

given in Ref. 44. The (apparent) relative contact area A(ζ )/A0

at the magnification ζ is given by

A(ζ )

A0

= erf

[

p0

2G(ζ )1/2

]

,

where

G(ζ ) =
π

4

(

E

1 − ν2

)2 ∫ ζq
0

q
0

dqq3C(q),
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where C(q) is the surface roughness power spectrum. In what

follows we will denote this contact area as the repulsive con-

tact area Ar since the normal stress is repulsive within this

area, unless otherwise stated. We also define an attractive con-

tact area Aa as the surface area where the surface separation

0 < u < dc; in this surface separation interval the wall-wall in-

teraction is attractive. The cut-off length dc is quite arbitrary

and in Ref. 18 another cut-off length (of order dc) was used to

define the attractive contact area.

The probability distribution P(u) can be written as45

P (u) ≈
1

A0

∫

dζ [−A′(ζ )]
1

(

2πh2
rms(ζ )

)1/2

×

[

exp

(

−
(u − u1(ζ ))2

2h2
rms(ζ )

)

+ exp

(

−
(u + u1(ζ ))2

2h2
rms(ζ )

)]

,

where h2
rms(ζ ) is the mean of the square of the surface rough-

ness amplitude including only roughness components with the

wavevector q > q0ζ , and given by

h2
rms(ζ ) =

∫

q>q
0
ζ

d2q C(q).

C. Scale-dependent Tabor length dT(q)

The contact between surfaces with roughness on many

length scales involves contact between asperities with many

different radii of curvature. Thus at low magnifications we

only observe long-wavelength roughness and the asperity ra-

dius of curvature may be macroscopic, e.g., ∼1 mm or more.

At high magnification, nanoscale roughness will be observed

involving asperities which may have radius of curvature in

the nm range. Thus adhesion at long length scale may ap-

pear JKR-like while at short enough length scale the adhe-

sion may appear DMT-like. One can define a magnification

or length-scale dependent Tabor length dT(ζ ) (ζ = q/q0), in

the following way: If we include only roughness components

with wavevector q < ζq0 the mean summit asperity curvature

is48

1

R2(ζ )
=

16

3π

∫ ζq
0

q
0

dq q5C(q).

We define

dT(ζ ) =

(

R(ζ )[γeff(ζ )]2

E2
r

)1/3

.

If dT(ζ ) ≪ dc the contact at the magnification ζ = q/q0, will

appear DMT-like while if dT(ζ ) ≫ dc the contact will appear

JKR-like. In what follows we will sometimes denote dT(ζ )

with dT(q) (q = ζq0).

IV. THEORY: NUMERICAL RESULTS

We now present numerical results which illustrate the two

adhesion theories presented above. The JKR-like theory has

been studied before (see Ref. 41) so we focus mainly on the

DMT-like theory. In the calculations we vary �γ and n, but

we always use the cut-off dc = 0.4 nm and α = 0 unless oth-

erwise stated.

FIG. 3. The surface roughness power spectrum C(q) as a function of the

wavevector q (log10 − log10 scale), used in the present calculations. The

power spectrum corresponds to a surface with the rms roughness amplitude

0.6 nm, the rms slope 0.0035 and the Hurst exponent H = 0.8.

A. Surface roughness power spectrum C(q)
and Tabor length dT(q)

In Fig. 3 we show the surface roughness power spectrum

C(q) (PSD) as a function of the wavevector q (log10 − log10

scale), used in the present calculations. The power spec-

trum corresponds to a surface with the rms roughness am-

plitude 0.6 nm, the rms slope 0.0035 and the Hurst exponent

H = 0.8. Fig. 4 shows the surface topography of one realiza-

tion of a randomly rough surface with the surface roughness

power spectrum shown in Fig. 3. The difference between the

lowest and highest point is about 5 nm, i.e., about 10 times

higher than the rms roughness 0.6 nm.

In the calculations below we use the Young’s modulus

E = 1012 Pa, Poisson ration ν = 0.5 and the work of adhe-

sion �γ = 0.1–0.4 J/m2. Figure 5 shows the Tabor length

parameter dT as a function of the wavevector (log10 − log10

scale), for �γ = 0.3 J/m2. Note that the contact mechanics is

DMT-like for short length scales (or large wavevectors) with

dT < dc = 0.4 nm, while it is JKR-like for long length scales

(small wavevectors).

B. Results for different work of adhesion �γ

Fig. 6 shows the normalized (projected) area of contact

A/A0 and the effective interfacial energy γ eff = [Ead − Uel]/A0

[where Ead is the (attractive) van der Waals interaction energy

and Uel the (repulsive) elastic deformation energy] as a func-

tion of the nominal applied pressure pN acting on the block.

-2.5 nm

0

 2.5 nm

FIG. 4. Surface topography of one realization of a surface with the surface

roughness power spectrum shown in Fig. 3. The difference between the low-

est and highest point is about 5 nm, i.e., about 10 times higher than the rms

roughness 0.6 nm (see Appendix A in Ref. 6).
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FIG. 5. The Tabor length parameter dT as a function of the wavevector (log10
− log10 scale). For the surface with the power spectrum given in Fig. 3

and with the elastic modulus E = 1012 Pa (ν = 0.5) and work of adhesion

�γ = 0.3 J/m2.

In the DMT-like theory (red curve) A = Ar is the repulsive

contact area while in the JKR-like theory (blue curves) A is

the total contact area (which has both an attractive and a re-

pulsive part). Results are shown for the work of adhesion �γ

= 0.0 (green curve), 0.1, 0.2, 0.3, and 0.4 J/m2. The red and

blue lines correspond to DMT-like and JKR-like approxima-

applied pressure (GPa)

γ e
ff
 (

J
/m

2
)

0.1
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0.3

0.4
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 0.3
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FIG. 6. (a) The normalized (projected) area of contact A/A0 and (b) the ef-

fective interfacial energy γeff = [Ead − Uel]/A0 [where Ead is the (attractive)

van der Waals interaction energy and Uel the (repulsive) elastic deformation

energy] as a function of the applied (nominal) pressure pN acting on the

block. In the DMT-like theory (red curve) A = Ar is the repulsive contact

area while in the JKR-like theory (blue curves) A is the total contact area

(which has both an attractive and a repulsive part). Results are shown for the

work of adhesion �γ = 0.0 (green curve), 0.1, 0.2, 0.3, and 0.4 J/m2. The red

and blue lines correspond to DMT-like and JKR-like approximations, respec-

tively. The elastic solid Young’s modulus E = 1012 Pa and Poisson number

ν = 0.5.

tions, respectively. Note that the area of contact at zero pres-

sure is about a factor 3 larger in the JKR-like approximation

as compared to the DMT-like approximation. This is consis-

tent with the results for adhesion of sphere on flat (see Sec. II)

where the JKR theory predict about 2 times larger contact area

than the DMT theory. On the other hand, Fig. 6(b) shows that

the effective interfacial binding energies are similar, which is

also consistent with the results of Sec. II. The effective work

of adhesion to be used in macroscopic adhesion applications,

i.e., the pull-off of a ball from a flat (Sec. II) is γ eff for the

applied pressure pN = 0, and in all cases in Fig. 6 γ eff(pN

= 0) is less than half of the work of adhesion �γ for smooth

surfaces.

Fig. 6(b) shows that for �γ = 0.1 J/m2 in the JKR-limit

the effective interfacial binding energy, and hence also the

pull-off force, vanish. Nevertheless, Fig. 6(a) shows that in

the JKR-limit the contact area as a function of pN increases

much faster with increasing pN than in the absence of adhe-

sion (green line), i.e., even if no adhesion manifests itself dur-

ing pull-off, the contact area and hence other properties such

as the friction force, may be strongly enhanced by the ad-

hesive interaction. In the DMT-limit the effective interfacial

binding energy is always non-zero if the wall-wall interaction

does not vanish beyond some fix wall-wall separation. This

is easy to understand since when the wall-wall separation is

larger than the highest asperity the solid walls will only in-

teract with the long-ranged attractive wall-wall potential and

increasing the separation to infinity will always require a fi-

nite amount of work making γ eff(pN = 0) always non-zero in

the DMT-limit.

Let us now discuss the slopes (with increasing pN) of the

γ eff(pN) curves in Fig. 6(b) for pN = 0. As pointed out in

Sec. II, in an exact treatment, as a function of the external

load pN the total energy −A0γ eff = −Ead + Uel must have a

minimum at pN = 0. However, the theories described above

are not exact, and are not based on a treatment which mini-

mize the total energy, but rather focus on the force (or stress)

(in the DMT-like model) or on a combined energy and stress

treatment (in the JKR-like model). This is the reason for why

the slope of the γ eff(pN) curves for large �γ is positive rather

than negative. However, the slope is rather small compared to

the (absolute value of) the slope for the non-adhesive interac-

tion (green curve). In addition, the surface we use has a Tabor

length with dT(q) ≪ dc for large q and dT(q) ≫ dc for small q

so strictly speaking neither the JKR-limit or the DMT-limit is

correct or valid. For other surfaces which have dT(q) ≪ dc or

dT(q) ≫ dc for all q, the JKR-like and DMT-like theories may

be more accurate and the slope of the γ eff(pN) curve negative.

Fig. 7 shows the applied pressure as a function of the av-

erage separation for the work of adhesion �γ = 0.0 (green

curve), 0.1, 0.2, 0.3, and 0.4 J/m2. The blue dashed curve is

the van der Waals interaction force per unit area pa = B[dc/(u

+ dc)]3, where d = 0.4 nm and u the distance from the hard

wall. The parameter B is chosen to reproduce the given work

of adhesion for flat surfaces. Note that the attractive interac-

tion between the walls is already strong at distances where

negligible wall-wall interaction would occur (as described by

the blue dashed line). This is of course due to adhesive inter-

action involving high asperities, which prevails even when the
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FIG. 7. The applied pressure as a function of the average separation for

the work of adhesion �γ = 0.0 (green curve), 0.1, 0.2, 0.3, and 0.4 J/m2.

The blue dashed curve is the van der Waals interaction force per unit area

pa = B[dc/(u + dc)]3, where dc = 0.4 nm and u the distance from the hard

wall. The parameter B is chosen to reproduce the given work of adhesion for

flat surfaces.

average wall-wall separation is relatively large. For the case of

no adhesion (green curve) the wall-wall interaction is purely

repulsive as the asperities get compressed on decreasing the

wall-wall separation. Asymptotically (large separation) this

repulsive interaction is exponential pN ∼ exp(−u/u0) where

the reference length u0 is of order the rms surface roughness.

C. Results for different interaction potential
exponent n and factor α

Fig. 8 shows the normalized (projected) repulsive area of

contact Ar/A0 and the effective interfacial energy γ eff = [Ead

− Uel]/A0 [where Ead is the (attractive) van der Waals interac-

tion energy and Uel the (repulsive) elastic deformation energy]

as a function of the nominal pressure acting on the block. Re-

sults are shown for the work of adhesion �γ = 0.3 J/m2 and

the interaction force index n = 1.5, 2, 3, and 4 (pa = B[dc/(u

+ dc)]n, i.e., α = 0). The results are for the DMT-like approx-

imation. The elastic solid Young’s modulus E = 1012 Pa and

Poisson number ν = 0.5.

Fig. 8 shows that as the interaction becomes more short

ranged (n increases from 1.5 to 4) (at fixed work of adhe-

sion �γ ) the contact area increases while the effective in-

terfacial binding energy γ eff decreases. The latter is easy to

understand: in the limiting case when n → 0 the interaction

potential has infinite extend (and infinitesimal strength in such

a way that the work of adhesion �γ = 0.3 J/m2) and in this

case γ eff must equal �γ . At the same time due to the weak

(infinitesimal) force the contact area at the load pN = 0 must

vanish, which explains the behaviour observed in Fig. 8(a).

Fig. 9 shows the applied pressure as a function of the av-

erage separation for the work of adhesion �γ = 0.3 J/m2 and

the interaction force index n = 1.5, 2, 3, and 4 (pa = B[dc/(u

+ dc)]n). The results are for the DMT-like approximation.

Note that when n decreases the more long-range the effec-

tive attraction but at the same time the smaller the maximal

attraction, which again reflects that �γ is kept fixed.

All the numerical results presented above were for the

cut-off length dc = 0.4 nm and the repulsion factor α = 0. We

now consider the case α = 1 with m = 9 (and n = 3). We also

4
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FIG. 8. (a) The normalized (projected) repulsive area of contact Ar/A0 and

(b) the effective interfacial energy γeff = [Ead − Uel]/A0 [where Ead is the

(attractive) van der Waals interaction energy and Uel the (repulsive) elastic

deformation energy] as a function of the nominal pressure pN acting on the

block. Results are shown for the work of adhesion �γ = 0.3 J/m2 and the

interaction force index n = 1.5, 2, 3, and 4 (pa = B[dc/(u + dc)]n). From

the DMT-like approximation (see text). The elastic solid Young’s modulus E

= 1012 Pa and Poisson number ν = 0.5.

use dc = 1.0 nm. These are the same parameters we will use

when comparing the theory with exact numerical simulation

results in Sec. V. We consider a surface with the rms rough-

ness 0.5 nm, the roll-off wavevector qr = 1.0 × 106 m−1 and

the small and large wavevector cut-off q0 = 2.5 × 105 m−1

and q1 = 3.2 × 107 m−1.

Fig. 10 shows the normalized (projected) repulsive con-

tact area Ar/A0 as a function of the nominal pressure pN acting
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FIG. 9. The applied pressure pN as a function of the average separation for

the work of adhesion �γ = 0.3 J/m2 and the interaction force index n = 1.5,

2, 3, and 4 (pa = B[dc/(u + dc)]n). From the DMT-like approximation (see

text).
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FIG. 10. The normalized (projected) repulsive area of contact Ar/A0 as a

function of the nominal pressure pN acting on the block. Results are shown

for the work of adhesion �γ = 0.2 J/m2 and the interaction index n = 3

and m = 9 and with dc = 1 nm. Blue curve is with α = 0 and red curve with

α = 1. From the DMT-like approximation (see text).

on the block. Results are shown for the work of adhesion �γ

= 0.2 J/m2. The blue curve is with α = 0 and red curve with

α = 1.

Fig. 11 shows the applied pressure pN as a function of

the average surface separation for the work of adhesion �γ

= 0.2 J/m2. Again the blue curve is with α = 0 and red curve

with α = 1.

V. COMPARISON OF THE DMT-LIKE THEORY
WITH EXACT ANALYTICAL RESULTS

In this section we use the interaction potential (3) with n

= 3, m = 9, and α = 1 with dc = 1 nm (see Fig. 2 and the

Appendix). The power spectral density adopted in the numer-

ical calculations (see the Appendix for the summary of the

numerical simulation model) is shown in Fig. 12.

In Figs. 13–15 we show, respectively, the normalized and

projected area of repulsive contact Ar/A0, of attractive con-

tact Aa/A0 and the total interaction area A/A0 = (Ar + Aa)/A0

as a function of the applied (nominal) pressure pN. Red dots

are from the (deterministic) simulations, whereas black solid
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FIG. 11. The applied pressure pN as a function of the average separation for

the work of adhesion �γ = 0.2 J/m2 and the interaction index n = 3 and m

= 9 and with dc = 1 nm. Blue curve is with α = 0 and red curve with α = 1.

From the DMT-like approximation (see text).
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FIG. 12. Solid line: Power spectral density C(q) as a function of q. For an

isotropic surface roughness with cut-off frequency q0 = qr/4, root-mean-

square roughness hrms = 0.6 nm, and with self-affine regime in the fre-

quency range qr = 106 m−1 to q1 = 103qr. The Hurst exponent is H = 0.8.

Dotted line: The PSD adopted in the numerical calculations is truncated at

q1 = 64q0, with 8 divisions at the smallest length scale (q1), resulting in a

hrms = 0.52 nm and mean square slope 0.00115.
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FIG. 13. Normalized (projected) area of repulsive contact Ar/A0 as a func-

tion of the applied pressure pN, for different values of work of adhesion

�γ = 0.1, 0.2, 0.3, 0.4 J/m2. For an elastic solid with Er = 1.33

× 1012 GPa and for the surface roughness of Fig. 12.
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FIG. 14. Normalized (projected) area of attractive contact Aa/A0 as a

function of the applied pressure pN, for different values of work of adhesion.

For the same parameters as in Fig. 13.
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FIG. 15. Normalized (projected) contact area A/A0 = (Ar + Aa) as a function

of the applied pressure pN, for different values of work of adhesion. For the

same parameters as in Fig. 13.

lines are from the mean field theory. We note that while the re-

pulsive interaction area is slightly underestimated by the the-

ory, the pull-off pressures are remarkably accurately captured

at the different adopted values of work of adhesion. More-

over, the total interaction area (see Fig. 15), as a function of

applied pressure, seems to be only marginally affected by the

exact contact boundary conditions adopted in the mean field

theory, resulting in a perfect match with the numerical simu-

lation predictions, as it could have been expected. It is indeed

well known that Persson contact mechanics accurately pre-

dicts the distribution of interfacial separations.17, 45 Hence the

total interaction area, which is evaluated from the distribution

of interfacial separation, is accurately captured too. Also note

that the simulated contact is close to the DMT-limit, as shown

in Fig. 16, where the repulsive area is reported as a function

of the nominal repulsive pressure (p0 = pN + pad).

In Fig. 17 we show the applied pressure pN as a function

of the average interfacial separation ū, for different values of

�γ , as determined from the theory (black curves) and the nu-

merical model. As expected from the previous arguments, the

agreement is remarkably good in almost the entire range of

average interfacial separations.

We stress that the power spectral density can be nowa-

days routinely obtained with commonly available lab pro-

filometers. However, usually one has to adopt different ac-

quisition techniques depending on the range of roughness

Simulations (�Γ=0)
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0.0 0.1 0.2 0.3 0.4
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

A
r�

A
0

FIG. 16. Normalized (projected) repulsive area Ar/A0 = as a function of the

nominal repulsive pressure p0 = pN + pad, for different values of work of

adhesion. For the same parameters as in Fig. 13.
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FIG. 17. Nominal pressure pN as a function of the average interfacial sepa-

ration ū. For the same parameters as in Fig. 13.

length scales needed to be investigated. Therefore, it would be

particularly interesting to appreciate the extent to which the

macroscopic adhesive characteristics, such as pull-off pres-

sure, depends on the effect of adding (or, inversely, not mea-

suring) an increasing number of surface roughness frequency

components. To do so, we gradually extend the numeri-

cally calculated roughness spectral components of Fig. 12,

as shown in Fig. 18, up to a system size of 224 mesh points. In

Figs. 19–21 we show, respectively, the normalized and pro-

jected area of repulsive contact Ar/A0, the attractive contact

Aa/A0, and the total interaction area A/A0 = (Ar + Aa)/A0

as a function of the applied nominal pressure pN, for dif-

ferent truncation wavevectors. Red dots are the predictions

of the simulations, whereas black solid lines are from the

mean field theory. The pull-off pressure is almost indepen-

dent of the large-wavevector content of the PSD, whereas the

repulsive contact area, as expected, decreases by including

large-wavevector (small wavelength) roughness. Moreover,

the large-wavevector roughness does not contribute signifi-

cantly to the hrms, as is clear both theoretically and numeri-

cally from Fig. 22, where the applied pressure is reported as a

function of the average interfacial separation.
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FIG. 18. Power spectral density C(q) as a function of q (solid black line).

For an isotropic surface roughness with cut-off q0 = qr/4 and root-mean-

square roughness hrms = 0.6 nm, and with self-affine regime in the frequency

range qr = 106 m−1 to q1 = 103qr (H = 0.8 ). The numerical adopted PSD

(red dots) is truncated at q1 = [64, 128, 256, 512]q0, with 8 divisions at the

smallest length scale (q1).
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FIG. 19. Normalized (projected) area of repulsive contact Ar/A0 as a function

of the applied pressure pN, and for �γ = 0.2 J/m2. For an elastic solid with

Er = 1.33 × 1012 GPa and for the surface roughness of Fig. 18 (with q0

= 2.5 105 m−1, qr = 4q0, H = 0.8, resulting in C0 = 5.24 × 10−32 m4), at

different truncation frequencies q1 = 64, 128, 256, 512 q0.

Finally, let us compare the theoretical predictions with

simulation results for the effective interfacial energy γ eff. In

Fig. 23 we show the effective interfacial energy γ eff = [Ead

− Uel]/A0 [where Ead is the (attractive) van der Waals interac-

tion energy and Uel the (repulsive) elastic deformation energy]

as a function of the nominal pressure pN acting on the block.

Results are shown for the work of adhesion �γ = 0.1, 0.2,

0.3, and 0.4 J/m2. The red data points are from the exact nu-

merical simulation and the black lines from the DMT-like the-

ory (Sec. III B) also shown in Fig. 6. The elastic solid Young’s

modulus E = 1012 Pa and Poisson number ν = 0.5.

In Fig. 24 we show similar results for the effective in-

terfacial energy γ eff but now for �γ = 0.2 J/m2, and for

several large wavevector cut-off q1 = 64q0, 128q0, and 256q0.

Note that the effective interfacial energy γ eff is rather in-

sensitive to the large wavevector cut-off q1. The reason for

this is that the repulsive elastic energy Uel is dominated

by the long-wavelength roughness. In both Figures 23 and

24 there is remarkable good agreement between theory and

simulations.
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FIG. 20. Normalized (projected) area of attractive contact Aa/A0 as a func-

tion of the applied pressure pN. For the same parameters as in Fig. 19.
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FIG. 21. Normalized (projected) contact area A/A0 = (Ar + Aa) as a function

of the applied pressure pN. For the same parameters as in Fig. 19.

VI. DISCUSSION

In the discussion above we have neglected adhesion hys-

teresis. Adhesion hysteresis is particularly important for vis-

coelastic solids such as most rubber compounds. However,

even for elastic solids adhesion hysteresis may occur. Thus,

not all the stored elastic energy Uel may be used to break ad-

hesive bonds during pull-off but some fraction of it may be ra-

diated as elastic waves (phonons) into the solids. This would

result in an increase in the effective interfacial binding energy

during pull-off, and would result in adhesion hysteresis.

We note that adhesion hysteresis is observed already for

smooth surfaces in the JKR-limit (elastically soft solids) but

not in the DMT-limit (hard solids).49 Since for randomly

rough surfaces the contact mechanics may be close to the

DMT-limit for short length scales (high resolution) while

close to the JKR-limit at large enough length scales, as in

Fig. 5, one expects in many cases that the bond-breaking pro-

cess involved at short length scale is reversible (no hysteresis),

while the elastic deformations at large enough length scales

show hysteresis, involving rapid (dissipative) processes dur-

ing pull-off.

Contact mechanics for randomly rough surfaces is a hard

problem to treat by numerical simulations in the JKR-limit

(see the Appendix) and most published studies are close to the

DMT-limit (however, see Ref. 19 for results in the JKR-limit).

While this case may be relevant for many hard materials, most

adhesion experiments involve soft materials like silicon rub-

ber (PDMS). In this case the adhesion will be JKR-like in a

large range of length scales.

Simulations
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FIG. 22. Applied pressure pN as a function of the average interfacial separa-

tion ū. For the same parameters as in Fig. 19.
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Effective work of adhesion
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FIG. 23. The effective interfacial energy γeff = [Ead − Uel]/A0 [where Ead

is the (attractive) van der Waals interaction energy and Uel the (repulsive)

elastic deformation energy] as a function of the applied pressure pN acting

on the block. Results are shown for the work of adhesion �γ = 0.1, 0.2, 0.3,

and 0.4 J/m2. The red data points are from the exact numerical simulation and

the black lines from the DMT-like theory (Sec. III B) also shown in Fig. 6.

For the same parameters as in Fig. 13.

We note that adhesion problems which are JKR-like for

large length scales and DMT-like for short length scales can

be approximately treated using the theory presented above:

We plot the Tabor length dT(q) as a function of logq as in

Fig. 5 and divide the logq axis into a large wavevector region

q > q∗ and a short wavevector region q < q∗ where dT(q∗)

= dc. We use the DMT-like theory to calculate γ eff(q
∗) in-

cluding only the roughness components with q > q∗. Next,

we apply the JKR-like theory for the q < q∗ region with �γ

= γ eff(q
∗). This treatment is of course only approximate since

there will be a region close to q = q∗ which is neither DMT-

like nor JKR-like, but if this region (on the logq-scale) is

small compared to the total decades of length scales involved

it may constitute a good approximation. This picture of adhe-

sion is similar to the Renormalization Group (RG) procedure

used in statistical physics where short wavelength degrees of

freedom (here the short wavelength roughness involved in the

DMT-like contact mechanics) are integrated out (removed) to

obtain effective equations relevant at the macroscopic length

q1��64, 128, 256�q0

Effective work of adhesion

Simulations

Theory
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FIG. 24. The effective interfacial energy γeff = [Ead − Uel]/A0 [where Ead
is the (attractive) van der Waals interaction energy and Uel the (repulsive)

elastic deformation energy] as a function of the applied pressure pN acting

on the block. Results are shown for the large wavevector cut-off q1 = 64q0,

128q0, and 256q0. For the work of adhesion �γ = 0.2 J/m2. The red data

points are from the exact numerical simulation and the black lines from the

DMT-like theory (Sec. III B). For the same parameters as in Fig. 19.

scale (here the JKR-like contact mechanics). When applying

the RG procedure one often finds that processes or phenom-

ena which appear very different at the microscopic (say atom-

istic) limit result in the same macroscopic equations of mo-

tion, e.g., the Navier-Stokes equations of fluid flow does not

really depend on the exact nature of the force law between

the atoms or molecules except it determines or influence the

fluid density and viscosity. Similar, for large surface rough-

ness the force law between the surfaces, which is important

at short length scale (DMT-limit) does not really matter for

the macroscopic (JKR-like) contact mechanics except it deter-

mines the effective interfacial binding energy �γ = γ eff(q
∗)

to be used in the JKR theory. This statement does not hold

when the surface roughness amplitude is very small, such as

in the present study, because the (average) surface separation

in the non-contact area is only of order ∼1 nm and at this sep-

aration the wall-wall interaction potential is still important, in

particular, for small index n. For charged bodies, due to the

long range of the coulomb interaction, the wall-wall interac-

tion potential is important for any wall-wall separation.

VII. CONCLUSIONS

We have discussed how surface roughness influences the

adhesion between elastic solids. We have introduced a Tabor

number which depends on the length scale or magnification,

and which gives information about the nature of the adhesion

at different length scales. In most cases the contact mechanics

will be DMT-like at short length scales and JKR-like at large

length scales. We have considered two limiting cases relevant

for (a) elastically hard solids with weak adhesive interaction

(DMT-limit) and (b) elastically soft solids or strong adhesive

interaction (JKR-limit). For the former cases we have studied

the nature of the adhesion using different adhesive force laws

(F ∼ u−n, n = 1.5–4, where u is the wall-wall separation).

The theory results have been compared to the results of exact

numerical simulations, and good agreement between theory

and the simulation results was obtained.
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APPENDIX: NUMERICAL MODEL

We consider the case of two elastic solids patterned with

random or deterministic roughness. We assume the generic

roughness to be characterized by a small wavelength cut-off

q0 = 2π /L0 with L0 ≪ L, where L is the representative size of

the macroscopic contact region between the two solids. Given

such a large difference of length scales, we can easily iden-

tify a representative elementary volume (RVE) of interface

of length scale LRVE, with L0 ≪ LRVE ≪ L, over which we

can average out the contact mechanics occurring at smaller

length scales (say, at λ ≪ LRVE). Note that the numerical or
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FIG. 25. Description of the gap [see Eq. (A1)] resulting from a generic cross

section of the contact interface. By close inspection of the figure, it is easily

agreeable that the deformed profile for an adhesive interaction qualitatively

differs from the adhesiveless case. Indeed for adhesive contacts the local de-

formations result from complicate interactions occurring both over the sur-

rounding contacting asperities as well as over the non contact areas, resulting

into not easily predictable displacements.

analytical homogenization of the high-frequency content of a

generic physical medium/process model is very common in

physics and engineering, since it allows one to build a mean

field formulation of the model itself, characterized by effec-

tive (i.e., smoother) physical properties, varying over length

scales of order ∼L0. This is, e.g., the case of the rough con-

tact mechanics, where the accurate knowledge of the relation-

ship between the effective interfacial characteristics (average

interfacial separation, effective work of adhesion, etc., to cite

few), plays a fundamental role in many physical processes,

from friction and thermal/electrical conduction, to adhesion

and interfacial fluid flow. Here we briefly describe the novel

efficient numerical simulation approach devoted to simulate

the contact mechanics of realistically-rough interfaces at the

REV scale.

In Fig. 25 we show a schematic of the contact geometry.

We assume the contact to occur under isothermal conditions,

and the roughness to be characterized by a small mean square

slope, in order to make use of the well-known half-space the-

ory. Moreover, the roughness is assumed to be periodic with

period L0 in both x- and y-direction. The local separation be-

tween the mating interfaces u (x) is shown in Fig. 25, and it

can be immediately agreed to be

u (x) = ū + w (x) − h (x) , (A1)

where ū is the average interfacial separation, w (x) the sur-

face out-of-average-plane displacement and h (x) the surface

roughness, with 〈w (x)〉 = 〈h (x)〉 = 0. By defining

w (q) = (2π )−2

∫

d2x w (x) e−iq·x

and

σ (q) = (2π )−2

∫

d2x σ (x) e−iq·x,

where σ (x) is the distribution of interfacial pressures, it is

(relatively) easy to show that w (x) can be related to σ (x)

through a very simple equation in the Fourier space:

w (q) = Mzz (q) σ (q) , (A2)

where Mzz(q) = −2/(|q| Er ) for the elastic half space

[Mzz (q) can be equally determined for layered or viscoelastic

materials, for which the reader is referred to Ref. 50]. Finally,

the relation between separation u (x) and interaction pressure

σ (x) is calculated within the Derjaguin’s approximation,51

and it can be written in term of a generic interaction law

σ (u) = f(u). f(u) will be repulsive for u ≤ uw and attractive

otherwise, where uw is a separation threshold describing the

ideal equilibrium separation. In this work we have adopted the

L-J potential to describe the attractive interaction, but one can

equally make use of different interaction laws (e.g., the Morse

potential, for chemical bonds). For u > uw (attractive side),

f(u) = fa(u), where

fa (u) =
8

3

�γ

dc

[ε−9 − ε−3],

(A3)
ε (u) = (u − uw + dc)/dc,

otherwise (repulsive side) f(u) = fr(u) with

fr (u) =
8

3

�γ

dc

[ε−9 − ε−3],

(A4)
ε (u) = u/uw.

Usually we adopt uw ≪ dc. Note however that for uw → 0 the

repulsive term converges to a hard wall, whereas for uw = dc

we return to the classical (integrated) L-J interaction law.

Eqs. (A1), (A3), and (A4) are discretized on a regular

square mesh of grid size δ, resulting in the following set of

equations:

Lij = −uij + (ū + wij − hij ), (A5)

σij = fa(uij ) + fr(uij ), (A6)

σ (xij ) → �σ (qhk) = M−1
zz (qhk)w(qhk) → w(xij ), (A7)

where Lij is the generic residual (related to the generic it-

erative solution uij). In order to solve Eqs. (A5)–(A7), we

rephrase Eq. (A5) in terms of the following ideal molecular

dynamics process

üij + 2ξijωij u̇ij = ω2
ijLij , (A8)

which we solve with a velocity Verlet integration scheme.

ξ ij and ωij are, respectively, the generic damping factor and

modal frequency of the residuals molecular dynamics sys-

tem (RMD), which can be used to damp the error dynamics.

Therefore, at equilibrium (üij = u̇ij = 0), Eq. (A8) returns

the solution of Eqs. (A5)–(A7) at zero residuals. The adop-

tion of the RMD scheme allows for the (ideal time) search

of the solution to move in a (generic) non-physical error space

to finally provide, at equilibrium, the targeted (zero residuals)

solution. We have found that this very efficiently avoids to

be trapped in slow relaxation dynamics and/or non-physical

(non-convergent) solution as otherwise obtained with clas-

sical (usually very slow) relaxation approaches (e.g., under-

relaxation, often adopted in the literature for smooth contact
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conditions, see, e.g., Ref. 52) applied to realistically-rough in-

teracting surfaces. The solution accuracy is set by requiring

〈

L2
ij

/

u2
ij

〉1/2
< εL,

〈[(

un
ij − un−1

ij

)/

un−1
ij

]2〉1/2
< εu,

(A9)

where both errors are typically of order 10−4. The novelty in-

troduced in the discussed numerical model is fundamentally

related to the adoption of an augmented53 Fourier formulation

of the elastic integration in conjunction with a residuals relax-

ation process expressed in term of molecular dynamics in the

space of lengths. Alternative numerical schemes (relevant to

the simulation of realistically-rough three-dimensional con-

tact mechanics) have been recently discussed in Refs. 18, 19,

and 40. In particular, Ref. 19 improves and extends the Green-

wood’s relaxation scheme,39 based on a real space formula-

tion, by implementing the multi-integration (MI) rules for the

resolution of the elastic integration problem. While MI allows

a substantial lowering of the computational cost (with respect

to the direct elastic integration), however, its adoption would

make such a model not easily (even if possible) extendible to

non-elastic (e.g., viscoelastic) interfacial responses, due to the

loss of diagonal dominance of the stiffness matrix (as known,

the latter is needed to enforce the MI rules). Differently from

the previous scheme, in Ref. 18 the elastic response is in-

stead calculated using a Fourier-transform technique with a

linearised surface Green’s function, which is embedded into

an atomistic description of the contact dynamics (known as

GFMD scheme). In Refs. 17 and 40, the GFMD approach is

altered by adopting a continuum description for the elastic en-

ergy, whereas the relaxation (numerical damping) process is

elaborated by solving the Newton’s equations of motion in the

Fourier space.

As anticipated in Secs. III–V, the nominal projected con-

tact area A/A0 is given by Ar/A0 + Aa/A0, where Ar is the area

of repulsive interaction (defined by σ (x) > 0), and where Aa is

the area of attractive interaction (defined by u (x) − uw < dc

and σ (x) < 0). In Fig. 26 we show a typical contact area map

for a DMT rough interaction, where Ar/A0 and Aa/A0 corre-

spond, respectively, to black and gray domains.

We also observe that for any discretized formulation of

the adhesive contact mechanics, a fracture tensile stress can

be related to the mesh size characteristics of the contact. To

determine it, we make use of the penny-shaped crack solution

(see, e.g., Ref. 6), whose tensile stress σ a reads (the π /4 takes

into account the square shape of the grid):

σa =
π

4

√

π�γEr/δ.

Here σ a has to be compared to the maximum tensile stress

given by the interaction law, σ t = �γ /dc and, in particular,

a detachment parameter εa = σ a/σ t > 1 in order to guaran-

tee the convergence of the numerical solution. By adopting a

Tabor number definition μT,λ = ( λ2

A
λ
(2π)2

�γ 2

E2
r d3

c
)1/3, where λ is

smallest roughness wavelength and Aλ the corresponding am-

plitude, a convergent numerical solution will be achieved if

nλ = λ/δ >
32

π2
μ

3/2
T,λ

(

Aλ

dc

)1/2

, (A10)

FIG. 26. Example of contact map.

where nλ is the number of discretization points at wave-

length λ. It is interesting to observe from Eq. (A10) that large

Tabor numbers, i.e., adhesive interactions occurring in the full

JKR regime, are numerically hard to be modelled [due to the

fine mesh description required to satisfy Eq. (A10): e.g., for

μT, λ = 10 and Aλ/dc = 102, we have nλ ≈ 103]. However,

as recently shown,40 a JKR regime can be conveniently ob-

tained for μT values close to 1, reducing the computational

complexity of JKR interactions.

It would be useful to test Eq. (A10) by comparing the

Johnson’s solution (Ref. 54, adhesive sinus contact in the

JKR regime) with the corresponding numerical simulation

predictions. We stress that comparing with the Westergaard

geometry (in opposite to non-periodic geometry, as ball-on-

flat contacts) allows to verify the numerical model in a range

of contact pressures (and contact areas) which includes the

Hertzian regime for small squeezing pressures, and which

Α�0.5
ΜT�3.38

Theory

Εa �1.0

Εa�1.4

Εa�2.0

Εa�2.8 and 4.0

Simulations
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�
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FIG. 27. Dimensionless applied pressure pN/p̄ as a function of the contact

area, for a Westergaard like contact geometry. Red curve is from Johnson’s

theory, whereas dots are the corresponding numerical predictions at different

detachment parameters. μT,λ
= 3.4 for all numerical results. In the magnified

view, points at εa = 2.8 and 4 are superposed to the red curve.
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FIG. 28. Dimensionless average interfacial separation ū/A
λ

as a function

of the dimensionless applied pressure pN/p̄, for a Westergaard like contact

geometry. For the same parameters of Fig. 27.

further extends to the fracture (full contact) regime for in-

creasing values of contact pressure. Hence, such a geometry

appears the best candidate for validating the robustness of the

numerical model. In particular, the relation between nominal

contact pressure and contact area reads54

pN/p̄ = sin2 φα − α
√

tan φα, (A11)

where φα = πA/(2A0), α =
√

2Er�γ/(λp̄2), and p̄

= πErAλ/λ (for the adhesionless interaction, p̄ is the nomi-

nal squeezing pressure to full contact). In Fig. 27 we compare

Eq. (A11) (red curve) with numerical results obtained with

μT, λ ≈ 3.4 (JKR regime), at different values of detachment

parameter εa. We stress that all the solutions shown in Fig. 27

satisfy the accuracy requirements of Eq. (A9), however only

at increasing detachment parameter (in particular for εa > 2)

the solution rapidly converges to the analytical one. Similar

considerations apply for the pressure-separation law, shown

in Fig. 28.
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