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ABBRRACT

In this paper we study the problem of an interacting
gtring. In the case of an opern string the interaction is intro-
duced adding in the Lagrangiaan an additional term which describes
the interaction of the string with an external 'photon-like"
field. The interaction is acting only at the ends of the string
to keep the invariance of the Lagrangian under reparametrization.
The squation of motion of the string is exactly solved 1n the case
of a monochromatic external field., All the spectrum properties
already known in the case of a free string are left unchanged by
the interaction. In additicon we show +that the probability of
eniission of n  "photons" off the string reproduces the dual
amplitude of the coanventional model with "photons™ as external
particles,

In the case of a closed string the interaction is
obtained dintroducing in the free ILagrangian a four-dimensional
metric tensor guy (x) associated with a curved space as in the
theory of general vrelativity. Also in this case the equalbion of
motion of the string in an external "gravitational™ field are
exactly golved for a monochromatic "graviton" field. All the main
Teatures of the Shapiro-Virazoro model are then reproduced start-

ing from this description of a closed string.
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The dual resonance model (DRH) ig g guite unconventional modcl .
Actyally it io a set of rulas for constructing scaftering amplitizdes among

ymmetry, good

n
o

hadrons in accordance with the requirerments of crossin
aaympiotic hehaviour (e.g., Reogpe behaviour) and Lorentz covariance without
oxplicit refersnce to any Lagraheian or eguation of moticn. It sbructurc
has been a mahter oF study dnring the last Tew years. Several neople have
tried to grasp the basic prineiples which are the cornerstonss of the dual
physics The scneme which came out of this analysiz, is very gencrai and

beantiful and exnibits several intercatiag physical features.

The properlies of crossiag ard asymolollc bohaviour are reglized

wim an iafinite sct of one-parficic states (resonances) lying or linear

Regge traZeclorics scaled by one unit and all with the same universal slope.
Tnig buill-in Mandamentsl coastanl o' is resporsible Zor many appealing
and urconventional Festures ol Lne DEM. Tie nasber of resonances appearing
at a certain level is growiaz up exponartially with tne mass 2 ;  Their norim
is positive definlte Zor sny value of ths space-time dixension D=6 3).
Tor the critical value D=26 1{he model prescnts tne highest degrec ol

gymmctry and tae spectrum s constructed only wilkk theo lraasverse sxcitations

E?efs. 35 and 4):1

The phkysical part eles arc charseferized oy certaln vertex operators
{Q((Z,TT} which Fave delinite trarsTorration properties under The gauge
[ [
Db
operatlors L PO
These operators L nlay a douklec “mportant roic. On orne aand
P n ¥
7
they characlerize '> the physical states decoupling the states with non-
J PrL: 3
asitive norm. Or =kec otker nand, their commutation relations wWith tne
E »

paysical vertices give the pice properties of the sraltering ampliudes .

11 conrecsion wita *hs DRM and with the goal to have an understanding
of duality in terms of hasic principles peovle have atlempted to connect the
modcs of vinration of a relativistic string wita the gzcillators whica appear
in “he DRM 8). Tn the 2&rly treatment of Wambu, Nielsern and SusskIicd the
conncction belween the string snd the spacc-l'me was somewhat ohsciure. Tkis
point has been clarifisd only receplly writing down an action ilrtegral for

with whal s dope Tor describing the motior of a point-

ine =tring in aralog
- - ) IE})? 10) 5 opr . - - - ¥ iy LR
Lie pariicle . & rew [undarmental constant of comes nere irnlo the

g=me Tor dimengioral reasons In the action irtegral. In 1lhls way the gauge



group ham a very simple physical Irterpretation; it is a conseguence of
the irvariancc of the action uvnder any change of co-ordinates on Tae sur-
Tace 9)’10). In particular the cholece of an "orthonormal' parametrization

on the surface gives avtomatically the vanishing of the zauge operators

L, 's. Tae arbitrariress of the peraretrization of the world sheet has beon
completely exploited in BRef. 11) where tne etrirg variabkles ®& and “T 4ave
teen related to physical ovservablc guartities. -f has been taksn pro-
portional to sore £ind of time wvariable in analogy witn the case of a rela-
tivistic point-like particie and & proportional to the fraction of the
total erergy included between one cnd of the sirirg and thea point & .

Witl thie ckoice of gauge the orly Zndependent deogrees of Treedom are the
trangverse ores. Arter the gquartization it has been shown that this theory
is coneigtent with the thcory o relativily only for D=26 and in tnis case
it reproduces all the featvres of spectrum of the DREM at the same value of

L. Other atterpts to reproduce the spectrum of Lho DR have beer also made

2)

using a rield thecrelical description .

A1l the previous developments are vased on a free string; they do
not give any informaticn on the Interaction betwecen strings. On the other
hand, fthe DRE gives a detailed inZormation not ouly about the spectrum of the
hadrons, but also about the couplings among tne various particles of the
spectrum. If the string is rot only an analog model of the DRM, one should
be able to urderstarnd the interaciior among the kadrons starting from the
strirg ploture. & first altempt along this direction is described in Ref. 10),
where a term ol intcraction wilh an external field at tke erds of the string
has been explicitly irtroduced; however, it is still lacking a consistent

plcture for =n interszeiing string.

& further stop szlorng this dircetion aas been made by Gervais and

oo 13y . . . - , ,
Sakila * wko were able fto wrile down tkhe n point dual azplitude in terms

of the string varizbles using the path irtegral formalism.

Ir: taie paper we start fror a string interacting with an exterral
Ticld and we reproduce the main features of the DEM (botk the convertional
Aodel with o =1 and the Saapiro-Virasoro model with 04022). A1l the
main propertics o the speetrum derived iy thnc free case are left unchanged
when we introduce a term describing the interactiorn of a siring. In addition
we can consiruct ar n  point ccattering amplitude which reproduces the dual

amplitudes and gives alsc a very intuitive Interpretaticon of them.



In the case of an open string we add to the free Lagrangian i o
5 term which describes the interaction of a string with an external
"photon-like" (spin 1 and massless) field A)“_ (x) at the ends. The total

action will then be
T

S = _d‘ES-:lSSLoﬂ %ﬁﬁ'(*))r} (1.1)

Te °

with
;))"L = 'i?‘[%ob‘(a) -+ 8’-[ 8{5-11-)] | | (1.2)

go and g, are the coupling constants at the ends @& =0, of the

string. ozo ig the lagranglian of the rrec atriag B:c: o’ ='lj.

. The interaction term preserves the invariance of the action under
a change of pararetrization on the world sheet of the string. An "ortho-
normal" parametrization can always be chosen even in the case with ~ae
interaction [Eq. (4.15):[. Varyirng the action (1 .1) one can get the eguations
of motior of a string in an external "electromaghetic" field. With an inter-
action acting only at the ends the equation of rzotion of the string is un-
changed with respect to the free casc [Bq. (4.17]]. The external field

modifies only the boundary conditions at the ends of the string EEqs.

(4.18), (4.197].

A11 these non-linear equatiorns can be solved exactly in the case

67 a moacchroratic exteraal Field ,@/,L(x) = S/_e'"k]‘j and tne resuli is:
. T .
g C (/o) R v Lk -Jo(rfoﬂ
- - +

% (%0)=% (‘5;0‘)*-[‘2 k€ K ] [ R\ xeae doi 19"(“;0)5 dz’
/L ¥ of ), Y .9’)‘ * } -
(1.3)
where

+ 2o (RK)T
dr T %

2 S (2PR)TT

R, =-wr—

P iz tho momecntum of the string.

The solution (1.3) is the su~ o two terws. The term x/:(?: , &)
reprezents the most general solvticrn of the free eguation and can be expanded
in terms of ar inTinite =2t of harmonic oscillators. The other term des-
cribes the interactiorn with the external Tield; 1t shows simple poles for

the wvalues 2Pk=n (integer aumber) which correspond to the frequercles of
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resonarce of tac string. The string iz fact resonates when the frequency
of the photon can excite one of its eigenfrequencies, Tne resonance may
disappear il the coupling congiants at & =0 and & = MW are related in
suck a way that tae numerator in {1.4) is vanishing. R, plays the role
of a kind of signature factor allewing orly even (odd) poles when

[éozz_ng]. Of course, for general values of g, ar.d B noth

[}

o = Eqp
the even and odd poles are allowed.

An iterative soiution is given aizo in the casc when the "photon”

field is ros monocarowatic (see Appendix C).

The choice of the "ortrhonormal" gauge lecaves still the possibility
of making gavge transtformations which do not change the action integral.
We show that the generators Ln of these gauge transforrations are constants
of motion and salisty she Virasoro algebra, In addition in presence of

interaction they retain the same expression ia terms of the ITree selution

2u ir the non-interacling case. In the transverse gauge we can then show
that the only independent modecs of vibration ars trnc {ransverse ones the
others can be expressed as a function of the ftransverse oscillators ard the
functional relation is unchanged with respect to the free case. This theory
can be guantized using standard methods and it is of course relativistic
invarisnt oaly for D=26 as in the free case.

I1r Sectioan 7 we soive the eguations of motion of the %trlqg ir the
cazsc of g monochromatic ficld verying with T B/‘F(X) = Z/L_(":) k(%) j
1ris is done to allow cmission of "paotons" with arbitrary polarization and

“our-rmomenium.

We can then cvaiuate tae probability ol emission of a  'photons”
off tne string and this probability reproduces the n point "pholon

smplitude of tne DEM.

A:1 the previous considerations are based on the interaction of
tne string with lhe “strong photon". In the DRM we have a complete "demo -
cracy' arong the various particles of the spectrum; 1t is the Virasoro
group which plays the role ol fully characlerizirg the physical states.
We are then led to think that we can proceed with any excited states as we
¢id in the casc of the "puoton". On the other hand, in the strirg approach
the interaction Lagrangiasn must keep 1he invariance of the action under the
reparamet{rization group. 1n the case of an interaction localized al the ends

0= the string tae previous reguirement leads (o tne cormulbation relation



(8.15) witn The generators Lf of tne group which leaves the action in-

variant.

This is the sare relation satisfied by the vertices associated with
the physical particies in DRW. We have thern a one-to~one correspondence
between tue physical vertices in DBM and the interaction Lagrangians which

keep the Invariance uader reparametrizations.

Yowever, with the excited states we have an additional problem
related to the fact that the tramslation from the classical to the gquantum
theory is not stvraightforward. In fact we have problems of reordering cxeept
for the case of ®he on mass shell "strong photon® {conditions (5.41}. These
probless will be discusscd in Section 8 where we give fthe rules for con-

atructing interaction lagrangisns associated with excited states.

_ As the open string is related to the conventional model with
DLO::1 the cloge siring is connected with the 3hapiro-Virasoro model
(svig

In thig case it is quite natvural to introduce the interaction in a geometrical

b
14 ) : . . .
) ) where the "strong pheton" is replaced by tho "strong graviton'.

way without adding sn additionsl term in the Lagrangian as in the case of
the open string. This is obtained introducing in the free Lagrangian a
four-dinmensional metric tensor Epv agzociated with a curved space as

in the theory of general relativity.

In this case the eguatisn of motion of a strinzg in an external

gravitational field 1s given by

9+ o al & r,f}(x) D,rfxva_'xg = 0 (1.5)

where r;g‘(x) is the Christoffel symbol and ‘9 4 are the derivatives

with respect to the light-cone variables j i:=f1t03 {1.5) can be solved for
a monochro~atic "gravitor" ficld using metnods analogous to the case of lhe
"gtrong photon". All the main fealures of the SVM can then be reproduced

starting from our description of the closed atring.

The paper 1is oreanized in a way that all the scctions are very
auch self-contained. This should allow the reader to go directly over
those sections that interest him more. For instance, the Lagrangian and
Hamiltonian formslisms are indcpendent from each other; the reader can
easily skip one of them or even both of them il he is malinly interested in

the solution of the equations of motion.



The paper is organized as follows.

In Section 2 we discuss from a very intuitive point of view the
main Teatures of the string giving also sonc gimple argunemts wihich maike

nore clear all the further =more formal developments,

Section 3 is devoted to lhe discussion of the Lagrangian [ormalism,
Starting from the Lagrangiar we derive the eguation of moiion of a string in
an external "electromagnetic'" ield and we discuss the iunvariancc under re-

paragetrizations.

1a Section 4 we set up the Jam!ltorlarn Zormalisz. Using this
Tormalism we rederive the equatiors of motion and wWe prove theo consistency
of our TLagrangiar., The lash part of this section is dewvoted to tae study of
the symactry properties of the action and to the comstiruction of the gene-
rators of .symmetry Transformations for our action integral. These generators
are the gauge operatbors Lr which are constants of motion and satisfy the

Virazoro algebia.

In Sesction %5 we discuss the solution of ithe non-linear cquations
of motion of a string in an sxlernal Yeleciroraznetic™ Field and then we
show that the transverse modes zre the only independent modes of vibration

of “he string.

Tn Section & after the quartization procedure Lhe three-point

function is cxplicitly constructed.

"n 3aecticn T we construct the . probabilily ampliitude for the emnis-
sior of n "pholons" and we give the riales to translsts ary guantity appearing
in the string model into tiie corrssponding exvrcssion of the DRM a4d vice

Versa,.

-~

Sectign 2 is devoleda to the excited stabtos. Thne closed strirg and
ihs intcraction with sn exferqsl gravitational Ticld iz dezcrived in

)

Jeztion 9.

Jacllon 70 1a devoted to some concluzioqas and fiaal reriarks.

In Appendix A we give the relstion betwesr some four-dimensional
quarvities az She electrozaganstic currert and the evergy momerntum tersor and
the correspondert two-dimensional guaatitiss. Avperdix B s devobed to the
zolutlon of the equation of motion 2f 1 siring v an exdterns’ cleciromagnetic

Tield,



In #Appendix C we give a perturbative solution when the external
field is a superpositlion of two monochromatic photons. Finally, Appendix D

is devoted to the Hamiltonian formaliem irn the case of a closed string.

ELEMENTARY CONSIDERATIONS 05 TEE STRING

Our primary task is H0 show that the dusl string theory is more
than a purely analog model for the mass spectrum of DRM. Indeed, we shall
see that the dual string, even at the classical level, allows us to build
ﬁp an intuitive picture of some important features of the dual couplings.
One simple example, oaly, will be given here, a more systematic study will

be Tound in the next Sections.

It has been recogrized for a long time that the coupling of &
strong photon to any physical state of DRM gives a universal gyromagnetic
ratio ,15) G=2, where G is defined by /{,U:(Gg/ch)J,/u/ is the
dipole magnetic morernt, m the mass of the state, J itg angular momentum
and g the coupling consbant. The same result can be eagily reproduced in
the dual striang by placing a clarge g av one ead of the string, as we shall
gee shortly [éee also Ref. 16[]. In order not to obscure the elcmentary
nature of our consziderations, We lirit ourselves for the morent to a very
gimple set of string motions gointed out in Ref. 11}, made by rigid rota-
tiong of a straight string ! of length Za with an angular velocity o
such that the ends move at the speed of ligut, i.e., W a=c. The co-or-

dinates of a point of thig string in the c.m. Trame are

£

v

%e = T

BIn
e
]
=

where XT::X1+1X2 is the two-dirensional vector in the rotation plane 1, 2,
L
t is the time and |r|<a is the distance of “the point from the c.r.

The transverse velocity is clearly

= = (2.91)
. = CCL .1

while the covariant momentum density TG, is defined as:

dx d (2.2)
fl = .C M = o -
= As 3 WT &
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oxr

.ITT:-?OUTJT ,mzfucy-r

where s/c is the proper time of each point of the string and + 1is the

b/ &

time in the c.m. frame, g p 1o the Lorentz factor (1»(v§/02))_“, and

S o is a universal constant with the dimension (mass/length) whica ray be
interpreted as the rest mass density of the string measured in a non-inertial
frame which rotates with the string. The density of the mass j? (r),

measured in the c.m. clearly is

8@ = £ T, )

thuz, we have, for the total mass,

m = o’ZSS(z)o\‘L = TP, O (2.4)
0

The angular memertum along the rotation axis is

[ T

o i 2
<~ _ - z A x - <
J F Q\qu-r"f(‘)dt _.;Zc&a.i xﬁ-_ﬁ- o ™

Then the masses belong to a "linear Regge trajectory™ with a slope

—
M3
-
|
—

o = [zwgoi‘:cﬂ'i (2.6)

If wc put a charge g at the end r=a of the string, it generates a cur-
vent L =z{ed/2T} =z(c/2Ta). The dipole magretic moment of this current
is )L::(i/c)@l, where (I, 1s the area of the surface bounded by the ira-

. . . 2 .
jectory of the charge, tnern CQ,= Ta". 3o we have

: T
M= 3 To. = & T (2.7)
awe mac
Thus, evend in this case tae gyromagnetic ratio is G=2. It could aiao he

ahown that this result even holds for the most general motion of the string.
) =

In view of this coincidence one could procced to the higher multi-
pole moments to check whether this coincidence comtinues to ao0ld, More
simply oae can teat whether the total coupling of a resorance of DRN fto the
strong photon coincides with the coupling of the correspoading siring state

with an external electromagnotic field.



The coupling of a vecter potential A to the current generated by
the charged ena is g(?/c}-A, where V¥V 1is the welocity of the charge.
The effect of this field is governed by a nor-linear differential eqguation
that we are able 0o solve explicitly when the fiela is a moxnochromatic
wave, whick 1s just the case considered in DREH. We shsll sec that in such a

case this coupling coincides exactly with lae puoton veortcx of DRU.

Bafore we proceed to descrive the salient festures of the motion
of the string in such a field, 1t is convenienl to inlroduce some standard
agsations of the string tacory which allow us fo write in a very simple
form the general solvliioxn For the motiorn of a free string. FPFirst of all
we replace the two guartities t© and r which label the string co-ordinates
by the two adimensional parasmeters T and & , O<F<T;, +ihat arc,

for the motion (2.|)

_ et
T = (2.8)

6= orcos &
a.

[

& more gesnersl definition will be Toumd in the =xcxt Secticnz. Witk this

choice of parsceters the equation of motlon of the dual string is simply

Py XM _
552 Vet (2.10)

The general solution represents a supcrposition of waves travelling slong

E

the two directione ir tihe siring with s constart velocity v=de /g =17,

Talay

xp(z,6) = §(z+6) + §.(T-9) (2.71)

3

Trne coadition Lhat no romentum flows across The ends reguires, irn the case

ot free siring, f}A (g) :gﬂ_(j ).

Tae cquoations (2.?0), that describe tae movion of any c¢lasgioal
string, must be supplerented Mor a dusl string by further constrainls wnich
Tollow from the reguirezert fthat the action ke proportiocaasl to the srca of the
surracc described by the str'ng n She spgeo-iimc (and nerce invariant under

roparamelrization).
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This constraint is (@ x/9% i?x/?c')gzo, or (QI’(‘?)/Q;)?:O

In view of the relation

il"?i 5{: }L(TFO) :'JC).L('C)

the above constrairnt means simply that the cnd points of the string must

travel at the spcoed of light.

Wrnen the charged end interacts with an exfernal electromagnedic
field, some rnomentur is injeected into the slring, then the outgoling wave
is 20 longer egual to the irgoing ocnae gj'.l sy however, the Eaq. (2.10) is
urichanged, This means that the disturbance (phonor_s) produced by the field
goes Throuzi the slring \-‘-."\i_‘tl“_ a velocity W which is constarnt and equal to
1 in the & , © plane *j. Lfter a "time" W  the disturbance reaches
the end at & = T where it is refloeted and comes back at & =0 after

a total time A‘c =27r.

This characteristic 1ime, whicn in dimensional units 1s
At=:W '#E, where X 1is the energy oi the slring, =eems to play an
important rolc in the theory of interactirg string. Indeed we snall
see that if the siring interacts with the exterral fisgld for a time
AT EQTT, the motion is linear in the field so that the disturbance pro-

duced atbt each iime is not affected by the photons shsorbed before.

A new phenomenor happens wher the interacting time 1s > 2. Ia
sveh a case the Tield may irteract at a time &  with Tae phonons produced
ot the time & -2W, hence the responsc of the striag is no longer linear

ir the Yield or, what iz the same, in thc coupling corstant g.

I+ has to be noticed thal the same action whick gives the dynamics
o strings with [ree cnds can be used to describe a aiflferent mechanical

system scb vup by cleosed strings. 1t ig already known lhal such a systen

* N -
) Actually in terms of the physical paramcters r and t, the speed
of sound along the string is a function of the transverse velocity vg.
For instance, Tor a small digtrubance wnich propagates in the straizht string

subject to the rigid motioxn of Eg. (2.1), one has from {(2.3), (2.9) and (2.11):
2 o |
W= ;d_.,"._l_': ﬁéﬁ&-:cmzc&'
4t ds d=z dt a T

One can show that the last expressior holds also for the most general

string 1 .
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reproduces the spectrum of the Shapiro-Virasoro model (SVM), and we shall

see in Section 9 that it can also describe, in a curved space, the inter-
action with a "strong graviton. Ilere we want to show, to coxnclude this
section, that the glope of the Regge trajectory of the closed striung states
is 2el', when g ' is the slope of the open string., Indeed a simple set
of wotions of the closed string is set up by two straisght strings of the kind
described in (2.1} which adhere to each other in order to form a unigue

strivg whose mass density j?c is twice that of the ordinary open string,
that is g :25’.
c

How, Eg. (2.5) gays that the angular momentunm Jc of the closed
string is twice that of the ownen string, whereas the gquared mass ig of

2 2 _
course mc==4m . It follows then from Eq. (2.9) that the Regge trajectory

Tor the closed string is

Je - ca<-§) ’1’“3 (2.9)
,h

We conclude then that the string picture of DRM allows us to connect the
slope of the conventional model to that of VM, which in DEM TCormulation
are obvicusly unrelated. 1% ig interesting to notice that the string value
of the slopc of the SVM is just the one needed to identify, in critical
gpace-time dinensions, the spectrum of SVM with that of the Pomeron sector
of the conventional model, as 1t has been shown recently by Olive and
Scherk 18). We defer to the last Sectlion some further comments on the

relationship between closed strings and the Pomeron contributions to the

conventional model.

TIIE LAGRANGIAN FORMAT TSM

In bthis Section we use the Lagrangian formalism to derive the
equations of motion of the sitring in presence of an external "electromagnetic
field". J{General pronerties of the free.and interaction Lagranglan den-
gities are examined. We shall also deduce =ome ldentities appearing in the
Lagrangian formalism which will manifest themselves as "constraints" between

dynamical variables in the Hamiltonian formulation of the theory.

i) The interacticon Lagrangian den51ty and trhe equatioas of motbtion

In the free caze the action intexral is given by



T T o 1
_ - _ 4 SIS e
’S;m - Sd‘j dd-t ‘(D{m - _;‘_?.T:b‘.hcl\g&tjolggx‘x’)lp mlxﬂ (3-1)
R - AR

Here we are u=irg The same notationsz as ir Ref. 113, fo(I.,G) are the
string space-time co-ordinates ana the dot and prime denote differentiamtion
with recspect to T and @& respectivoly, T ana & are curvilinear
co-ordinates on lhe surface swept oul by the string during its motion.
Sometimes, wc shall also use the symbols _50 and 51 instead of T

and & , sand the notation x% ,0 %/ ,1 for the derivatives of the x/,

1
with respect to _go and ,g respectively.

Following the suggestion of +the previous section we now introduce
an exterral cleciromagnetic field A)F(x) and we write down the interaction

Lagrangian density in the ¥, & space in the form

Lo = £ s(e) % A (3.2)

A

whers _f () iz tne "charsze" denszity on the string anmd = is interpreted

ag an irternal Llire co-ordirate in the parameter szpace. The same Form of

&

int
irteraction Lagrangian deasity la the Minkowski space:

may also be recovered, according to Ref. 19), starting from the usual

ﬂ,ﬁ(’l) )}*(,ﬂ (3.3)

ard looking for the corresponding density ir the parameter space (see

Appendix A).

Thre action Zalegral in presence of thne interaction becomes:

S = ngg (Kom -l—o{;wt) (3.4)

ir the followirg we will choose a unlt system where pl'=f=c=1. We now
recall the Tundamental property of the Tree action integral to be invariant
with respect to arbiirary reparanetrization of the T, 6 variables on the
two-dimcasional world surface 07 the string. Tnils ig a consequerce of the
ceometrical mearing of the integrand in {3.1) (area element on the string

surtace). This invariance iz the analog in the string model of the gauge
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invariance under the Virasoro group in the dusl medels. In order to daintain
such important invariance property ir prescacce of interactions we are forced
to give an intrineic meaning to the Eq. (3.2). This car be done placing

"eharges™ at the eads of the string, whichk are the only points unaffected by

reparametrization.

Consgenuently, we choose 19)

sl = 3,50 t+ 9, 8(6-7) | (5.5)

go that

Sa'.ul't' = S

T,

de 3 g at (e, Bulateo) + 3 %) (x(n))}

and the homogeneity in x insures the invariance of CP ot under repara-
metrizations. The eauations of motion are obtained in the standard way,
imposing that the variation S'S of tne action {3.4) vanishes when the

"fields" xf&('t, &) are arbitrarily varied, with the oaly condition
P- -
Sl (ri,6) = oxl(zy,6) =0 (2.7)

One gets:
=N

S = - (s o 9&«& Y +Sa Hpesar |

=0

(3.8}

TS %t 4 920" < o T oo o
¥ Srit ey AN S L DY ¢ drj 2%A_ 4 D %A
on ox” At 3 K t‘. ox> dt 9*“ 5)<

¥

Henece the eguatiors of motion are not modified with respect to the free case

/ ,C)a\pfr-e& — o (3'9)
k fo’:g

Instead, the boundary conditions are modified and are given by:

R
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Lt G R T
ax'" "\ Tex? Tdv ek )T 0T

2 o AP
© 2 xufl 4 DA -
~ Ttk 5L =5 )T /577 G
9X ox dt Ok

The physical meaning of the neW boundary conditions is clear. In the free
case { 96£frec)/(a'x'ﬁ')=0 expresses the fact that no four-momentum
Zlows across the boundaries of the string. The new bhoundary equathions
describe the exchange of momentum between the string and the external
Ticld.
1) Invariance properties of the Lagrangfan

We want now to stress these particular features of the string
model that do not depend on the particular lLagrangian, and are ¢on-
sequchnces only of Lhe invariance of she action integral with respect to a

reparamnetrization group confainiag two arbitrary functions.

We begin by establidhing the conditions that a Lagrangian nusi
satiefy so that the action integral is-invariant under such a group. We
suppose fTor simplicity that the Lagrangian is function of the Iields xF
and their first derivatives only x}*,i and we exclude for the moment
explicit dependence on the parameters 5 i. These conditions are met
by the free Lagrangian appearing in (3.1). The modifications to our con-
siderations due to the ¢ dependence of the interaction term are trivial
and postponed fto the end of this subsection. We now perform an infinitesimal

co-ordinate transformatlion:

A

E = g"' + cc_‘(gigd_) (b: Of‘i.) (5.11)

with 5" infinitesimal arbitrary functions of the ' which do not change
the points & =0 and 6 =T [that is £( €=0,T)= £ 6=m, v)=0].

The fields x)k will correspeondingly undergo the variations

Sok s - e (51
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Straiehtforward calculations give the change in the functional dependence

of 8 a=
) Y SN K ‘
$S = g"\zf Py ox7 & 5;“;8%'L + 9;,(8 Ko) (3.13)

’

or, using (%.9)

| R L AN TR E-Y SN SR P
RS "S 1 (01”55- == x,j)ﬁ tluz, @4 o
é)K’}L S
where Qr. ig a shorthand notatiorn for the left-hand side of the eguations

of motion.

_ If 8 has to Ye invariant under (3.11) the integrand in (3.14) has
to vanish identically. Koreover, bhecause of the appearance of the arbitrary
functions E_i, the coefficient of g . and gj,; muzt vanish separately.
By imposing the vanishing of the coelficient of & J,i we get that a
Lagrangian of a theory invariadt under reparameirizations must satisfy the

cguations:

. ' *
cf 83 - —@ip fx,}t) =0 (3.15)
X .

or, cxplicitly

f - _g;{ P o (5.15a) ’.-tJr _z_iéf":o (5.15b)
ox* X
. o R M
at éﬁf'## e} (3.15c)0(’ - 'c%(_’.# © {(3.154)

*) Wote that the guantities .
ogg;._ K rx”-)g)
(<55 - 58,7
whose divergence appears in the integrand of (3.14) are the generators
of the infinitesimal tranéformation which leave the Lagrangian invariant.
The fact that they vanisgh identically is peculiar of a theory covariant
with respect to transformations containing arbitrary functions 20).
As we ghall see below the relations (3.15) give rise to the primary

constraints of the Hamiltonian formalism.
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The requirement that the coefficient of ¢ J be zero, doeg not introducs

any new relation as 1t stems from the following identity:

/ " M, A (3.16)
ax e .
/ /
It is interesting to note that (3.16) together with (3.15) explicitly shows
that the cquations of motion are not algebraically irdependent, but satisly

the two conditions

L/A ’x}jJ =0 (J=°/i> (3.17)

strictly analogous to the Blanchil identities ol ‘the gravitation theory and
The E‘JLv,)Ly =0 identity of the clectromagnetism *). The prcacnce of
suech ideatities among the left-hand side ol equations of motion is clearly
related to the necessity of imposing auxiliary gauge {or co-ordinate) con-
dltiong in order to restrict the number of (formally) different solutions.
In the string model we may impose two such conditions: a counvenient choice

]
ooing, for example 9),10)

- g ! \ -
rxz-{—!x'?' = x =90 (3.18)

By adjoining the gauge conditions to the equations of motion, one ohtains
an overdetermined system of differenlisl equations that is solvable just in

virtue of the alorementioned ildentitiies.

Wnen we pass to the consideration of our actual toltal Dagranglan
(3.4) some minor modifications of our previous congideration are necded,
because bhe interaction term (3.2) docs explicitly depend on ¢ . We al-
ready stressed, however, that the explicit dependence of ‘the Lagrangian on
& can be conpatbible with the invariance undeyr reparametrization it {only

L. . - i . . . 16
it appears in a Torm of a delta Munciion at tae boundaries ). The

* X

£
Eq. (%.6) shows then explicitly tnat the hozogeneity ol the interaction term
) in x gives us automalically an invariant action integral .

*
) Wote that since our transformabioa law {3.12) does not involwve thec
derivatives of & J, the identities (3.?7) are algebraic rather than
differential, as Lt is in the case of gravitation and elccironagnetism.

* &
) Conditions for the invariance of more general interaction Lagrangians
=1 &

may be found in Section 9.
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Az far as identities (3.1?) are concerred haey are obviously
tne mame as in the free case because thco equations of motion (%2.9) are left
unchanged, in the ¢ase of an interaction at the ends,. For the deduction oX
the constraints in the Hsmiltonian formalism, it is useful to rewrite the

Eqgs. (3.15) in bterms of our total ILagrangian. By tae substitution

of '”itot "’fint ore obtsins:
Loy - Oltt xr = o , %ff.f;% = F}%%’Fﬁs)
ox* ‘ox (3.19)

ao'e{.,-\— e odrr 3 . M
Ttk = 0 -_'x—f,::-ﬂ'x 5)

We conclude this subseciiorn with the calculation of the siress erergy tensor
in the case of the frece stiring. Let us consider the string co-ordinates =

as "rields™; +the enerzy —omentum tensor is given by
. ¢ M .
t R g R g‘f"- ___9£ v 4 ,t, ) i) (5.20)
} ) M 7y L’) L
ax' .
We lind, however, that because of corditions (3.15)

t“ (3.21)

idertically.

Obviouzly, this siress fensor has nolhing to do wita the true
energy momertuw tenssr of Lke string lun the four-dimensional space . Asm

it *s shown ia Appendix A, it furns out to be

[} W 1L M 2 ¥
(% '*““’)['ac"A Yeat 7:] PR Y 4

KRR

1
where yr‘:}cr(lgo’g ) are the parametric eguations ol the surface described

(5.22}

T = -4 [ 8°(5-200)

by the strirz.

*) R , iy :
For the sake of simplicity we refer to a four-dimensional space in whicn
the string moves; of course, our treatmen®t works Ior any number {> 2)

02 dimensions of the Kinkowslki space.



We have mentionsd belore some analogies between fhe string theory
ard those of gravitation and electroragretism. In all these covariesnt
theories we may always carry out a transforration getiing new solutions of
the differential equations satisfying the same initlial conditions, but
formally diffcrent at laver times. That mesns that the equations cannot
detcrmine thc =olution unidquely from a set of properly chosen initial con-
ditiens; 1L must be irpossiklc to solve the equatioans wita respcet to the
gsecond time derivatives. TIr our casc the coefficients of the sceond

derivatives are givon by

/\f“} =

Gita (
ox’ x”

mist pe a singular matrix, In Tact we may ascertain

)
.
I
LY

—

We conclude taat /\)*9

this fact by differentiating with respect to ¥ the merneral equations

(3.75a) and {3.150), obtairing:

> L o _

.P -— -, — e ——— i
s A i & T |
oxP 3x” g Ox M ox’ (3.24)

- 4 - . . . - - - -
Jote thal vecsuse of Lthe lincarity in x:}k of the irteractics Lagrangian
N 24

(3.?) Yac same eyuations (5.24) hold alzo for tne iotal Lagrangian;]

From these equatiors we doducce that ||/¥“);H is a singuiar mabrix

. ' . L] -
of rank two, posgessing the two null cigenvectors xPana

In the Harviltonien formulalior one defines

r. 2L
T = 2 X

s0 that the Jacobian || (SNZﬁ/a:£9)|JE H /\}Lyil iz zero and we cannot solve

for tne velocities in ferms of the nomenta. The conclusion is that we

(3.25)

must have two primary corstraints in the Hamiltorian formaiism, i.e., two
relatiors between the momerta Trr y The Field co-ordinales ™ and their

¢ - derivatives.

If we egain limitl oursclves to the general Lagrangians not ex-
. . a] 1 . . ) Lo
plicitly dependcnt on 5 . 5‘, Fos. (3.15) give e the form ol these

two coratraints.
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Equation (3.75b) gives directly the constraint

ﬂ_/u %V* = O (3.26)

. ¥
To find the second constraint we differentiate {3.15d) with respect to X

and contract with TJf Y obtairing:

2
oM o™~ _ 2 ¥ (3.27)
ox”

s0 that
WZ = ‘?( ®x, x*‘) (3.28)

. . - o . 1
with T horogeneous Turction of degree 2 in =, In the case of the
free ztring we have rno explicit dependence on x?  in the Lagrang: an

or other four vectors which can be used; =so that (3.28) should becume:

-n*'z— + d\xll-:."ﬁ (3.29)

where of 1s a constart, This consirairt is imrediately verifiable to hold

with ok = [1/27F] .

When the "strong-photon" Tield interaction is turned on the mo-
dified cornstrairts eguations may be found in lhe exactly same Way by using

Ege. (3 1¢) 3nastead of (3.75) or more sirply observinz that the corjugate

4

momentury: Tr’~ in presence ol tke interaction term (3.2) is modified wita

regpect to the frece case only by the constant term

S’(s) ar (3.30)

In voth ways we [ind as modified constraints tae eguations
(e - 3O Ap ) =0 (5.31)

and

(TI"'S'(G)AF)‘Z_‘_ (%]7» = 0 (3.32)

respectively.



THE JAMITTONTIAN METHOD

i) Bguetion of motion
In the previous sectlor we developed the Lagrangian formalism o
write down the equations of motion of the string and study the constraints
imposed on the lagrangian by thne inveriarce under the reparamstrization group.
This formalism 1= very corvenient to constrain a theory to ke relativistic
invariant. In Tzct one has 10 nave a Lorentz invariant action integral and
thig will automatically insure that any development from this action will

he i agreement with the ftaeory of relativity.

Tn this Section we will consider the Jamilteornian method which,
on tke other nard, ia very conveniert wher we want to guantize & classical
system. Tn Fact the transition from the classical to the quantum taeory
can he done very easily inlerpreting the aynsmical variables as operators
actirgz in a given Hilkert space and transforming the Polason brackets ol
two dynamical varishles into the commutator ol the corresponding operators.
Of course, one has to desl then with additional problems related Lo the non-
commptativity of tae guantitied appearing in the quartum theory. Tais fact
may spoil the Liorentz covariance ol the theory whkich, therefore, must be

chneczed aga.n at the gquanium lovel.

We start with the action integral:

Ty LA
S = So\'cg&o' o{/(%,fi,'/t*)
T s
(4.1)

L5, = Lo (%, %) + $6) %, AN ()

wiich is invariant under any reparametrisation which leaves uncharged the
poirts & =0, W. S’ () ia given in (3.5} and the Fiela A/,.(x) is chosen

of the form
vk
*®) = (A1)
with tle additional conditions:
T_ 1
k = £ = k‘£‘-0 (4.11'!)

Weo discuss lhese conditions in the next Section.
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Ls a conseguerce of this invariance the [Hamiltonian density of

the system is identically vanishing Léee (3.?9aij:
X = 2T - £ =0 (4.2)

where TD* ig the conjuzate momentum

DL
Tr)* N il (4.3)

This is a choice that we can always maxde in a relativistic invariant theory
where we do nol want to kave one particular time playing a special role; wc
want to have the possibility of wvarious times 7 whick are all on the

same Tooting *).

The vanisghing of the Hamlltounian does not mean that we cannot
desceribe the dynamical systew using a Hamiltonian formaiism, but it is
connected with the symmetry provertlies of our Lagrangian., Taey manifest
themselves in the Hamiltonian formalisr in a set of constraints which

involve the dynamical variables x/# ana T 21)

ko
) We have the same Teatures in the relativistic theory ol a free polnt-

like particle where the Lagrangian can bhe written as:

b
4
. d'x
C;<’ = - ﬁTV‘S -ﬂiz |ﬁ‘t o = _.J:
t;d ’ e A<

where ¢ 1s the proper time., The Hamiltonian is then identically

zero ad a consequence of the homogeneity of first dezree of J{ :

] , o
4o dpode e 2

Therefore, the Hawmiltonian can ke taker to be proportional to the

constraint
2.
P% = >\(f9 4-"“1)
Starting from thls Hariltonian one can then evaluate the egquations of

motior.
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*)
mary constraints given by the following eguations deduced in Section 3

EEqs. (3.31), (3.32):[

. In the case of the Lagrangian (4.1) we have an infinity of pri-

vkx . }
('n" - e g(g))- [ =0 (4.4)

('!T- Ee,ak’fg(a))‘z +("_)ZLT’T)Z =0 (4.5)

wnich can be recazt in the more unified form

2

) ¢ ka
]_( (6 = i—(ﬂ-fe kgfa) * ﬁl) =0 (4.6)

2T

Due to the existence of such constraints the Bamniltonian of our problem is
not vnicuely determined; we can always add to 2{ any combination of the
constraints without any change on the physics of our system. Therefore, we

are [ree to write the Hamiltoriar in t=ne form

. ;ji [} (c,6)(T-2e 3(6)+——) {r(re)(ﬂ"fe §&- ni).j (1)

f.(€,6 ) are two arbitrary Ffunctions.

We can assume tken canonicai Poisson brackets at egual T

gf*(uo (7:5)} 9" §(5-6)
(4.8}

§ar(ee) , 20 ) )= {7700 T ) j=o

g0 that the eguatior of movion of & dynamical variable becomes in the

Hamiltonian form

*
) Equations (4.4) and (4.5) give a constraint for any valuc of & ;
ary combinatior of these eguationz at difforont G‘ (in particulsy

L derivative) ls still a primary constiraint,
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..:.E.(-) = {O/ H‘S + 2‘3‘ {£.9)

In particulear, for =x and TT we obtain in our case {no explicit dependence

on T )
o'c={fx,Hj ; jT:{JT,H} | (4.10)

Using the Hamiltonian (4.7) ard the Poisson brackets (4.8}, we get:

é; = a kX ’
oy '-2[5"'(“6) +g'(t'6).-,[-,r—£f(d)e ¢ % B"(t'@* g'(r'ﬂz%r (4.11)

Iz order te see in a more direct way the aralogy between our problem and the

dual resorance model we choose the particular gauge where

. Ckx

T = .‘22:6!-1‘ + & fP(6)e (4.12)

Therefore, the functions fi( 7, 6) are coupletely determined:

£‘+(T.6) = -E, (t.8) = 4 (4.13)

and the Hamiltoniar beconmes

°
H o= o [(r-eesef (2] “

s
E=3
_—

By substituting (4.12) in (4.6} it is easy to check that this particular

gauge corrceponds to the choice of an orthogonal parametrization suecn that

ra
L5
-Lz(fcioc‘> =0 (4.13)
16T

Ag we will see in the Tfollowing the Fouricr components of the

Eq. (4.15) say ast that the Viraszoro operators Ln are zZero.
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The equation of notion for i gives in this particular gause

" VY cha
Tr/‘('c.o') = _”_‘/:a__g_f.'_‘) + L KaEy (M-e5(s)e jf(a)e -

(4.16)
H i
219 g + 2D §(s-7)
an LM
The use of (4.12) gives finally the egvation of motion of the stiring
L1 H - .
X - % =0 (4.77)
with the boundary conditions at & =0,7:
. . vkx i )
bg'o (f}‘knfkrfv) x, e — _2_:_..._/‘ =0 a_i' £=0 (4.18)
an
Lk A
; F ¥, # )‘) ™ ¢ .Z_. _— =
"31r(£ k- kBe) %, e v X =0 ab s=7 (4.19)

These egquations describe the motion of the string in arn external "electro-
magnetic’ field and are, ol course, the same aw those obtained in the

previous secilon by means of the least actior principle.

ii) Consisteney conditions
In the second part of this section we will check the consistency
of our Lagrangian. Iz fact the Lagrangian degcribing a certain clasgical
system cannot be ceompletely arbitrary; it kas to satisly certain consisgtency
conditiors whichk inscre whe consisgbaazy o7 ths: corresponding equation of

motion.
Gulang from thae Lagranglan to the Hazilidonian Formalisc we g2t a

o T . On th:e other hand, The evolution of a dynarical variable is
determined by the Eg. V4.9). Therefore, o kave a congistent Torralism we
must regquire the walidity of the constreinis il along the motion of our

Sy STCM.



Ia our case, this leads to the requirement that

iL(-_'-)(r,s) , H] = O (4.20)

The use of the eguation of motion and of the constraints (4.6) iz allowed

orly after the computation of the Poissor brackets.

Ueing the cenonicai Poisson brackets (4.8) it is easy to evaluate

+
the Poisson brackets befwecn the L( )(T ,6’) s

i L(tgr.a), L(ﬂ((‘a')j: + 4 (71'-5; eikzi %;)(;,s) (Tf-se;k; i%’)(fﬁ?. (
4.2

4” 1)
. 4 5(6- ')
a6

(4,22)

) () : K
{;_ (o, L (r,s-)j-_ + S(o-a')(kff,—kyg/t) %_*“TT e s

The right-hand side cf (4.22) is vanishing for any ¥ due to the boundary

conditions (4.12), (4.19) and the conditions (1.1"). Then we get

* ; :
EL(-)(t.ﬁ)/ Hj = x4 d (F-se“’"‘g(s) :r‘f_’)?' (4.23)
% ds am
The right-hand side of (4.23} is the derivative with respect to & of the
prizmary constraints and hence it is stili a primary constraint. In such a
way we have shkown that the commutators of the primary constraints with the

Hamiltonian vanish and do not generate any secondary constraint.

In conclugion the constraints present in our problem are consistent
with the 1T -evolution and if they are satisfied at a certain valuc of T

they continue to be valid for any value of T .
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iii) Symmetry properties

i —— . T Pt 0 TR g o

In the last part of this section we study the symretry properties
of the action (4.1) in the rarticular gauge wnen an orthonormal parametrization
has been chosen. We will see that a number of symmetry properties of tre IDRM

will be related to the invariance of our Lagraagian under reparametrization.

We have secn that the action is invariant under any change of the

parameters

Sf._,._ = &y £1(§+;§-) (4.24)

which leaves the points & =0, N invariant. We use the light-cone wvariables
L= T+ & only for our convenicnee. § 4y are small quantities and fi
are arbitrary funetions. If we choose, however, the orthonormal gavge and

then we rmake any transfornation of the type (4.24), in general the conditions

. 2z .
j.. 2 (z + vz‘) =0 (4.25)
16

are not wvalid any more. In Tfact, only a subset of the zauge transformations

preserves the relation (4.25).

It ie¢ easy 1o checz that the transformations which do not modify

the relations (4.25), are of tke particular type

S.gi = Sﬂ: &i(f:‘:)

This is strictly related to the Cfact that, wher the equations of motion are

satisfied, the quantities

(72 tzl)z ) [2 %}t—: =° (4.27)

are function only of § n respectively and are the generators of trans-

formations on thegse variables separately.

Wkat happens nerc is analcogous to the case of the free guantum

electrodynamics where the action is invariant, under gauge transformations:



A/L(_'Z_) —> Aﬁ(z) + %,LA(«) (4.28)

where A (x) is an arbitrary function. However, il we choose a particular
gauge like for instance the Lorcntz gauge A {x)} is constrained to satisfly

the d'Alembert equation:

0 AL = o 2220

The additional rcquirerent Lhat the trasnsformations (4.26) leave invariant
the polnls @& =0, 7 ilwposes some restrictions orn the functiors ¥ znd

ﬁ_(;):f_(;k{(g ; ui(ﬁ"’) ‘Jci(f‘"”) , E,=f £ (4.30)

In vomclusion the most goneral transformstion which presgerves the

Fangaen (4.27) and leaves Javariant tac points & =0, T can wc written as:
_ 4431
Sgi = € {(5) L)

where f(f Y Ls veriodic of period 2.

The generators of the previous transformatiors carn then we written
ir terms of the constralinsa:
m
% rx')? - 2"\
L - I {48 (.—_.—-—) -E-(r+o')+ ( ..___.)-g(r-s)
{ 2T L ' (4.%2)

2 G

Using Lhe ecguatiors of molion and the pariodicity oX fﬁ?;} E@q. (4.3OI]

it is easy to saow the tollowing sropertics of LF:

.
!

A1 iy 1

it - [E3 e fe0 - (57 oo zo
4
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where

(4.35)

FO® 4 = £05) £ 809 - ) £ 4

being f(_f ) and g(@ ) two funetions of period 2W. Tae EHag. (4.33)
states that Lf is a constant of motion and it is in agrecment with the
equatior of cvolution

4 Lo‘ = %L‘F» H] (4.36)

dt

as we have checked above.

The expression (4.34) tells us that the generators of the trans-

formations which leave invariant our Lagrangian, form a closed algebra.

Starting from the generators {4.32) the transformation properties
of any dynamical variable © vnder a transformation of the itype (4.34) are

*
given by the eguation

S0 = ¢ EL},,O} (4.37)

In the particular case ()::X we have:

{4.738)

Sxl (.6 =s{ Ly, fx"(r,a)]= - %]:(sc+z')"{(r+s)+(a-;9"{(r-¢)

which is in agrecment with the expression {3.12) in the case of a trans-
formation of the type {4.31). TFor f{T)=1 one finds again the result
(4.11) in the particular gauge where (4.12) and (4.14) are valid. A%

€ =0 one gets:
Tot(r,0) = -~ & /(v £(z) (4.39)

* —
) We are evaluating the change 0{%)-0(%¥) in a point with the same

co-ordinate value T (local variation).



- 29 -

Sit = - d (&M $(o) (4.40)
dr
which are the same ag the transformations of the operators Q(eit ) and
P(c*® ) in the DRM.
At ¢ =T one gets sinilar transformation properties:

STy = - & 2" (e,1) Sleam (4.01)

Sl 1) = - £ j{: [*"(fﬂ‘) §('r+w)] (4.42)

where the periodicity of f(2) has been used.

Starting from the expressions (4.39) and (4.40) it is easy to
avaluate the transformation properties of the Lagrangian dii which des-

eribes the interaction of the string with the external field:

ikx(T,o) Lk (T, 0)
L,f = 5 E'ﬂ't(tﬁ)& " -5(‘6) (4.4%)
T

£-X(1,0) 2 ,

In the DRM these transformstion properties characterize the vertices asso-

ciated with the physical particles.

The transformation property (4.43) ig not peculiar of the par-
ticular choice of &fj} it follows in a quite general way Ifrom the invariance

of in under reparametrizations.

A& more general case of a Lagrangian depending on higher T-deri-

vatives will be discussed in Section 8.
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SQLUTION OF THE EQUATIONS OF MOTION AND ITS DISCUSSION

i) Solution of the eguation of wmotion

Ir the Tirst part of this Sectlion we solve the cquations of motion
of a string in an external electromagrnetic field, Theoy have been derived

and discussed in the previous scctions vsing both the Lagrangian and Hamiltonian

Tormalisns:

x - x' =0 (5.1)
]F - . }L P YA ] L.‘*-ﬂ- -
%T = Lgo(ek—ik)’f%e & o=o0 (5.2)
: Kos YRy L vk 7 ’
Zr» - - "97(5 K- £ K)%,.e ak & (5.7)
in

witn the requirement that The plhoton be physical and on-mass shkells

=

kK* = kg = & =9 (5.4)

_ 2 . L
We impose the cordition S =0 (photon circularly polarlzed) because in
bhis case the Equatiorns of motion can be exactly solved without the usc of

a perturhative approach.

The only differerce withn the free case is given oy tae bhoundary
conditions whick in preseance of an externsl ficld give rise to an cxchange
o mozmentum vetween the field and the strirg. We remariz thal (5.2) and
(5.3) are consistert with the constraintz (4.25) at & =0, T Tor the

PSP

presence of fas skew diensor
' » / -
x(r,o) -x’('c, o) = ox(r,fr_}o fx(r‘,‘.ﬂ') = 0 (5.5)
On the other aand, lhe conditions (5.4) irpoze that

O(JZ'CT,JO) - /,\g,'?'(t,?T) = O (5.6)

Tive Lhon bhac relations:

£l

The coazlrzaint sgualions (4.25)

2 (o) = AT =0 >
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The most general solutior of (5.1) can be written in tae form

(e = Ft+¢) + G(x-6) (5.8)

We must now constraint this Minction to satisfy the boundary conditbions.

Thig in principle may cve a very difficult task because tae boundary cordi-
ikx
a .

tions are not lincar Tor the presence of the term ;  therefore, a

linear corbination of two sclutiors is not in general again a solution.

implity
=g
-

(

Ilowever, the conditions (5.4) considerably the problem and enable

5 N
us to golve the eguations (5.2), .35 very easily.
In fact, as a coansequence ofl (5.4) the gquartities Kﬁ,xf” arnd
Q»_x:f‘ satisfy the woundary conditions of the free case whick constraln
the functions FP(T +&) and G(T-&) salong the directions x? and g/

as follows:

(2) Fr@=(0) 6" 5 (84 Frem=(E)d Flen (.

so that
(';))* x"(ue) = (:)P- F/(era) + FF(UE}] o

As a consequence of this simplification the right-kand side of the egquations
(5.2) and (5.3), being only function of the free solution, is a inown func-

tion and =0 these conditions can be easily fulfilled.

We want to stress that the simplifications oceurring here are
based on the three important Cacts:
i) photon on-wass shell: i = 03
ii}) physical external photon: x¢§ =0;
iii) choice of a morochroralic ecxternsl phovon field with & 2=:O. In fact,
if one of these conditions 1= not satisfied we are unable to find a golution
of the non-linear boundary conditions. For the point i) thnis may bc connccted

with the difficulties met in the extrapolation off-mass shell of the DRM.
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The formal solution of kgs. (5.2) and (5.3) is then easily

obtained starting from an xF (t,6} of the following form:

;(F(Trﬁ) = [ F‘Pl (6 + F’(‘C-6):l + A [SF 3 Evkﬂ["lv(f*‘]"‘)*hp(rm’ﬂ*'
(5.11)
+ e e[ g,z +4,(-0]

The term |:F}L(T+ §)+ 7Pz -6)] represents the most general solution of
the free case. The other two terms fake into account the presence of the
external field. We have put two terms in the solution (5.11) in order to
gseparate corpletely the effect of the boundary condition at & =0 from
that of the boundary condition at & = T. In fact, the term with the
function h[gj does not give sny contribution to the boundary condition

at & = T [6=0]. In addition the form (5.11) insures that the components
of X’L('C, €} along ¥ ® and g” are free.

The actual debtermination of the funeciions g and L is given in

Appendix B. Here we write down dircetly the solution
-7 a Aov VN . tkz(t-6) . ez frvéw)
%(Tr‘) = X, ((35) +[£ K-g kJ R* az”('r-s;a)g + R_;xov(f";‘n 1(5,12)
where
21 (Pk) rr)

R. =_z_!1(31r tde 7

2 sin (2PK)T

(5.13)

and P)“ is the total momentum of the string.

Integrating (%.12) with respect to & we determine M, )

within a constant which can be included in the free part of the solution:

) T-6 ysl ]
P v o\l ., T . ckafelo) | (5.14)
rx}l('t'ﬁ) = Xo(n,0) + (E’(k - & k") [_R-l-S"‘v(t;’)e de' + R,_ S’lv(fiac. d;f’

4 particularly symmetric way of writing down X)l (t ,&} is the following

£-6+T
[ v,y Cka(Tim
')LF(GG) = oy (t,6) “(E kf‘ivk’) St x,(tn) e : td-).;’ + (5.15)
' T-8-T

T+

. ¢ k(' ®)
+ S_ S 2, (x\m e a(r'J

Tvs-T



where + 20 (p.k)'n'

.Si. 3'l'+ 3”2

4.6 sim® (2P

(5.16)

x:(f ’ 6) satisfies the voundary condition of the free case and has the

form
'x): (c,6) = Fﬁ(t*@ + F* (t-6) (5.17)

where the derivative FF( T) is periodic of pericd 2W.

Az in the free case xo’“(t , §) casn be writhten as a superposition

of cscillators:

o« M .
. A m et
%’;(T,J) = 1}* + E[Pﬁ}‘\t + 3§ Z —_— folnf e (5.18)

o e ~-o0 M

no

wnere pop‘ is connected Lo the momentum PP of the free string by the
relation N@P» :Pg . Hor those components ol x)\ ('C ’ 6) which hehave
as free the momentur of the interacting string coincldes with that of the

free string; that is why wo have used the relation 2P-k=,.‘a”§po-}{.

The exXprcssion (5.T4) dezeribes the motior. of a string interacting

at tne ends with an external, zonochromalic glectromagnetic fiela.
It shows simple poles for integer values of (2Pk):
2Pr = m Mm b anfeger (5.19)
These poles have a very transparent physical meaning. If thne frcgquency of
the photon is such to satisfy the relation (5:19), then it can excite an elgen-
freguency of the strikg and we have the case of a resonance.
if, hrowever, the signature factor (5.13) vanishes:

gﬂ‘ + go [:—r_)ﬂ‘.: 0 {5.20)

then the momentum pumped in one end of the string is taken back out to the

fleld from the other end; so0 The resonance cannot be formed.
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These resorances correspond To the resonances appearing in the
DAEM and the term of interaction at & = T corresponds to the twisted vertex
as we will see later ony that is why we have called sigaature factor the

expressior (%13,

i;i.) Poisson brackets and gauge operators

Tn the sceond part of Lnils sectior we discuss the Poisson brackets
between our dyasmical variables and we construct cxplicitly the gauge
operators I’n' In the gauge defined oy Htne constrairts {4.15) the Poisson
bracikets at egqual time betwcen xﬁ(t ,6‘:' and }:;f‘( T, €) =zre given by:

‘u' - L]
E’X (faf) ¥, %y(rfﬁj)j = { kaft";d) ) zy{r,af)j =
- (5.21)

§'xﬂ(r,s) , ?'zv(r,S’)j = Q'ﬂ'gw §(6-67)

L]
Starving from tae decorposition of xr'( 4 ,6) ir terms ol harronic oscil-

lalors and using ne canonical Poissor brackets wetwcen X('?: ’ 6) and

.
x(7 ,86'), wc gel the following Poisson brackets:

id“'f ; 0(;.4,..5 = I“‘.’%%w g.wm;o

ag ir the “rec case.

Tzing the eguation of motion (j.‘l} it is ther easy to derive the
Poissor bracxcts bolweer the guantities in (5.21) at different T ; the
regult at & =0 dis the same as in DRM for the corrutators between
it B -1
Q"L(c ) ard P’“(e t).
Lel us prove the following theorem.

s F . e | .
Ir tke quantities % (T, &) and =« (T s &, =sati=fy the Poisson
brackets (5.21) at equal time and the egquation ol melion {5.1) is valid, then

the Poizson brackets for any value of & and T are given by:

>3 S .
(o), 26| = @ 2 ZHELEN grn (e -r)

- {5.2%)

~



"
Lol
|

We can wyrite the left-nand side of (5.23) ir the following form
i ) (r z) 2 A™ .
%% (1.6) ,o’(7's) { = E x (m;),d__ (7, ¢") (5.24)
M=a 4\ TM

Usirg the egquation of motion (5.1} and the Poisson brackets at egual 7  we

et
”’lS_ EE_El_ ~ S(s-6")
(5.25)

mes (zn+i)) da'“

%oc"(r,s) 2 (2, 6‘)7- g

The series can be summed up and it is equal to the righl-hand side of (3 2%)

At & = £'=0 one zgets:

i (T, 0) ) x’(r’,o)j = 4T 8'“ &(t'- )

which is the samc result than one has in tke DBEM for the cormmuwtator between

(5.26)

two Qo
In the last part of thais section we evaluate the gauze operators
Starting fror the solution of the eyuation ol motion we zZet:

Ty
M R A ckalris o)
’ - Jex LR P M
3(% 1) ’[*Z L+ Ry ("MK oK), (zreige _j(b.:ﬂ)
whie pe
AT o .
e _:_._.fo = F}’(T:J)
- (5.28)
Seuaring (j.??) we ot
. ’ 2z . '\2 _ 4 {L
('xjoc) $<x°t'zo/r - F—(Z'iﬁ') (5.29)

afler the usc of +he voundary corditions (5.2} and (5.3) and of tas following

identity:

(fi:t x’) (z,6) = (at + ) (?: t6 ;o
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Eguation (5.29) is very important because it shows that, also when the inter-
action is turned on, the consiraints have thne same expression in terms of

the oscillators d " az in the free case.

The gauge operators Lf can then be ovtalned from cxpression

(4.32):

50\6[ F(g-+5) flree) + F(r 6) £ (r- 6)] (ala F(rfd W) (5.51)

-N'

Lf iz a constant of motion; it does rnot depend on ¢ . We get the same

expression for Lj_, if instead we integrate over 7 :

iy " . 2
L, g E eve) flre) = ; fdc Flzeo) §lrvs) (5o
-0 —rr
The rosulting expression does not dépend of course on & ; =0 we can evaluate

the irteszral fixing @ =0 and using the properties (5.5) and (5.6):

L4 (e £ %
Ly - ;vjrau!;mx(r,}

(5.33)

woich is the expression that one gets in the DEM provided that the identi-
fication X(I,O)HP(c_lt‘) is made. The choice of the complete set of

functions
tnt

‘j(‘c) = < (5.34)

gives then the Tamiliar operators Ln

L ! Sol < (t,9) eéht (5.35)
= —_— 2¢ (1,0 5.35
™M :n— T /

In terms of the harmonic oscillators we get the well-krnown expression:

L_M = Z X.g Xgan (3.36)

= b
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iii) Independent degrees of freedom

In the last part of this section we compute the nuvmber of in-
dependent degrees of freedom of a string in an external electromagnetic
Tield. Our treatment will follow strictly the one used in Ref. TT) for the
free case; 1n fact, our situation is guite analogous to that of the free

theory because we have shown that the interaction does not spoil the gauges.

As we have already seen, the constraint conditions {(4.25) do not
eliminate completely any arbitrarity ol gsuge; we can =til1l make transformations
of the type (4.31) without changing the physical content of our eguations.

IT, however, we want to select the independent degrees of Tfreedom of the string

we cannot leave any freedom of gauge.

Following the procedure of Hef. 11) we identify T with some time

co-ordinate:
Mmoo = ,'Z(m-P) T + "9, {(5.37)
where n?;go and the quantity 2(n-P) is a constant of motion.

I our case the momentum of the gtring is not & constant of mobtion
because there is a flow of momentum from the field to the string; =0, in
general, we cannot identify the guantity P appearing in (5.37) with the
momentum of the string. However, 1f we chooze for the vector m’L the
following dquantity

ki*

»r -
m’ = — (5.38)
vz Ko

then the component of the momentum of the string along the direction n

is a constant of motion. In this case the quantity P M appearing in tie
Eq. (5.37) is the total momentum of the string. The choice of a light-like
vector n® is very natural in our approach; 1t is convenient to show
very clearily the analogy existing between the string and the DEI.

The derivative with respect to T of (5.37) gives:

max = &(Pm) (5.39)

which is constant along ¢f .
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11)

~Onc can definc then the following expression
() :
2(Pnys = Sda’ (me o) (5.40)
Q
which is independent of ¢ 3 it is a constant of motion.
Equation {5.40)} gives to & a very transparent physilcal meaning;
it is propertional to the momentum of the string along n®  dncluded between

the boundary 6 =0 and the point & considercd.

Choosing for the vector n}b the following form:

m” = f‘f(i/ 2, '1> ;o Memd, M= =0 (5.41)
whcorao
i
My = V“;(‘"o  h3) (5.42)

the condition (5.57) implies that

0(’“,-}- = O .(Zor Ay m ,;i- o (5.43)

Uzirg this eyuatior in the expression for the L 's one gefs the relation

beltween thc C‘q _'e and the trarmsverso osclllalowes:
il

0< - A f’\‘{m {5.44)
PY\J- P
o+
which is Lhe same as that found in The case ol a free string. In terms of

the Lrarsverse harronice oscillators cer i given by:

e
w2
=N
w31

—

4.5
. ! é ; ol
Ofm N O\.Lj-l "J.‘,- m+d

Ir conclusion the inacepenacnt degroces of freedom are given by the
tTraasverse oscillastors. Trne longiuud’ ral. gad scalar modes, whick must be
Lhore to insure Lorentz covariarce, can be cxpressed as a furnction of the

Tranuverse oscillators.



QUANTIZATION AND RELATION WITI THE DUAT, RESONANCE MODBL

In this Section we proceed to guantize the string interacting

with an external electromagnetic field.

As in 1ii) of Section 5 we will ¥ollow strictly the treatment
given for the free case in Ref. 11). Tae rule for quantizing a classical
system ig a very simple one when We have its description in the Hamiltonian
formalism. We have t6 make ir fact tne dynamical wvariable x and 7T into

operators acting in a linear space and the Polssoa brackets into commutators:

L {Poisfou ]:)rackef'sj > [Co‘mmu‘t‘?'?‘orfq (6.1)

However, in any problem with constraints [Eq. (4.151] connecting together

the dynamical variables we can proceed in two different and egquivalent ways.

The first one consiste in gquantizing only the independent variables;
the others will be then expressed ir the =ame linear space as a function of
the independent ones. This iz the non-covariant procedure of quantization
and 1t is very convenient to study the norm of the linear space; a coherent
guantum theory reduires the positivenesa of thce norm of the physical states.
The second procedure of quantization consists instead in quanilizing all
the degrees of freedom and then in restricting the physical subspace by
mweans of certaln supplementary conditions. This is the covariant quantization
and it shows manifestly the right properties ol covariance under the Lorentz

ETOUR.

We have introduced in Section 3 a covariant Haxiltoniar formalisn;
go we proceed now to the covariant quantization. The equal {time Poisson

hrackets becore equal time commutators:

[ oc’*(r,a-)} x’(t,ﬁ‘)_-( = [Tr'“(f,ﬁ), Wv(frd’)l

ft
o

(6.2)

[ e, Wes)] = 0 g™ bs-e) (5.3)

The linear space Where the operators act is built up by an irfinits set of

harmonic oscillators c(p /& acting on a wvacvum state 3> and such that:
-7
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l_‘x"w* Y 0.&"“'1“'] - M'%w S"‘*"‘;" (6.4)

This type of quantization shows manifestly the Lorentz covariance
of the thecry; however, the Lorentz metric tensor gym doeg not rake
the linear space, defined by the commutation relations (6.4), have a posi-
tive definite norm. It is the gauge group that eliminates this confra-
dictiOB between the aquantum theory and the theory of relativity. This is
cbtained assuming that the space of the physical states is a subspace of
the entire linear space; the vectors ]q11> and |q12> belonging to the

physical subspace must satisfy the following conditions:

<‘{’4_[ LM{\F2> = Q nto (6.5)

<V Lo l¥ad s o <HiIVD (6.6)

The conditions (6.5) are the quantum transposition of the constraint eguations

(4.27) whick cennot be irposed as operatorial identities. In the case of
LO goirg to guantum theory we have some arbitrariness on the ordering of
the operators. The choice (6.6} ig discussed in detail in Ref. 113 d‘o

is the intercept of the Regge trajectory.

The operators Ln are given by:
—twT

T
Lm = 4 E\ol‘l: e C T o)t

I \:J'T (6.7)

and satisfy the algehra:

[LM'-L'M] - (‘“*M)vam + '?_)2" gn«m;o n(nt-1) (6.8)

The physical states are then characterized by the subsidiary conditions:

Lm1\k>=° M > o (6.9)

Lo N)\) = do HJ> (6.10)
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which insure the wvalidity of (6.6) and {(6.7) in the physiecal subspace,

This procedure of quantization is consistent with the theory of

relativity only for the special values

odo = 4 , D=26 (6.11)
of the Regge intercept u(o and of the gpace~time dimersion D.

The reguirement (4.27) does not fix unequivocally the gauge; Wwe
can in fact still make transformstions of the type (4.31) without changing

the gauge conditions (4.27).

In the classical theory the éhoice (5.37) eliminates this gauge
arbitrariness; this condition is translated in the guantum theory as a

relation valid in the subspace of the physical states:

(6.12)

<Pimaln> = LU mg 200w ] (9,

(6.12) iz obviously valid if the physical states satisfy the subsidiary

conditions:

Mo (¥ = ot [¥D =0 (6.13)

Tn conclusion the physical states are characterized by Egs. (6.9), (6.10)
and (6.13). L corplete set of solutions of these equations is given by the

transverse siates as it has been shown in Ref. 3). They can be written in

terms of the transverse operators Aﬂ 5 defined in Ref. 4), and they have
?

a positive definite norm,

In the last part of this gection we evaluate the probability of
emission of a photon from the string; the resulting expression is the same

as in the DEM in agreement with the intuitive considerations of Seetion Z.

Starting from expression (4.14) of the total Hamiltonian, we can

evaluate the interaction Hamiltonian:

H= H, + H, (6.14)
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7 (a7 ()] (6.15)
: ‘

LkxlT,0) . ek (T,7)
Hy = -9, ekave tin ExCm e ] (6.16)

where

H

Ho

In the case of our system HI ig related to the interaction

Lagrangian LI by the usual relation:
1 (6.17)

If we take for simplicity g“,==0 the probability of emission ¢f one

photon of momentum %) and polarization g is given by:

I {5> (6.18)

where Id\> and Ip:> are the initial and final state of the string satis-

L X2z, o)

40(., £.x(z,0)

fying the conditions (6.9) and (6.10).

The components of xP(Z,O) along 5)‘ and kM satisfy the
free equation of motion; so the expression we get ig the same as in the
DEM 6). In conclusion, not only the magnetic moment, a5 we have seen in
Section 2, but also the higher multipoles evaluated in the DEM are repro-
duced by a string type of description. The probability of emigsion of n

photons will be described in the next section.

INTERACTING STRING WITH A VARJABLE EXTERNAL FIELD.
A STRING PICTURE OF n  POINT FUNCTIONS OF DRH

Im this Section we wish to gtudy the motion of the string inter-
acting with an "electromagnetic" field for a limited time. In order to
simulate at the c¢lassical level the emission or the absorption of photons
with different momenta and polarizations we take %ﬂ- and k/A as arbi-

trary functions of f , that ism

Ch(T) . 2

Af.('xzt) = @(t) E/(‘C) € (7.1)



where Eﬂ("C) ig an arbitrary function different from © during the inter-
acting time A‘c . We shall see that in this case the string behaves in two
differcnt ways according to the value Az <2M or At > 27 . FPor the

gake of simplicity we tale in the section Z =0, so that only one end of

the string interacts with the field (7.1}, The boundary conditions become

';“n'x}‘ + 8, % E},Af-)”(;z,'c) "90;& H,{(“rr) =0 at &=0
(7.2)
‘xiu = O ai' =T

The egquatiors of motion inside the string arc unchanged, of course. From

the conditions k(T )7 = £ ) e{e)=§(< )2 -0, we have, as before
(o) - ne'(r,0) = K(z)- ’)(’(Z’o) =0 (7.3)

thus & ( t)°x and K(‘t )'x colncide with tne sarme components of thc frcee

string.

Ltecording to the value of the interacting tine A'C we have two

kinds of woluiions:
a)  Asaums ﬂ“c <2 T or morc precisely

P‘r(’l,t)=o for T Lo, TN (7.4)

In thaizs casc shoe gereral solution ol Tg. (r.2) is
L]

—
—
.
w1

R

(X-I.L(Tx‘s) = ’xoﬂ ('C,ﬁ') + &ﬁ (T" &)+ O{I“(t*‘f"zﬂ)

s - - ey " i .
where XOI\\L'C,Q:T} arc Lhe co-—omiinates of the free stiring before the

interaction, and

£ ¥ :
QL/A (5) = 2“.3“ H'u[f} O(o(_f;c)]- 2n gj“ \gnixnr {fi“};a‘ Q{f:qn{f:ci%f{?.ﬁa)
for j‘:;?r
oLy (sr2m) = odulf)  fer fzem (7.5m)

Ry () =0 Lor €0 (7.6¢)



- 44 -

Equation (7.5} has a transparent physical meaning: the external
field produces a disturbance ub» at the end & =0 whick propagates
along the string until it reaches the end ¢ = ¢ at the time T =7,
where it generates a reflccted wave. Bquation (7.6b) says that the
disturbance continues to propagate indefinitely between the two ends.

Then, when T >2T, the string becomes again a free string yO(T , 6,

where

Y, (re) = % (z,6) + du(z-6) + du(z10) (7.7)
Thus, owing to the external field, the string undergoes the transition
from the initial configuration X, to the final one yo)*. It is

worthwaile to note that the solution {7.5) is linear in the field A

il

(and in the coupling corstant po); thus, there is no correlation among
the photons absorbed or cuitted at different times., We remind that
[)t::E T is the charascteristic time of the string, i.e., the timse
needed by a disturbance to go from one end to the other and come back

(ses Section 2}.

Lssume that the interacting tine A‘: be greater than 2 W, or more

precigely
Au(xz)=0 Hor <o ,Tzar

Then the general solutior is

Kp(T,6) = Zop (t,6) +dm(c-6) +olu(rs6-21) + B (z-0) + B. (zrs-2m) (7.8)

where fulfils the conditions (7.6a), (7.6b) and (7.6c}, while

A

i (5= g, fq;u If, 465, 0)]' 3{2”30 8,,(§f°)f%..ﬁvl}i Y5 a_)]]dj’ (7.9a)
2

Lor qM>j5 227

ﬁf(f"’ W) = f’ﬂ(S\ for § > AT (7.9b)

F/A(f) — D £ < .:ur (7.9¢)

v (T,6) 1is defined in (7.7).
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We see that in thisg case the general solution (7.8} is no longer linear
in the field Af‘ and in the coupling constant 8,3 indeed F)k is

a non-linear function of Yo which in turn depends on the field A}*'
The reason for such a non-linear behaviour is simply that the excitations
produced by the field during the time O< g <2%, after a reflection at
the end & =W, come back and start to modify the motion of the charged
end at T »2W. Thus, the interaction of the field at « >27MT

depends on the photons absorbed or emitted bhefore.

The presence of these two different behaviours is a direct
consequence of the extended nature of the string. Indeed for a point-
like object interacting with an electromagnetic field only the process
b) may occur, while the linear behaviour of the case a) is a peculiar

feature of the string.

The guantization of the interacting string in a potential (7.1)
can be carried out in exactly the same way of the string interacting
with & time-independent potential treated in Section 6. Bven in this
case the I.n operators have the same form of the free case and the

commutators of the harmonic oscillator operators are the standard ones.

Let us congider a process in which a string state [0( > emits
at the time 'C,] a photon £Tk1’ at the time T, a photon £ oKge e
at the time 'i'_‘n the photon £nkn, and finally jumps in the state

|ﬁ >, The amplitude for such a process is

T (Hemse, mH g0 -Hrtfm;e,,.,,u,n) Iy
{7.10)
T indicates the time ordered product, HI('I: s £, R} ie the interaction

Hamiltonian defined in (6.18), i.e,

. f;KX(t}O) (7.11)
HI (t,e, k) = 3, Ex(vde
The total amplitude for the emission of n "photons" can then be

obtained integrating over the variables T i

A p;s k) 2 Tratz9('z-‘c)<lec )~--Hcfe )H(?-O)I/D

permt. /.
(7.12)
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tIl has been fixed at zero as a consequence of the invarisance of (7.10)
under transiation in T . The integral over d_ti is dorne along the
negative real axis. The interaction Hamiltonian actually depends on
e"it; so the integrals in (7.12) are not well defined. To maike them
convergent we can switch adiabatieally the interaction multipying

1, (Z) by a factor which kills the interaction when ITi-w:

- £l
“I('c) —> HI('C)Q (7.13)

After the insertion of (7.13) into (7.12) and the evaluation of the
integrals the (n+2)~ point dual amplitude is recovered in the limit

£ -0. It is well known that all the relevant quantities of DEM can

be constructed out of the two fundsmentsl cperators Q}k(z) and{PfA
defined in Hef. 1). Thus, in order to have a dictlonary to translate
the DREM operators in the string language and vice versa we need only to
CXpress Q,.(z) and Gak(z) in terms of wvtring variables. TFrom
direct inspection of Egq. (7.12) we can conclude at orce that the cor-

regpondence principle between DREM and the string picturc is

-lT
L &> R

2 Qple) @ X (1,0 (r.14)

-ivZ B e &u(70)
wnere 5 is the integration variable of thc Koba-Nielsen cirele, and
x (T ,0) are the co-ordinates of the ends of the [ree string [ﬁndeed
i; Eg. (7.12) only the “ree components o the string co~ordinates are
present.j Thus, in the siring plebure the Lic slgebra generated oy
ka(z) and Q%M (Z), which is the starting point of DHM, results to
b a direct conseguencc of the canonical commutators of the string co-
ordinates defined in Bas. (6.2}, (6.3) which are in turn reguired solely

Ly the local causality.

Taving derived the n point dual amplitude fox the emissiocn of n
"photons" aad having established a correspondence principle between
the string variables and those of Lae DREM, we want now to maxe sore
considerations on a possibie and sugegestive interprotation of the n

point dusl amplitude for any zind of excited statc.
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It is well knowr that the 0 point dual amplitude for the scat-

tering of the states 0{1,...,d&1 is given by:

A,,l = Z B’V\ {7.15)
where

2 "
Bo ~ Ed"" Bx-tin) <of 1A (z) 10> (7.16)

/U_:,L i( T;) is the vertex associated with the state Io{i>. From tho
correspondence principle (7.14) the Kobka-Nielsen variable ¥ is
related to the time., The interesting feature of (7.16) is that the
integration range is only between 0O and 2 W and not infinite as

in the case of (7.12). 1In this case the n point amplitude is written
in a form where the external particles are treated in a completely

gymmetric way.

Expression (7.16) may suggest to interpret the n point dual
scattering amplitude as an amplitude describing scattering processes
where the intermediate resonant states liwve for less tinan the charac-
terigtic time P =2% . This point will be discussed somemore in the

conclugions.

TNTERACTION WITH EXCITED 3TATES

i) General discussion

The success obtained so far in solving exactly the equations ol
motion of the string interactiing with the strong photon field makes 1t
natural to ask whether it is possible to treat in a similar way the inter-

getion with the higher excited states of the DR,

O0f course the "photon" case is very peculiar because the simplicity
of the treatment at the classical level jolins up with an easy ftransition to
quantum mechanics, and is related to this fact that the photon vertices are

also the basiec ingredients for the construction of the physical states of DRM.
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Tor the other excited states the situation is guite different. The dual
method suggests that for a state at the level N we take an interaction
Lagrangian of the form (8.1} localized at the ends and depending on x(T )
and on its T derivétives up to the Hth order. HNewever, such an inter-
action raises immediately several problems. MAlready at the classical level
the equations of motion {or more precisely the boundary conditions} are es-
sentiglly non-linear =o that an exact solutlon seems very diffiecult to
gbtain., Purthermore, the quantization procedure also gives serious troubles
gince thelcanonical commutation relations look to be inconsistent. On the
other hand, the dusl model suggests also that the interaction Lagrangian
should be written in terms of the free fields. This circumstance wag
actually reslized in the photon case, but is not consistently realized in
the general case. We may then imagine two possibilities. Either we should
start from a different infteraction Lagrangian, which, however, will become
equivalent to (8.1) when we take the equations of motion into account; or
the dual smplitudes correspond to lowest order perturbation theory and the
exact solution for the interacting string cannot be obtained in a ¢losged

form.

Here, we leave this question open to future investigations and we try
to answor to some preliminary problems which are related to the lransition
between the DRM description in terms of vertex operators and the string
description in terms of interaction Lagrangisns. In fact, it is not a
trivial tasz to seec how the dual vertices, which are written in the normal
ordered form in a guite non-transparcnt way, can also be written as func-
tions of x and of its T derivatives in a way which guarantees from the
beginning the right transformation properties under the Virasoro gauges.
This form has an obvlous classical limlt and can be assumed as the inter-
action Liagrangian for the string. FRowever, since the string description
correspondg to the DRM oaly for D=26, we may expect that the dual
vertices corresponding to states whosge norm depends on D and is critical
at D=26, like the longitudinal Brower 5) states, will not have such a

clagsical limit.

Aetually, we shall proceed in tho opposite direction. We shall start
from a classiecal Lagrangian and we shall [ind the general conditions under
which the action is invariant under change of parametrization [éubsection iii].
Ther. we consider the transitionm to gquantum mechanics, assuming for X(t ,6]
the free operator expansion, and we analyze the possible sources of singu-

larities coming from the recrcering of the operaiors, reguiring that the inter-
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action Lagrangian becomes a regular operator [éubsection iiiil. Thnis has

to be regarded as a heuristic procedure, rather than a rigorous one; never-
theless we believe it contains some interesting results. For example, it
gives a natural explanation to the origin of the light-like vectors appearing
in the physical states of IEM and which in the approach of Ref. 4) correspond
to the "photon" momenta. PFinally, in subsection iv) we work out as an
example the interacticn Lagrangiars for the states at the mass level N=2
and we will find that they correspond to the vertices of the ftransverse

states of DRM which are coupled at D=26.

ii) Interaction Lagrangian for the classical string

In analogy to the photon case wec consider the interaction with
excited state fields localized at the ends of the string and described by
the interasction Lagrangian

Lo L{x,x™) 3o (8.1)

CA L -
where we used the notations

2% (v16) = (i) % (7,6) (8.2)

(8.3)

$6)= 9, 8(6) + 9, 8(c-m)

and T dia a Tunction of x(t ,6’) and of its ¥ derivatives up toc a

given order.

We are interested in finding the conditions under which the action
is invariant under a general parameter transformation which leaves the lines

6 =0 and & = W invariant. The total variation of thne action is given

by
T Ul m T
$S = S;\:Sds grf + ia\er[a{ St-]r'f (8.4)

where S;f is the local variation of the Lagrangian function. Now the free
Tagrangian ‘%fo already contributes an invariant piece, while for }?i

we immediately obtain the conditions

bY L(\'xr 'x(r}) = - jd,“c [ L('X, ’x_cr)) J'C , &=o, T (8.5)
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which generalize Eq. {4.23) Tor the photon case. Taking now Tor each end
. 22 :
point (& =0, 1) )

= ¢ £() (8.5)
gzx = - 2{(1’_)‘% (5.7)
v
52 = - ¢ (&) (Fmr )
(8.71)

from which

r iand v (x) ok
SL Z ?'é'wg% = -8 2 Q"{.‘mz (:)F(T)xu“ 3‘.‘
rzo 9N )‘ / ko '33;. K=o Va |

r41- k) 8.3
:-zz—g(f)?()%ﬂ“ﬂ(k (.3)

k<o
Eyuation (8.9} then bhecomnes

(r4a1- l)

.g (t)z_ ( )me 'a (r)éf: + ‘(;'(T) L (8.9)

f(k)(

=

Slnce f(t} ig arbitrary, tne cosflicients of each T) must be
equal on The HTwo sidses of {8.9). The coeifficients of f(t V are identically
equal, smile Tor tze others we obtain, at the points & =0, M , +the

conaitions
o or)
S = L

]
=\ 8 e

w (ret-k)
Z«-“(:)%&) Xp : Y, (k':-.?/'g/,” ) (8.11)
r=K ‘aX/ﬂ

Equation {8.70) =ays that I must be 2omogeneous of firgt degree in d4/dE .
_ir}
-y

(6.10}

)
0

in particular, if 1L 1is homogeneous in each of degree n, we must

have

[~ )
:-'-"
2 r MT‘ = i (5.12)
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Furthermore, if T depends at most on the HNth derivative of X, by

taking k=%, -1, etc., equations (8.71) give:

?a;Lc-cua xp = O (Nz2) (o.13)

N SL . — p- 1
%:"-.; n + N 2% Fp=e f23) ok (8121
~

1ii) Interaction Dagrangian in the operator form

W2 now consider the transition to guantum nmechanics and wWe assums
that the infteractioa Lagrangian (8.1) becaones a Tuaction of the free posi
- . .
tion opexrator k5.18) and o 1its derivatives, as discussed before.
is the gensrator of the transformat on (8.7), sueca that

it Lf

in agreoment with (4.38) we have
[Lf’ %P‘(r!&:')] ol 'E(T.v&) ;:}A(r'&’_) ) (6-" =9, Tr) (8.14)

where (T, 6’6):1"(1’+0’0), Ey. (8.5) becomes

[y, Len)] = 2150 L) o

where for simplicity we neglcet the dependence on 6‘0. Eouation (8.15)
coincides with the well-known transformation property of the vertex operators
ol DEM so we expect thalt the interaction operstors 1L may correspoad to the
dusl vertices. On the other hand (8.15) is automalically satisfied for any
+{T ), provided that I odeys the conditions (8.10) and (8.71). Therefore,
the present approach is slso interesting from the point of view of the

conventional DRl

To describe the interaction with aa excited ztate carrying momentun

, 2 . , . A a
ps wWith p =1-H, we shall take a Lagrangiar of the form

L("‘, ’xm) = G_(-zcr)) e

ipx . . n 2 . r
However e P is singular for p £0 and C—I:X( )) may also be singular

“px (3.16)

as it will contain products of cperators iaskon at the same point {7, o’o).
Thercfore, tne expression (5.16) needs bto be defined by a suitable limiting

procedure.



Specifically, we shall take the positive fregueacy (or destr‘uction)
(x)
at values of T sglightly displaced from tae real axis, and precigely
T ~-T _1(1/2), with ’7 >0 “for the.positive frequency paris and

r-T +i(7 /2) for the ncgative frequency parts. For example, we take

part and the negative freguency (or creation) part of any x operator

fx(r,&;) = QLO(GJO} + ';(+(7:"'f- %,6{)*‘ %-('Z:fc'. %.’6:,)

In thls way any expressioxn for.(8.16} which s not intrinsically singular
(see discusslon below), is recgular lor #0 and can be easily brought
to the normal ordcred lorm. Then we can see whether this eXpression is

gingular or not in the limit "? - 0.

This procedure is not enough to find definite expressions for oy,
nevertkeless il ig a very useful method to analyze the possible singularities.
Ag an example we calculate the commutator of x(t,c'o) and X( ', 60)

and we find, calling S g :

;lh(_t r--r) .

[f;x.’“(r, &), ,;c"(z',g,):l = 2™ T £™ e

= ™

g2 . 2
= ?_{3}”__——-.———-————-—"4 ; . T 4—71"‘?)“’8 (25”‘%) =

(-£)"+ 4gsin 25 224 (8.17)

= 4-:%?’“ §{c'-7) y [T/-zl<2m

In general, we find

ORY . (s) - _ - ~M L (t'-x)
[O{/_L T %,6-0)} '9(» (T‘f& %)6‘0):‘]:&2?’.’(: CH_S(-Q ) (8-18)
(P-rs 2 J

where

g (g.181)

Cr(S) = (8 a8 Toe



All ¢ —=rumber singularities coming from normal ordering can be eXpressed
in terxms of C.. functions. In the 1limit ﬂ 0 they have a lcading
gingularity Cr[e_v)rw(r—1)lq“{: We now may ask what kind of functions
can be iaken for & in (8.16). We shall consider the case where G is =
gum of monomial teryms satisfying the hnomozeaelity condition (8.12), Wh@{iﬂ
7 are not necessarily positive integers. For example, terms 1ike Jriz,
fJ—;TE; i-i/iz arc acceptable from the classical point of view, however,
they becone meahingless as operators.

- To examine this problem in g specific example we consider the
function (k-iﬂ‘ . By a unitary transformation e'PY0  4yig can be chenged

o ok
into (T+k.x) which can be expanded in power series according to

(¢+02)" = g_ (i) (k)" | (8.19)

arid each term can now be normal ordered., This can be easily done using the

relation

| ‘ .
A(kx) M k(Ep+a) A(kx?) NkEC,
< ( = % it * (8.20)

end expanding both sides in power of k . For the even and odd powers of

kex we get

(k4)"= (2] (2rra)em (2Dl (2K G) 3 (A% o

+ .(k,,-c)zn. (8.21}
n+t) M . . 2n+}
(k-?'c) - (Qh-l'D!! (2sz2) kx +-.- + (k) (5.211)

where O, stands for C2(e_'n). Inserting these expressions into (8.19) we
gee that all the series for the ¢ = number part and for the coefficients

¥ - 2
of the regular operators k.x, :(k.x) 1, ete., are always divergent for

2
any 'P] >0, wunless k =0.

The above result can be generalized and it is easy to realize that
any non-integer function of k-x(r) can be a regular operator only if k2 = 0.
On the contrary asny expression of the form (x(r).x(s)) , for o not

positive integer, is never a well definite operator.
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Coming back to G(X(r)), it is easy to see that in order to
gatisfy all the conditions (8.11) for each ierm of G n. must be positive
integers for r>1. If this were unot the case, considar for a given 13>
the term with the lowest wvalue of oy whicn rom the above discussion

will he of the foram
My
(k .%m) = ( ,xfs))

This will contribute to (8.11) a term

( 'x(r))h.--i(k'x(wri)) F (sz)) , rz A > 2

which camnot be identically zero aad cannot be cancelled by other terrs.

Thus ng, Iz, ete., must be positive integers. No restrictlon may arise

from (8.11) on =n,, while fros (8.,12) n, in general will be negative.
Hext, we consider the singular operator elpx. From our limiting

procedure we easily get

pr

< = (:L-E)P V(P) (8.22)
whezre E = ”1 and
Cpa chx”  (pax’ thx

V(P) = . £ 2 2. ya (8.23)

Since V(p) 1is regular, we may rewritec (£.22) in the form

V(p) = Lim (-t-s_)’Pz et (g.221)

£ED1

p2

and we may think of eXpressing the factor (1-¢) in terms of powers of

. “ 2
X, X, etc., altogether of degree p in 44T,

To solve the anbiguily we reguire for both sides of (8.22*) the

sare coxnmatation relations wita the gauvge operators. Since we have

L L, V] = [$0 2 + 25T v(p) (s.20)

Ly, <= s 4 Al (8.25)
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- ]:Ln‘ / «'m] = Cflé r(f(t} m) (5.26)

(8.24) suggests that V(p) is a function of x and x, and precisely of

2 . . .
degree p in x. Then we cousider

"

y LW e B px
V(P) = (k'x)P e P* (4-5)" (ek) ! 2 r ;
e e 2 . {g.27)
= e.t"”x < = J_(-I-E)(k-ig) + 2pk Pe P

For the case of tachyon (p2::1) the righl-hard side of (8.27) has a well
defirite 1imit wher § —1 and is proportioral to V(p) provided only thaat
2pk£0, independent of k2. For the higaer excited states (pz‘CO) the
righl-nard side of (8.27) is a regular gpelrator only if k2::0. In this
case tuc 1imit £ -1 is again proportional to V{p) for 2p.k#0. There-

fore, we may take in general

kx \P Lpa
= e . . (8.28)
V(P) A por ) 2 p i Sa o , zP'k #o 8.23

The right-hand side is defined az the limift & — 1 of the normal ordered
operator, and such a limit is actually indapendent of the wvector k. We
observe that for k2::0, (k.i)Pz btas always = regular inverse, so that
(8.28) leads precisely to {£.22) for the highest singularity of 17X

If we regquire this to hold even for the tachyon, then the wvertex operator

for the tachyon is also given by (8.28),
The interaction Lagrangian (8.16) can be rewritten in the lorm

» L('x,ocm) - I:( ,x(r)) V(P) (8.29)

where F and V are now regular operators. From (8.10), (8.11) and (8.28},

F mwust obey the Iollowing conditions for the parameter invariance of the

action:



S oF )
:gr r g;;?k) Ct/* - P( F:
fl-

L]
- Rk
3 (v /
Tre Rk 29)9*

(8.30)

+

These relations correspond to the trassformation property of F

under the gauge operators

[ F(x)]= §00 Fx™) s N i F(xm) o

which follows directly from {(8.15) and (8.24).
If F(x(r)) is a sum of monomial terms of degrec n_ in x(r>,
then (8.30) requires for each term

oD

Z rm, = N (8.33)

ret
We may assume that all n, are non-negative integers, so that
the =zolutions of (8.33) correspond to the partitions of © and we have a

correspondence between F functions and cxcited states of DRM.

Fiaally, we have t0 require that the product FV in (8.29) is
a.regular operator. Since F by itself is supposed to be regolar, sin-
gularities may only arise when the negative [requency part of V passes

across F. We have
. - 0 ~~ . +
L)) = e Flat) o o5

where
Elam) = ¢ () e P20

= F ['x“”-+ 2pi" (Gole) + Smﬂ

()

where Tor each single X we made use of (8.18). Thus F muast be such
that 7 is regular in the limit £ —= 1. If we had started from the product

VB we wonld have obtained:
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E

V(P) F(km) = .Q,':Px .chz, E(z“’) -&ka (8.35)

where

E(,xf”‘) = e;px."’ F(x"" Q-LPxi F[?Lc?)-l- Zpir“C,.(!)J (8.351)

Since from the definition {8.18!') we have

Co(3) = 7] G+ S (5.30)

~ R
in the limit £ —=1 F=F and therefore F and V commute.

In conclusion, we started from an interaction Lagrangian of the
form (8.29), with V(p) given by {8.28), which is Tormally a function of
¥ and of its. T derivatives. BSuch a Lagrangian leads to an action which
is invariant vnder reparametrization provided that F obeys the conditions
(8.30) and (8.31). After normal ordering the Lagrangian operator takes the
form

L('x;‘zm) = eikx"{%ﬁ" E ('xm) ecrz*- (8.37)

where

~ PRCTPNLAL
{r) .
F(% = Lima Fla +2p e C;—-(E) (8.38)
t2>4
This limit must exist, and this insurcs that the operator on the
right-nand side of (8.37) will satisfy the transformation property (8.15).
We then expect that these operators correspond to dual vertices for excited

atetes and this will be shown by a simple example in the following.

iv) Application to the states with WN=2

As an application of the preceding results, here we want to diswss
the interaction with the excited states of the level N=2. In this case
the function F of (8.29) depends at most on X and (8.31) gives the only

condition

Tt = 0 (8.39)
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Remembering (8.33), we will have two kinds of F functions, ac-

cording to the partitions of NW=2=2: F1 guadratic in X and F2 linear

in x:
LV 4 }A
= ' = £.40
- . . K.E '
Fz - 2'% "iloﬂm—-—'— & R(%) , kz:‘ E.k-_—_—c (8.41)
Kra !
In (8.40) 2py 18 an arbitrary symetric temsor, with the condition of

being traceless in order that F,'| be non-singular. In (8.41) ¢ and K
2

are two arbitrary vectors, subject to the conditions & = g .k=0 for

the sccond tere to be regular. We also leave.the freedom of an additional

term H, quadratic in i, to be chosen in suck a way that fg be regular.

From (8.%8) we havo

v (i»-RPP‘CL(ﬂ))(aEU- QPvC‘i(s)) (8.42)

ﬁ_:)&‘.ma.

>4 M

The limit exists il a};ﬂ obeys the further condition

a'/w r_pv =0 (8.43)

P

and in thls case F1::F1. We can then write the interactlon Lagrangian

in the two equivalent forms
. _ S U ey 21,.k dP:c
Ls.(“f“) - F:L V(P)"' OL/“,'% x -""'""’k — < =
"’i (8.44)
- — N '] .
LP% Lh e N o) f-r’(.
We observe that if we require that the G Tfunction in (8.16) be a regular

operator, we also get the condition
v
o“,w k =0 (8.45)

which corresponds to the wvanishing of the gauge operators 3) KIl on the

physical states of DEM for critical dimensions.
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Concerning P, we get from (8'_.38).
2 i _

Ez ) f{ _ _'s.éf-' a &P_q(r)”__. (;x - _:z}.; Ci(r))-(k-;z'-z.‘.k'p' C,(r)) |

(kke2epG) s e = [agep(d i -Geghi) e

{8

+ ek (0 -jf k% -2ig n-r)] [(4-:)(*-*) ] "‘Jl

We gee that the double pole at g =1 "cancels, but remains a single pole

with the residue

. k'. . . :
¢ (M’ __£ - 5"‘) | (s

k-4 47).
. This pole can be céncelled by taking in (8.41)
. S 7: ( ) (8.48)
x) = ¢t 1 2 - €%
R(2) = &« & (P o7 |
Thig gives 1in fact
R_ 4 k"‘ ___)(___tk%-gx) (8.49)
znp - A-3 k-p
which summed to (8.46) gives in the limit s -1
F ™ _ . -":_ . . =Y - E- . . ‘—_
F2 = % - o (E X)(k x) -t &% - _Elk x - (k x) (6.50)

«p _gkx’]

Finally, Ffor the interaction Lagrzngisan we have the two equivalent forms

AT e kz 2 %
Lz(z/m/x) B (E% e k-a'. +LEP2(::;; (;.’l:)(;) (8.

. -3 N .-!:z‘f,x"""' LPZ*I
L1 A e S R L

X

.46)_

51)
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where we have chosen the same k for F2 and V +to have a regular G.

It is emsy to see that the normal ordered forms for L1 and L2

4), 6)

correepond to the vertex operators for the transverse states of DidM.

Mg find out directly bthe excited states corresponding to these vertices

we may use the relation 5)

2‘??'

< 494.,21’ = <o] ! lt L{_ z"lr (8.52)

27 hi ’

and we find, in the old standard notations

<d?‘1-] = K 4—\",0[&/“, af a: (8.5%)

<C1321 2 <P o, }_S A, —-—-—(5 a.)(k ar) - P(k QZ-—(RQ)_)YB.M)

It ig easy to verify that these states satisfy the gauge conditlons.

<¢¢,2 \1 L_h = 4431_,2‘ k_h = 0 (8.55)

they are orthogonal and thelir norm is

<4’¢\ C&q) = & Trlan|® (&.56)

4‘1’2 | 9{’z> = 4¢" (e-57)

Finally, we may count the independent states <ﬁ1l by counting
the independent components of 8 4y with the conditions (8.40), (8.43),
{(8.45) and they are

12(3e1) - D- G-1)-1 = 3 (2-D®-) -t

that is the same as the transverse states <O|A1iﬂqj. In fact for these

states the tensor a is realized as follows: Tfor 1i#£J we take

)\.9
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_Wwg) _ €y W o)
by T W Uy itk 1, 3 £ +2 (VD) R

where g (1) ig the unit vector along the 1 axis and Zk.p=-1. On the
other hand for 1=] we may replace <O]A?i by some traceless combination
since <O|§A$i ig.a aull gtate. Similarly for the states <§9’2] £ can ke
taken transverse, due to the invariance § - ¢ +Ak. Then we can see that

<ﬁ2| corresponds to the transverse state 40|§ -é_.

In conclusion our states (8.52) span the whole physical space
of the.level W=2 for D=26., As it was to be expected the Brower
longitudinal states and the spin zero state are not found in our approach,
and tais mcans that the vertex operators for these states cannot be written

. Fy
ag functions of x, x and =X.

CLOSED STEING

Our previous considerations are based on open strings interacting
at their ends with an external field; 1in this section we shall study the

interaction of a c¢losed gtring with an externsl Tield.

The c¢oanection with dual models is given by the Shapiro-Virasoro
model (SVM) whose spectrun is reproduced by the guantization of a closed
string, as well asg by the Pomeron sector of the conventional dual model
which is factorized, at the c¢ritical dimension, in terms of the same states

of the Shapiro-Virasoro model.

In a closed string we cannot attach a charge anywnere without
viglating the invariance under reparametrizations; therefore, any inter-
action with an external Field should involve the whole world sheet of the
string. Thisz corrvesponds te the fact that in the 3YM the Koba-Nielsen
variables are integrated in the whole complex plane. Morgover, in the 3VM
the fundamental zero mass particle is a "strong graviton" {spin 2} instead
of the "strong photon" of the conventional DRM; this suggests that the

interastion should be put in a geometrical way.

The approach we follow consists in taking the same Lagrangian asg
in the free case except that the metric. tensor %Pv s Which appears in all
scalar products, is now taken to be a function of the co-ordinates. It is

then the curvature of the four-dimensional space-time which provides the
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inferactiqn of a string'with an external gravitational field (as in the

theory of general relativity)}. The action is then:
| S O | |
S = Se\tSo\f L(x, &, x') (9.1)
Te
where

_— - | - )
) o b o] o

The Lagrangian is gtill homogeneous of first degree both in % and
x' . and the action is therefore invariant under reparametrizations. We have
taken @& varying in the interval (0,21T) for the symmetry between &

and ¢ in the case of a closed string.

The equation of motion of a string follows from the variation of

the action (9.1}:

A ox™ T de ax?t  ax” (9.3)

The boundary conditions are replaced by the requirement that the siriang be

close for any T :
,z}*(q;,s) = a}[‘cf, 6+ zn‘) | (9.4)

The Lagrangian (9.2) can be linearized as in the case of the open string

choosing the "orthonormal' parsmetrization:

IS » — -
?%t & E%tfﬁﬁ aky (aQ = D (9.5)
where we have introduced the "light-cone" parameters:
€4 = TEE (9.6)
arnd
3, = =
* - (9.7)

X
W+
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With such a choice of the parameters the Lagrangian (9.2) becomes:
—_ M~ v .
of[9+z,3_z,z] = 9+x 2 o 3“_(7,_) (9.8)
and the equation of motion (9.3} reduces to:

&3/*9(1)3'3%4-;9(.3.,_1__&.{-8%92_&5 210 o By o7

ex*

Introducing the contravarlant metric tengorgg» (x) and the Christoffel

gymbol
27
('x) =3 ?}6(99 93:; 6;(_ B ai: (g.10)

the equation of motion can be written in a more cowrpact way:

0,0 =M+, 2 0 xt ) ()
(9.11)
Equation (9.11) describes the surface of minimal area in the four-dimensional
space with metric tensor 8 (x), and it strongly resembles the egquation
of +he geodetice. It has to be supplemented by the two conditions (9.5),
which specify the choice of the parameters, and by the periodieclity equation

(9.4) which, in terms of the variables § ,, reads:

{9.12)

2" (5,,8) = 2" (512w g -2m)

We shall now proceed as Tollows: Tfirst we shall treat the free
case, namely when the space-time is flat and all the Christoffel symbols
vanish; after we shall solve the equation of motion for a string in a space-

time curved by & monochromatic external gravitational field.

i} Free case

The metric ftenm=or is

%,w( ) ,V);W | (9.13)
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where
=0 for pA¥Y omd = - =M =My~ 1 (9.14)
{’Z/w N]oo ’714 M2z 23

The Christoffel symbols vanish and Eq. (9.11) becomes

dpo.2" =0 (5.15)

The moet general solution of (9.15) is given by:

(5, 5.)= % (52) + <2 (5.) (019

where X (gi:) are arbitrary functions,

Tsking the derivatives of Eg. {3.12) with respect to §i: and
using for x)l( f+, f_) the expression (9.16), we get:

gi_ /,gi: (gi) = 9.‘!: ”Cﬂ:(?t +27T) (9.17)

ly
Tais relation implies that xi(ji) are periodic functions except at most

for a linear term, namely:
%§(5i> = P)k_ft + %:(ft) (9.18)
where

:)C; (Et) - %:.t (fi'+ SZ'JT) (9.19)

The cosfficient P’w of the linear term in (9.18) ig the same in X+ and
x_ in order to fuvlfill Eg. {g.12). As in the case of the open string p/

has the meaning of total momentum of the string.

Our solution hasg still to satisfy the supplementary conditions
{9.5) which, in a flat space-time and with x» given by Eq. (9.16),

become:
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The cornectior with the SVM is now clear 22); when the thesory
ig guantized the coefficients of the Fourier expansion of i (,gi) give
rigse to the two sets of harmoric oacillators, the zero mode P has the
same eigenvalue in the two sets and the ¥ourier analysis of Egs. (9.20) gives

two sets ol gauge operators.

ii) Interaction

Let us svppose now that tne space-time Ls curved by the prescnce of
an external gravitational field. As for the "electromagnetic" field in the
cage of the open string, we asswume that the external field is monochromatic

maszlesz and with definite helicity. We then take a metric tensor of the fol-

lowing form:

o Ko S
3(:0:!7 + £, ¢, & K%
f34 | v VAl 4 {9.21)
v v ke S
%#(x) = /7}* - 2)& Ev -e,b 5 (9.22)
w-th the conditions:
,E,‘_E»: K ¢ = ‘Smk'“ = O (9.2%)

which entail that the space-lLime is "flat" along the directions of

and Er' y  namely,

gt e =

L}

K, 9"

v
o k/" /7)“ (9.25)

Mo smbiguity can therefore arisec in raising or lowering indices of k and

£ .

We can now evaluale the Christoffel symbol with the melric tensor
given by Egs. (9.21), (9.22) and (9.25) and write dowr. the equations of
rmotions:

Lk
- IS
o, x" + 2 Y

v . 2 x5 =c¢ (9.26)



N B # e e pil
Xv_f B ?Zi E Ke + £ Efky £, 80k (9.27)

'he set of equations (9.26) must be supplemented witk the perio-
dicity conditiors (9.12) and with the subsidiary relations (9.5), which

now take the Torrm;
g T
M Ot x" 4 (g,5, 2*) (6 2ea”) 2 =0 (e

In order to solve Bg. {$.26) let us first notice that the ecuations of mobion

in the direction k’k and g/t are the same as in the [ree case, namely:

E)L@+ o a= = Ku @ 2_ x’ (9.29)

and their solution is given by

Ky % Hoe ke %' (9.30)
A M
Gp 2’ = bu %5 (3.31)

wrnere  x » is the solution giwven in Egs. (9.‘.‘5)-(9.19} for the frec casze.

Sirce only the comwponents of x  along g and k& are involved
in the interactiorn term of Eg. (9.26), wc may treat that term as =& iknown
term after having replaced x® ULy XOPL according to Egs. (9.30) and (9.3%1).

The ecuations ol motion becorie then

M vkate ¥ e _ -
g+ 9, ” A -} a‘:; 9+ . 2PN 9_9’,0 = O (9.32)
Infegratirg thie equation wilh reapszct to 3‘ . and ;‘ _ we get the general

integral:

2(5,8) = @7 (1) 9P + 9l Bl (e 0o

¥
where (P}(Si) are srbiirary furctiors and F_ (g :I:’a:t) iz given by:

Se .
)}’/ - — "'kz':tofs ( <3 )
Fi {\S:/ai} z\gdj %t‘-’o(g)e ) 9. 54
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with
d

55;0")= J} %1..@) (9.35)

In order to impose the periodicity comndition (9.12) the two following re-

lations are useful:

R (5) =

R Geoms) - Fatar, o)

+ axc kP
r) - 4

(9.36)

+m kP

F;’(gtq.n-,giar) = £ 'E-_v(ji-le j’) (9.37)

Eguation {9.37) is a straightforward consequence of Eg. (9.36), which in

turn is obtained integrating both sides of
frav .
d —a E.k'at_.._o(f) / kP — "k":to(g)
SVEL G s = (T Ly ) (9)2
de ) " ® \ =
5
In deriving Eqg. (9.38) use has been made of the pericdicity properties of

& -x(4y, and keX;y . the factor 21T kP

peripdic linear term }c-PI contained in k-x(i)o(g Y.

(9.38)
comes just from the non-

Putting Eq. (9.36) into (9.33} we can rewrite the general integral
of Eg. {9.32) in the following form

r 3
’x»(ff, 5) = [‘ﬂ-[f,.) + V- (‘E-)J + 4-;':—3;;?3? E&*Q‘B‘L)F(f s W5 (9.59)

where ‘l’ﬂ:ifi) are two functions, difforent from T o fi), but etill

arbltrary.

Using Ea. (9.37) it is quitc easy to check that the second term
in the right-naxd side of (9.39) fulfills by itsell the periodicity condi-
tion (9.72}; we have then to irpose that condition separately to [LP++ 5"_]
Therefore, ‘[’ +F '{’_ repregsents the free part of x“*, a8 it satisfie=s both
the frze egquation of rmotion and the periodicity condition, whereas the

other fterm is due to the interaction.



Therefore, we may write:
M M
o (50,5.) = %o (5.,5.) + %iy (50,5) (9.40)

where

A A F (9.41)
x . = ____w_ F f '*2H f+\ f Jn'i )
ot (i‘hi ) 4‘:"'1”1‘ p X ( + (

Tris solution has maay features in common with Eq. (5.15} whick describes an
open string interacting with an exlernal "photor-like" Tield; we saall

therefore limit ourselves to some essential remarks.

The string resonates whonever P.k I3 an integer, whereas in the
case of an open string tuere is a resounsice at any integer value of 2Pl
This is relatea Lo the fact that we have used bhe same slope as in the case
oT the cpen string; we 4no® ingtcad that in this case the slope of the Regge
trajectory s a nalf ol the of' (slopo of the opcn string) which enters in
the Lagrargian. X[ we take the actual slope of the Hegge trajectory Lo be

i tken orc zets 2(d\H/2lﬂ{:2PkL=integer., as 1n the open string.

When we zpproack a pole [?-k::in:ogef} our solulion (9.41) diver-
ges lixc [éinTTki]-i; ‘s residue contairs the cyclic integrals, which

are characteristic of the constructior of tas sranasverse staces.

Since Kiii iz a fanction of x;# the interacting string has
gt<1]1 fne save degrecs of Sreedom as tho free string, and it can be yguantized
‘n terms of thnc same set of harmonic oscililators. However, il we warnt that
the sp=etrum of the physical states be left urchangea, 1t 1s necessaly
taat she constralrt equations, written in teorms of xéh, are still the
aame as Ln the frec case. Taat is actuaily She casc; 1n fact if one tazes
tne lelft-aand side of Eo. (9.28) and calcuiates it with = pgiven by
Eqs. (9.40) and (9.£71) one firds the identity:

ok (9.42)

v M » x H -
Yoako ol 4 (6.0, % )(E,Q_Q: )e =M O4%ed_%o=0
+ e \, /
4 ipy
waen the rigant-hand side hag just the form o the gavge operators in the

free theory.
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We shall not go through the details of the calculation, which are
straightforward; rather we point out that the requirement that the gauge
operators are left invariant in form by the interaction is very stringent
and *that it could hardly ve fulfilled with a different approach. For

instance, 1f one gtarts from the Lagrangian

% : ; Lk
L =-4fen)-=]" 4 snen’e (5.4

naxely a free Lagrangiar plus an ad hoe ianteraction which resembles tiaz
"agraviton" verlex, one would got irn the "orthorormal' parametrization
the same eguations of motion (9.25), the same solution (9.40), (%.41), but

differert gauges; namely

M v
= 9.44
”?}w 9+GC 0 = o | (9.44)
and that would not lead, with :}:‘JIA given by Egs. (9.40), {(9.41) to

%Wg 'x.‘“ > %a = 0 (9.45)

We will develop the Hamiltonian formalism for the closed string in Appendix

Dy it goes in the =ame way ag in the case of arn oper string.

We wantl to discuss now some pointls about possible cxtensions of
our approach.
i) With tae choice of tae rotric tounsor (9.21), {(9.22), (9.23), the inter-
action term in the linearized Lagrargiar just reproduces the vertex of the

strong graviton in the SV, that is:

J y ik akm(m
j‘bht = E/A 91' oxX E]} g_ w £ = £‘X+(f+) (33.46)
R

where the fact that *tke =zolutions aloag the directions & and B are still

the Zree onss has been ugsed.

One could try by vsing the same techniques of Section 8 to repro-
duce the excited vertices; we shall only discuss here the most sinple
24)

extension which concerns the other states of the SVM with zero mass

They are:



- 70 -

/A+(i) B-i-(i) 5 A-t(*l) B+(4)‘> ’0>

k R L L R/ (9.47)

where A" ana B* are the Iransverse operators built up with the two sets
of operators of the 3Vil, the subscripts R and L mean "right" and "lelt"
handed polarixatior. The antisymmetric state is decoupled in the ZVH
becausc of the complete symmetry of the model; but it is not in the

Pomeron factorization.
The interaction Lagrangians which correspond to the states

1

(9.47) are:
Lk

L/E)L-E‘p + é:“ Ey) Q_f, 'x{ 9_, ’x.._p rJ (9.43)

whero

-2 2 -
£ = & =0 and  £-8 = 4 (9.49)

Tre fagrangian witk the + @ign would result from a —etric tensor whose
deberminant varies from point to point, namely Trom a metric in whicn the
modulusg of a fovr-vector is not conserved for parallel traamsport; tae otlicr
one with the - sign would resvlt from a metvrice tensor with an antisyrretric
part.

Unfortunateiy, the anice feature taat %ﬂ ka i3 thac same as in

ki

the I'ree case aves not hold n this case and ftac non-lincar character of Lae
equations of moticon row rejulres for thz solution an iterative process

involving an infinite rumber of steps, This Zact puts the "strong gravivon"
on a different ground rod oaly with respect Lo the massive slabes of the 3V,

but also withk respectl Lo lhe rassless atates present in that rodel.

i} Tro secord probklem is whether +thne sravitasional “nteraction may apply
Lo an open strirg as well as o0 a closcd onc. In principle there 1is no
difficulsy in asolving thig problem zna il would be infteresting to =ese LT,
in this way, one con have some iaformation on the couplings ketweocr an opern
stiring and lbhe strong graviton whick iu a particualar statc ol a ¢losed

string.



CONCLUSIQON AND FINAL REMARKS

We have developed a consigstent relativietic theory of a string
whose free ends interact with an external massless spin one ITield. We
have shown that the equations of motion of the string are exactly solwvable
at least for special choices of the exierral Field, and tnat this thcory,
when properly gquantized, Teproduces the interactior of the "strong photon"
with the physical states of DRHl. We have alsc seen the problems which
arige wher we try to extend this theory to more general massive external
fields. Finally, we have studied the system of a closed string interacting
with an external gravitational Tield; this system, once again consisfently
guantized, gives us exactly the coupling of the strong gravitoa to the phy-

sical states of the Shapiro-Virasoro model.

This ig eunough to show, we think, that the relativistic string

theory i= more than an analog medel For the spectrum of DEM; indeed, it
can be used to obtain inforrations on the couplings of DRM. We can then
use the simple, intuitive picture given by the string to get more insight
on the nature of dual phenomena. We wish to conclude wita the following
{few remarks that can be regarded as naive, illustrative examplcs ol the
implications of the siring view in dual modeiz.

i] Qur form of interaction is not fully satisfactory because we treat
the interacting strings in an asyumetric way; indeed we simulate the effect
of one of the three interacting strings by means of an cxternal field.
However, such a form enables uw o guess that the interaction of open sirirgs
will take placec at the ends, so that a two-particle resonating channel is
represented in the space-time by two strings which glue ftogether at one end
in order to form a unique firal string. As & conseguence, 1f we draw in the
& , T plane the trajectories of the ends of four strings which undergo
the process 12— 34 .with rssonances in tae s (12) and + (23) ~channels,
we obtain a plaaar quark diagrar. More geanerally, it is aot difficult to
convince onesell that our way of attaching the sitriags leads to the graphical
rules of planar duality, in tke sense that the set ol trajeciories of the
ends of n interacting strings foxm a plaanar diagram once we have ordered
the external strings in such a way that contigwous strings give rise o re-
sonating channels.. Coaversely, for every dual dlsgram we can reproduce the
topological structure of the surface described in the space-time by the
interacting strings. For instance, the non-planar, orientable aingle 1loop,
which ig currently associated with the Pomeron contribution to the four-
particle.amplitude, represents, in the siring picture, a couple of strings

which glne together at the two ends so as to form a closed string;
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then this closed string breaks into two.pieces which are the two final
open strings. Thus we are led to conclude that in the string picture the
Pomeron, like the Shapiro-Virasore states, is aesoc%ated with a closed
atring in full agreement with the general belief 25 that the Shapiro-
Virasoro model provides a scattering theory for the Pomeron sector of the

conventional DRM.

ii} We do not have yet a complete theory of interacting strings, thus,
gtrictly speaking, we cannot say anything on the typlcal dynamical quantities
like, for instance, the widths of fthe resonances. Nevertheless, we nmay
conjecture that the lifetime of a string state is of the order of its
characteristic time A 1=2T k'E, i.e., the time in which a disturbance
goes through the string from one end to the other. Suppose indeed that a
string absorbs a photon at one end, then it jumps into more excited state;
this state cannot decay into the initial one until this absorbed excitation
reaches the other end, in fact we have seen previously that the string
can only radiate at the eads. It anas to be pointed out that this value
for the lifetime of the resonances iz in good agreement with that found
in IRM by Green and Veneziano 26) wao predict.that the average lifetime

is grester than T 'E, provided fhat the dual resohances are narrow.

If we push further ocur imagination and forget the rigour, we can
relate thig conjecture wizh our interpretation of n point functions given
in Seection 7. Indeed, we have suggested thab theooe Tunchions are asplihadz s
for processes which occur during the characteristic time of the interacting
etrings *); a peculiar feature of these processes is that any intermediate
resonance propagates Tor a time less than its own characteristic time;
hence, according to our conjecture, it should behave like a stable state.
The fact that the widths of the resonances coantributing to the n point

Tunctions are actually zero seems to support our conjscture.

iii) Clearly, the notion of characteristic time depeadsz crucially on the
Tundsmental length VEZ? which is present in the sitring taeory. If we let
ol ' =0, the characteristic time, as well as the locagih of the =tring,

goes to zero, thus one can argue that the =n  point function becomes, in
the string picture, the amplitude for n parbticles interacting at the same

7)

point. This scems Lo support a recent conjecture of Venezlano y namely
Actually, the characteristic time for a system of interacting sirings
is a function of their momenza PisPpyeeP and of the tines

¥

i t2,...,tn at wnich they interact.

T’
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that the n point Tunctions of DHEM may correspond, when the limit p{ ' =0
is properly carried out, to the interaction term ﬂn of a non-polynomial

2
Lagrangian for a field 8).

After the coxpletion of this work tane paper "String interacting
picture of dual resonance model™ by 5. Mandelstam, which deals with the pre-
blem of the interaction among strings using the path integral formalism,

was brougnt to our attention.
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APPEIDILX A

In this Appendix we wani iteo clarify the correspondence existing
between physical guantities delined in the tour-dimensional space =nd the

. . . oy . . o .1
corresponding two-dimensional quantities in the internal 5 H space.

. . Lo . . .
Following an argumeatl of Namou 9), we bezin to show that starting

from the four-dimensioral density

Lot = j,‘(v) A% (y) (8.1)

we way obtain Eg. {(5.2) as the correct interaction density in the parameter

Space.

L=t Jl( 3;) be the curreat in the internal space and asgune

that it ig conserved, The Tour-dimernsional current

(9= (a5 §P(xt0 -9 T = (g8

] ; e . i i
ig conserved 1T we choose approx’mately the density J (S ). In fact

) = S50 a8 -)7 = - (o (758%p) | 00
The lasgt ilntcgzral is zero if
J'i(t,o)z J-i(tﬂf) =0 omd x°(§°=¢eo,g“)= T e (A.4)

a0 that

jo(f--tm,f‘) = O (1.5)

There are.many solutions of BEds. (A.4), (A.S). We want, however, ths in-
variance under reparsmelrination as has beern explalnsd in Jection 3, s0

we choose:

TGi=c TG =980 551 s 0o

With this choice the ‘nternal Lagrargisn dens’ty corresponding to {a.1) is

obtained:

Lt = J L(ie) "X/:a (i") fq/u(di)) =g(s)§i;.ﬁ,qﬁ (A.T)



so0 taat tae form (3.2) is recovered.

Hex® we procecd to calculate lhe stress enerzy tensor of the
string. in the four-dimensicnal space. Let us introduce genersl

co-0rdinates in the integral (5.1); 50 we ozan write:

r %
> (o d [(%uv ?&F“W) kﬁﬂ )gﬂr x)f (o)

LIV
whnore gﬂv is the metric lensor of the Minxkowski space in curvilinear
v
co-ordinales. We define then T & (y) through the standard Tor-ula:

§S = 1 laty vy TV 83, | (1.9)

where 2 g the determinant of g;&# and § §  Is thc variatioa of the
sction when the metric tersor is varied of g g/n' . Varying gﬂv ir (A.Ej)

and inbroducing an appropriate delta function we obtain

;Z-}& . 3

- .2
) Lat}d“w-’_ xﬂa?-]__ x 2l

'x'aj /2

{(#.10)

20X
Ty -2 C&fg ('1 %()

[(2w)®- %
where agsin the Minkowski metric has been ascd. Wz may wriie {A.10) meore

T

colneiscly in the Zollowling weay:

(’j)l = -2 df 8( (j “(;)\2( J(f)ﬁi .) (4.11)

i} ; . .
where 3 N (143 =0,1) are the contravariact conporients of the Two-

dimersionsl rciric tensor on Lhe surface:

Ly s,

in the same way as we 3id lor lhe current we may dedine a'J'J(f
as the stress encrgy nosentum teasor in tne parameter space which correspond
Lo tke strecss tensor in the four-dimensiorsl space, througzh definition (&.711).
Tris defirition is corroborated oy the following ohservalion: lot us work

aircetly on the two-dimcasional suriace and writc vhe action integral (5.‘.')

S = Edzf H (2.13)

in Llae form
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where a’ ig the determinant of the J’jJ' We may define a two-dimensional

stress tensor on the surface through the definition

S_S _ Sdzf V-—J.z_;) 5% (A.14)
Straightforward calcélations give
T o= a":) (4.15)

i.e., the same quantities which enter in the expression (A.17).






AP pPp &N DIX B

In this Appendix we derive.tac soluzion (:J.l ) sturtiag frow the

exuression (5.11) and imposing the boundary conditions (5.2} and (5.9}

This gives rise to the following squations for g and i
;.kﬂ(fro)

a-;:,A IT}‘p[i,(Z*W) - ,é\v(f*ﬁ)_] :"‘:30 7—)‘y'9&y(rf°)£ (B.1)

Lk, M)

—_—pv i, . e = Al i [
LB T/ [9» (T+7) 3"&_@] -0 ] a2, (t e -

whore

kS
—

and Lae Toxlowing ecunkbicaz for the discoabinulbies:
M. vk T, 0)
‘xy{,'fr?) e a.09)

.}__PV - . L.k* [{t, Tf) {r.ﬂ.f_}:‘
i

TR - by feem) | =i T
? = ’)\'Z.’,()_?.',"n_'_) € ’ v

T L§em- jn
An o explicifh solution of Lhe equations (kood ard {8.6) “s uiven by:
. ) o kw7, )
- RO T e (T) e (2.7)

o q (z) = T % (1,9 ‘Q_ ____________________

S (2P k)T

wasre Poia Ths Dour-mamentum 0 She alolng.

I order 1o ashow that lae orevious Junclions aatizs’y the cyualions
! 1

(p.u) and (B.3 Yowe must wrove tae follow g relatlons:
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kK (zeT, M) = Kx(c,e) 2 23PeT (3.9)

. v,
TN%, (cemm) = T, (x.e) (5.10)

Thne first relation follews from the fact that the component of :ix:"’L along
k& is behaving as ian the free casc; S0 We can use the expressgion for

{k+x) given in terms ol the oscillators {5.18)., On the other hand, the
external field does not carry momentum along i » and therefore we can
ideatify Prz  with the momertunm of the string along the direction M.

The relation (B.10) is then a condgequence of the fact that along the direction

A
2’\ we can carry the same analysis as along k' .

Using the relations (B.9) and (B.10) it is easy to prove that (B.7)

- . . r -
gatisfies the eguation kB.D):

—r')"\r’ [ ’a ('C‘Hf) "'i‘v(t"”,ﬂ __ I:" % (1,9 chrf{TrME) ikx(%- M_)]
’ 2sm(zpT | € -e
=T (2,9 ﬁbkzmo} (B.11)

The proof thas (B.8) satisTies Bg. (B.6) car be then carried out ir the
same way. The inscrtion of (8.7) ang {B.2) in (5.11) gives the solution

of tne eguation of motion:

, » . vy ;kanEi_ (B.12)
2,(t 6)= 5(t+a) + F}.(r-es) (euk, -zvkﬂ)[?ﬁ(w;v)e +R’.u€;;6(;3'wj

.« £
wherse

(B.13)

ot e o e e s R 1T

Q. Siw (2P0 T
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APPENDTIX C

We want to show here what happons wihen ore studies the interaction
of the gtring with two external "photeon-like" [ields with polarization and
momenturr respectively g , k and g ', k'. We write the Lagrangian in

the form
. oy
.« okz ;o C k'
o&p = £, = g}li'xe - £z L 0(s) (c.1)
o
[
where, Tolr the sake of simplicity we jusit consider the casc of one charge

at & =0.

The eguations of motion of the string sre the same as in the case
of one monochromatic field, whereas the boundary conditions at & =0

become

. ckxlno ) ék'x(z:.o)J
2:;‘ (t,0) = #& 'x"(r,o)[ﬂ:ﬂ e ’ )+-§ﬂ, 2 (c.2)
in

witn

} ) ) ! )
'Trfrv = EuKy = &y Kp /—.g/w = £/uk, - E,k/u
For & = M they are ol coursze X}\ =0.

- In this casse we do not have any component of x’\ which satisfics
the woundary conditions of the froe case, so it is not possible to apply the
procedure of Section 5 %o find the solution. Howcver, we can look for a

i

perturbative solution in power series of g=2Fg

»r _ M -~ M my M 5
& - “(o) +32f1-) +a- ’Xcz) 4 - - (c.3)

For the first few orders in the coupling constanzt g the boundary conditions

(0.2) read

)
. ckZesy ék'“l’”j
“Eﬂ,)‘ = -t % [ﬁfr»a + € | e
) eV th2, t ck' g,
Zy po = % q) [‘iuve “4 ‘E,uve 20+ (c.6)

. Lk, ] Cic'x,,
) 1(.) [{N( k'Z@))& )+ _g)w(k,-x(‘_)> £ ¢ )J



iz tne free solution, X(4> ia an obvicus generalization ol Eg.

).
¢ kﬁ(’) (f.f 2

T+ nte
WA P A AL )] [t le e =
[ £ s rE-F - . & d?a’ ‘q) o
7000 B[ T a0, 96

t 2LPKT
e (0.5)

R Siwm (29T

b
Q_f“\
e}
R

wWitn

it ig essy to sec thait tre second grder torm of Lhe solution is

T-A

ropp(e)s AL 6, S48 o)) +Mr+wjr

Gita 2P’ ™

. L{e oty (5,0 g/ o (T
IO (f;"") € b )dj L ,(_P-FJ [R (k+k) ( (c.a)

cex(s,o) g X o4, 0)

C"""’“‘f =y v
# A Q)] s Rglge) e Jdy Ayglye) e

S o Y ?
+ (&, k) <2 Lex’ |
Lz it iz clesr from this expressinn, = poculiar Teature of x

#

!

g what it

—
o
R

i

shows single woles when 2Pk, ZT.K!' ov PPe(uk')  arc iabzger numbors.
Tlicse polen correspond to the resorance struciure ol thac dual anplilude,
suart from ke lack of poles ir the croszed ckhannecis:  She last ones see:

to arise ia Pact from g purely guartistic csuss and sre essertially due

23)

to the "cormuistion rules™ of tho dual vers ces

© We rormark thst Lr (6.9) we preferred bo wse indefinite Zategrals, yet
we miznat have ased daiinite indtograls extendsd to aymnetricsl intervals
oir 2W . Fowsver, ir tals case il wouid be more cimbersome Lo ses that

Lhe poles ars simple,
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APPENDIZX D

In this Appendix we sketch the Hamiltonian formalism in the case
of a closed gtring embedded in a curved space-time;

;3 since the procedure is
guite similar to that followed for the open string, we shall just summarize
the results.

We start from the lLagrangian (9 2)

y 2 %

- . o JA el iK iy

L= - 21 [ 2gu0] - [ €[ "= ot 00
and we choose as independent dynamical variablies X *

by :

, and

T» defined
908 }‘ 'y
Wﬁ:ax"":ng [( )%-(7:1»3)9«} (D_z).

As a consequence ol the reparametrization invariaace of the action, the
Hamiltonian density
: .
K= T
s identically vanishing

As in the case of the open string, we have
conatraints between Tthe dynamical variables :4:”‘L

and 77; « They are

= 9 =0 |
Loz 27T,

Ly

30, the

(D.3)
%%%(1)+rﬂjcwl O '
AT Fad
Hamlltonian will be a combination of the constraints

’ (2 g o a T T 9 0]
,*l 4“ dG‘[F(Gt)% H )E(r'c) “ur ;u)+ j(m) (D.4)
where f1 and T

5 arc two arbitrary functions.
consistency of our lormalism.

(2, F

once that the eguations of motion and the constraints themselves are taken
into account.

Wa want now to check the
Therefore, we must show that

~ O

If we assume canonicsl Poisson brackets at egual 2
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I M i
{%ﬁcs‘,z))ﬂucﬁ‘z)} =57, §Ce-s)

o0, %% 0} oo, Tel) <o

We may easily evaluate the Poisson brackets between

£

1

-
and 0[, ot

{at: (.6"‘2')1 ﬁicffr)J =4i {982 Cb',,‘c)) £2(ffz)} -

4 4m

_qw(ﬂ—(v)x 'y + T_Ca')'ac )

)_9_
7re

Tt

¢')
{(D.7)

{-E (5"5) :@ (%, ‘c)} [ﬂ'“)—rwig[}c(o’)] +

x )(‘6]96 (o’)g Lx(ﬁ')] 5o

.{,1'1'

] 0 gcc_q';-i[ﬂ(r)—lf@)? ’Y ot
grt ¥ 38‘(3 an

ar

mmr} g ]d(o’-o"
ar

the right—hand gide of Eqs. (D.T) and (D.B) are again the primary constralnts

{D.%3) or their @& derivatives; this regult assurcs that the coanstraints

¢£?1 and 432 are first-class, then the formalism is consistent for amy

choice of the functions f1 and [ {(that iz of the parametrization).
and T?; 3 it feollows

2

We want to find now the eguation of motion Zor

from the eguations (D.4) and (D.6)

)L])
f:; 1(m)% + rz,;((m)ﬂ_g

1f we choose the particular gauge where

2"’_)‘: TC g/AQC?‘f} ,

&
we completely fix the funcitions I, and I,
— ' 4 )
JC"‘O ) .‘C-‘:" /
1 2 b2

by substituting (D.10) in Eq. (D.3) we see that

define a paracetrization such that

»
X

toisg

choice

(D.9)

(D.10)

(D.11)

corresponds to



- N ) j)-l ,) [] v —_
(270 s 270 g 0 )3ﬁg”3*o (2.12)
Ir this particular gauge the egquation of motion for TT is
. — v
- _,.',l., e '“) _2 CxY _ 27T ' ? ‘PC;‘, ¥
ﬂ}""a’ﬁ'% > (‘axgg)“’ !/‘Tlufa'&gj ’ )
o Lo )] 'V [x¢6cn) e S(e-c") oeE (D.13)
ol e (Q“))-. & () 0(6-0 :
*%(3f” 4T 35"’ 47 a-o

The last term in the right-hand side of this equation vanishes because of the
periodicity condition (9.4}. By eliminating -TC” from Egs. (D.10) and

(D.13) we finally obtain the equation of motion For the closed string

. £ _ |
9"(:?_%"3’4_();* 9;0—'36’}‘90“;) [_:/,_ =0 (D.14)

which ig identical to BEg. (9.71).
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