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\Ve apply the self-consistent Einstein moclel to the theory of anharmonic lattice vibration 

in metallic fine particles, and discuss the size dependence of the melting and superconducting 

transition temperatures in the connection to the softening of the surface lattice vibrations. 

Assuming a simple interatomic potential and certain distribution of the particle size, we 

express both transition temperatures as functions of the average radius of fine particles and 

show that the numerical results calculatecl from the theoretical expressions arc in fairly good 

accord with the experiments. 

§ I. Introduction 

In a previous paper, one of the present authors has discussed, on the basis 

of a self-consistent Einstein model, that the atoms on the surface of metal crystal 

perform oscillations with much larger amplitudes compared with the interior at

oms.]) The large surface lattice vibration is related to the softening of the fre

quencies of the surface atoms and also closely related to the so-called surface 

relaxation of the lattice constant. Since the surface to volume ratio of metallic 

fine particles is increased with decreasing size, the surface softening should give 

appreciable effects in the various thermal properties of metallic fine particles vvith 

sufficiently small radii. Up to the present time, there are many accumulated ex

perimental facts to sho1v that this is indeed the case. It has long been known 

for instance that the metallic fine particles have melting points much lower than 

those of the corresponding bulk metals. The first observation of this depression of 

the melting point was made by Takagi2l on Pb, Sn and I3i thin films by the use 

of the electron diffraction method. Since then similar observations have been 

reported, for example, on Sn by vVronski, 31 on Pb and In by Coombes, 41 on 

Au by Buffat and BorePJ and so on. This phenomena are undoubtedly due 

to the surface effects, and phenomenological theories based on the thermodynamic 

arguments have been presented. 61 A simple microscopic theory 1vas first proposed 

by one of the present authorsn with a pretty success in explaining the main 

experimental facts. This paper contains a sophistication of the previous theory. 

Another example of the phenomena 1vhich seem to be related with the surface 
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Fig. 1. Size dependence of the superconducting 

transition temperature of metallic fine 

particles. T/ is the transition temperature 

of fine particle, T/ of bulk metal and d 
average diameter. 

softening is the remarkable increase in the 

superconducting transition temperature of 

metallic fine particles. Matsuo et al. have 

measured the superconducting transition 

temperature Tc of Al, In and Pb fine 

particles as functions of the average radii. 

Their result is reproduced in Fig. 1.8) 

Several different interpretation of this size 

dependence of Tc are suggested, but the 

most promising one which is capable of 

explaining the experiments seems to be 

that the origin is attributed to the soften

ing of the lattice vibrations. \V e discuss 

this problem in this paper as an appli

cation of our theory. 

Most direct observation on the softening o£ the lattice vibration vvill be pro,-id

ed by the X-ray, electron and neutron scattering experiments. From the observed 

De bye-Waller factor, for instance, the value of the mean square displacement < u') 

of atoms in metallic fine particles can be deduced. Such experiments of the X-ray 

scattering from metallic fine particles have been done by Kashiwase et al. for Ag9J 

and by Harada et al. for Au/0J and it is found that the <u') values derived from 

their experiments are very large, indicating the presence of the softening of the 

surface lattice vibrations. 

In this paper we present a simple theory of anharmonic lattice vibration in 

metallic fine particles which enables us to interpret all the phenomenil mentioned 

above in rather simple and straightforward way. In contrast to the conventional 

theory of lattice dynamics in the harmonic approximation, we consider an assembly 

of independently oscillating atoms, each of which has each own frequency deter

mined self-consistently from the knowledge of interatomic potential and the ayer

aged motions of all atoms. Although each atom is assumed to perform harmonic 

oscillation, the self-consistent equiltions to determine the frequencies are highly 

non-linear and gi\-e rise to a complic<1ted coupling among the softening o£ frequen

cies, increase of amplitude F!nd weakening of the effective potential. Thus the size 

effect o£ the frequency as well as the CDoperative softening mech<1nism are built 

in the self-consistent equations. vVith increasing temperature the softening mech

anism works vvith an enhanced wte and at last the system attains instability which 

may be someho\v related to the melting phenomena. A merit of the present theory 

is that the local frequencies are directly treated so that the change in the fre

quencies clue to the presence of the surface can be easily evaluated, enabling us 

to discuss the phenomena related with the surface softening. 

The organization of this paper is as follows: In § 2 a full account of the 

model is given and general formulation is presented. In § 3 the general theory 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

8
/4

/1
1
0
2
/1

9
2
2
0
7
4
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1104 T. lvfatsubara, Y. Fwasc and A. Afomokita 

is simplified by taking a special Gaussian potential and the basic equations are 

reformulated. The parameters included in the potential are properly chosen for 

typical 16 cubic metals ~with BCC or FCC structure. In § 4 the theory is applied 

to the melting of metallic fine particles and compare the results of the theoretical 

calculation with the experiments. In § 5 an application of the theory to the size 

dependence of the superconducting transition temperature of metallic fine particles Is 

presented. The last section is devoted to a brief summary and discussion. 

§ 2. General formulation 

Self-consistent Einstein model is a simplified version of the more general self

consistent phonon theory which is founded on the basis o£ the variation principle 

at finite temperature.w A full derivation of the self-consistent Einstein model 

from the yariation principle has been already given in the previous pa per1J for 

the case of the one-dimensional finite lattice. Since a generalization to the three

dimensional case is quite straightforward, we omit it here and present a formulation 

of the model in a rather intuitive manner. 

Let us consider a fine particle composed of atoms forming a Bravais lattice 

{Rn} in a spherical region with a radius R. Let v(r-r') be the interatomic 

potential between two atoms at r and r'. For the sake of simplicity we assume 

that each atom performs independent isotropic oscillation and denote the frequency 

o£ an atom oscillating around Rn by ()) (Rn), the atomic mass by i\11 and the dis

placement nctor by n(n). Then ¢(Rn) =AfoJ(Rn) 2 is given by the average cur

vature of the potential acting at Rn as 

J.11co (Rn) 2 = ¢ (Rn) = :2: :2: (vxx (Rn +It (n) - Rn~- U (n')) )/3. (1) 
n' x 

The average in the right-hand side of (1) should be taken over a canonical 

ensemble of the Einstein oscillators with the frequencies {!1l (Rn)}. In the high 

temperature approximation, it holds that 

(exp[i(q·u(n)) ])=exp[ -< (q· u(n) ) 2)/2] 

=exp[ -q'kBTj2rj;(Rn)J. 

Therefore if the potential v(r) is decomposed into Fourier component 

v(r) = S dqV(q)exp(iq·r), 

Eq. (1) can be written, upon using (2) and (3), as 

r/J(Rn) =- S dq(q 2/3) V(q) ~ exp[iq(Rn- Rn.)] 

X exp[- (q'kBT /2) ( ¢ (Rn) - 1 + ¢ (Rn.) - 1)]. 

(2) 

(3) 

(4) 

We first simplify the problem by assuming that ¢ is independent of the atomic 

position. This assumption is not of course justified, but we expect it is to be 
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Theory of Anharmonic Lattice Yibration in 1\1etallic Fine Particles. I 1105 

a reasonable fust approximation because the variation of ¢ (R) is restricted only 

near the surface. We shall come back again in later section to the question of 

the r-clependence of ¢ (r). Now taking rjJ (R) = ¢ and Rn = 0, we write Eq. ( 4) 

as 

¢ =- S dq (q'/3) V(q) exp[- (q'knT /¢) ]~ exp( -q · Rn,). (5) 

The size effect comes from the last factor on the right-hand side of (5). If \Ve 

define the following functions: 

Z(r) = CI: o(r-Rn))fJ(R-[r[) (6) 
n 

fJ(x)={~ 
then it 1s obvious that 

for x>O, 

for x<O, 

L exp( -iq·Rn) = Sdr Z(r)exp( -iq·r). 
n 

(7) 

Since Z(r) is a product of two functions of r, (7) is expressed as a conn1lution 

of two functions of q corresponding to their Fourier transforms. Thus we have 

L.;exp(-iq·Rn)=Yc- 1L.;f(q-Bh), (8) 
n h 

\vhere the {Bh} 's are the lattice vectors reciprocal to {Rn}, Yc the Yolume of 

a unit cell, and f(q) the Fourier transform of fJ(R-[r[) defined by 

f(q) = Li<R exp( -iq·r)dr 

= ( 4rrR3) (qR) -s (sin qR- qR cos qR). (9) 

The summation L.;h is taken over all the reciprocal lattice vectors. Substituting 

(8) and (9) into (5) and performing the integration with respect to q yield an 

equation to determine ¢. 

(10) 

It turns out that this equation ceases to have solution above a certain temperature 

T m· To see this, put 

(11) 

Then the rigbt-hand side of (10) is a function of IV and R, and hence Eq. (10) 

takes the form 

¢=F(W,R) or knT=WF(W,R). (12) 

The function FOV, R), the sum of the integrals on the right-hand side o£ Eq. 

(10), is obviously a decreasing function of TY, and TYF(vV, R) should be bounded 
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1106 T. Matsubara, Y. Iwase and A. Momokita 

above. Therefore we can find a point 

(13) 

above which there exists no solution for W(T). Going back to the original van

ation formulation, we find that this corresponds to the disappearance of a local 

minimum of the free energy, indicating an instability of the crystal lattice. Al

though T m is not equal to (actually much larger than) the melting temperature, 

we may regard T m as a proportional measure of the melting temperature of fine 

particles. For T<Tm, there are two solutions of Eq. (12) for W, smaller one 

of which is the desired solution corresponding to the minimum free energy. Once 

the solution W is determined as a function of T and R, various quantities of 

physical interest can be immediately evaluated. For instance, W itself is nothing 

but the mean square displacement 

W=kBT/¢=(u') (14) 

and is proportional to the De bye-Waller factor. By the definition, the frequency 

of the oscillator is given by 

§ 3. Simplification for Gaussian potential 

In order to avoid the computational difficulty, we simplify the calculation in 

two ways. First we choose as the interatomic potential a simple form of Gaussian 

type 

v(r) =A exp( -ar') -B exp( -br') (16) 

and the four parameters A, B, a and b are fixed by the following procedure: 

Many years ago Girifalco and W eizer12> proposed a simple Morse type function 

vM(r) =D[exp{ -2a(r-r0 )} -2 exp{ -a(r-r0 )}] (17) 

as the interatomic potential of cubic metals and they determined the values of 

the potential parameters D, a and r 0 so that the lattice constant, the compressibility 

and the sublimation energy calculated from the potential for 16 cubic metals fit 

the corresponding experimental data. Instead of following a similar method, how

ever, we try to make v(r) fit to the Morse potential vN(r) in the important 

parts. Namely we require the following four conditions: 

v)1 (r0) = -D=v(ro), 

vM'(ro) =O=v'(r0 ), 

vN"(ro) =2a'D=v"(ro), 

vN(rc) =O=v(rc). (18) 

In Table I the potential parameters thus determined are listed up for 16 cubic 
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Theory of Anharmonic Lattice Vibration in Jlv1etallic Fine Particles. I 1107 

Table I. Gauss potential constants for the pairwise atomic interaction in cubic metals. 

Yletal A(eV) B(eV) a(A- 2) b (A-') deal dcxp 
-----

Pb 59.16 1. 224 0.4934 0.1019 3.49 3.49 

Ag 69.27 1. 612 0.6922 0.1395 2.88 2.88 

Ni 59.07 1. 759 0.8269 0.1578 2.50 2.49 

Cu 45.06 1. 400 0.7713 0.1457 2.56 2.55 

Al 31.066 1. 050 0.5884 0.1089 2.86 2.86 

Ca 16.24 0.5996 0.2930 0.05305 3.94 3.93 

Sr 15.14 0.5590 0.2458 0.0445 4.31 4.30 

Mo 220.2 4.324 0. 78,14 0.1637 2.69 2.72 

w 210.6 4.839 0.7324 0.1480 2.73 2. 73 

Cr 99.73 2.207 0.8944 0.1821 2.49 2.49 

Fe 58.86 1. 748 0.7897 0.1508 2.49 2.48 

Ba 11.68 0.4883 0.2064 0.03618 4.41 4.34 

K 2.788 0.1586 0.1379 0.02214 4.74 4.62 

Na 3.162 0.1834 0.1957 0.03124 3.94 3.71 

Cs 2.219 0.1295 0.09745 0.01553 5.57 5.24 

Rb 2.167 0.1314 0.1063 0. 01673 5.22 4.87 

metals. Of course the theoretical lattice constants calculated using the potential 

(16) with the condition (18) are different from the experimental lattice constants, 

to which Girifalco and W eizer ha>"e referred for determining the potential param

eters. Fortunately the differences between the calculated nearest neighbour dis

tance deal and the experimental one dexp are fairly small as seen in Table I. 

vVe need later the Fourier transform o£ v (r) which is given by 

Y(q) =T exp( -~q 2 ) -A exp( -r;q') 

\Vith 

T =A ( 4rra) - 312 , A= B ( 4rrb) -s:2 , 

~=1/4a, r;=1/4b. 

The second simplification 1s to replace the function 

f(q) = (4rrR3) (qR) -s(sinqR-qR cos qR) 

111 Eqs. (8), (9) and (10) by a simple Gaussian 

f(q) =87r312R3exp( -R'q'). 

(19) 

(20) 

(21) 

This form for f(q) is in fact quite a good approximation, because in reality the 

radii of fine particles are distributed around some average value. Although R may 

be thought of as an effective radius to be determined, we leave it as an adjustable 

parameter in the present theory. Putting (19) and (21) into (10), and performing 

the integration vvith respect to q, we arrive at the final result which can be 

summarized as 
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1108 T. lvlatsubara, Y. Iwase and A. 1\fomokita 

kBT/G'=zF(z, p) 

= (n312/2) z[r (x + z) - 512 - A (y + z) - 512] 

- ~ (4/9v~) z[r-~-- . exp (-_C:;;+_i)_}zh'P__) (~ + __ nh2P )' 
h x+z+p x+z+p 2 x+z+p 

-A P512 ·exp(-_(y+z2!l_h2P) (~+_!!i.L)]. (22) 
y+z+p y+z+p '2 y+z+p 

Here G is the magnitude of the smallest reciprocal lattice vector 

G= { (2n/d) v~ 

(2n/d) v2 
d the lattice constant, and Gh = nhG. 

Other symbols are defined as 

y=YJG2, p=RzG'' 

z=kBTG'j¢. (24) 

An equation for the bulk state is derived 

from (22) by taking the limit p-H:o: 

l::BT/G'=zF(z, oo) 

= (7r312/2)z[T(x+z) - 512 

-A(y+z) -;;'] 

- 2:: ( 4/9v~) znh 2 

h 

X [Texp{- (x+z)nh'} 

-A exp{- (y+z)nh'}]. 

(25) 

As an example, the right-hand side of 

Eqs. (22) and (25) for the case of Ag 

is plotted as functions of z for several 

values of p or R in Fig. 2. 

for FCC, 

for BCC. 

zF(z,p) 

(23) 

Fig. 2. zF(z, p) vs z curves for various p 

values. The used parameters correspond 

to Ag metal. 

§ 4. Application to melting of fine particles 

As discussed in § 2, there is a critical temperature above which the self

consistent equation has no solution. This temperature can be readily determined 

by looking for the maximum of the right-hand side of Eq. (22) or (25). Thus 

we have 

(26) 
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Theory of Anharmonic Lattice Yibration in ldetallic Fine Particles. I 1109 

as a function of p. Let us assume that T mf /Tn,b is a proportional measure of 

the melting temperature of metallic fine particles relative to that of the bulk 

material. In Fig. 3 T"/ /T mb is plotted as functions of R for several metals and 

a comparison between the theory and experiment is made for a particular case 

of Pb in Fig. 4. If ~we use a scale such that 

R;;;;;RjlO, (27) 

the agreement between the theoretical curve and experimental data becomes excel

lent. The change of the scale required in (27) may be some1vhat large, but not 

so unreasonable from the following reason. We have so far neglected the posi-

0.9 

(a) 

FCC 

o Pb 

o Ag 
+AI 

• Ni 

1.0,-------------'-1,-'0'----__ -::-___ ~~2,'='0~ ___ _ 
~ o • ~-~•_c:o--~ 

R(A) 

0.9 
BCC 

o Mo 

"Cs 

0.8 
o No 

• Rb 

"K 

0.7 

Fig. 3. Tm1 /Tmb as functions of the effective average radius R for 

(a) FCC metals and (b) BCC metals. 
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1110 T. lvfatsubara, Y. Iwase and A. Afomokita 

tional dependence of ¢ (R) and replace 

¢ (R) by ¢ (0), the value at the center 

of fine particle. This apparently results 

in an overestimation of ¢, because ¢ (R) 

is expected to diminish rapidly near the 

surface. Inspecting the curves in Fig. 2, 

·we observe that in order to have smaller 

¢ or larger z for given temperature, 

a smaller value of R should be chosen. 

Therefore good agreement between the 

theory and the experiment will be attained 

when R is set to a value smaller than 

the real average radius R as suggested 

in (27). We need however more discus

sion to justify the scaling given in Eq. (27) 

10 10 2 103 

1.0.-------'i'--~-T-------co-----'-i 

_.k-~R,R(A) 

0.9 

0.8 

/ 
f 
• I 

I 

1--------------lf 
I 
I 
I 
~ 
I 
I 
I 
I 
I 
t 

Fig. 4, Comparison of Tm1 /Tm' between the 

calculated curve (solid line) and the ex

perimental data (black points) for Pb. By 

a suitable change of the scale, it is possible 

to make the theoretical curve coincide with 

the experimental curve (dotted line). 

and we shall come back again to this point 111 the last section. 

§ 5. Size dependence of supcrconducting transition temperature 

As mentioned in the Introduction, the superconducting transition temperature 

Tc of metallic fine particle is generally increased with decreasing size of particle 

(see Fig. 1). It is believed that this increment of Tc is mainly clue to the surface 

softening. Then it would be \"ery interesting to see how the present theory can 

be applied to this phenomena. 

vVe begin with the well-known expression for Tc due to NI:cMillan :131 

r e [ 1.04 (1 +A) J 
Tc =Dis exp -X-,~~* (1-1- 0.62}_) . 

(28) 

In this formula, 6 is the Debye temperature, /.L* a paran:teter related to the screened 

Coulomb repulsion between electrons, A the electron-phonon coupling constant. It 

is kno1vn that p* 1s nearly constant ( =0.1) for most polyvalent metals, while 

}, is expressed as 

(29) 

where 1V(O)<J2) turns out empirically to be almost constant for all material. 

As example \Ve list in Table II the bulk Yalues of A, N(O)<P) and Tc for three 

Table II. 

Pb In Al 
------------

J. 1.12 0.71 0.38 

N(O)(J') (cV. A-') 2.34 1. 76 2.0 

T, (K) 7.19 3.40 1. 16 
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Theory of Anharmonic Lattice Vibration in Metallic Fine Particles. I 1111 

metals Pb, In and AI. We have a similar formula for Tc of metallic fine particle, 

but with different parameters modified through the change in the phonon spectrum: 

@ and ). are to be different for the bulk state and fine particle. Taking the 

ratio of the two expressions for Tc yields 

where the suffices f and b refer to fine particle and bulk respectively. In our 

self-consistent Einstein model it holds that 

and hence we may put 

®,/@b=w1/wb. (32) 

On the other hand, assuming N(O) (.I") a constant, we can approximate 

).1j).b=(wb2 )/(w/);;;;wNw/. (33) 

2.0 

1.5 

1.0 

AI 

I 
I 
... 
t 
"' \ \ 

P~ • '-..;-:';..~. R.R (A) Ill' 
10 10' 

Fig. 5. Theoretical curves of superconducting 

transition temperature as functions of effec· 

tive average radius R for Al and Pb. By 

a change of the scale, the theoretical curve 

for Al coincides with the experimental 

curve. 

Since the ratio (w1/ wb) 2 is easily obtained 

from the slopes of the kBT/G3 vs z 

curves such as Fig. 2, upon substituting 

(32) and (33) into (30), Tcf/Tcb is 

determined as a function of R. The nu

merical results calculated in this manner 

for AI and Pb are shown in Fig. 5 to

gether with the experimental data. Here 

again the same scaling as Eq. (27) gives 

rise to an excellent agreement between 

the theory and the experiment for AI in 

spite of the crude approximation which 

cannot be applied at low temperatures. 

The agreement for the case of Pb is poor, 

but this will be probably due to the fact 

that Pb is the well-known strong coupling superconductor for which a simple theory 

does not work. 

§ 6. Summary and discussion 

In the previous sections, we have developed a theory of anharmonic lattice 

vibration in metallic fine particles on the basis of the self-consistent Einstein model, 

and applied it to the discussion on the size dependence of the melting and super

conducting transition temperatures of fine particles. To facilitate practical applica

tion of the theory to the fine particles of real cubic metals, a Gaussian potential 

for pair-wise atomic interaction is proposed and the potential constants are deter-
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mined in such ways that the calculated lattice constant, compressibility and sub

limation energy for 16 cubic metals agree with the corresponding experimental 

data. Then, by assuming certain distribution of particle size, an effective average 

radius R is introduced and the ratios of the melting and superconducting transition 

temperatures of fine particles to bulk metal are derived as functions of R. Sur

prisingly good agreement between the theory and experiments is obtained when 

R is chosen as about tenth of the average radius R. Thus except for the ambiguity 

in choosing the scale for the effective average radius, the present theory seems 

very successful in accounting main phenomena which are related with the surface 

softening of metallic fine particles. We are therefore in a position to examine 

more carefully the meaning of R. 
By definition f(q) is the Fourier transform of the step function fJ(R- lrl) 

(see Eqs. (6) and (9)). The replacement of f(q) \vith the Gaussian form Eq. 

(21) means, therefore, to take a Gaussian distribution function instead of (] (R- I r I) : 

g(r) =exp( -r'/4R'). (34) 

This replacement certainly reflects some distribution of the particle s1ze R, but 

if the scaling relation R = R/10 is put into (34), we find 

g(r) =exp[- (5r/R)'J 

\vhich gives nse to an extremely small probability for g (R). In another word, 

with the present approximation, quantitative agreement between the theory and 

experiments is attained only by assuming an effective radius much smaller than 

the given R, admitting significant reduction of the contribution from the surface 

parts. This result is of course caused by that we neglect the positional dependence 

of ¢ (r) and the cooperative interaction between the surface and interior atoms is 

not enough taken into consideration. As proved in the previous paper,!) the effect 

of the non-linear cooperative coupling between the surface softening and weakening 

of the effective interaction potential should be very important when the surface 

to volume ratio becomes large as in the metallic fine particles. However we will 

not enter this point any further, leaving it as a future problem. 
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